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ABSTRACT

Decisions made by machine learning models may have lasting impacts over time,
making long-term fairness a crucial consideration. It has been shown that when
ignoring the long-term effect, naively imposing fairness criterion in static settings
can actually exacerbate bias over time. To explicitly address biases in sequential
decision-making, recent works formulate long-term fairness notions in Markov
Decision Process (MDP) framework. They define the long-term bias to be the sum
of static bias over each time step. However, we demonstrate that naively summing
up the step-wise bias can cause a false sense of fairness since it fails to consider
the importance difference of different time steps during transition. In this work,
we introduce a long-term fairness notion called Equal Long-term BEnefit RaTe
(ELBERT), which explicitly considers varying temporal importance and adapts
static fairness principles to the sequential setting. Moreover, we show that the
policy gradient of Long-term Benefit Rate can be analytically reduced to standard
policy gradients. This makes standard policy optimization methods applicable for
reducing bias, leading to our bias mitigation method ELBERT-PO. Extensive ex-
periments on diverse sequential decision making environments consistently show
that ELBERT-PO significantly reduces bias and maintains high utility.

1 INTRODUCTION

The growing use of machine learning in decision making systems has raised concerns about po-
tential biases to different sub-populations from underrepresented ethnicity, race, or gender (Dwork
et al., 2012). In the real-world scenario, the decisions made by these systems can not only cause im-
mediate unfairness, but can also have long-term effects on the future status of different groups. For
example, in a loan application decision-making case, excessively denying loans to individuals from
a disadvantaged group can have a negative impact on their future financial status and thus exacerbate
the unfair inferior financial status in the long run.

It has been shown that naively imposing static fairness constraints such as demographic parity (DP)
(Dwork et al., 2012) or equal opportunity (Hardt et al., 2016) at every time step can actually exac-
erbate bias in the long run (Liu et al., 2018; D’Amour et al., 2020). To explicitly address biases in
sequential decision making problems, recent works (Wen et al., 2021; Chi et al., 2021; Yin et al.,
2023) formulate the long-term effects in the framework of Markov Decision Process (MDP). MDP
models the dynamics through the transition of states, e.g. how the number of applicants and their fi-
nancial status change at the next time step given the current decisions. Also, MDP allows leveraging
techniques in reinforcement learning (RL) for finding policies with better utility and fairness.

In sequential decision-making, within a certain group, it is possible for some time steps to be more
important than the others in terms of fairness. Considering such variation in temporal importance is
crucial for long-term fairness. To illustrate this, consider a loan application scenario with two time
steps and DP as the fairness criterion, as shown in Figure 1. For group blue, time step t+1 is more
important than time step t, since the demand (number of loan applicants) is higher at t + 1. For
group red, time step t is more important than t+ 1. For group blue, the bank provides a high 100

100

acceptance rate on a more important time step t+1 and a low 0
1 acceptance rate on a less important

time step t. However, for group red, the bank supplies a low 0
100 acceptance rate on a more important
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Figure 1: (Left) A loan application example where the bank decides whether to accept or reject
the applicants from two groups in blue and red. At time step t, the bank approves 0 loans out of 1
qualified applicant from group blue and 0 loans out of 100 qualified applicants from group red. At
time t+1, the bank approves 100 loans out of 100 qualified applicants from group blue and 1 loan
out of 1 qualified applicant from group red. (Right) The acceptance rate is 0 for both groups at time
t and is 1 for both groups at time t+ 1. Therefore, the step-wise biases are zero and prior long-term
fairness metrics lead to a false sense of fairness. In contrast, our proposed Long-term Benefit Rate
calculates the bias as | 1

101 − 100
101 | and successfully identifies the bias.

time step at t and a high 1
1

acceptance rate on a less important time step at t+ 1. Therefore, group
blue is more advantaged than group red, and bias emerges. In fact, the bank makes an overall 100

101

acceptance rate for group blue, much higher than 1
101 for group red.

However, variation in temporal importance is neglected in previous long-term fairness notions. For
instance, Yin et al. (2023) define the long-term bias as the sum of step-wise bias (e.g. divergence of
group acceptance rates), which is calculated as ( 01 − 0

100 )
2+(100

100
− 1

1
)2 = 0 in the aforementioned

example. Another prior metric (Chi et al., 2021; Wen et al., 2021) defines the long-term bias as
the difference of cumulative group fairness rewards (e.g. acceptance rates) between two groups,
i.e. ( 01 + 100

100
) − ( 0

100 + 1
1
) = 0. In fact, both prior metrics claim no bias as long as step-wise

biases are zero, which has been shown to potentially hurt long-term fairness both in prior work (Liu
et al., 2018; D’Amour et al., 2020) and in the example above. Without considering the variation in
temporal importance within a group, these prior metrics lead to a false sense of fairness.

In this work, we introduce Equal Long-term Benefit Rate (ELBERT), a long-term fairness criterion
that adapts static fairness notions to sequential settings. Specifically, we define Long-term Benefit
Rate, a general measure for the long-term well-being of a group, to be the ratio between the cumu-
lative group supply (e.g. number of approved loans) and cumulative group demand (e.g. number of
qualified applicants). For instance, in the loan application example, Long-term Benefit Rate calcu-
lates 100

101 for group blue and 1
101 for group red. By first summing up group supply and group demand

separately and then taking the ratio, Long-term Benefit Rate takes into account that the group de-
mand can change over time steps. Therefore, ELBERT explicitly accounts for the varying temporal
importance during transition, eliminating the false sense of fairness induced by prior metrics. More-
over, ELBERT is a general framework that can adapt several static fairness notions to their long-term
counterparts through customization of group supply and group demand.

Furthermore, we propose a principled bias mitigation method, ELBERT Policy Optimization
(ELBERT-PO), to reduce the differences of Long-term Benefit Rate among groups. Note that op-
timizing Long-term Benefit Rate is challenging since it is not in the standard form of cumulative
reward in RL and how to compute its policy gradient was previously unclear. To address this, we
show that its policy gradient can be analytically reduced to the standard policy gradient in RL by de-
riving the fairness-aware advantage function, making commonly used policy optimization methods
viable for bias mitigation. Experiments on diverse sequential decision making environments show
that ELBERT-PO significantly improves long-term fairness while maintaining high utility.

Summary of Contributions. (1) We propose Equal Long-term Benefit Rate, which adapts static
fairness criteria to sequential decision making. It explicitly considers change in temporal impor-
tance during transition, avoiding the false sense of fairness in prior notions. (2) We analytically
show that standard policy optimization methods can be adapted for reducing bias, leading to our
proposed ELBERT-PO. (3) Experiments on diverse sequential environments show that ELBERT-PO
consistently achieves the lowest bias among all baselines while maintaining high reward.
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2 ELBERT: EQUAL LONG-TERM BENEFIT RATE FOR LONG-TERM FAIRNESS

2.1 SUPPLY-DEMAND MARKOV DECISION PROCESS FOR LONG-TERM FAIRNESS

Standard MDP. A general sequential decision-making problem can be formulated as an MDPM =
⟨S,A, µ, T,R, γ⟩ (Sutton & Barto, 2018), where S is the state space (e.g. credit scores of applicants
in the loan approval decision making mentioned above), µ is the initial state distribution, A is the
action space (e.g. rejection or approval), T : S × A → ∆(S) is the transition dynamic, R :
S × A → R is the immediate reward function (e.g. bank’s earned profit) and γ is the discounting
factor. The goal of RL is to find a policy π : S → ∆(A) to maximize cumulative reward η(π) :=
Eπ

[∑∞
t=0 γ

tR(st, at)
]
, where s0 ∼ µ, at ∼ π(·|st), st+1 ∼ T (·|st, at) and γ controls how myopic

or farsighted the objective is.

Formulating fairness in MDP requires defining the long-term well-being of each group. This moti-
vates us to rethink the static notions of group well-being and how to adapt them to MDP.

Long-term group well-being: introducing supply and demand to MDPs.

