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Abstract
Recently, there has been a growing interest in001
designing text generation systems from a dis-002
course coherence perspective, e.g., modeling003
the interdependence between sentences. Still,004
recent BERT-based evaluation metrics cannot005
recognize coherence and fail to punish inco-006
herent elements in system outputs. In this007
work, we introduce DiscoScore, a parametrized008
discourse metric, which uses BERT to model009
discourse coherence from different perspec-010
tives, driven by Centering theory. Our exper-011
iments encompass 16 non-discourse and dis-012
course metrics, including DiscoScore and popu-013
lar coherence models, evaluated on summariza-014
tion and document-level machine translation015
(MT). We find that (i) the majority of BERT-016
based metrics correlate much worse with hu-017
man rated coherence than early discourse met-018
rics, invented a decade ago; (ii) the recent state-019
of-the-art BARTScore is weak when operated020
at system level—which is particularly prob-021
lematic as systems are typically compared in022
this manner. DiscoScore, in contrast, achieves023
strong system-level correlation with human rat-024
ings, not only in coherence but also in factual025
consistency and other aspects, and surpasses026
BARTScore by over 10 correlation points on027
average. Further, aiming to understand Dis-028
coScore, we provide justifications to the im-029
portance of discourse coherence for evaluation030
metrics, and explain the superiority of one vari-031
ant over another.032

1 Introduction033

In discourse, coherence refers to the continuity of034

semantics in text. Often, discourse relations and035

lexical cohesion devices, such as repetition and036

coreference, are employed to connect text spans,037

aiming to ensure text coherence. Popular theories038

in the linguistics community on discourse were pro-039

vided by Grosz et al. (1995) and Mann and Thomp-040

son (1988). They formulate coherence through the041

lens of readers’ focus of attention, and rhetorical042

discourse structures over sentences. Later on, co-043

herence models as computational approaches of044

these theories emerged to judge text coherence in 045

discourse tasks such as sentence ordering and es- 046

say scoring (Barzilay and Lapata, 2008; Lin et al., 047

2011; Guinaudeau and Strube, 2013). 048

While humans also often use text planning at 049

discourse level prior to writing and speaking, up 050

until recently, the majority of natural language gen- 051

eration (NLG) systems, be it text summarization 052

or document-level MT, has performed sequential 053

word prediction without considering text coherence. 054

For instance, MT systems mostly do not model the 055

interdependence between sentences and translate a 056

document at sentence level, and thus produce many 057

incoherent elements such as coreference mistakes 058

in system outputs (Maruf et al., 2021). Only more 059

recently has there been a surge of interest towards 060

discourse based summarization and MT systems, 061

aiming to model inter-sentence context, with a fo- 062

cus on pronominal anaphora (Voita et al., 2018; 063

Liu et al., 2021) and discouse relations (Miculicich 064

et al., 2018; Xu et al., 2020). 065

However, there appears a mismatch between dis- 066

course based NLG systems and non-discourse NLG 067

evaluation metrics such as MoverScore (Zhao et al., 068

2019) and BERTScore (Zhang et al., 2020) which 069

have recently become popular for MT and sum- 070

marization evaluation. As these metrics base their 071

judgment on semantic similarity (and lexical over- 072

lap (Kaster et al., 2021)) between hypotheses and 073

references—which by design does not target text 074

coherence—it is not surprising that they do not 075

correlate well with human rated coherence (Fabbri 076

et al., 2021; Yuan et al., 2021; Sai et al., 2021). Re- 077

cently, BARTScore (Yuan et al., 2021) receives 078

increasingly attention, which uses sequence-to- 079

sequence language models to measure the likeli- 080

hood that hypothesis and reference are paraphrases, 081

and that cannot contrast text pairs at discourse level. 082

In this work, we fill the gap of missing discourse 083

metrics in MT and summarization evaluation, par- 084

ticularly in reference-based evaluation scenarios. 085

We introduce DiscoScore, a parametrized discourse 086
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Chelsea have made an offer for FC Tokyo forward Yoshinori Muto. The 22-
year-old will join Chelsea 's Dutch partner club Vitesse Arnhem on loan 
next season if he completes a move to Stamford Bridge. Chelsea signed a 
£200million sponsorship deal with Japanese company Yokohama Rubber 
in February.

Hypothesis

Naoki Ogane says that Chelsea have made an offer for Yoshinori Muto. 
The 22-year-old forward has one goal in 11 games for Japan. Muto admits 
that it is an 'honour' to receive an offer from the Blues. Chelsea have 
signed a £200m sponsorship deal with Yokohama Rubber. Muto graduated 
from university with an economics degree two weeks ago. He would 
become the first Japanese player to sign for Chelsea.

Reference

t1 t2 t3 t4 t5 ...
Chelsea 1 0 0 0 0 1
offer 0 0 0 0 1 0
...

...
...

...
...

...
...

(a) FocusDiff

s1 s2 s3
s1 0 1 0.5
s2 0 0 1
s3 0 0 0

(b) SentGraph

Figure 1: Sample hypothesis and reference from SUM-
MEval. Each focus1is marked in a different color, cor-
responding to multiple tokens as instances of a focus.
Foci shared in Hypothesis and Reference are marked in
the same color. (a)+(b) are adjacency matrices used to
model focus-based coherence for Hypothesis; for sim-
plicity, adjacency matrices for Reference are omitted.
FocusDiff and SentGraph are the variants of DiscoScore.
For FocusDiff, we use (a) to depict the relations be-
tween foci and tokens, reflecting focus frequency. For
SentGraph, we use (b) to depict the interdependence be-
tween sentences according to the number of foci shared
between sentences and the distance between sentences.

metric, which uses BERT to model discourse co-087

herence through the lens of readers’ focus, driven088

by Centering theory (Grosz et al., 1995). The Dis-089

coScore variants can be distinguished in how we090

use focus—see Figure 1: (i) we model focus fre-091

quency and semantics, and compare their differ-092

ence between hypothesis and reference and (ii) we093

use focus transitions to model the interdependence094

between sentences. Building upon this, we present095

a simple graph-based approach to compare hypoth-096

esis with reference.097

We compare DiscoScore with a range of base-098

lines, including discourse and non-discourse met-099

rics, and coherence models on summarization and100

document-level MT datasets. Our contributions101

and findings are summarized as follows:102

• Recent BERT-based metrics and the state-of-103

the-art BARTScore (Yuan et al., 2021) are all104

weak in system-level correlation with human105

ratings, not only in coherence but also in other106

1The formal definition of focusing in discourse is given
on two levels (Grosz et al., 1977): (i) readers are said to be
globally focusing on a set of entities relevant to the overall
discourse, and (ii) readers focus on a particular entity that an
utterance locally concerns most. Section 3 elaborates on focus
as a key ingredient of DiscoScore.

