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ABSTRACT

In high-stakes domains like healthcare, users often expect that sharing personal
information with machine learning systems will yield tangible benefits, such as
more accurate diagnoses and clearer explanations of contributing factors. However,
the validity of this assumption remains largely unexplored. We propose a unified
framework to quantify how personalizing a model influences both prediction
and explanation. We show that its impacts on prediction and explanation can
diverge: a model may become more or less explainable even when prediction is
unchanged. For practical settings, we study a standard hypothesis test for detecting
personalization effects on demographic groups. We derive a finite-sample lower
bound on its probability of error as a function of group sizes, number of personal
attributes, and desired benefit from personalization. This provides actionable
insights, such as which dataset characteristics are necessary to test an effect, or the
maximum effect that can be tested given a dataset. We apply our framework to real-
world datasets, uncovering scenarios where effects are fundamentally untestable
due to the dataset statistics. Our results highlight the need for joint evaluation of
prediction and explanation in personalized models and the importance of designing
models and datasets with sufficient information for such evaluation.

1 INTRODUCTION

In critical domains like healthcare and education, machine learning models are increasingly per-
sonalized by incorporating input attributes that encode personal characteristics. These attributes
can be sensitive and linked to historical bias, such as sex or race, or costly, for example requiring
expert-administered medical assessments.When users provide personal attributes to a model, they
implicitly expect improved predictions, but does personalization consistently meet that expectation?

Personalization can indeed enhance predictive accuracy. For instance, cardiovascular risk prediction
models often perform better when including sex (Paulus et al., 2016; Huang et al., 2024; Mosca et al.,
2011) and race (Paulus et al., 2018). This is because men, women, and different racial groups exhibit
different heart disease patterns. For example, hypertension is more common in African American
populations (Flack et al., 2003). Hence, personalization enhances clinical predictions by capturing
meaningful biological and sociocultural variation.

However, personalization can also pose risks. Including sensitive attributes such as race, gender,
or age can amplify biases in machine learning and perpetuate damaging inequality. For example,
Obermeyer et al. (2019) showed that a health algorithm relying on health care costs, an attribute
shaped by racial inequities, systematically underestimated illness in Black patients compared to
equally sick white patients. This reduced their access to extra care by over half.

Generally, personalization may benefit overall accuracy while harming specific groups, making such
risks harder to detect. In sleep apnea classification, adding age and sex improved overall performance
but increased errors for older women and younger men (Suriyakumar et al., 2023). Similar group
disparities have been observed in explainable machine learning, where some users receive less faithful
or reliable explanations than others (Balagopalan et al., 2022; Dai et al., 2022). However, these
studies did not examine whether personalization itself contributes to explanation disparities, making
it critical to assess whether model personalization may reduce explanation quality for some users.
Hence, before personalizing a model, practitioners must consider if it delivers consistent gains across
demographic groups in both prediction and explanation—see Fig. 1.
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Figure 1: Impact of personalization
on prediction and explanation: some
groups benefit, others are harmed.
h0 is a generic model, hp is a person-
alized model that takes an additional
group attribute, S.

This showcases the need for a quantitative framework to rig-
orously assess the benefits and risks of personalization. We
focus on two key goals of machine learning models in high-
stakes settings like healthcare: (i) making accurate predictions
and (ii) providing explanations for them. Our central ques-
tion is: how reliably can we evaluate whether personalization
improves prediction accuracy and explanation quality, both
overall and across groups?

Contributions. We propose a comprehensive study of the im-
pact of personalization for prediction accuracy and explanation
quality in machine learning models. Specifically:

1. We show that even when personalization does not improve
prediction, it can enhance or degrade explainability, high-
lighting the need evaluate both independently in settings
where accuracy and interpretability are critical (Section 4).

2. We derive distribution-aware limits on when personaliza-
tion cannot be reliably tested, showing how many attributes
or samples are needed in finite datasets. Our theory extends
prior work beyond binary classification to general supervised learning, revealing key differences
between evaluating prediction and explanation in classification versus regression (Section 5).

3. We apply our proposed framework on classification and regression tasks, illustrating how group-
level gains from personalization are fundamentally untestable, thereby precluding statistical
justification across different real-world scenarios (Section 6).

Overall, we offer a cautionary perspective on the promise of personalized medicine and the personal-
ization of machine learning in other critical domains. Even when personalizing a machine learning
model could be beneficial, it might be impossible to reliably prove it—thus limiting its practical use.

2 RELATED WORKS

Studies that investigate how personalizing machine learning models influences group outcomes
(Suriyakumar et al., 2023) are limited to a narrow subset of performance measures and do not address
explanation quality as described next. Extended related works are in Appendix A.