(a) Supply and demand in static settings. In many static fairness notions, the formulation of
the group well-being can be unified as the ratio between supply and demand. For example, equal
opportunity (EO) (Hardt et al., 2016) defines the well-being of group g as P[Ŷ = 1|G = g, Y =

1] = P[Ŷ=1,Y=1,G=g]
P[Y=1,G=g] , where Ŷ ∈ {0, 1} is the binary decision (loan approval or rejection), Y ∈

{0, 1} is the target variable (repay or default) and G is the group ID. The bias is defined as the
disparity of the group well-being across different groups. In practice, given a dataset, the well-being
of group g, using the notion of EO, is calculated as Sg

Dg
, where the supply Sg is the number of samples

with {Ŷ = 1, Y = 1, G = g} and the demand Dg is the number of samples with {Y = 1, G = g}.
Note that such formulation in terms of supply and demand is not only restricted to EO, but is also
compatible to other static fairness notions such as demographic parity (Dwork et al., 2012), equal-
ized odds (Hardt et al., 2016), accuracy parity and equality of discovery probability (Elzayn et al.,
2019), etc. We provide additional details in Appendix A.

(b) Adapting to MDP. In the sequential setting, each time step corresponds to a static dataset that
comes with group supply and group demand. Therefore, to adapt them to MDP, we assume that in
addition to immediate reward R(st, at), the agent receives immediate group supply Sg(st, at) and
immediate group demand Dg(st, at) at every time step t. This is formalized as the Supply-Demand
MDP (SD-MDP) as shown in Figure 2 and defined as follows.

Environment

Agent

State
𝒔𝒕

Action
𝒂𝒕

Reward
𝑹𝒕

Supply
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𝑹𝒕#𝟏
𝒔𝒕#𝟏
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𝑫𝒈 𝒕

∀𝒈 ∈ 𝑮

Figure 2: Supply Demand MDP (SD-MDP). In addition to the standard MDP (in black), SD-MDP
returns group demand and group supply as fairness signals (in green).

Definition 2.1 (Supply-Demand MDP (SD-MDP)). Given a group index set G and
a standard MDP M = ⟨S,A, µ, T,R, γ⟩, a Supply-Demand MDP is MSD =
⟨S,A, µ, T,R, γ, {Sg}g∈G, {Dg}g∈G⟩. Here {Sg}g∈G and {Dg}g∈G are immediate group supply
and group demand function for group g.

Compared with the standard MDP, in SD-MDP, an agent receives additional fairness signals
Sg(st, at) and Dg(st, at) after taking action at at each time step. To characterize the long-term
group supply and group demand of a policy π, we define cumulative group supply and group de-
mand as follows.
Definition 2.2 (Cumulative Supply and Demand). Define the cumulative group supply as ηSg (π) :=
Eπ

[∑∞
t=0 γ

tSg(st, at)
]

and cumulative group demand as ηDg (π) := Eπ

[∑∞
t=0 γ

tDg(st, at)
]
.
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2.2 PROPOSED LONG-TERM FAIRNESS METRIC: EQUAL LONG-TERM BENEFIT RATE
(ELBERT)

In the following definitions, we propose to measure the well-being of a group by the ratio of cu-
mulative group supply and group demand and propose the corresponding fairness metric: Equal
Long-term Benefit Rate (ELBERT).

Definition 2.3 (Long-term Benefit Rate). Define the Long-term Benefit Rate of group g as
ηS
g (π)

ηD
g (π)

.
Define the bias of a policy as the maximal difference of Long-term Benefit Rate among groups, i.e.,

b(π) = maxg∈G
ηS
g (π)

ηD
g (π)

−ming∈G
ηS
g (π)

ηD
g (π)

.

RL with ELBERT. Under the framework of ELBERT, the goal of reinforcement learning with fair-
ness constraints is to find a policy to maximize the cumulative reward and keep the bias under a
threshold δ. In other words,

max
π

η(π) s.t. b(π) = max
g∈G

ηSg (π)

ηDg (π)
−min

g∈G

ηSg (π)

ηDg (π)
≤ δ. (1)

Relationship with static fairness notions. Note that in the special case when the length of time
horizon is 1, Long-term Benefit Rate reduces to Sg

Dg
, i.e., the static fairness notion.

Versatility. By choosing the proper definition of group supply Sg and group demand Dg , ELBERT
is customized to adapt the static notion to sequential decision-making. Section 5.1 shows how it
covers commonly used fairness metrics in several real-world sequential decision-making settings.

Comparison with other fairness notions in MDP. One notion is return parity (Wen et al., 2021;
Chi et al., 2022), which uses cumulative individual rewards to measure the group well-being for
fairness consideration. It can be viewed as a special case of Long-term Benefit Rate with the demand
function Dg(s, a) being a constant function, which ignores the importance difference of different
time steps during transition. Another potential notion is naively requiring zero bias at each time
step. As demonstrated in Section 1, both notions can cause a false sense of fairness.

Comparison with constrained RL. The constraints in constrained RL are either step-wise (Wachi
& Sui, 2020) or in the form of cumulative sum across time steps (Altman, 1999). Our constraint
in Equation (1) considers all time steps but is not in the form of cumulative sum. Therefore, tech-
niques in constrained RL cannot be direct applied. More detailed comparison is left to Appendix C.

3 ACHIEVING EQUAL LONG-TERM BENEFIT RATE

In this section, we will develop a bias mitigation algorithm, ELBERT Policy Optimization (ELBERT-
PO) to solve the RL problem with the fairness considerations in Equation (1). In Section 3.1, we
will formulate the training objective as a policy optimization problem and lay out the challenge of
computing the policy gradient of this objective. In Section 3.2, we demonstrate how to compute
the policy gradient of this objective by reducing it to standard policy gradient. In Section 3.3, we
extend the objective and its solution to multi-group setting and deal with the non-smoothness of the
maximum and minimum operator in Equation (1).

3.1 TRAINING OBJECTIVE AND ITS CHALLENGE

Objective. We first consider the special case of two groups G = {1, 2}, where Long-term Benefit
Rate reduces to | η

S
1 (π)

ηD
1 (π)

− ηS
2 (π)

ηD
2 (π)
|. To solve the constrained problem in Equation (1), we propose to

solve the unconstrained relaxation of it by maximizing the following objective:

J(π) = η(π)− αb(π)2 = η(π)− α(
ηS1 (π)

ηD1 (π)
− ηS2 (π)

ηD2 (π)
)2 (2)

where the bias coefficient α is a constant controlling the trade-off between the return and the bias.

Challenge: policy gradient of b(π). To optimize the objective above, it is natural to use policy
optimization methods that estimate the policy gradient and use stochastic gradient ascent to directly
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improve policy performance. However, in order to compute the policy gradient ∇πJ(π) of J(π) in
Equation (2), one needs to compute ∇πη(π) and ∇πb(π). Although the term ∇πη(π) is a standard
policy gradient that has been extensively studied in RL (Schulman et al., 2016), it was previously
unclear how to deal with∇πb(π) = ∇π(

ηS
1 (π)

ηD
1 (π)

− ηS
2 (π)

ηD
2 (π)

). In particular, since b(π) is not of the form
of expected total return, one cannot directly apply Bellman Equation (Sutton & Barto, 2018) to com-
pute b(π). Therefore, it is unclear how to leverage standard policy optimization methods (Schulman
et al., 2017; 2015) to the objective function J(π).

3.2 SOLUTION TO THE OBJECTIVE

In this section, we show how to apply existing policy optimization methods in reinforcement learning
to solve the objective in Equation (2). This is done by analytically reducing the objective’s gradient
∇πJ(π) to standard policy gradients.

Reduction to standard policy gradients. For the simplicity of notation, we denote the term b(π)2

in Equation (2) as a function of Long-term Benefit Rate { η
S
g (π)

ηD
g (π)
}g∈G as b(π)2 = h(

ηS
1 (π)

ηD
1 (π)

,
ηS
2 (π)

ηD
2 (π)

),

where h(z1, z2) = (z1 − z2)
2. Therefore, J(π) = η(π) − αh(

ηS
1 (π)

ηD
1 (π)

,
ηS
2 (π)

ηD
2 (π)

). The following
proposition reduces the objective’s gradient∇πJ(π) to standard policy gradients.

Proposition 3.1. The gradient of the objective function J(π) can be calculated as

∇πJ(π) = ∇πη(π)− α
∑
g∈G

∂h

∂zg
(

1

ηDg (π)
∇πη

S
g (π)−

ηSg (π)

ηDg (π)2
∇πη

D
g (π)), (3)

where ∂h
∂zg

is the partial derivative of h w.r.t. its g-th coordinate, evaluated at ( ηS
1 (π)

ηD
1 (π)

,
ηS
2 (π)

ηD
2 (π)

).