aspects such as factual consistency. Most of 107

them are even worse than very early discourse 108

metrics, RC and LC (Wong and Kit, 2012)— 109

which require neither source texts nor refer- 110

ences and use discourse features to predict 111

hypothesis coherence. 112

• DiscoScore strongly correlates with human 113

rated coherence and many other aspects, over 114

10 points (on average across aspects) better 115

than BARTScore and two strong baselines RC 116

and LC in the single and multi-references set- 117

tings. This indicates that either leveraging 118

contextualized encoders or finding discourse 119

features is not sufficient, suggesting to com- 120

bine both as DiscoScore does. 121

• We demonstrate the importance of including 122

discourse signals in the assessment of system 123

outputs, as the discourse features derived from 124

DiscoScore can strongly separate hypothesis 125

from reference. Further, we show that the 126

more discriminative these features are, the 127

better the metrics perform, which allows for 128

interpreting the performance gaps between the 129

variants of DisoScore. 130

• We investigate two focus choices popular in 131

the discourse community, i.e., noun (Elsner 132

and Charniak, 2011) and semantic entity (Mes- 133

gar and Strube, 2016). Our results show that 134

entity as focus is not always helpful, but when 135

it helps, the gain is big. 136

2 Related work 137

Evaluation Metrics. Traditional metrics such as 138

BLEU (Papineni et al., 2002) and ROUGE (Lin, 139

2004) measure lexical n-gram overlap between a 140

hypothesis and a human reference. As they fail 141

to measure semantic similarity in the absence of 142

lexical overlap, several metrics have been proposed 143

to overcome this issue, which carry out soft lexical 144

matching with static word embeddings (Ng and 145

Abrecht, 2015) and synonym matching (Lavie and 146

Agarwal, 2007). However, none of those metrics 147

can properly judge text coherence (Kryscinski et al., 148

2019; Zhu and Bhat, 2020). 149

Recently, a class of novel metrics based on 150

BERT (Devlin et al., 2019) has received a surge 151

of attention, as they correlate strongly with human 152

judgment of text quality in both reference-based 153

and reference-free scenarios (Zhao et al., 2019; 154

Zhang et al., 2020; Sellam et al., 2020; Rei et al., 155

2020; Gao et al., 2020; Thompson and Post, 2020; 156
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Zhao et al., 2020; Pu et al., 2021; Chen et al., 2021).157

While strong at sentence-level, these metrics can-158

not recognize coherence in inter-sentence contexts159

(just like BLEU and ROUGE), as BERT and the160

majority of BERT variants2 that these metrics build161

on are inadequate in capturing discourse phenom-162

ena (Koto et al., 2021; Laban et al., 2021; Beyer163

et al., 2021). Thus, they are not suitable for evaluat-164

ing long texts as in document-level MT evaluation.165

Works that either (i) average sentence-level eval-166

uation scores as document score or (ii) assign a167

score to the concatenation of sentences within a168

document (Xiong et al., 2019; Liu et al., 2020;169

Saunders et al., 2020) do not factor interdepen-170

dence between sentences into a document score,171

e.g., do not explicitly punish incoherent elements,172

thus are also inadequate.173

Several attempts have been made towards dis-174

course metrics in MT evaluation. Wong and Kit175

(2012); Gong et al. (2015); Cartoni et al. (2018)176

use the frequency of lexical cohesion devices (e.g.,177

word repetition) over sentences to predict coher-178

ence of hypothesis translations, while Guzmán et al.179

(2014) and Joty et al. (2017) suggest to compare the180

difference of rhetorical structures between hypothe-181

sis and reference translations. Recently, Jiang et al.182

(2021) measure the inconsistency between hypoth-183

esis and reference translations in several aspects184

such as verb tense and named entities. However,185

these metrics do not leverage strong contextualized186

encoders, as has been shown to be a key ingre-187

dient for recent success of BERT-based metrics.188

Most recently, BARTScore (Yuan et al., 2021) uses189

sequence-to-sequence pretrained language models190

such as BART (Lewis et al., 2020) to measure how191

likely hypothesis and reference are paraphrased ac-192

cording to the probability of one given the other.193

While BARTScore constitutes the recent state-of-194

the-art in sentence-level correlation with human195

ratings in several aspects (incl. discourse), we find196

that (i) it performs still poorly at system level—197

which is particularly problematic as systems are198

typically compared in this manner. (ii) As based199

on a ‘blackbox’ language model, it cannot offer200

insights towards how it models coherence and what201

discourse phenomena it does (not) capture.202

Coherence Models. In discourse, there have203

been many computational models (Barzilay and204

Lapata, 2008; Guinaudeau and Strube, 2013; Pitler205

and Nenkova, 2008; Lin et al., 2011) for text co-206

2Recently, several discourse BERT variants such as Con-
pono (Iter et al., 2020) have been proposed, but they are not
always helpful for evaluation metrics—see Table 2 (appendix).

herence assessment, the majority of which differ 207

in regularities that they use to distinguish coherent 208

from incoherent text, driven by different linguistic 209

theories, v.i.z., a pattern of (i) focus transitions in 210

adjacent sentences (Grosz et al., 1995) and (ii) text 211

organization regarding discourse relations over sen- 212

tences (Mann and Thompson, 1988). For instance, 213

Barzilay and Lapata (2008) and Guinaudeau and 214

Strube (2013) use the distribution of entity tran- 215

sitions over sentences to predict text coherence, 216

while Pitler and Nenkova (2008) and Lin et al. 217

(2011) suggest to produce discourse relations over 218

sentences with a discourse parser, showing that the 219

relations are indicative of text coherence. In the 220

last few years, neural coherence models have been 221

explored. Popular examples are Tien Nguyen and 222

Joty (2017), Mesgar and Strube (2018) and Moon 223

et al. (2019). As they and the recent state-of-the- 224

art (Mesgar et al., 2021) all have been trained on 225

text readability datasets, with readability labels as 226

supervision, they may suffer issues of domain shift 227

when applied to MT and summarization evaluation. 228

More importantly, they judge hypothesis coherence 229

in the absence of reference, thus are not sufficient 230

for reference-based evaluation. Our experiments in- 231

volve two popular, unsupervised coherence models, 232

entity graph (Guinaudeau and Strube, 2013) and 233

lexical graph (Mesgar and Strube, 2016) treated 234

as discourse metrics due to their advantages on 235

robustness (Lai and Tetreault, 2018). 236

Discourse Test Sets. Apart from evaluation met- 237

rics, there have been several discourse-focused test 238

sets proposed to compare NLG systems, most of 239

which have been studied in MT evaluation. For 240

instance, the DiscoMT15 shared task (Hardmeier 241

et al., 2015) compares MT systems, not based on 242

translation adequacy but on the accuracy of pro- 243

noun translation for English-to-French, i.e., count- 244

ing the number of correctly translated pronouns, 245

given the annotated ones in reference. Bawden 246

et al. (2018) extend this by labeling both anaphoric 247

pronouns and lexical cohesion devices on test 248

sets, while Voita et al. (2018) construct English- 249

to-Russian test sets targeted on deixis, ellipsis and 250

lexical cohesion. Guillou et al. (2018); Lopes et al. 251

(2020) construct English-to-German and English- 252

to-French test sets targeting pronouns. While reli- 253

able, these test sets involve costly manual annota- 254

tion, thus are limited to few language pairs. 255

In this work, we introduce DiscoScore to judge 256

system outputs, which uses BERT to model read- 257

ers’ focus within hypothesis and reference, and 258
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thus clearly outlines the discourse phenomena be-259