Theory. Few works theoretically characterize the impact of personalization. Monteiro Paes et al.
(2022) define the Benefit of Personalization (BoP) as the minimum performance gain any group can
expect. While the definition applies to any supervised learning task and “performance” measure, the
theory supporting its use is confined to binary performance measures, such as accuracy in binary
classification (0/1 loss) or false negative and positive rates (Bernoulli variables). Hence, it does not
extend to continuous metrics like regression accuracy or explanation quality for regression and fails to
provide a complete framework. Moreover, the theorems make unrealistic assumptions about dataset
statistics (e.g., demographic groups of equal size) that further restrict their applicability in real-world
settings. The general impact of personalization therefore remains theoretically uncharacterized.

Empirical Evidence. While the impact of personalization on explanation quality has never been mea-
sured, a few empirical studies have evaluated the fairness of explanations. Specifically, Balagopalan
et al. (2022) train a human-interpretable model to imitate the behavior of a blackbox model, and
characterize fidelity as how well it matches the blackbox model predictions. They found that the
quality and reliability of explanations vary across different groups, but their experiments are restricted
to binary classifiers, and to fidelity as the only explanation method. By contrast, Dai et al. (2022)
evaluate various post hoc explanation methods across different evaluation metrics. They show that
explanations can vary in quality across demographic groups, leading to fairness concerns, though
their experiments are also restricted to binary classifiers. Neither work considers regression tasks or
examines how personalization would affect differences in explanation quality across groups. These
constraints limit the practical relevance of existing empirical results, as real-world scenarios do not
always align with such settings.
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Table 1: Costs of model h for group s used to evaluate the impact of personalization on data
(X̃,Y) where X̃ = X for a generic model h0, X̃ = (X,S) for a personalized model hp, while
X\J denotes the input when removing the most important features and XJ is its complement
(see Section 4). Personalization benefits group s ∈ S if C(h0, s) − C(hp, s) > 0 and harms if
C(h0, s)− C(hp, s) < 0. Incomprehensiveness is abbreviated as Incomp.

C(h, s) Classification Regression

Loss Pr(h(X̃) ̸= Y | S = s) E
[
∥h(X̃)−Y∥2 | S = s

]
Pr

ed
ic

t

Evaluation metric −AUC(h,X,Y | S = s) −R2(h,X,Y | S = s)

Sufficiency Pr(h(X̃) ̸= h(X̃J) | S = s) E
[
∥h(X̃)− h(X̃J)∥2 | S = s

]
E

xp
la

in

Incomp. −Pr
(
h(X̃) ̸= h(X̃\J) | S = s

)
−E

[
∥h(X̃)− h(X̃\J)∥2 | S = s

]

Link to Fairness. Fairness in machine learning aims to mitigate biased outcomes affecting individuals
or groups (Mehrabi et al., 2022). Past works have defined individual fairness, which seeks similar
performance for similar individuals (Dwork et al., 2011), or group fairness (Dwork & Ilvento, 2019;
Hardt et al., 2016), which seeks similar performance across different groups. Within this literature,
most methods, metrics, and analyses are intended for classification tasks (Pessach & Shmueli, 2022).
As for the fair regression literature, authors focus on designing fair learning methods (Hebert-Johnson
et al., 2018; Berk et al., 2017; Fukuchi et al., 2013; Pérez-Suay et al., 2017; Calders et al., 2013),
such as multicalbration, or defining fairness criteria for regression tasks (Gursoy & Kakadiaris, 2022;
Agarwal et al., 2019). By contrast, our approach does not require equal performance across individuals
or groups. Instead, we study a relaxed fairness notion: ensuring that no group is systematically
harmed by personalization. We propose a framework to evaluate whether this weaker fairness criterion
is satisfied, both theoretically and empirically, rather than proposing corrective algorithms.

3 BACKGROUND: BENEFIT OF PERSONALIZATION FRAMEWORK

Let X ,S,Y denote, respectively, the input feature, group attribute, and outcome spaces. A personal-
ized model hp : X × S → Y aims to predict an outcome variable y ∈ Y using both an input feature
vector x ∈ X and a vector of group attributes s ∈ S . In contrast, a generic model h0 : X → Y does
not use group attributes. We consider that a fixed data distribution P = PX,S,Y is given, and that h0

and hp are trained to minimize a loss over a training dataset Dtrain.

Cost. We first evaluate how a model h (generic or personalized) performs for a given group.
Definition 3.1 (Expected Group Cost). The expected cost of model h for the group s ∈ S as measured
by the cost function cost is defined as: C(h, s) ≜ EP [cost(h, X̃,Y) | S = s], where X̃ = X for a
generic model h0, and X̃ = (X,S) for a personalized model hp.

In what follows, we use cost and expected cost interchangeably, with the convention that lower cost
means better performance. In practice, the cost is evaluated over a set, D, that is independent from the
train set. Costs of interest are shown in Table 1: top rows focus on prediction accuracy (loss and evalu-
ation metrics), while bottom ones address explanation quality (sufficiency and incomprehensiveness).
As explanation metrics are less common than accuracy metrics, we review them next.