Therefore, in order to estimate ∇πJ(π), one only needs to estimate the expected total supply and
demand ηSg (π), η

D
g (π) as well as the standard policy gradients∇πη

S
g (π),∇πη

D
g (π).

Advantage function for policy gradients. It is common to compute a policy gradient ∇πη(π)
using Eπ{∇π log π(at|st)At}, where At is the advantage function of the reward R (Sutton & Barto,
2018). Denote the advantage functions of R, {Sg}g∈G, {Dg}g∈G as At, {AS

g,t}g∈G, {AD
g,t}g∈G. We

can compute the gradient of the objective function J(π) using advantage functions as follows.

Proposition 3.2. In terms of advantage functions, the gradient ∇πJ(π) can be calculated as
∇πJ(π) = Eπ{∇π log π(at|st)Afair

t }, where the fairness-aware advantage function Afair
t is

Afair
t = At − α

∑
g∈G

∂h

∂zg
(

1

ηDg (π)
AS

g,t −
ηSg (π)

ηDg (π)2
AD

g,t) (4)

The detailed derivation is left to Appendix B.1. In practice, we use PPO (Schulman et al., 2017) with
the fairness-aware advantage function Afair

t to update the policy network. The resulting algorithm,
ELBERT Policy Optimization (ELBERT-PO), is given in Algorithm 1. In particular, in line 11-13,
the PPO objective JCLIP(θ) is used, where Êπθ

denotes the empirical average over samples collected
by the policy πθ and ϵ is a hyperparameter for clipping.

3.3 EXTENSION TO MULTI-GROUP SETTING

Challenge: Non-smoothness in multi-group bias. When there are multiple groups, the objective

is J(π) = η(π) − αb(π)2 = η(π) − α(maxg∈G
ηS
g (π)

ηD
g (π)

−ming∈G
ηS
g (π)

ηD
g (π)

)2. However, the max and
min operator can cause non-smoothness in the objective during training. This is because only the
groups with the maximal and minimal Long-term Benefit Rate will affect the bias term and thus the
gradient of it. This is problematic especially when there are several other groups with Long-term
Benefit Rate close to the maximal or minimal values. The training algorithm should consider all
groups and decrease all the high Long-term Benefit Rate and increase low ones.
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Algorithm 1 ELBERT Policy Optimization (ELBERT-PO)

1: Input: Group set G, bias trade-off factor α, bias function h, temperature β (if multi-group)
2: Initialize policy network πθ(a|s), value networks Vϕ(s), VϕS

g
(s), VϕD

g
(s) for all g ∈ G

3: for k ← 0, 1, ... do
4: Collect a set of trajectories D ← {τk} by running πθ in the environment, each trajectory τk

contains τk :← {(st, at, rt, st+1)} , t ∈ [|τk|]
5: Compute the cumulative rewards, supply and demand η, ηSg , η

D
g of πθ using Monte Carlo

6: for each gradient step do
7: Sample a mini-batch from D
8: Compute advantages At, A

S
g,t, A

D
g,t using the current value networks Vϕ(s), VϕS

g
(s),

VϕD
g
(s) and mini-batch for all g ∈ G

9: Compute ∂h
∂zg

at ( ηS
1

ηD
1
, · · · , ηS

M

ηD
M

)

10: Compute the fairness-aware advantage function:

Afair
t = At − α

∑
g∈G

∂h

∂zg
(
1

ηDg
AS

g,t −
ηSg

(ηDg )2
AD

g,t)

11: Rt(θ)← πθ(st, at)/πθold(st, at)

12: JCLIP(θ)← Êπθ
[min(Rt(θ)A

fair
t , clip(Rt(θ), 1− ϵ, 1 + ϵ)Afair

t )]
13: Update the policy network θ ← θ + τ∇θJ

CLIP(θ)
14: Fit Vϕ(s), VϕS

g
(s), VϕD

g
(s) by regression on the mean-squared error

Soft bias in multi-group setting. To solve this, we replace the max and min operator in b(π) with
their smoothed version controlled by the temperature β > 0 and define the soft bias bsoft(π):

bsoft(π) =
1

β
log

∑
g∈G

exp(β
ηSg (π)

ηDg (π)
)− 1

−β log
∑
g∈G

exp(−β ηSg (π)

ηDg (π)
) (5)

The relationship between the exact and soft bias is characterized by the following proposition:

Proposition 3.3 (Approximation property of the soft bias). Given a policy π, the number of groups
M and the temperature β, b(π) ≤ bsoft(π) ≤ b(π) + 2 logM

β .

In other words, the soft bias is an upper bound of the exact bias and moreover, the quality of such
approximation is controllable: the gap between the two decreases as β increases and vanishes when
β →∞. We provide the proof in Appendix B.2. Therefore, we maximize the following objective

J(π) = η(π)− αbsoft(π)2 = η(π)− α

[
1

β
log

∑
g

exp(β
ηSg (π)

ηDg (π)
)− 1

−β log
∑
g

exp(−β ηSg (π)

ηDg (π)
)

]2
(6)

Note that we can write bsoft(π)2 = h(
ηS
1 (π)

ηD
1 (π)

,
ηS
2 (π)

ηD
2 (π)

, ...,
ηS
M (π)

ηD
M (π)

) where h(z) = [ 1β log
∑

g exp(βzg)−
1

−β log
∑

g exp(−βzg)]2, z = (z1, · · · , zM ) and J(π) = η(π)−αh(
ηS
1 (π)

ηD
1 (π)

,
ηS
2 (π)

ηD
2 (π)

, ...,
ηS
M (π)

ηD
M (π)

). The
formula of∇πJ(π) in Proposition 3.2 still holds and the training pipeline still follows Algorithm 1.

4 RELATED WORK

Fairness criterion in MDP. A line of work has formulated fairness in the framework of MDP.
D’Amour et al. (2020) propose to study long-term fairness in MDP using simulation environments
and shows that static fairness notions can contradict with long-term fairness. Return parity (Chi
et al., 2022; Wen et al., 2021) assumes that the long-term group benefit can be represented by the
sum of group benefit at each time step. However, as illustrated in Section 1, this assumption is
problematic since it ignores the importance difference among different time steps during transition.
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Yin et al. (2023) formulate the long-term bias as the sum of static bias at each time steps, suffering
from the same problem. Our proposed ELBERT explicitly considers the varying temporal impor-
tance through the SD-MDP. Another work (Yu et al., 2022) assumes that there exists a long-term
fairness measure for each state and proposes A-PPO to regularize the advantage function according
to the fairness of the current and the next state. However, the assumption of Yu et al. (2022) does not
hold in general since for a trajectory, the long-term fairness depends on the whole history of state-
action pairs instead of only a single state. Moreover, A-PPO regularizes the advantage function to
encourage the bias of the next time step to be smaller than the current one, without considering the
whole future. However, our proposed ELBERT-PO considers the bias in all future steps, achieving
long-term fairness in a principled way.

Long-term fairness in other temporal models. Long-term fairness is also studied in other tem-
poral models. Liu et al. (2018) and Zhang et al. (2020b) show that naively imposing static fairness
constraints in a one-step feedback model can actually harm the minority, showing the necessity of
explicitly accounting for sequential decisions. Effort-based fairness (Heidari et al., 2019; Guldogan
et al., 2022) measures bias as the disparity in the effort made by individuals from each group to get
a target outcome, where the effort only considers one future time step. Long-term fairness has also
been studied in multi-armed bandit (Joseph et al., 2016; Chen et al., 2020) and under distribution
shifts in dynamic settings (Zhang et al., 2021; 2020a). In this work, we study long-term fairness
in MDP since it is a general framework to model the dynamics in real world and allows leveraging
existing RL techniques for finding high-utility policy with fairness constraints.

5 EXPERIMENT

In Section 5.1, we introduce the sequential decision making environments and their long-term fair-
ness metrics. In particular, we explain how these metrics are covered by Long-term Benefit Rate via
customizing group supply and demand. Section 5.2 demonstrates the effectiveness of ELBERT-PO
on mitigating bias for two and multiple groups. In addition, the ablation study with varying values
of the bias coefficient α is shown in Section 5.3.