ing captured, serving as low-cost alternatives to260

discourse test sets for comparing discourse based261

NLG systems. More prominently, we derive dis-262

course features from DiscoScore, which we use to263

understand the importance of discourse for evalua-264

tion metrics, and explain why one metric is supe-265

rior to another. This parallels recent effort towards266

explainability for non-discourse evaluation met-267

rics (Kaster et al., 2021; Fomicheva et al., 2021).268

Finally, we show that simple features can be indica-269

tive of the superiority of a metric, which fosters270

research towards finding insightful features with271

domain expertise and building upon these insights272

to design high-quality metrics.273

3 Our Approach274

In the following, we elaborate on the two variants275

of DiscoScore, FocusDiff and SentGraph, which276

we refer to as DS-FOCUS and DS-SENT.277

Focus Difference. In discourse, there have been278

many corpus-based studies towards modeling fo-279

cus transitions over sentences, showing that fo-280

cus transition patterns are indicative of text coher-281

ence (Barzilay and Lapata, 2008; Guinaudeau and282

Strube, 2013). When reading a document, readers283

may have multiple focus of attention, each asso-284

ciated to a group of expressions: (i) referring ex-285

pressions such as pronouns and (ii) semantically286

related elements such as [Berlin, capital].287

Here, we assume two focus based conditions that288

a coherent hypothesis should meet in reference-289

based evaluation scenarios:290

• A large number of focus overlaps between a291

hypothesis and a reference.292

• Each focus overlap is nearly identical in terms293

of semantics and frequency3.294

In the following, we present focus modeling to-295

wards semantics and frequency, according to which296

we compare hypothesis with reference.297

For a hypothesis, we introduce a bipartite graph298

Ghyp = (V,S,Ahyp), where V and S are two sets299

of vertices corresponding to a set of foci and all300

tokens (per occurrence a word is a separate token)301

within a hypothesis. Let A = {0, 1}n×m be an302

adjacency matrix where n and m are the number of303

foci and tokens respectively, and Aij equals 1 if and304

only if the i-th focus associates to the j-th token.305

3Focus frequency denotes how often a focus is mentioned
in a hypothesis or in a reference.

Let Fhyp ∈ Rn×d be a matrix of focus embeddings 306

and Zhyp ∈ Rm×d be a matrix of contextualized 307

token embeddings with d as the embedding size. 308

Similarly, we use notation Gref , Fref and Zref for a 309

human reference. 310

We use contextualized encoders such as BERT 311

to produce token embeddings Zhyp and Zref . We 312

use a simple approach to model both semantics and 313

frequency of a focus. That is, we assign per focus v 314

an embedding by summing token embeddings that 315

a focus is associated to: 316

Fhyp
v =

∑
u∈N (v)

Zhyp
u , Fref

v =
∑

u∈N (v)

Zref
u (1) 317

where N (v) is a set of tokens (e.g., a group of 318

semantically related expressions) associated with a 319

focus v. In matrix notation, we rewrite Eq. (1) to 320

Fhyp = AhypZhyp, similarly for Fref . 321

Next, we measure the distance between a com- 322

mon set of foci Ω in a hypothesis and reference pair 323

based on their embeddings: 324

DS-FOCUS(hyp, ref) =
1

N

∑
u∈Ω

∥Fhyp
u − Fref

u ∥

(2) 325

where DS-FOCUS is scaled down by the factor of 326

N , the number of foci in hypothesis. 327

Sentence Graph. Few contextualized encoders 328

can produce high-quality sentence embeddings in 329

the document context, as they do not model inter- 330

dependence between sentences. According to Cen- 331

tering theory (Grosz et al., 1995), two sentences 332

are marked continuous in meaning when they share 333

at least one focus, on the one hand; one marks a 334

meaning shift for two sentences when no focus ap- 335

pears in common, on the other hand. From this, 336

one can aggregate sentence embeddings for which 337

corresponding sentences are considered continu- 338

ous. In the following, we present a graph-based 339

approach to do so. 340

For a hypothesis4, let Shyp ∈ Rn×d be a matrix 341

of sentence embeddings with n and d as the number 342

of sentences and the embedding size. We introduce 343

a graph Ghyp = (V,Ahyp) where V is a set of sen- 344

tences and Ahyp is an adjacency matrix weighted 345

according to the number of foci shared between 346

sentences and the distance between sentences as 347

listed below to depict two variants of Ahyp: 348

• unweighted: Ahyp
ij = 1/(j − i) if the i-th and 349

the j-th sentences have at least one focus in 350

4For simplicity, we omit the notation Sref and Gref for a
reference.
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common (otherwise 0), where j−i denotes the351