Cost for Explanability. We assume access to an auxiliary explanation method that assigns impor-
tance scores to input features—e.g., based on the magnitude of input gradients. Then, the explanation
quality metric measures whether the features with the highest importance scores are actually meaning-
ful (see Nauta et al. (2023) for a review). We use sufficiency and incomprehensiveness as explanation
quality metrics to illustrate our framework. They quantify the change in prediction when the most
important features are removed or retained. For a comprehensive discussion of our rationale in
selecting these metrics, see Appendix A. We emphasize that importance is defined relative to the
explanation method, not to any ground truth. This is by design: the goal is not to assume a known set
of truly important features, but to assess how well a given explanation method identifies features that
meaningfully affect the model’s prediction.

Benefit of Personalization. We can quantify the impact of a personalized model in terms of the
benefit of personalization, defined next:
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Definition 3.2 (Group Benefit of Personalization (G-BoP) (Monteiro Paes et al., 2022)). The gain
from personalizing a model can be measured by G-BoP(h0, hp, s) ≜ C(h0, s) − C(hp, s), com-
paring the costs of the generic h0 and personalized models hp for group s ∈ S. By convention,
G-BoP > 0 if the personalized model performs better than the generic one.

We use G-BoPP and G-BoPX to refer to G-BoP for prediction and explanation respectively – see
Appendix B for concrete examples. To evaluate whether all groups benefit from personalization, or if
any are harmed, we use the following definition as our final assessment metric:

Definition 3.3 (Benefit of Personalization (BoP) (Monteiro Paes et al., 2022)). The BoP is defined as:
γ (h0, hp) ≜ mins∈S(G-BoP(h0, hp, s)), i.e., the minimum group BoP value across groups s ∈ S
to capture the worst group improvement, or degradation, resulting from personalization.

A positive γ indicates that all groups receive better performance with respect to the cost function.
Contrary to this, a negative γ reflects that at least one group is disadvantaged by personalization.
When γ is small or negative, the practitioner might want to reconsider the use of personalized
attributes in terms of fairness with respect to all groups. When γ is used to evaluate improvement in
prediction and explanation, it is referred to as γP and γX , respectively.

Remark. The definitions of G-BoP and γ were originally introduced in Monteiro Paes et al. (2022).
While formally applicable to any cost function, these definitions have only been studied and used
with binary costs—such as 0-1 classification loss or false positive/negative rates—due to a theoretical
gap that prevents their use with continuous costs, including an analysis of prediction and explanation
for regression tasks. Since a holistic analysis of prediction and explanation across machine learning
tasks is our primary focus, addressing this gap is central to our contribution in Section 5.

4 IMPACT OF PERSONALIZATION ON PREDICTION AND EXPLAINABILITY

This section provides the first formal analysis showing that personalization’s effect on prediction does
not determine its effect on explainability, highlighting the need to evaluate both. A common intuition
is that if personalization improves prediction, it must also improve explanations (Del Giudice, 2024).
This assumption underlies many applications, particularly in high-stakes domains where explanations
are used to extract insights from high-performing models (Elmarakeby et al., 2021; Chereda et al.,
2021). Yet this link has never been formally analyzed.

Theorems 4.1 and 4.2 prove that prediction gains and explanation gains can diverge, demonstrating
that gains in prediction performance (measured by BoPP ) and gains in explanation quality (measured
by BoPX ) need not align. Theorem 4.3 provides a partial converse, identifying an additive setting
where the two align. Though idealized, this boundary case clarifies when practitioners can trust
prediction and explanation to align. Proofs are in Appendix C.

No Prediction Benefit Does not Imply No Explainability Benefit. The following theorem shows
that a personalized model may match a generic model in accuracy, yet offer better explanation. Thus,
focusing only on prediction can overlook significant interpretability gains.

Theorem 4.1. There exists a data distribution PX,S,Y such that the Bayes optimal classifiers h0 and
hp satisfy γP (h0, hp) = 0 (with γP measured by 0-1 loss) and γX(h0, hp) > 0 (with γX measured
by sufficiency and incomprehensiveness).