5.1 ENVIRONMENTS AND THEIR LONG-TERM FAIRNESS CRITERIA

Following the experiments in Yu et al. (2022), we evaluate ELBERT-PO in three environments
including (1) credit approval for lending (D’Amour et al., 2020) , (2) infectious disease control
in population networks (Atwood et al., 2019) and (3) attention allocation for incident monitor-
ing (D’Amour et al., 2020). To better examine the effectiveness of different methods, we modify the
infectious disease and attention allocation environments to be more challenging. We give a brief in-
troduction to each environment in the following. We leave the full description in Appendix D.1 and
the experimental results on the original environment settings as in Yu et al. (2022) in Appendix D.3.

Case 1: Lending. In this environment, a bank decides whether to accept or reject loan applications
and the applicants arrive one at a time sequentially. There are two groups among applicants (G =
{1, 2}). The applicant at each time t is from one of the groups gt and has a credit score sampled from
the credit score distribution of group gt. A higher credit score means higher repaying probability
if the loan is approved. Group 2 is disadvantaged with a lower mean of the initial credit score
distribution compared with Group 1. As for the dynamics, at time t, the credit score distribution of
group gt shifts higher if its group member gets load approval (i.e. Ŷt = 1) and repays the loan (i.e.
Yt = 1). The immediate reward is the increment of the bank cash at each time step.

Fairness criterion. The bias is defined by
∣∣∑t 1{Gt=0,Yt=Ŷt=1}∑

t 1{Gt=0,Yt=1} −
∑

t 1{Gt=1,Yt=Ŷt=1}∑
t 1{Gt=1,Yt=1}

∣∣, which is
the long-term extension of EO, where the group well-being is measured by the true positive rate.

Case 2: Infectious disease control. In this environment, the agent is tasked with vaccinating in-
dividuals within a social network to minimize the spread of a disease. The social network consists
of individuals V connected with the edges E, and each individual v ∈ V is from one of the two
groups G = {1, 2}. Every individual has a health state in being susceptible, infected or recovered,
and the state space of the RL agent is given by the health state of all individuals. At each time
step, the agent chooses no more than one individual to vaccinate. As for the dynamics, without
vaccination, a susceptible individual gets infectious with probability that depends on the number of

7



Under review as a conference paper at ICLR 2024

infectious neighbors and a infected individual recovers with certain probability. When receiving the
vaccine, the individual directly transit to recovered. Also, a recovered individual has certain proba-
bility to transit to being susceptible again. The immediate reward is the percentage of individuals in
susceptible and recovered states in the whole network.

Fairness criterion. The fairness criterion is defined as
∣∣∑t vaccinations given1t∑

t newly infected1t
−

∑
t vaccinations given2t∑

t newly infected2t

∣∣
where vaccinations givengt and newly infectedgt are the number of vaccinations given to individuals
from group g and the number of new infected individuals from group g at time t.

(a) Lending
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Figure 3: Reward and bias of ELBERT-PO (ours) and three other baselines (A-PPO, G-PPO, and
R-PPO) in three environments (lending, infectious disease control and attention allocation). Each
column shows the results in one environment. The third row shows the average reward versus the
average bias, where ELBERT-PO consistently appears at the upper-left corner.

Case 3: Attention allocation. In this environment, the agent’s task is to allocate 30 attention units
to 5 sites (groups) to discover incidents, and each site has different initial incident rates. The agent’s
action is at = {ag,t}5g=1, where ag,t is the number of allocated attention units for group g. The
number of incidents yg,t is sampled from Poisson(µg,t) with incident rate µg,t and the number
of discovered incident is ŷg,t = min(ag,t, yg,t). As for the dynamics, the incident rate changes
according to µg,t+1 = µg,t − dg · ag,t if ag,t > 0 and µg,t+1 = µg,t + dg otherwise, where the
constants dg and dg are the dynamic rates for reduction and growth of the incident rate of group g.
The agent’s reward is R(st, at) = −

∑
g(yg,t − ŷg,t), i.e., the negative sum of the missed incidents.

Fairness criterion. The group well-being is defined as the ratio between the total number of
discovered incidents over time and the total number of incidents, and thus the bias is defined as
maxg∈G

∑
t ŷg,t∑
t yg,t

−ming∈G

∑
t ŷg,t∑
t yg,t

.

Metrics as special cases of ELBERT. All fairness criteria above used by prior works (Yu et al.,
2022; D’Amour et al., 2020; Atwood et al., 2019) are covered by the general framework of ELBERT
as special cases via customizing group supply and demand. For example, in the lending case, group
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supply Dg(st, at) = 1{Gt = g, Yt = 1} and group demand Sg(st, at) = 1{Gt = g, Yt = Ŷt =
1}. Therefore, ELBERT-PO can be used as a principled bias mitigation method for all of these
environments, which is demonstrated in the next section.

5.2 EFFECTIVENESS OF ELBERT-PO

Baselines. Following Yu et al. (2022), we consider the following RL baselines. (1) A-PPO (Yu
et al., 2022), which regularizes the advantage function to decrease the bias of the next time steps but
does not consider the biases in all future steps. (2) Greedy PPO (G-PPO), which greedily maximizes
reward without any fairness considerations. (3) Reward-Only Fairness Constrained PPO (R-PPO),
a heuristic method which injects the historical bias into the immediate reward. In particular, it adds
−max(0,∆t−ω) to the immediate reward Rt at time t, where ∆t is the overall bias of all previous
time steps and ω is a threshold. The hyperparameters of all methods are given in Appendix D.2.

Results: ELBERT-PO consistently achieves the lowest bias while maintaining high reward.
The performance of ELBERT-PO and baselines are shown in Figure 3. (1) Lending. ELBERT-PO
achieves the lowest bias of 0.02, significantly decreasing the bias of G-PPO by 87.5%, R-PPO and
A-PPO by over 75%, while obtaining high reward. (2) Infectious. ELBERT-PO achieves the lowest
bias of 0.01 among all methods. Although R-PPO also achieves the same low bias, it suffers from
much lower reward, indicating that directly injecting bias into immediate reward can harm reward
maximization. A-PPO obtains a relatively large bias, suggesting that only considering the bias of
the next time step can be insufficient for mitigating bias that involves the whole future time steps.
Furthermore, ELBERT-PO obtains the same reward as G-PPO, higher than other bias mitigation
baselines. (3) Allocation. ELBERT-PO achieves the lowest bias and the highest reward of among
all methods. This shows the effectiveness of ELBERT-PO in the multi-group setting.

5.3 EFFECT OF THE BIAS COEFFICIENT
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Figure 4: Learning curve of ELBERT-PO on the attention
allocation environment with different α.

Figure 4 shows the learning curve
with different values of the bias co-
efficient α in the attention environ-
ment. We observe that larger α leads
to lower bias, and such effect is di-
minishing as α becomes larger. In
terms of reward, we find that increas-
ing α leads to slower convergence.
This is expected since the reward sig-
nal becomes weaker as α increases.
However, we find that larger α leads
to slightly higher rewards. This sug-
gests that lower bias does not necessarily leads to lower rewards, and learning with fairness con-
sideration may help reward maximization. More results on α in other environments as well as how
group supply and demand change during training for all methods can be found in Appendix D.3.

6 CONCLUSIONS AND DISCUSSIONS

In this work, we introduce Equal Long-term Benefit Rate (ELBERT) for adapting static fairness
notions to sequential decision-making. It explicitly accounts for the varying temporal importance
instead of naively summing up step-wise biases. For bias mitigation, we address the challenge of
computing the policy gradient of Long-term Benefit Rate by analytically reducing it to the standard
policy gradients through the fairness-aware advantage function, leading to our proposed ELBERT-
PO. Experiments demonstrate that it significantly reduces bias while maintaining high utility.