distance between two sentences and Ahyp
ij =352

0 when j ≤ i.353

• weighted: Ahyp
ij = a/(j − i), where a is the354

number of foci shared in the i-th and the j-th355

sentences, with the same constraints on j and356

i as above.357

Analyses by Guinaudeau and Strube (2013) indi-358

cate that global statistics (e.g., average) over such359

adjacency matrices can distinguish incoherent from360

coherent text to some degree. Here we depict adja-361

cency matrices as a form of sentence connectivity362

derived from focus transitions over sentences. We363

use them to aggregate sentence embeddings from364

hypothesis and from reference:365

Ŝhyp = (Ahyp + I)Shyp, Ŝref = (Aref + I)Sref366

where I is an identity matrix that adds a self-loop367

to a graph so as to include self-embeddings when368

updating them.369

Next, we derive per graph an embedding with370

simple statistics from Ŝhyp and Ŝref , i.e., the con-371

catenation of mean-max-min-sum embeddings. Fi-372

nally, we compute the cosine similarity between373

two graph-level embeddings:374

DS-SENT(hyp, ref) = cosine(Ghyp,Gref) (3)375

Choice of Focus. In discourse, often four popu-376

lar choices are used to describe a focus: (i) a noun377

that heads a NP (Barzilay and Lapata, 2008), (ii)378

a noun (Elsner and Charniak, 2011), (iii) a coref-379

erent entity associated with a set of referring ex-380

pressions (Guinaudeau and Strube, 2013) and (iv)381

a semantic entity associated with a set of lexical382

related words (Mesgar and Strube, 2016).383

In this work, we investigate two focus choices:384

noun (NN) and semantic entity (Entity). Linguis-385

tically speaking, the latter is a lexical cohesion386

device in the form of repetition, indicative of co-387

herence. indicative of coherence. From this, NN388

as focus yields few useful coherence signals but389

a lot of noise, while Entity as focus uses ‘signal390

compression’ by means of aggregation to produce391

better signals. To produce entities, we first extract392

all nouns in hypothesis (or reference), and aggre-393

gate them into different semantic entities if their394

cosine similarities based on Dep2Vec word embed-395

dings (Levy and Goldberg, 2014) is greater than a396

threshold—assuming that nouns with high similar-397

ity refer to the same semantic entity.398

4 Experiments 399

4.1 Evaluation Metrics 400

In the following, we list all of the evaluation met- 401

rics, and elaborate on them in Appendix A.1. 402

Non-discourse Metrics. We consider BLEU (Pa- 403

pineni et al., 2002), ROUGE (Lin, 2004), 404

BERTScore (Zhang et al., 2020), Mover- 405

Score (Zhao et al., 2019), SBERT (Reimers and 406

Gurevych, 2019), S3-pyr (Peyrard et al., 2017), 407

BLEURT (Sellam et al., 2020), BARTScore (Yuan 408

et al., 2021), PRISM (Thompson and Post, 2020). 409

Discourse Metrics. We consider RC and 410

LC (Wong and Kit, 2012) and Lexical Chain (Gong 411

et al., 2015). We consider two coherence models, 412

EntityGraph (Guinaudeau and Strube, 2013) and 413

LexicalGraph (Mesgar and Strube, 2016), and treat 414

them as discourse metrics. 415

DiscoScore. DS-FOCUS can be parameterized 416

with two focus choices: noun (NN) or semantic 417

entity (Entity). DS-SENT can be parameterized not 418

only with focus, but also with the choices of un- 419

weighted (-U) and weighted (-W). For DS-FOCUS, 420

we use Conpono (Iter et al., 2020) that finetuned 421

BERT with a novel discourse-level objective re- 422

garding sentence ordering. For DS-SENT, we use 423

BERT-NLI. This is because we find this configura- 424

tion performs best after initial trials—see Table 2 425

(appendix). Figure 5 (appendix) shows all vari- 426

ants of DiscoScore. Concerning the threshold of 427

Dep2Vec to produce entities, after experimenting 428

with several alternatives we set it to 0.8 for DS- 429

FOCUS (Entity) in all setups, and to 0.8 in summa- 430

rization and to 0.5 in MT for DS-SENT (Entity). 431

4.2 Datasets 432

We consider two datasets in summarization: Sum- 433

mEval (Fabbri et al., 2021) and NeR18 (Grusky 434

et al., 2018), and one dataset in document-level 435

MT: WMT20 (Mathur et al., 2020). We outline 436

these datasets in Appendix A.2, and provide data 437

statistics in Table 9 (appendix). 438

5 Results 439

We first examine the importance of discourse for 440

evaluation metrics—which underpins the useful- 441

ness of discourse metrics, and then benchmark Dis- 442

coScore on summarization and MT datasets. 443

Importance of Discourse. DS-FOCUS and DS- 444

SENT concern the modeling of discourse coher- 445

ence on two different levels: (i) the occurrences 446
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Figure 2: Scatter plot to display FREQ(hyp) (based on
NN) on x-axis and FREQ(ref) on y-axis on SUMMEval.
Each point contains two frequencies from a pair of hy-
pothesis and reference. The points below the auxiliary
line are the ones for which FREQ(hyp) > FREQ(ref).

of foci, and (ii) the interdependence between sen-447

tences driven by focus transitions, both reflecting448

the discourse characteristics of a text. In the fol-449

lowing, we describe these discourse features, and450

examine their importance for assessing system out-451

puts by contrasting the discourse patterns of hy-452

pothesis and reference.453

• Focus Frequency, denoted by FREQ(x),454

equals the ratio between the total frequencies455

of foci and the number of foci in a text x,456

where x is hypothesis or reference. We ex-457

clude foci occurring only once.458

• Sentence Connectivity, denoted by459

CONN(x), equals the average of all elements460

in adjacency matrix representing the inter-461

dependence between sentences in a text x462

(hypothesis/reference).463

• As in DiscoScore, we consider two focus464

choices (NN and Entity) and the choices of465

unweighted (-U) and weighted (-W) for these466

discourse features. Figure 5 (appendix) shows467

the links between DiscoScore and the features.468

469

Figure 2 shows that the scales on FREQ(ref)470

and FREQ(hyp) in summarization differ by a large471

amount, i.e., from 0.5 to 2.5 on y-axis and up to472

6 on x-axis. This means that hypothesis and ref-473

erence can be strongly distinguished by FREQ(x),474

which underpins the usefulness of including such475

discourse signals in the assessment of system out-476

puts when references are available. Further, the477

larger scale on FREQ(hyp) indicates that foci in478

hypothesis are more repetitive than in reference, as479

a result of needless repetition in poor summaries—480

in line with previous studies on incoherent machine481

translations (Guillou, 2013; Voita et al., 2019). The482

results for other discourse features are similar, we 483

provide them in Figure 6 (appendix). 484

Overall, these results show discourse features 485

can separate hypothesis from reference. 486

5.1 Text Summarization 487

Correlation Results. Table 1 compares metrics 488

on SUMMEval on system level. Most of non- 489

discourse metrics have a lowest correlation with 490

human rated coherence among four quality aspects. 491

Even worse, ROUGE-L and SBERT do not corre- 492

late with coherence whatsoever. BARTScore, the 493

recent state-of-the-art metric, is very weak when 494

operated on system level, notwithstanding that it 495

has been fine-tuned on “document-to-summary” 496

parallel data from CNN/DailyMail—which SUM- 497

MEval is constructed from. We note that SUM- 498

MEval uses multiple references. BARTScore by 499

default compares a hypothesis with one refer- 500

ence at a time, then takes the average of multiple 501

evaluation scores as a final score. Table 8 (ap- 502

pendix) shows that we can improve system-level 503

BARTScore to some degree by replacing ‘average’ 504

with ‘max’ (i.e., taking the maximum score), but 505

DS-FOCUS is still much better overall, i.e., sur- 506

passing BARTScore by ca. 10 points on average. 507

Table 7 (appendix) reports correlation results on 508

NeR18 that uses single reference. We find that 509

half of hypotheses do not contain ‘good foci’, and 510

as such the foci-based discourse features outlined 511

previously are less discriminative on NeR18 than 512

on SUMMEval—see Table 9 (appendix). However, 513

DS-FOCUS is still strong, ca. 20 points better than 514

BARTScore in all aspects, despite that DS-FOCUS 515

uses a much smaller contextualized encoder5. We 516

note that the ‘F-score’ version of DS-FOCUS seems 517

extremely strong on NeR18, but it is not robust 518

across datasets, e.g., much worse than the original, 519

precision-based DS-FOCUS on SUMMEval. 520

On a side note, coherence (mostly) strongly cor- 521

relates with the other rating aspects on both SUM- 522

MEval and NeR18—see Figure 3. Thus, it is not 523

surprising that both DS-FOCUS and DS-SENT cor- 524

relate well with these aspects, despite that we have 525

not targeted them. While strong on system level, 526

DiscoScore could not show advantages on sum- 527

mary level—see Table 5 (appendix), but we argue 528

that system-level correlation deserves the highest 529

priority as systems are compared in this manner. 530

Overall, these results show that BERT-based 531

non-discourse metrics correlate weakly with hu- 532

5DS-FOCUS uses Conpono on the same size of BERTBase.
BARTScore uses BARTLarge finetuned on CNN/DailyMail.
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Settings Metrics Coherence Consistency Fluency Relevance Average

m(hyp, ref)

Non-discourse metrics

ROUGE-1 9.09 27.27 18.18 9.09 15.91
ROUGE-L 0.00 36.36 21.21 18.18 18.94
BERTScore 30.30 30.30 51.52 54.55 41.67
MoverScore 36.36 42.42 63.64 60.61 50.76
SBERT 3.03 33.33 30.30 27.27 23.48
BLEURT 45.45 51.52 72.73 63.64 58.33
BARTScore 60.61 36.36 45.45 48.48 47.73
PRISM 51.52 39.39 72.73 69.70 58.33
S3-pyr 18.18 24.24 9.09 6.06 14.39

m(hyp)