We illustrate Theorem 4.1 with a real-world example. Consider a model with many input features
that are partially redundant, for instance, a loan approval model that uses credit score, income, and
debt-to-income ratio. Adding a personal feature that is highly correlated with existing features may
not change the predictions. However, it can alter the explanation if that feature is the most direct
or informative input. For example, adding a binary feature like "pre-approved by another bank",
which is strongly correlated with existing features, may leave predictions unchanged, but an explainer
might now assign most importance to this new feature because it provides a clearer justification.
Figure 5 illustrates the construction behind the proof for sufficiency, where both generic h0 and
personalized hp models predict perfectly (left side), yet only keeping the most important feature
for each (right side) shows that the personalized model is more explainable. For this distribution,
G-BoPP (h0, hp, s) = 0 and G-BoPX(h0, hp, s) > 0 for each group s, so all groups are impacted
similarly by personalization. Figure 6 illustrates the proof for incomprehensiveness.
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No Prediction Harm Does Not Imply No Explainability Harm. A personalized model may
match a generic model in accuracy yet offer worse explanations. Thus, focusing only on predictive
performance can obscure significant harms to explainability.
Theorem 4.2. There exists a data distribution PX,S,Y such that the Bayes optimal classifiers
h0 and hp satisfy γP = 0 (with γP measured by 0-1 loss) and γX < 0 (with γX measured by
incomprehensiveness).

To illustrate Theorem 4.2 consider a pneumonia detection model using chest X-ray findings that
perfectly predict outcomes. Adding white blood cell count leaves accuracy unchanged, but the
personalized model now splits importance between X-ray findings and white blood cell count. The
explanation is worse because it’s now split across two features, making it less clear which feature
drives the decision, even though the X-ray alone was already perfectly predictive. Additionally,
Theorem C.1 proves this phenomena for both sufficiency and incomprehensiveness by showing how
personalization can affect explainability differently for different groups.

Together, Theorems 4.1, 4.2 and C.1 show that knowing γP = 0 provides no information about γX .
This motivates the need to evaluate both prediction and explainability, as we offer to do in Section 5.

Absence of explainability benefit can imply absence of prediction benefit. We now ask the
converse: can a lack of explainability benefit imply no predictive benefit? We show that this can be
true, for a simple additive model, as long as two notions of explanability measures –sufficiency and
incomprehensiveness– do not see any benefit.
Theorem 4.3. Assume that h0 and hp are Bayes optimal regressors and PX,S,Y follows an additive
model, i.e., Y = α1X1 + · · · + αtXt + αt+1S1 + · · · + αt+kSk + ϵ, where X1, · · · ,Xt and
S1, · · · ,Sk are independent, and ϵ is independent random noise. Then, if for s ∈ S we have
G-BoPsuff(h0, hp, s) = G-BoPincomp(h0, hp, s) = 0, then G-BoPP(h0, hp, s) = 0. Consequently, if,
for all groups s, G-BoPsuff(h0, hp, s) = G-BoPincomp(h0, hp, s) = 0, then γP = 0.

This theorem demonstrates that under an additive model, if there is no benefit in explanation quality,
then there is also no benefit in prediction accuracy. Additionally, we get the following corollary:
Corollary 4.4. Under the assumptions of Theorem 4.3, if for s ∈ S , we have G-BoPP (h0, hp, s) ̸=
0, then it also holds that G-BoPsuff(h0, hp, s) ̸= 0 or G-BoPincomp(h0, hp, s) ̸= 0. Conse-
quently, if γP ̸= 0, then there exists a group s ∈ S such that G-BoPsuff(h0, hp, s) ̸= 0 or
G-BoPincomp(h0, hp, s) ̸= 0.

This theorem means that an effect of personalization on prediction necessarily means an effect on
explanation for at least one explainability measure and for at least one demographic group. This
result establishes a rare direct link between explanation and prediction, in a simplified linear setting.
Proving this for general models remains an open question.

5 TESTING PERSONALIZATION’S IMPACT ON PREDICTION AND EXPLANATION

Having emphasized the importance of evaluating both prediction and explainability, we now introduce
a methodology to assess them in practice. The true BoP γ, defined over the whole data distribution,
is inaccessible and needs to be estimated from finite samples. Then, if its estimate γ̂ is positive, one
must consider whether the true γ is also likely to be positive. In scenarios where personalization
incurs a price—such as requesting sensitive user information—one should determine how large γ̂
must be to ensure that the true benefit exceeds a desired threshold γ ≥ ϵ. This section analyzes the
validity of BoP hypothesis testing and provides guidelines for its application. Proofs for this section
are in Appendices D.1, D.3, D.5, D.8.

5.1 VALIDITY OF HYPOTHESIS TESTS

Hypothesis Tests. Given an audit dataset D with k binary group attributes, we want to know whether
personalization improves each group by at least ϵ > 0. We formalize the null and the alternative
hypotheses using a standard framework for the BoP (Monteiro Paes et al., 2022):

H0 : γ(h0, hp;D) ≤ 0 ⇔ Personalized hp does not bring any gain for at least one group,
H1 : γ(h0, hp;D) ≥ ϵ ⇔ Personalized hp yields at least ϵ improvement for all groups.
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Importantly, H0 and H1 are not complementary to each other, because we want to reject the null if
the impact is both positive and practically meaningful, i.e., ≥ ϵ. With these hypotheses, we ask: can
we rule out that there is no harm and assert a meaningful benefit of at least ϵ?