One limitation is that ELBERT focuses on long-term adaptations of static fairness notions, which
mainly consider the supply-demand ratio but not the demand itself. However, in real world appli-
cations, extra constraints on demand might be needed. For example, the demand should not be too
large (e.g. when demand is the number of infected individuals) or too small (e.g. when demand is
the number of qualified applicants). To address this, we show in Appendix E that ELBERT-PO also
works when additional terms to regularize demand are incorporated in the objective function.
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A FAIRNESS NOTIONS WITH THE SUPPLY AND DEMAND FORMULATION

In this section, we demonstrate that in the static settings, the supply and demand formulation in Sec-
tion 2 can cover many popular fairness notions. This means that the proposed Supply Demand MDP
is expressive enough to extend several popular static fairness notions to the sequential settings. In
the following, we give a list of examples to show, in the static setting, how to formulate several
popular fairness criteria as the ratio between the supply and demand. For simplicity, we consider the
agent’s decision to be binary, though the analysis naturally extends to multi-class settings.

Notations. Denote Ŷ ∈ {0, 1} as the binary decision (loan approval or rejection), Y ∈ {0, 1} as
the target variable (repay or default) and G as the group ID.

Demographic Parity. The well-being of a group g in Demographic Parity (DP) (Dwork et al.,
2012) is defined as P[Ŷ = 1|G = g] = P[Ŷ=1,G=g]

P[G=g] and DP requires such group well-being to

equalized among groups. In practice, given a dataset, the well-being of group g is calculated as Sg

Dg
,

where the supply Sg is the number of samples with {Ŷ = 1, G = g} (e.g. the number of accepted
individuals in group g) and the demand Dg is the number of samples with {G = g} (e.g. the total
number of individuals from group g).

Equal Opportunity. The well-being of a group g in Equal Opportunity (EO) (Dwork et al., 2012)
is defined as P[Ŷ = 1|G = g, Y = 1] = P[Ŷ=1,Y=1,G=g]

P[Y=1,G=g] and EO requires such group well-being
to equalized among groups. In practice, given a dataset, the well-being of group g is calculated as
Sg

Dg
, where the supply Sg is the number of samples with {Ŷ = 1, Y = 1, G = g} (e.g. the number

of qualified and accepted individuals in group g) and the demand Dg is the number of samples with
{Y = 1, G = g} (e.g. the number of qualified individuals from group g).

Equality of discovery probability: a special case of EO. Equality of discovery probabil-
ity (Elzayn et al., 2019) requires that the discovery probability to be equal among groups. For
example, in predictive policing setting, it requires that conditional on committing a crime (Y = 1),
the probability that an individual is apprehended (Ŷ = 1) should be independent of the district ID
(group ID) g. This is a special case of EO in specific application settings.

Equalized Odds. Equalized Odds (Dwork et al., 2012) requires that both the True Positive Rate
(TPR) P[Ŷ = 1|G = g, Y = 1] = P[Ŷ=1,Y=1,G=g]

P[Y=1,G=g] and the False Positive Rate (FPR) P[Ŷ =

1|G = g, Y = 0] = P[Ŷ=1,Y=0,G=g]
P[Y=0,G=g] equalize among groups. In practice, given a dataset, (a)

the TPR of group g is calculated as
ST
g

DT
g

, where the supply ST
g is the number of samples with {Ŷ =

1, Y = 1, G = g} (e.g. the number of qualified and accepted individuals in group g) and the demand
DT

g is the number of samples with {Y = 1, G = g} (e.g. the number of qualified individuals from

group g). (b) The FPR of group g is calculated as
SF
g

DF
g

, where the supply SF
g is the number of

samples with {Ŷ = 1, Y = 0, G = g} (e.g. the number of unqualified but accepted individuals in
group g) and the demand DF

g is the number of samples with {Y = 0, G = g} (e.g. the number of
unqualified individuals from group g).

Extending Equalized Odds to sequential settings using SD-MDP. The long-term adap-
tion of Equalized Odds can be included by the Supply Demand MDP via allowing it to have
two sets of supply-demand pairs: for every group g, (DT

g , S
T
g ) and (DF

g , S
F
g ). In partic-

ular, define the cumulative supply and demand for both supply-demand pairs: the cumula-
tive group supply for TPR ηS,Tg (π) := Eπ

[∑∞
t=0 γ

tST
g (st, at)

]
and cumulative group demand

for TPR as ηD,T
g (π) := Eπ

[∑∞
t=0 γ

tDT
g (st, at)

]
. The cumulative group supply for FPR

ηS,Fg (π) := Eπ

[∑∞
t=0 γ

tSF
g (st, at)

]
and cumulative group demand for FPR as ηD,F

g (π) :=

Eπ

[∑∞
t=0 γ

tDF
g (st, at)

]
. Since the bias considers both TPR and FPR, we define the bias for both:

12



Under review as a conference paper at ICLR 2024

bT (π) = maxg∈G
ηS,T
g (π)

ηD,T
g (π)

− ming∈G
ηS,T
g (π)

ηD,T
g (π)

and bF (π) = maxg∈G
ηS,F
g (π)

ηD,F
g (π)

− ming∈G
ηS,F
g (π)

ηD,F
g (π)

.
The goal of RL with Equalized Odds constraints can be formulated as

max
π

η(π)

s.t. bT (π) = max
g∈G

ηS,Tg (π)

ηD,T
g (π)

−min
g∈G

ηS,Tg (π)

ηD,T
g (π)

≤ ϵ

bF (π) = max
g∈G

ηS,Fg (π)

ηD,F
g (π)

−min
g∈G

ηS,Fg (π)

ηD,F
g (π)

≤ ϵ.

(7)

In practice, we treat the hard constraints as regularization and use the following objective function

J(π) = η(π)− αbT (π)2 − αbF (π)2 (8)

where α is a trade-off constant between return and fairness. The gradient ∇π(Jπ) can still be
computed using techniques presented in 3, since both bias terms bT (π) and bF (π) are still in the
form of ratio between cumulative supply and demand.

Accuracy Parity. Accuracy Parity defines the well-being of group g as P[Ŷ = Y |G = g] =
P[Ŷ=Y,G=g]

P[G=g] , which is the accuracy of predicting Y using Ŷ among individuals from the group g. In

practice, this is computed by Sg

Dg
, where the supply Sg is the number of samples with {Ŷ = Y,G =

g} (e.g. the number of individuals with correct predictions in group g) and the demand Dg is the
number of samples with {G = g} (e.g. the total number of individuals from group g).

B MATHEMATICAL DERIVATIONS

B.1 FAIRNESS-AWARE ADVANTAGE FUNCTION

In this section, we show how to apply existing policy optimization methods to solve the objective
in Equation (2). This is done by analytically reducing the policy gradient ∇πb(π) of the bias to
standard policy gradients.

Gradient of the objective. For the simplicity of notation, we denote the term b(π)2 in Equa-

tion (2) as a function of Long-term Benefit Rate { η
S
g (π)

ηD
g (π)
}g∈G as b(π)2 = h(

ηS
1 (π)

ηD
1 (π)

,
ηS
2 (π)

ηD
2 (π)

), where

h(z1, z2) = (z1 − z2)
2. Therefore, J(π) = η(π) − αh(

ηS
1 (π)

ηD
1 (π)

,
ηS
2 (π)

ηD
2 (π)

). By chain rule, we can
compute the gradient of the objective as follows.

∇πJ(π) = ∇πη(π)− α
∑
g∈G

∂h

∂zg
∇π(

ηSg (π)

ηDg (π)
) (9)

where ∂h
∂zg

is the partial derivative of h w.r.t. its g-th coordinate, evaluated at ( ηS
1 (π)

ηD
1 (π)

,
ηS
2 (π)

ηD
2 (π)

). Note
that∇πη(π) in Equation (9) is a standard policy gradient, whereas∇π(

ηS
g (π)

ηD
g (π)

) is not.

Reduction to standard policy gradient. For∇π(
ηS
g (π)

ηD
g (π)

), we apply the chain rule again as follows

∇π(
ηSg (π)

ηDg (π)
) =

1

ηDg (π)
∇πη

S
g (π)−

ηSg (π)

ηDg (π)2
∇πη

D
g (π) (10)

Therefore, in order to estimate∇π(
ηS
g (π)

ηD
g (π)

), one only needs to estimate the expected total supply and

demand ηSg (π), η
D
g (π) as well as the standard policy gradients∇πη

S
g (π),∇πη

D
g (π).

Advantage function for policy gradient. It is common to compute a policy gradient ∇πη(π)
using Eπ{∇π log π(at|st)At}, where At is the advantage function of the reward R (Sutton & Barto,
2018). Denote the advantage functions of R, {Sg}g∈G, {Dg}g∈G as At, {AS

g,t}g∈G, {AD
g,t}g∈G.