Discourse metrics

RC 45.45 51.52 54.55 57.58 52.27
LC 51.52 45.45 48.48 57.58 50.76
Entity Graph 42.42 12.12 15.15 18.18 21.97
Lexical Graph 48.48 6.06 15.15 18.18 21.97

m(hyp, ref)

Lexical Chain 42.42 6.06 9.09 18.18 18.94
DS-FOCUS (NN) 75.76 63.64 78.79 81.82 75.00
DS-FOCUS (Entity) 69.70 57.58 72.73 75.76 68.94
DS-SENT-U (NN) 48.48 54.55 63.64 60.61 56.82
DS-SENT-U (Entity) 54.55 60.61 75.76 66.67 64.39
DS-SENT-W (NN) 51.52 51.52 66.67 63.64 58.33
DS-SENT-W (Entity) 51.52 57.58 66.67 63.64 59.85

Table 1: System-level Kendall correlations between metrics and human ratings of summary quality on SUMMEval.
We bold numbers that significantly outperform others according to paired t-test (Fisher et al., 1937). m is a metric.

man ratings on system level. BARTScore also533

does so, though we improve it to some degree534

in multi-references settings. DiscoScore, partic-535

ularly DS-FOCUS, performs consistently best in536

both single- and multi-references settings, and it is537

equally strong in all aspects.538

As for discourse metrics, RC and LC that use dis-539

course features are strong baselines as they outper-540

form most of non-discourse metrics and coherence541

models (i.e., Entity and Lexical Graph) without542

the access to source texts and references. How-543

ever, they are worse than both DS-FOCUS and DS-544

SENT. This confirms the inadequacy of RC and LC545

in that they do not leverage strong contextualized546

encoders and judge hypothesis in the absence of547

references. Moreover, we compare DiscoScore to548

a combination of two strong, complementary base-549

lines, BARTScore and RC—a simple solution to550

address text coherence of non-discourse metrics.551

To combine them, we simply average their scores.552

We see the gains are additive in all aspects but co-553

herence. DS-FOCUS wins all the time by a large554

margin—see Table 10 (appendix).555

Taken together, these results show that any of556

the three—(i) leveraging contextualized encoders557

as in BERT-based metrics and BARTScore; (ii)558

leveraging discourse features as in RC and (ii) the559

ensemble of (i) and (ii)—is not sufficient, suggest-560

ing to combine (i) and (ii) as DiscoScore does.561
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Figure 3: Pearson Correlation between coherence and
other aspects on system level. SUMMEval and NeR18
use Consistency and Informativeness respectively.

Understanding DiscoScore. As for all variants 562

of DiscoScore, we provide understanding on why 563

one variant is superior to another with the discourse 564

features outlined in Figure 5 (appendix). To this 565

end, we begin with defining the discriminativeness 566

of these features as the magnitude of separating 567

hypothesis from reference: 568

DR(hyp, ref) :=
|{(hyp, ref)|R(ref) < R(hyp)}|

N
(4) 569

where N is a normalization term, R is any one of 570

the discourse features in Figure 5 (appendix). 571

Figure 4 shows that the discriminativeness of 572

these features strongly correlate with the results 573

of the DiscoScore variants, i.e., that the more dis- 574

criminative the features are, the better the metrics 575

perform. This attributes the superiority of a met- 576

ric to the fact that the discourse feature can better 577
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Figure 4: Correlations between the results of metrics
and the discriminativeness of features on SUMMEval.
Metric results are averaged across four rating aspects.

separate hypothesis and reference.578

From this, we can interpret the performance gaps579

between the DiscoScore variants, namely (i) DS-580

FOCUS over DS-SENT: given Focus Frequency581

is more discriminative than Sentence Connectivity,582

it is not surprising that DS-FOCUS modeling dis-583

course coherence with the former outperforms DS-584

SENT modeling with the latter, and (ii) DS-Focus585

(NN) outperforms DS-Focus (Entity) because Fre-586

quency (NN) can better separate hypothesis from587

reference than Frequency (Entity).588

Analyses. We provide analyses on the configu-589

ration of DiscoScore from three perspectives—see590

Appendix A.3: (i) the choice of BERT variants to-591

wards discourse- versus non-discourse BERT; (ii)592

the impact of adjacency matrices accounting for593

the interdependence between sentences and (iii)594

that we compare statistics- and alignment-based595

approaches to examine the best configuration for596

DS-SENT. Our results show the advantages of ad-597

jacency matrices and statistics based approach, and598

that discourse BERT only helps for DS-FOCUS.599

5.2 Document-level Machine Translation600

Correlation Results. Table 12 (appendix) com-601

pares metrics on WMT20. We see that non-602

discourse metrics seem much better, but these re-603

sults are not consistent to the discriminativeness of604

the discourse features—see Table 11 (appendix).605

For instance, in cs-en, the discourse features (Fre-606

quency and Connectivity) corresponding to DS-607

FOCUS and DS-SENT clearly separate hypothesis608

from reference due to the probability of D > 0 be-609

ing over 70%. However, both DS-FOCUS and DS-610

SENT correlate weakly with human rated adequacy.611

Recently, Freitag et al. (2021a) provide justifica-612

tion to the inadequacy of the ‘adequacy’ ratings,613

as ‘adequacy’ sometimes cannot distinguish hu-614

man from system translations and correlates weakly615

with multiple aspects (e.g., fluency and accuracy).616

Thus, they re-annotate WMT20 with the MQM and 617

pSQM rating schemes, which has been subsumed 618

into the annotation guideline of the most recent 619

WMT evaluation campaign (Freitag et al., 2021b). 620

Here, we perform an extra study on these ratings 621

on both document- and system-levels. Note that 622

system-level ratings are said to be the average of 623

document-level ones in our setting. Table 6 (ap- 624

pendix) shows that DS-SENT is much better than 625

BARTScore on system level, surpassing it by 25 626

points in terms of MQM and 14 points in pSQM. 627

Overall, these results in MT are consistent with 628

those in summarization, i.e., DiscoScore is strong 629

on system levels for both tasks, but it cannot show 630

gains on fine-grained levels. Section A.4 (ap- 631

pendix) show inter-correlations between metrics. 632

6 Conclusions 633

Given the recent growth in discourse based NLG 634

systems, evaluation metrics targeting the assess- 635

ment of text coherence are essential next steps for 636

properly tracking the progress of these systems. 637

Although there have been several attempts made 638

towards discourse metrics, they all do not leverage 639

strong contextualized encoders which have been 640

held responsible for the recent success story of 641

NLP. In this work, we introduced DiscoScore that 642

uses BERT to model discourse coherence from two 643

perspectives of readers’ focus: (i) frequencies and 644

semantics of foci and (ii) focus transitions over 645

sentences used to predict interdependence between 646

sentences. We find that BERT-based non-discourse 647

metrics cannot address text coherence, even much 648

worse than early feature-based discourse metrics 649

invented a decade ago. We also find that the recent 650

state-of-the-art BARTScore correlates weakly with 651

human ratings on system level. DiscoScore, on 652

the other hand, performs consistently best in both 653

single- and multi-reference settings, equally strong 654

in coherence and several other aspects such as fac- 655

tual consistency, despite that we have not targeted 656

them. More prominently, we provide understand- 657

ing on the importance of discourse for evaluation 658

metrics, and explain the superiority of one met- 659

ric over another with simple features, in line with 660

recent work on explainability for evaluation met- 661

rics (Kaster et al., 2021; Fomicheva et al., 2021). 662

Scope for future research is huge, e.g., devel- 663

oping reference-free discourse metrics comparing 664

source text to hypothesis, improving discourse 665

metrics on fine-grained levels, and ranking NLG 666

systems via discourse metrics and rigorous ap- 667

proaches (Peyrard et al., 2021; Kocmi et al., 2021). 668
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7 Impact and Limitation669