The improvement ϵ is in cost function units, and represents the improvement for the group that
benefits the least from the personalized model. The value ϵ is domain-specific and should be chosen
by the practitioner. For example, in healthcare, if personalization requires time-intensive and sensitive
inputs—like mental health assessments—it may only be justified if it improves diagnostic accuracy
by at least a few points, making ϵ a clinically and ethically meaningful threshold. In such cases, ϵ
becomes a threshold for balancing speed and clinical value.

Once ϵ is chosen, the practitioner may run the hypothesis test by computing the estimate γ̂ on D and
follow the rule: γ̂ ≥ ϵ ⇒ Reject H0: Conclude that personalization yields at least ϵ improvement for
all groups. We note that different testing strategies could also be used. To capture this generality, we
define a decision function Ψ : (h0, hp,D, ϵ) → {0, 1}, where Ψ = 1 indicates rejection of H0. In
our case, Ψ(h0, hp,D, ϵ) = (γ̂ ≥ ϵ). Regardless of its specific form, our goal is to assess the validity
of any test aiming to evaluate the impact of personalization γ.

Invalidity of the Tests: Probability of Error. We quantify the (in)validity of a test in terms of its
probability of error: Pe = Pr(Rejecting H0|H0 is true) + Pr(Failing to reject H0|H1 is true).

We propose to derive a minimax lower bound on the error probability Pe. This involves considering
the worst-case data distributions that maximizes Pe and the best possible decision function Ψ that
minimizes it. Notably, a high lower bound guarantees a high error probability for any test with H0

and H1 on the BoP, flagging settings where testing the impact of personalization is unreliable.
Theorem 5.1. Consider k binary group attributes, S ≜ {0, 1}k, that specify d ≜ |S| = 2k groups,
each containing mj individuals, j = 1, .., d. Let H0 (resp. H1) denotes the data distributions
under which the generic model h0 (resp. the personalized model hp) performs better, i.e., γ ≤ 0
(resp. γ ≥ ϵ). Then, there exists P0 ∈ H0 (resp. P1 ∈ H1), for which the individual benefit of
personalization B = cost(h0, X̃,Y)− cost(hp, X̃,Y), follows a probability density p (resp. pϵ for
one group), where Ep[B] = 0, and Epϵ [B] = ϵ, such that:

min
Ψ

max
P0∈H0
P1∈H1

Pe ≥ 1− 1

2
√
d

1
d

d∑
j=1

Epϵ

[
pϵ(B)

p(B)

]mj

− 1

 1
2

. (1)

Crucially, this lower bound can be tailored to the practitioner’s specific use case, i.e., to the distribution
of the individual benefit B under H0 and H1. For example, if B is known or observed to follow
a Laplace distribution with scale b, the practitioner should choose p = Laplace(0, b) and pϵ =
Laplace(ϵ, b). Figure 3 shows the expression of the lower bound for the Laplace distribution. The
next corollary expresses it for distributions in the exponential family.
Corollary 5.2. The lower bound in Th. 5.1 for distributions p, pϵ in the exponential family (parameter

θ, moment generating function M ) is: 1− 1
2
√
d

[
1
d

∑d
j=1

(
Mp(2∆θ)
Mp(∆θ)2

)mj

− 1

] 1
2

with ∆θ = θϵ − θ.

These results generalize and tighten an existing bound for categorical distribution only (Monteiro Paes
et al., 2022) and provide the first general framework to evaluate the (in)validity of hypothesis tests on
personalization for prediction and explanation, and across supervised machine learning tasks.

Experimental Design: Group Attributes, Sample Size, and Detectable Gain. We investigate how
probability of error depends on the dataset, and how it determines their ability to test the impact of
personalization. For example, with a fixed number of individuals N , a larger number of personal
attributes k increases the number of groups d = 2k, reducing the number of samples per group, which
increases the risk of error. Accordingly, if the practitioner commits to a fixed k to test a desired gain ϵ
(resp. fixed k and N ), they need a minimum group size m, as shown next.
Corollary 5.3. To ensure minmaxPe ≤ v for a chosen threshold v, equal group sizes must

satisfy m ≥ mmin, where: mmin =
log(4·2k(1−v)2+1)

log(1+4ϵ2) for a categorical BoP, mmin =
σ2

ϵ2 log
(
22+k

(
1 + 2−2−k − 2v + v2

))
for a Gaussian BoP of variance σ2, and mmin =

b
ϵ log

(
22+k

(
1 + 2−2−k − 2v + v2

))
for a Laplace BoP of scale b.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Coin toss
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Laplace iBoP Gaussian iBoP

Coin toss Coin toss

Lower bound on the probability of error of any hypothesis test on benefits of personalization (prediction and explanation)

Number of attributes k

N = 1000 N = 10000N = 100 b = .01
b = .07
b = .71

= .01
= .1
= 1.