∇π(
ηS
g (π)

ηD
g (π)

) in Equation (10) can thus be written as
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∇π(
ηSg (π)

ηDg (π)
) = Eπ

{
∇π log π(at|st)(

1

ηDg (π)
AS

g,t −
ηSg (π)

ηDg (π)2
AD

g,t)

}
(11)

By plugging Equation (11) into Equation (9), we obtain the gradient of the objective J(π) using
advantage functions as follows

∇πJ(π) = Eπ

{
∇π log π(at|st)

[
At − α

∑
g∈G

∂h

∂zg
(

1

ηDg (π)
AS

g,t −
ηSg (π)

ηDg (π)2
AD

g,t)
]}

(12)

Therefore, ∇πJ(π) = Eπ{∇π log π(at|st)Afair
t }, where Afair

t = At − α
∑

g∈G
∂h
∂zg

( 1
ηD
g (π)

AS
g,t −

ηS
g (π)

ηD
g (π)2

AD
g,t) is defined as the fairness-aware advantage function.

B.2 RELATIONSHIP BETWEEN THE SOFT BIAS AND THE BIAS

We would like to show the mathematical relationship between the soft bias and bias, as shown
in Theorem 3.3. This is done by analyzing the max and min operator as well as their soft counterparts
through the log sum trick, which is also used in prior work (Xu et al., 2023). We restate the full
proposition and present the proof below.
Proposition B.1. Given a policy π, the number of groups M and the temperature β, define the soft
bias as

bsoft(π) =
1

β
log

∑
g∈G

exp(β
ηSg (π)

ηDg (π)
)− 1

−β log
∑
g∈G

exp(−β ηSg (π)

ηDg (π)
).

The bias is defined as

b(π) = max
g∈G

ηSg (π)

ηDg (π)
−min

g∈G

ηSg (π)

ηDg (π)
.

We have that
b(π) ≤ bsoft(π) ≤ b(π) +

2 logM

β
.

Proof. First consider the first term 1
β log

∑
g∈G exp(β

ηS
g (π)

ηD
g (π)

) in the soft bias bsoft(π).

On the one hand, we have that

1

β
log

∑
g∈G

exp(β
ηSg (π)

ηDg (π)
) >

1

β
log exp(βmax

g∈G

ηSg (π)

ηDg (π)
)

= max
g∈G

ηSg (π)

ηDg (π)

(13)

On the other hand, we have that

1

β
log

∑
g∈G

exp(β
ηSg (π)

ηDg (π)
) ≤ 1

β
logM exp(βmax

g∈G

ηSg (π)

ηDg (π)
)

= max
g∈G

ηSg (π)

ηDg (π)
+

logM

β

(14)

Therefore, maxg∈G
ηS
g (π)

ηD
g (π)

< 1
β log

∑
g∈G exp(β

ηS
g (π)

ηD
g (π)

) ≤ maxg∈G
ηS
g (π)

ηD
g (π)

+ logM
β .

Similarly, it can be shown that ming∈G
ηS
g (π)

ηD
g (π)

− logM
β ≤ 1

−β log
∑

g∈G exp(−β ηS
g (π)

ηD
g (π)

) <

ming∈G
ηS
g (π)

ηD
g (π)

.

By subtracting the two, we conclude that b(π) ≤ bsoft(π) ≤ b(π) + 2 logM
β .
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C CONNECTION TO CONSTRAINED RL

In this section, we compare our proposed ELBERT with the previous works of constrained Rein-
forcement Learning (RL). Prior formulations of constrained RL can be mainly categorized into two
groups as follows. We will explain that neither of them can be directly applied to solve our fairness
objective in Equation (1) in the ELBERT framework.

Cumulative cost constraints The first category is learning a policy with cost constraints that are
in the form of cumulative sum, usually known as constrained MDPs (CMDPs) (Altman, 1999). It
is formulated as a tupleM = ⟨S,A, µ, T,R,C, γ⟩. In addition to the components in the standard
MDP, there is an extra cost function C : S×A → R. The feasible policy is subject to the cumulative
cost under a threshold δ. Mathematically, the goal is formulated as

max
π

η(π) s.t. ηC(π) = Eπ

[ ∞∑
t=0

γtC(st, at)

]
≤ δ. (15)

A series of works (Satija et al., 2020; Zhou et al., 2022) has studied the problem in Equation (15).
Notably, methods for solving CMDPs rely on Bellman equation to evaluate the value function or the
policy gradient of the cumulative cost. Specifically, the cost function in Equation (15) is similar to
the reward in standard MDPs and thus the cumulative cost can be reformulated as the expectation of
state value function of cost over states, i.e., ηC(π) = Es∼µ[V

π
C (s)]. Here the state value function

V π
C (s) = Eπ

[ ∞∑
t=0

γtC(st, at)

∣∣∣∣π, s0 = s

]
(16)

satisfies the Bellman equation

V π
C (s) =

∑
a

π(a|s)
∑
s′

T (s′|s, a)[R(s, a) + γV π
C (s′)] (17)

which can be used to evaluate the value function or the policy gradients of the cumulative cost (Sut-
ton & Barto, 2018).

However, in the ELBERT framework, the constraint term maxg∈G
ηS
g (π)

ηD
g (π)

−ming∈G
ηS
g (π)

ηD
g (π)

does not

have a Bellman equation. Although both of ηSg (π), η
D
g (π) have Bellman equation since they are in

the form of cumulative sum, it was previously unclear how to estimate the policy gradient of their

ratio
ηS
g (π)

ηD
g (π)

. To adress this, in Section 3.2 we propose the ELBERT Policy Optimization (ELBERT-
PO) framework that analytically derives the policy gradient of the constraint term.

Step-wise safety constraints The second category is learning a policy that transits over only
“safe” states, where the risk is less than a threshold δ at every timestep (Wachi & Sui, 2020). Math-
ematically, the goal is formulated as

max
π

η(π) s.t. C(st) ≤ δ, ∀t, (18)

where C : S → R is the risk function. This constrained RL framework has step-wise constraints,

which is different from ELBERT where the fairness constraint maxg∈G
ηS
g (π)

ηD
g (π)

−ming∈G
ηS
g (π)

ηD
g (π)

≤ δ

considers all future time steps. Therefore, techniques for this category of constrained RL cannot be
directly applied in the ELBERT framework.

D EXPERIMENTAL DETAILS

D.1 FULL DESCRIPTION OF THE ENVIRONMENTS

Lending We consider the case of credit approval for lending in a sequential setting. As the agent
in this scenario, a bank decides whether to accept or reject loan requests from a stream of applicants
who arrive one-by one in a sequential manner. At each time t, an applicant from one of the two
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groups arrives. More specifically, the applicant’s group ID gt is sampled uniformly from G =
{1, 2}. Given the current applicant’s group ID gt ∈ {0, 1}, the corresponding credit score ct ∈
{1, 2, · · · , C} is sampled from the credit distribution µt,gt ∈ ∆(C), where ∆(C) denotes the set of
all discrete distributions over {1, 2, · · · , C}. We note here that the credit score distributions of both
groups, µt,1 and µt,2 are time-varying and will introduce their dynamics in detail later. Regardless
of their group IDs gt, the applicants with higher credit score is more likely to repay (i.e., Yt = 1),
whether the loan is approved (i.e., Ŷt = 1) or not (i.e., Ŷt = 0). Group 2 is disadvantaged with a
lower mean of initial credit score compared to Group 1 at the beginning of the sequential decision-
making process. The agent makes the decision Ŷt ∈ {0, 1} using the observation gt and ct. With
Ŷt and Yt, the agent gets an immediate reward Rt (agent’s earned cash at step t), and the credit
score distribution of the group gt changes depending on Ŷt and Yt. Specifically, the credit score
of the current applicant shifts from ct to a new score c′t, leading to the change of the credit score
distribution of group gt as follows, where the constant ϵ is the dynamic rate.