To our knowledge, we, for the first time, combine670

the elements of discourse and BERT representa-671

tions to design an evaluation metric (DiscoScore)672

for text quality assessment in summarization and673

MT. While our experiments are conducted on En-674

glish datasets, DiscoScore can effortlessly adapt675

to any language whenever references are available.676

We believe that this work fosters future research on677

text generation systems endowed with the ability678

to produce well-formed texts in discourse.679

However, we acknowledge several limitations680

of this work, which require further investigation in681

future. We now discuss them in the following:682

Entity as Focus. We follow the idea of Mes-683

gar and Strube (2016) in the discourse community,684

which clusters nouns into entities based on their685

static word embeddings. Although simple, it some-686

times helps for DiscoScore. However, alternatives687

aiming to produce better entities have not been688

explored in this work, e.g., replacing static with689

contextualized embeddings, and weighting entities690

by their occurrences in hypothesis/reference.691

Weakness on Fine-Grained Assessment. In692

summarization and MT, we show that our novel693

DiscoScore largely outperforms the current state-694

of-the-art BARTScore on system levels for both695

tasks, while it cannot show advantages on finer-696

grained levels such as document- and summary-697

levels. This might be because modeling focus alone698

is insufficient to perform much more challenging,699

finer-grained assessment of text quality. Future700

work could also factor other discourse phenomena701

(e.g., discourse connectives and coreference) into702

the assessment of text coherence.703
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Cann, Caiming Xiong, Richard Socher, and Dragomir783
Radev. 2021. Summeval: Re-evaluating summariza-784
tion evaluation. Transactions of the Association for785
Computational Linguistics, 9:391–409.786

Ronald Aylmer Fisher et al. 1937. The design of experi-787
ments. The design of experiments., (2nd Ed).788

Marina Fomicheva, Piyawat Lertvittayakumjorn, Wei789
Zhao, Steffen Eger, and Yang Gao. 2021. The790
Eval4NLP shared task on explainable quality esti-791
mation: Overview and results. In Proceedings of792
the 2nd Workshop on Evaluation and Comparison793
of NLP Systems, pages 165–178, Punta Cana, Do-794
minican Republic. Association for Computational795
Linguistics.796

Markus Freitag, George Foster, David Grangier, Viresh797
Ratnakar, Qijun Tan, and Wolfgang Macherey. 2021a.798
Experts, Errors, and Context: A Large-Scale Study of799
Human Evaluation for Machine Translation. Trans-800
actions of the Association for Computational Linguis-801
tics, 9:1460–1474.802

Markus Freitag, Ricardo Rei, Nitika Mathur, Chi-kiu Lo,803
Craig Stewart, George Foster, Alon Lavie, and Ondřej804
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A Appendix1190

A.1 Evaluation Metrics1191

Non-discourse Metrics. We consider the follow-1192

ing non-discourse metrics.1193

• BLEU (Papineni et al., 2002) and1194

ROUGE (Lin, 2004) are precision- and1195

recall-oriented metrics respectively, both of1196

which measure n-gram overlap between a1197

hypothesis and a reference.1198

• BERTScore (Zhang et al., 2020) and Mover-1199

Score (Zhao et al., 2019) are set-based metrics1200

used to measure the semantic similarity be-1201

tween hypothesis and reference. BERTScore1202

uses greedy alignment to compute the simi-1203

larity between two sets of BERT-based word1204

embeddings from hypothesis and from refer-1205

ence, while MoverScore uses optimal align-1206

ments based on Word Mover’s Distance (Kus-1207

ner et al., 2015) to do so.1208

• SBERT (Reimers and Gurevych, 2019) fine-1209

tunes BERT on the NLI datasets and uses1210

pooling operations to produce sentence em-1211

beddings. We compute the cosine similarity1212

between two sentence representations from1213

hypothesis and from reference.1214

• S3-pyr and S3-resp (Peyrard et al., 2017)1215

are supervised metrics that linearly combine1216

ROUGE, JS-divergence and ROUGE-WE1217

scores, trained on the TAC datasets with hu-1218

man annotated pyramid and responsiveness1219

scores as supervision.1220

• BLEURT (Sellam et al., 2020) is another su-1221

pervised metric that fine-tunes BERT on the1222

concatenation of WMT datasets and synthetic1223

data in the MT domain, with human judgment1224

of translation quality as supervision.1225

• BARTScore (Yuan et al., 2021) and1226

PRISM (Thompson and Post, 2020) depict1227

sequence-to-sequence language models as1228

metrics to compare hypothesis with reference.1229

In reference-based settings, they both measure1230

the likelihood that hypothesis and reference1231

are paraphrases, but differ in the language1232

models they rely on. PRISM has been based1233

on a neural MT system trained from scratch1234

on parallel data in MT, while BARTScore1235

uses BART (Yuan et al., 2021) that has been1236

fine-tuned on CNN/DailyMail (Hermann1237

et al., 2015)—which is parallel data in 1238

summarization. We use the ‘F-score’ version 1239

of BARTScore as recommended in Yuan et al. 1240

(2021). 1241

Discourse Metrics. We consider the following 1242

discourse metrics (including ours and coherence 1243

models). 1244

• RC and LC (Wong and Kit, 2012) require nei- 1245

ther source texts nor references and use lexi- 1246

cal cohesion devices (e.g., repetition) within a 1247

hypothesis to predict text coherence. LC com- 1248

putes the proportion of words within hypothe- 1249

sis that are lexical cohesion devices, while RC 1250

computes the proportion of times that lexical 1251

cohesion devices appear in hypothesis. 1252

• Entity Graph (Guinaudeau and Strube, 2013) 1253

and Lexical Graph (Mesgar and Strube, 2016) 1254

are popular coherence models used to perform 1255

discourse tasks such as essay scoring, both of 1256

which introduce a graph with nodes as sen- 1257

tences and adjacency matrices as the connec- 1258

tivity between sentences. Here, we use the 1259

average of adjacency matrices from the hy- 1260

pothesis as the proxy of hypothesis coherence. 1261

While Entity Graph draws an edge between 1262

two sentences if both sentences have at least 1263

one noun in common, Lexical Graph draws 1264

an edge if two sentences have a pair of simi- 1265

lar words in common, i.e., the cosine similar- 1266

ity between their embeddings greater than a 1267

threshold. 1268

• Lexical Chain (Gong et al., 2015) extracts 1269

multiple lexical chains from hypothesis and 1270

from reference. Each word is associated to a 1271

lexical chain if a word appears in more than 1272

one sentence. A lexical chain contains a set 1273

of sentence positions in which a word appears. 1274

Finally, the metric performs soft matching to 1275

measure lexical chain overlap between hypoth- 1276

esis and reference. 1277

• FocusDiff and SentGraph are the two variants 1278

of DiscoScore, which use BERT to model se- 1279

mantics and coherence of readers’ focus in 1280

hypothesis and reference. In particular, Focus- 1281

Diff measures the difference between a com- 1282

mon set of foci in hypothesis and reference in 1283

terms of semantics and frequency, while Sent- 1284

Graph measures the semantic similarity be- 1285

tween two sets of sentence embeddings from 1286
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hypothesis and reference—which are aggre-1287