Number of attributes kNumber of attributes k
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1.0

0.0
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Figure 2: Testing personalization for prediction and explanation depends on learning task.
Lower bound on the probability of error Pe with respect to number of personal attributes k, for dataset
sizes N = 102, 103, and 104 with ϵ = 0.01. In classification (orange), the bound is fixed by the
categorical nature of the individual BoP (iBoP) and is identical for prediction and explanation. In
regression (green and blue), Pe depends on the spread of individual BoPs—parameterized by variance
σ2 (Gaussian) or scale b (Laplace). Smaller variance or scale allows more attributes before testing
becomes unreliable (Pe ≥ 0.5). Computed for m = ⌊N/d⌋ samples per group with d = 2k groups.

Appendix E provide practitioners with dataset-specific feasibility checks: Corollary E.1 bounds the
maximum number of attributes that can be included before the lower bound error exceeds 50%, while
Corollary E.2 specifies the minimum group size needed to keep the error bound below a desired level.

5.2 PRACTICAL CONSIDERATIONS WHEN TESTING PREDICTION AND EXPLANATION

We examine how the lower bound in Theorem 5.1 depends on the distribution of individual BoPs B,
and how this determines the practitioner’s ability to test for prediction or explanation gains.

Testing Prediction and Explanation in Classification Tasks. When the task is classification with
0-1 loss, the individual BoPs follow categorical distributions with values in {−1, 0, 1}:

BP = (h0(X) ̸= Y)−(hp(X,S) ̸= Y), BX = (h0(X) ̸= h0(XJ))−(hp(X,S) ̸= h0(XJ ,SJ))

for prediction and explanation (e.g., sufficiency), respectively –see costs in Table 1. In this setting,
the lower bound in Theorem 5.1 is identical for prediction and explanation (see Figure 3, bottom):
either both are testable, or neither is.

Figure 2 shows the lower bound on the probability of error Pe as a function of k, for typical dataset
sizes in medical settings N ∈ {102, 103, 104}. In classification (orange curves), even a small number
of personal attributes k leads to high error lower bounds. For instance, at N = 100 and k = 1, the
bound already exceeds 85%, making reliable testing impossible for both prediction and explanation.

Testing Prediction and Explanation in Regression Tasks. In regression, the situation is more
nuanced. For instance, with MSE loss, we have continuously valued individual BoP random variables:

BP = |h0(X)−Y|2−|hp(X,S)−Y|2, BX = |h0(X)−h0(XJ)|2−|hp(X,S)−h0(XJ ,SJ)|2,

for prediction and explanation, respectively. Suppose these follow Laplace distributions with scales
bP and bX . Then, the lower bounds will differ for prediction and explanation (Figure 3, bottom): one
could be testable while the other is not, highlighting an asymmetry absent in the classification case.

As illustrated in Figure 2, smaller scale values (b) allow for a larger number of personal attributes
kmax to be tested without theoretical barriers. Unlike classification, there is no proof that regression
tasks cannot support reliable testing of personalization for dataset sizes encountered in medical
settings N ∈ {102, 103, 104}, even with many personal attributes k.

6 CASE STUDIES: EVALUATING PERSONALIZATION ON REAL DATASETS

We illustrate how to use our results to investigate the impact of personalization on prediction and
explanation, to reveal the many cases where reliable testing is in fact impossible. This section
focuses on one real-world healthcare scenario, while other scenarios are provided in Appendix G.
Remark. Across these hypothesis tests we always evaluate if there is a benefit of personalization, i.e.
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Figure 3: Summary of the steps to test BoP for prediction and explanation.

γ > ϵ > 0, but interested practitioners may want to evaluate whether an existing machine learning
model could harm one group. In that case the hypothesis test should be flipped, i.e. γ < ϵ < 0.

Healthcare Scenario. Consider MIMIC-III (Medical Information Mart for Intensive Care) (Johnson
et al., 2016), a dataset of patients admitted to critical care units at a large tertiary hospital –containing
vital signs, medications, lab results, diagnoses, imaging reports, and outcomes such as length of stay.
Suppose that a practitioner has developed a deep learning model to predict a patient’s length of stay
(regression) or whether the length of stay exceeds 3 days (classification) – see details in Appendix F.1.
They are wondering whether their model should be personalized by including (or not) two personal
attributes: Age × Race ∈ {18− 45, 45+} × {White(W),NonWhite(NW)}. However, they are
concerned this could disadvantage some groups, not only by reducing prediction accuracy but also by
limiting the ability to uncover factors that explain critical care duration. We provide a step-by-step
procedure to use our framework to evaluate the benefit of personalization (summarized in Figure 3).