µt+1,gt(c
′
t)− µt,gt(c

′
t) = µt,gt(ct)− µt+1,gt(ct) = ε ≥ 0. (19)

The fairness criterion is the long-term extension of Equal Opportunity and the group well-being is
measured by the true positive rate. Specifically, the bias of a policy is defined as follows.∣∣∣∣∑t 1{Gt = 0, Yt = Ŷt = 1}∑

1{Gt = 0, Yt = 1} −
∑

t 1{Gt = 1, Yt = Ŷt = 1}∑
1{Gt = 1, Yt = 1}

∣∣∣∣ (20)

Infectious disease control: original version. In this environment, the agent is tasked with vac-
cinating individuals within a social network to minimize the spread of a disease (Atwood et al.,
2019). We first introduce the original set up used in Yu et al. (2022) and in the next paragraph, we
modify the environment to become more challenging. In this environment, individuals from two
groups G = {1, 2} are formulated as the nodes v ∈ V in a social network N connected with the
edges E. Every individual has a health state from {HS , HI , HR} for being susceptible, infected and
recovered. The state space of the RL agent is characterized by the health states of all individuals,
i.e. S = {HS , HI , HR}|V |. A random individual in N gets infected at the beginning of an episode.
At each time step, the agent chooses one individual or no one to vaccinate and therefore the action
space is the set of all individuals and the null set V ∪ ∅. As for the dynamics, without vaccination,
a susceptible individual gets infectious with probability that depends on the number of infectious
neighbors. Specifically, without the vaccine, a susceptible individual v will get infected with proba-
bility of 1 − (1 − τ)IN (v,H), where 0 < τ ≤ 1 and IN (v,H) is the number of infected individuals
that are connected to the individual v. τ = 0.1 is used. For those individuals in the susceptible state
and receiving an vaccine, they will directly transit to the recovery state. A infected individual will
get recovered with probability ρ = 0.005 without vaccination, and stay infected if vaccinated. The
immediate reward is the percentage of health individuals (including being susceptible and recovered)
in the whole network at the current step.

The fairness criterion is defined as∣∣∣∣∑t vaccinations given1t∑
t newly infected1t

−
∑

t vaccinations given2t∑
t newly infected2t

∣∣∣∣ (21)

where vaccinations givengt and newly infectedgt are the number of vaccinations given to individuals
from group g and the number of newly infected individuals from group g at time t.

Infectious disease control: harder version. In the original setting used in Yu et al. (2022), the
recovery state is absorbing: the individual in the recovery state will not be susceptible or infected
again. To make the environment more challenging, we modify the environment so that the recovered
individuals will become susceptible again with probability µ = 0.2. This modification inject more
stochasticity into the environment and makes learning more challenging. Other parameters are kept
the same as the original settings. Note that the results in Section 5 is on this harder environment.

Attention allocation: original version. In the original version of this environment used in Yu
et al. (2022), the agent’s task is to allocate 6 attention units to 5 sites (groups) to discover inci-
dents, where each site has a different initial incident rate. The agent’s action is at = {ag,t}5g=1,
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where ag,t is the number of allocated attention units for group g. The number of incidents yg,t
is sampled from Poisson(µg,t) with incident rate µg,t and the number of discovered incident is
ŷg,t = min(ag,t, yg,t). The incident rate changes according to µg,t+1 = µg,t − d · ag,t if ag,t > 0
and µg,t+1 = µg,t + d otherwise, where the dynamic rate d is a constant. The agent’s reward is
R(st, at) =

∑
g ŷg,t − ζ

∑
g(yg,t − ŷg,t), where the coefficient ζ balances between the discovered

and missed incidents. In the original version, ζ = 0.25 and d = 0.1. The initial incident rates are
given by

{µg,0}5g=1 = {8, 6, 4, 3, 1.5}. (22)

The group well-being is defined as the ratio between the total number of discovered incidents over
time and the total number of incidents, and thus the bias is defined as

max
g∈G

∑
t ŷg,t∑
t yg,t

−min
g∈G

∑
t ŷg,t∑
t yg,t

. (23)

Attention allocation: harder version. To modify the environment to be more challenging, we
consider a more general environment by introducing more complexity. Different from the original
setting in Yu et al. (2022) where the dynamic rate is the same among groups, we consider a more
general case where the dynamic rates vary among different groups. Moreover, for the group g,
the dynamic rate for increasing incident rate dg is different from that for decreasing incident rate
dg . Specifically, the incident rate changes according to µg,t+1 = µg,t − dg · ag,t if ag,t > 0 and
µg,t+1 = µg,t + dg otherwise, where the constants dg and dg are the dynamic rates for reduction
and growth of the incident rate of group g. The parameters are given by the following.

{dg}5g=1 = {0.004, 0.01, 0.016, 0.02, 0.04}, {dg}5g=1 = {0.08, 0.2, 0.4, 0.8, 2} (24)

Meanwhile, we increase the number of attention units to allocate from 6 to 30 to expand the action
space for more difficulty and modify the initial incident rates to

{µg,0}5g=1 = {30, 25, 22.5, 17.5, 12.5}. (25)

The agent’s reward is R(st, at) = −ζ∑g(yg,t − ŷg,t), i.e., the opposite of the sum of missed
incidents. Here ζ = 0.25. Note that the reward function in this harder version is different from the
original setting.

Explanation of the harder environment. The new version of the attention environment is more
challenging for learning a fair policy with high rewards due to the following reasons. (1) The higher
number of attention units indicates the larger action space in which searching for the optimal policy
will be more challenging. (2) For all groups, the increasing dynamic rates are much higher than the
decreasing dynamic rates, making it harder for the incident rate to decrease. (3) The disadvantaged
groups, i.e., the groups with higher initial incident rates, have lower dynamic rates for both decreas-
ing and increasing incident rate. This makes learning a fair policy harder since lower decreasing
dynamic rates make the incident rates harder to decrease, and lower increasing dynamic rates means
the policy could allocate less units to these groups without harming the reward too much, causing
increasing bias. Note that the experiment in the attention environment in Section 5 uses this harder
environment.

Summary of all environments (1) Lending. (2) Original Attention. (3) Harder Attention. (4)
Original Infectious. (5) Harder Infectious. Note that the results in Section 5 are on (1), (3) and (5).
Results of other environments are in Appendix D.3.

D.2 HYPERPARAMETERS

For the learning rate, we use 10−6 in the original attention allocation environment and 10−5 in other
four environments. We train for 2 × 106 time steps in the lending environment, 107 time steps
in the original infectious disease control environment, 2 × 107 time steps in the original attention
allocation environment, and 5×106 time steps in two harder environments (infectious disease control
and attention allocation).

Before listing the hyperparameters for baselines, we first briefly introduce two baselines R-PPO and
A-PPO used in Yu et al. (2022). In Yu et al. (2022), it is assumed that there exists a fairness measure
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function ∆ so that ∆(s) measures the bias of the state s. In practice, ∆(st) is computed using
the bias up to time t, which depends on the previous state action pairs. R-PPO directly modifies
the reward function so that a larger bias results in smaller immediate reward. Specifically, R-PPO
modifies the reward function into

RR-PPO(st, at) = R(st, at) + ζ1∆(st). (26)

A-PPO modifies the advantage function to encourage the bias at the next time step to be smaller than
the current step. Specifically, it modifies the standard advantage function Â(st, at) into

ÂA-PPO(st, at) = Â(st, at)+β1 min(0,−∆(st)+ω)+β2

{
min(0,∆(st)−∆(st+1)) if ∆(st) > ω

0 otherwise
(27)

The hyperparameters for R-PPO and A-PPO in each environment are shown in Table 1.

Environments ELBERT-PO R-PPO A-PPO

Lending α = 2× 105 ζ1 = 2
β1 = β2 = 0.25

ω = 0.005

Infectious disease control
Original α = 10

ζ1 = 0.1
β1 = β2 = 0.1

ω = 0.05
Harder α = 50

Attention allocation
Original α = 50

β = 20 ζ1 = 10
β1 = β2 = 0.15

ω = 0.05
Harder α = 2× 104

β = 20
ζ1 = 20

Table 1: Hyperparameters of ELBERT-PO and two baseline methods (R-PPO and A-PPO).

All experiments are run on NVIDIA GeForce RTX 2080 Ti GPU.