gated according to the number of foci shared1288

across sentences and the distance between sen-1289

tences.1290

A.2 Datasets1291

We outline two datasets in summarization, and one1292

in document-level MT.1293

Text Summarization. While DUC6 and TAC71294

datasets with human rated summaries, constructed1295

one decade ago, were the standard benchmarks for1296

comparing evaluation metrics in summmarization,1297

they collect summaries only from extractive sum-1298

marization systems. In the last few years, abstrac-1299

tive systems have become popular; however, little is1300

known how well metrics judge them. Recently, sev-1301

eral datasets based on CNN/DailyMail have been1302

constructed to address this. For instance, Sum-1303

mEval (Fabbri et al., 2021), REALSumm (Bhan-1304

dari et al., 2020), XSum (Maynez et al., 2020) and1305

FEQA (Durmus et al., 2020) all collect summaries1306

from both extractive and abstractive systems, but1307

differ in the aspects human experts rate summaries.1308

In this work, we consider the following two com-1309

plementary summarization datasets.1310

• SummEval has been constructed in multiple-1311

references settings, i.e., that each hypothesis is1312

associated to multiple references. It contains1313

human judgments of summary coherence, fac-1314

tual consistency, fluency and relevance. We1315

only consider abstractive summaries as they1316

have little lexical overlap with references.1317

• NeR18 (Grusky et al., 2018), in contrast, has1318

been constructed in single-reference settings.1319

It contains human judgments of summary co-1320

herence, fluency, informativeness and rele-1321

vance. As majority of summaries are extrac-1322

tive, we include both extractive and abstrac-1323

tive for the inclusive picture.1324

Document-level Machine Translation. As1325

document-level human ratings in MT are particu-1326

larly laborious, hardly ever have there been MT1327

datasets directly addressing them. First attempts1328

suggested to use the average of much cheaper1329

sentence-level ratings as a document score for1330

comparing document-level metrics (Comelles1331

et al., 2010; Wong and Kit, 2012; Gong et al.,1332

2015). However, human experts were asked to rate1333

6https://duc.nist.gov/data.html
7https://tac.nist.gov/data/

Metrics Encoders Average

DS-FOCUS (NN)
+ BERT 71.97
+ BERT-NLI 70.45
+ Conpono 75.00

DS-SENT-U (NN)
+ BERT 35.61
+ BERT-NLI 56.82
+ Conpono 23.48

Table 2: Results of three contextualized encoders on
SUMMEval. Results are averaged across four aspects.

Metrics Average

DS-SENT-U (NN) 56.82
w/o sentence aggregation 46.21

Table 3: Ablation study on the use of adjacency matrix
to aggregate sentence embeddings on SUMMEval.

Metrics Mechanisms Average

DS-SENT-U (NN)
+ greedy align 21.97
+ optimal align 26.52
+ mean-max-min-sum 56.82

Table 4: Averaged results of SentGraph variants based
on three mechanisms on SUMMEval.

sentences in isolation within a document. Thus, 1334

human ratings at both sentence and document 1335

levels cannot reflect inter-sentence coherence. 1336

Recently, the WMT20 workshop (Mathur et al., 1337

2020) asks humans to rate each sentence translation 1338

in the document context, and follows the previous 1339

idea of ‘average’ to yield document scores. 1340

In this work, we use the WMT20 dataset with ‘ar- 1341

tificial’ document-level ratings. Note that WMT20 1342

comes with two issues: (i) though sentences are 1343

rated in the document context, averaging sentence- 1344

level ratings may zero out negative effects of inco- 1345

herent elements on document level and (ii) unlike 1346

SummEval and NeR18, WMT20 only contains hu- 1347

man judgment of translation adequacy (which may 1348

subsume multiple aspects), not coherence. 1349

For simplicity, we exclude system and reference 1350

translations with lengths greater than 512—the 1351

number of tokens at maximum allowed by BERT, 1352

as only a small portion of instances is over the to- 1353

ken limit. Note that it is effortless to replace BERT 1354

with Longformer (Beltagy et al., 2020) to deal with 1355

longer documents for DiscoScore. 1356

A.3 Analyses on Text Summarization 1357

Choice of BERT Variants. Table 2 compares 1358

the impact of three BERT variants on DiscoScore. 1359

Conpono, referred to as a discourse BERT, has fine- 1360

tuned BERT with a novel discourse-level objective 1361
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Metrics SUMMEval NeR18

BARTScore 14.13 24.78
PRISM 14.92 18.89
DS-FOCUS (NN) 10.81 10.42
DS-SENT-U (NN) 15.71 3.81

Table 5: Summary-level averaged Kendall correlations
across all rating aspects.

DiscoScore DiscoFeatures

DS-FOCUS (NN)

DS-FOCUS (Entity)

DS-SENT-U (NN)

DS-SENT-U (Entity)

DS-SENT-W (NN)

DS-SENT-W (Entity)

FREQ (NN)

FREQ (Entity)

CONN-U (NN)

CONN-U (Entity)

CONN-W (NN)

CONN-W (Entity)

Figure 5: Links between the DiscoScore variants and
discourse features.

regarding sentence ordering. While strong on dis-1362

course evaluation benchmarks (Chen et al., 2019),1363

Conpono is not always helpful, e.g., BERT-NLI is1364

better for DS-SENT. These results suggest the best1365

configuration for DiscoScore.1366

Impact of Sentence Connectivity. Table 31367

shows an ablation study on the use of sentence1368

connectivity. Aggregating sentence embeddings1369

with our adjacency matrices (see Eq.3) helps con-1370

siderably. This confirms the usefulness of aggrega-1371

tion from which we include coherence signals in1372

sentence embeddings.1373

SentGraph Variants. Table 4 compares three1374

DS-SENT variants as to how we measure the dis-1375

tance between two sets of sentence embeddings1376

from hypothesis and reference. In particular, we re-1377

fer to BERTScore (Zhang et al., 2020) as a ‘greedy1378

align’ mechanism used to compute the similarity1379

between two sets of sentence embeddings. As for1380

‘optimal align’, we use MoverScore (Zhao et al.,1381

2019) to do so. While the two alignments directly1382

measure the distance between the two sets, the sim-1383

ple statistics, i.e., mean-max-min-sum, derives a1384

graph embedding from each set and computes the1385

cosine similarity between two graph embeddings.1386

We see that the ‘statistics’ wins by a big margin,1387

and thus adopt this DS-SENT variant in all setups.1388

A.4 Analyses on MT1389

Correlation between Metrics. Figure 7 shows1390

inter-correlations between metrics on WMT201391

across languages. Overall, correlations are mostly1392

high between non-discourse metrics, much weaker1393

between discourse and non-discourse metrics—1394

Sys-level Doc-level
Metrics MQM pSQM MQM pSQM

BARTScore 45.57 55.50 34.90 28.96
*DS-FOCUS (NN) 42.12 40.89 19.10 9.98
DS-SENT-U (NN) 70.77 69.74 19.98 14.49

Table 6: Document-level Kendall and system-level Pear-
son correlations between metrics and MQM/pSQM rat-
ings on WMT20 in Chinese-to-English—which is the
only language pair with such ratings in reference-based
settings. *DS-FOCUS (NN) excludes focus that occurs
only once in hypothesis/reference.