1 Select ϵ and v, report empirical benefits of personalization. The practitioner first chooses the
minimum improvement they expect from personalization—ϵP for prediction and ϵX for explanation
(e.g., ϵP = ϵX = 0.002). They then set a tolerance threshold v for the probability of error beyond
which they will not trust the hypothesis test (e.g., v = 50%).

2 Report empirical benefits of personalization The practioner trains h0 and hp (with additional
attributes age and race) and reports empirical personalization benefits in Table 2 (0–1 loss for
classification, MSE for regression). In both tasks, some groups show benefits for prediction but harm
for explanation, and vice versa. This should not be surprising given the results of Section 4, which
show that prediction and explanation gains can diverge.

3 Perform hypothesis test. The practioner assesses whether γ̂ exceeds ϵP or ϵX . It does for all
metrics with a positive γ̂, hence they can reject the null hypothesis for these cases.

4 Assess reliability of the results. Next, the practitioner assesses whether the empirical results
are statistically meaningful using the framework from Section 5. For the classification model, the
lower bound on the probability of error exceeds 80% (Figure 4, ϵ = 0.002), indicating that it is
not even possible to test whether personalization helps or harms performance. As a result, the
practitioner would likely retain the generic classifier. For the regression model, they examine the
distributions of individual BoPs, BP and BX (Figure 3, bottom, and Appendix F.1). Sufficiency
is best fit by Gaussians with varying variances; prediction and incomprehensiveness align with
Laplace distributions of different scales. The corresponding lower bounds on error exceed 80%
for sufficiency—making it untestable—but fall below 10% for prediction and incomprehensiveness
(Figure 4, ϵ = 0.002). Now, we provide insights that were gained from applying our framework to
this scenario, and others in Appendix G.

Insight: A high empirical benefit of personalization γ̂ can be misleading. In the regression
experiment, sufficiency showed the largest benefit (γ̂ = 0.1914), yet the data did not permit a valid
test, making the result inconclusive. Prediction showed a much smaller benefit (γ̂ = 0.0021), but

8
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Table 2: Benefits of personalization (Ĉ(h0)− Ĉ(hp)) on the MIMIC-III test set for predicting length
of stay (LOS): regression or classification (LOS > 3 days). Incomprehensiveness is abbreviated as
incomp. and population as pop. Values that are worsened by hp are colored red.

Classification Regression
Group n Prediction Incomp. Sufficiency n Prediction Incomp. Sufficiency

White, 45+ 8443 0.0063 -0.0226 0.0053 8379 0.0021 -0.0906 0.1914
White, 18–45 1146 0.0044 0.0489 0.0244 1197 0.0023 0.1219 0.2223
NonWhite, 45+ 3052 -0.0026 -0.0023 0.0029 3044 0.0108 -0.0501 0.3494
NonWhite, 18–45 696 -0.0216 0.0560 0.0072 717 0.0212 0.0441 0.3293
All Pop. 13337 0.0026 -0.0077 0.0065 13337 0.0051 -0.0550 0.2376

Minimal BoP 13337 -0.0216 -0.0226 0.0029 13337 0.0021 -0.0906 0.1914

our analysis found no barriers to testing, and the null was rejected. This shows that large γ̂ does not
guarantee a valid conclusion; empirical values must be paired with our framework to assess validity.

0.5

1.0

Coin tossCoin toss

Minimum BoP required 

(A) Classification (B) Regression

10.0. 1.10.2. 6.
Minimum BoP required 

Prediction, Explanation
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Figure 4: Lower bound of Pe vs. ϵ on MIMIC-III: classification
(A) and regression with Laplace (green) and Gaussian (blue) mod-
els for the individual BoPs (B). At the minimum BoP set in this
case study (ϵ = 0.002), testing personalization for prediction and
explanation is impossible for classification (same for sufficiency
for regression) as Pe ≥ 80% regardless of the hypothesis test.

Insight: The choice of improve-
ment threshold ϵ is key. Increas-
ing ϵ reduces the lower bound
on the probability of error Pe,
making hypothesis testing poten-
tially less unreliable (Figure 4),
but also raises the bar for reject-
ing the null, requiring a larger
γ̂. Thus, ϵ trades off test validity
against ability to detect effects.

Insight: Results do not depend
on the explanation method. Ta-
ble 2 reports results with Inte-
grated Gradients (Sundararajan
et al., 2017). Since our frame-
work applies to any explanation
method, we test whether this
choice affects the evaluation of
the impact of personalization.
Appendix G analyzes Shapley Value Sampling Štrumbelj & Kononenko (2010) and DeepLIFT Shriku-
mar et al. (2017), finding substantial agreement across the methods—though effect sizes differ.