D.3 MORE EXPERIMENTAL RESULTS

Results on original attention and infectious disease control environments. The performance of
ELBERT-PO and baselines in the original versions of the attention and infectious disease control
environments are shown in Figure 5. (1) Infectious (original). ELBERT-PO achieves the highest
reward among all baselines, including G-PPO. As for the bias, ELBERT-PO, R-PPO and A-PPO
obtains almost the same low bias. This suggests that the original infectious disease control envi-
ronment is not challenging enough to distinguish the bias mitigation ability between ELBERT-PO
and the baselines. (2) Attention (original). In this environment, we find that G-PPO, without any
fairness consideration, achieves very low bias (around 0.05). This indicate that the original attention
environment is too easy in terms of bias mitigation, and thus it must be modified to be more chal-
lenging. All methods obtain almost the same low bias. The results on the original version of both
environments motivate us to modify them to be more challenging. The experiments in Section 5
shows that ELBERT-PO has huge advantage in bias mitigation on more challenging environments.

Ablation on the bias coefficient α. The learning curve of rewards and bias from ELBERT-PO with
various values of the bias coefficient α in different environments are shown in Figure 6. (1) Rewards.
In most cases, increasing α leads to slower convergence in rewards. However, increasing α can either
increase the reward (lending), decrease the reward (original and harder infectious) or be irrelevant to
reward (original attention allocation). This shows that whether or not there is an intrinsic trade-off
between reward and bias depends on the environment. (2) Biases. Using a relatively α leads to lower
bias. However, when α is too large, the bias might increase again. This may be due to the instability
of the bias term when α is too large.

Ablation on the temperature β of the soft bias. The learning curves of rewards and bias with vari-
ous values of temperature β of the soft bias in the harder version of attention allocation environment

18



Under review as a conference paper at ICLR 2024
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Figure 5: Rewards and bias of ELBERT-PO (ours) and three other RL baselines (A-PPO, G-PPO,
and R-PPO) in two original environments (infectious disease control and attention allocation) from
Yu et al. (2022).
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Figure 6: Learning curve of ELBERT-PO on four environments (lending, original and harder infec-
tious disease control, and original attention allocation) with different α. The learning curve on the
harder attention allocation environment is shown in Figure 4.
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are shown in Figure 7. We observe that (1) when β is very small (β = 1), the bias is relatively large.
This is because as shown in Proposition 3.3, the gap between the soft bias and bias is larger when β
is smaller, and therefore minimizing the soft bias may not be effective in minimizing the true bias.
(2) When β is very large (β = 100), at the beginning of training, the bias decreases slightly slower
than when β is moderate (β = 20). Also, the reward is observed to be less stable when β = 100.
This is probably due to the non-smoothness of optimization, since when β is very large, the soft bias
is very close to the bias, which is non-smooth and only depends on the maximal and minimal group
benefit rate. (3) Despite of the slight difference in convergence rate, the bias converges to the same
value for β = 20 and β = 100. This indicates that ELBERT-PO is not sensitive to β, provided that
β is reasonably large.

0 1 2 3 4 5

Training timestep ×106

−17.00

−14.00

−11.00

−8.00

−5.00

−2.00

R
ew

ar
ds

β=1
β=20
β=100

0 1 2 3 4 5

Training timestep ×106

0.00

0.08

0.16

0.24

0.32

0.40

B
ia

s

Figure 7: Learning curve of ELBERT-PO on the harder version of the attention allocation environ-
ment with different β.

Supply and demand of each group over training time steps. To explore how ELBERT-PO mini-
mizes the bias, we examine how the supply and demand of the advantaged and disadvantaged groups
vary over training steps. In the multi-group setting, at each training step we consider the most ad-
vantaged and disadvantaged group. The corresponding results of ELBERT-PO and the other three
baseline methods in three main environments (lending, harder infectious, and harder attention), are
shown in Figure 8. (1) Lending. The bias is reduced mainly by both decreasing demand and in-
creasing supply of the disadvantaged group. When using ELBERT-PO, in addition to reducing the
bias, the group benefit rates of both groups actually increase (but their difference decreases). (2)
Infectious (harder). The demand of both groups seems not influenced much by decision-making
system. The bias is reduced mainly by increasing the supply of the disadvantaged group and decreas-
ing supply of the advantaged group. (3) Attention (harder). In this case, the bias is reduced largely
by increasing the demand of the advantaged group and decreasing the demand of the disadvantaged
group. To sum up, the bias is reduced in different ways on different environments.
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Figure 8: Group demands and supplies of advantaged group 0 and disadvantaged group 1 with
ELBERT-PO (ours) and three other RL baselines (A-PPO, G-PPO, and R-PPO) in three environ-
ments (lending, harder infectious disease control and harder attention allocation). Each row shows
the results of one method and each column shows the results on one environment.
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E ADDRESSING POTENTIAL LIMITATION

Demand in the static and long-term settings In the static setting, static fairness notions (such
as Demographic Parity and Equal Opportunity) only consider the supply-demand ratio and do not
explicitly consider the absolute value of demand itself. This is because the demand is typically
not considered as controllable by the decision maker in the static setting. Our ELBERT framework
adapts static fairness notions to long-term settings, and consider the ratio between cumulative supply
and demand. The ELBERT does not explicitly consider the absolute value of demand either. Note
that in the long-term setting, demand in the future time steps can be affected by the decision maker.

Overall potential limitation One limitation of ELBERT is that it focuses on long-term adaptations
of static fairness notions, which mainly consider the supply-demand ratio but not the absolute value
of demand itself. However, in real world applications, extra constraints on demand might be needed.
For example, the demand should not be too large (e.g. when demand is the number of infected
individuals in the infectious environment) or too small (e.g. when demand is the number of qualified
applicants in the lending environment).

Specifically, in ELBERT framework and in all the metrics used by prior works (Yu et al., 2022;
D’Amour et al., 2020; Atwood et al., 2019), reducing the bias typically encourages the Long-term
Benefit Rate of the disadvantaged group to increase, which can decrease its group demand. Although
decreasing the demand of the disadvantaged group is beneficial in some cases (e.g. decreasing the
number of infected individual in the infectious environment), overly decreasing demand can be
problematic in other cases (e.g. when demand is the number of qualified applicants in the lending
environment) due to real world consideration.

Solution In the following, we show that ELBERT-PO still works when we incorporate additional
terms to regularize demand in the objective function. For illustration, assume that we would like the
demand of the disadvantaged group (group 1) to be not too small (e.g. in the lending environment).
Therefore, we can add a regularization term ηD1 (π) to the objective function to maximize:

J reg(π) = η(π)− αb(π)2 + ζηD1 (π) = η(π)− α(
ηS1 (π)

ηD1 (π)
− ηS2 (π)

ηD2 (π)
)2 + ζηD1 (π), (28)

where ζ controls the regularization strength for keeping the demand of group 1 from being too small.

As in Section 3.2, we need to compute its policy gradient in order to use standard policy optimization
algorithms like PPO. Note that this is easy since the extra regularization term ηD1 (π) is in the form
of a standard cumulative reward with known policy gradient formula. Therefore, combining with
the policy gradient formula without the regularization term in Equation (4), we have that:

∇πJ
reg(π) = Eπ

{
∇π log π(at|st)

[
At−α

∑
g∈G

∂h

∂zg
(

1

ηDg (π)
AS

g,t−
ηSg (π)

ηDg (π)2
AD

g,t)+ζAD
1,t)

]}
(29)

Therefore, we only need to use the demand-regularized version of the fairness-aware advantage

function Afair Reg
t = At − α

∑
g∈G

∂h
∂zg

( 1
ηD
g (π)

AS
g,t −

ηS
g (π)

ηD
g (π)2

AD
g,t) + ζAD

1,t and apply Algorithm 1.

Demand in our experiments In Figure 8 in Appendix D.3, we visualize how demand and supply
changes during training for all methods in the three environments. Note that in all algorithms the
demand is not regularized. We did not notice any aforementioned problematic and dramatic change
in demand of the disadvantaged group. Specifically, (1) Lending. The demand (number of qualified
applicants) of the disadvantaged group only mildly decreases using methods with fairness consid-
erations (ELBERT-PO, A-PPO and R-PPO). The supply of the disadvantaged group increases a lot.
(2) Infectious. The demand of the disadvantaged group is barely affected by all algorithms. (3)
Attention. The demand (number of incidents) of the disadvantaged group goes down when using
methods with fairness considerations. Although the demand regularization technique above is not
needed in these environments, it might be crucial in other applications.
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