which confirms the orthogonality of them in that 1395

they rate translations in different aspects. We note 1396

that DS-FOCUS has the lowest correlations with 1397

all other metrics. For instance, DS-FOCUS is al- 1398

most orthogonal to BERTScore and MoverScore. 1399

We investigated whether combining them receives 1400

additive gains. We find that a combination of DS- 1401

FOCUS and BERTScore (or MoverScore) provides 1402

little help in correlation with adequacy. 1403
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Settings Metrics Coherence Fluency Informative Relevance Average

m(hyp, ref)

BARTScore 42.58 42.58 23.80 33.33 35.57
PRISM 51.52 42.58 42.86 52.38 47.33
DS-FOCUS (NN) 61.90 61.90 42.86 52.38 54.76
DS-FOCUS* (NN) 80.95 80.95 100.00 90.47 88.09
DS-SENT-U (NN) 14.29 14.29 14.29 23.81 16.67

Table 7: System-level Kendall correlations between metrics and human ratings on NeR18. DS-FOCUS* is the
‘F-score’ version of DS-FOCUS.

Settings Metrics Coherence Consistency Fluency Relevance Average

m(hyp, ref)

BARTScore (max) 78.79 48.48 63.64 72.73 65.91
BARTScore (original) 60.61 36.36 45.45 48.48 47.73

FocusDiff (NN) 75.76 63.64 78.79 81.82 75.00
FocusDiff (Entity) 69.70 57.58 72.73 75.76 68.94
SentGraph-u (NN) 48.48 54.55 63.64 60.61 56.82
SentGraph-u (Entity) 54.55 60.61 75.76 66.67 64.39

Table 8: System-level Kendall correlations between metrics and human ratings on SUMMEval in multi-reference
settings. BARTScore (original) compares a hypothesis with one reference at a time, and takes the average of
evaluation scores as a final score, while BARTScore (max) takes the maximum score.

WMT20
SUMMEval NeR18 cs-en de-en ja-en ru-en

Number of references 11 1 1 1 1 1
Number of systems 12 7 13 14 11 13
Number of hypothesis per system 100 60 102 118 80 91
Number of sentences per hypothesis 3.13 1.90 15.21 13.84 11.29 9.46
Average number of foci in hypothesis 15.18 12.85 62.01 56.68 57.09 44.99
Average number of ‘good foci’ in hypothesis 2.47 2.56 13.16 13.37 15.07 9.95
Percent of hypotheses with ‘good foci’ 80.50% 43.80% 100% 98.60% 100% 100%

Table 9: Characteristics of summarization and MT datasets. ‘good foci’ denotes a focus appearing more than once
in hypothesis. The more often a focus appears, the stronger the discourse signals are.

Metrics Coherence Consistency Fluency Relevance Average

RC 45.45 51.52 54.55 57.58 52.27
BARTScore (max) 78.79 48.48 63.64 72.73 65.91
BARTScore (max) + RC 66.67 54.55 69.70 78.79 67.42
DS-FOCUS (NN) 75.76 63.64 78.79 81.82 75.00

Table 10: Ensemble of non-discourse and discourse metrics (BARTScore + RC) vs DiscoScore.

cs-en de-en ja-en ru-en
DiscoFeatures D > 0 D = 0 D < 0 D > 0 D = 0 D < 0 D > 0 D = 0 D < 0 D > 0 D = 0 D < 0

Frequency (NN) 74.18 2.00 23.82 57.38 9.65 32.97 53.04 2.63 44.33 52.77 7.31 39.92
Frequency (Entity) 76.17 1.76 22.07 59.74 8.38 31.88 52.38 1.48 46.14 53.61 7.31 39.08
Connectivity-u (NN) 78.05 0.35 21.60 63.11 8.29 28.60 59.61 5.25 35.14 52.04 10.03 37.93
Connectivity-u (Entity) 79.46 0.35 20.19 62.02 8.20 29.78 59.44 5.09 35.47 52.87 9.40 37.72
Connectivity-w (NN) 77.93 0.24 21.83 64.85 4.64 30.51 59.12 0.49 40.39 59.98 5.12 34.90
Connectivity-w (Entity) 80.40 0.23 19.37 63.48 4.73 31.79 60.76 0.33 38.91 60.82 4.60 34.58

Table 11: Statistics of discourse features on WMT20. D > 0 denotes the percent of ‘reference-hypothesis’ pairs for
which R(ref) > R(hyp) with R as any one of these features, similarly for the definitions of D = 0 and D < 0.
We exclude the pairs for which hypothesis and reference are the exact same.
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Figure 6: Distribution of discourse features over hypothesis and reference on SUMMEval.
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Figure 7: Pearson Correlations between metrics on WMT20 in cs-en, de-en, ja-en and ru-en (from left to right).

Direct Assessment (Adequacy)
Settings Metrics cs-en de-en ja-en ru-en Average

m(hyp, ref)

Non-discourse metrics

BLEU 7.44 57.52 41.48 10.74 29.30
BERTScore 10.82 60.38 46.95 13.08 32.81
MoverScore 15.40 61.69 42.12 13.78 33.25
BARTScore 10.82 60.26 46.30 14.95 33.09
PRISM 8.64 58.83 32.48 15.42 28.84
SBERT 13.20 55.26 33.44 10.04 27.99
BLEURT 12.01 58.83 37.94 18.22 31.75
S3-pyr 6.25 58.83 42.44 13.78 30.33
S3-resp 5.85 58.59 47.26 14.71 31.61

m(hyp)

Discourse metrics

RC 5.85 7.19 8.68 9.34 7.77
LC 9.23 1.72 3.53 6.07 5.14
Entity Graph 5.06 43.24 3.53 10.51 15.59
Lexical Graph 2.28 43.60 5.14 13.55 16.15

m(hyp, ref)

Discourse metrics

Lexical Chain 21.54 35.15 15.11 16.12 21.99
FocusDiff (NN) 7.64 33.13 19.29 2.57 15.66
FocusDiff (Entity) 6.45 33.73 19.94 1.64 15.44
SentGraph-u (NN) 7.64 57.16 39.22 18.22 30.56
SentGraph-u (Entity) 7.65 57.17 39.23 18.22 30.57
SentGraph-w (NN) 7.65 57.18 39.22 18.21 30.57
SentGraph-w (Entity) 7.65 57.17 39.23 18.22 30.57

Table 12: Document-level Kendall correlations between metrics and human rated translation quality on WMT20.
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