Insight: Personalization is hard to evaluate across medical datasets. To show the practicality of
the framework, we also include experiments on the UCI Heart Dataset (Janosi et al., 1989) and the
MIMIC-III Kidney injury cohort Suriyakumar et al. (2023), again utilizing a range of explanation
methods (see Appendix G). Using the same ϵ as above, no test is valid for the S.V.S explainer on the
UCI Heart dataset, showing the difficulty of reliably evaluating personalization. More generally, this
analysis points to a limitation of personalized medicine and healthcare: while personalization may
yield improvements, demonstrating them reliably can be infeasible—restricting applicability.

CONCLUDING REMARKS

We present a unified framework for evaluating the benefits of personalization with respect to both
prediction accuracy and explanation quality, facilitating nuanced decisions regarding the use of
personal attributes. Our analysis shows that in many practical settings, particularly classification
tasks, the statistical conditions required to validate personalization are often unmet. As a result, even
when personalization shows empirical gains, meaningful validation may not be feasible.

Limitations & Future Work. While we relax several assumptions relative to prior work, our
theoretical results still rely on assumptions not always met in practice; further reducing them remains
an important direction. Additionally, while we focused on explanation quality due to its importance
in clinical adoption, our results in Section 5 extend to other goals. Future work can build on this
framework to evaluate additional desiderata such as fairness, robustness, and uncertainty calibration.
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A EXTENDED RELATED WORKS: EXPLAINABILITY

We provide additional extended works about explainability methods below.

Explainability Typical approaches to model explanation involve measuring how much each input
feature contributes to the model’s output, highlighting important inputs to promote user trust. This
process often involves using gradients or hidden feature maps to estimate the importance of inputs
(Simonyan et al., 2014; Smilkov et al., 2017; Sundararajan et al., 2017; Yuan et al., 2022). For
instance, gradient-based methods use backpropagation to compute the gradient of the output with
respect to inputs, with higher gradients indicating greater importance (Sundararajan et al., 2017; Yuan
et al., 2022). We focus on feature-attribution explanations as they remain the most widely used form of
post hoc interpretability in practice (Nauta et al., 2023). To reflect a range of underlying assumptions,
we employ three distinct and widely adopted explainers: Integrated Gradients (gradient-based),
DeepLIFT (backpropagation-based), and Shapley value sampling (perturbation-based).

The quality of these explanations is often evaluated using the principle of faithfulness (Lyu et al., 2024;
Dasgupta et al., 2022; Jacovi & Goldberg, 2020), which measures how accurately an explanation
represents the reasoning of the underlying model. Two key aspects of faithfulness are sufficiency
and comprehensiveness (DeYoung et al., 2020; Yin et al., 2022); the former assesses whether the
inputs deemed important are adequate for the model’s prediction, and the latter examines if these
features capture the essence of the model’s decision-making process. We selected these metrics
as they are widely-adopted, model-agnostic measures that directly assess explanation faithfulness
through standard perturbation-based evaluation (Serrano & Smith, 2019), aligning with established
principles of correctness and completeness in the explainability literature (Nauta et al., 2023).

B BOP

In the following table, we show how these abstract definitions can be used to measure BoP for both
predictions and explanations, each across both classification and regression tasks. The empirical
population and group BoP are defined as: ˆBoP(h0, hp) = Ĉ(h0) − Ĉ(hp) and ˆBoP(h0, hp, s) =

Ĉ(h0, s)− Ĉ(hp, s), respectively.

Table 3: Formal definitions of the benefit of personalization for prediction and explanation metrics,
evaluated for subgroup s.

Evaluation Type Benefit of personalization for group s
Predict (Classification, 0-1 loss) Pr(h0(X) ̸= Y | S = s)− Pr(hp(X, s) ̸= Y | S = s)

Predict (Regression, MSE) E
[
∥h0(X)−Y∥2 | S = s

]
− E

[
∥hp(X, s)−Y∥2 | S = s

]
Explain (Sufficiency, classification, 0-1 loss) Pr(h0(X) ̸= h0(XJ) | S = s)− Pr(hp(X, s) ̸= hp(XJ , sJ) | S = s)

Explain (Sufficiency, regression, MSE) E
[
∥h0(X)− h0(XJ)∥2 | S = s

]
− E

[
∥hp(X, s)− hp(XJ , sJ)∥2 | S = s

]
Explain (Incomprehensiveness, classification, 0-1 loss) Pr

(
hp(X, s) ̸= hp(X\J , s\J) | S = s

)
− Pr

(
h0(X) ̸= h0(X\J) | S = s

)
Explain (Incomprehensiveness, regression, MSE) E

[
∥hp(X, s)− hp(X\J , s\J)∥2 | S = s

]
− E

[
∥h0(X)− h0(X\J)∥2 | S = s

]

C COMPARISON BOP FOR PREDICTION AND BOP FOR EXPLAINABILITY
PROOFS

In this section, we present the full proofs comparing the impact of personalization on prediction
accuracy versus explanation quality, highlighting situations under which their effects diverge or align.

C.1 PROOF FOR THEOREM 4.1

We provide the proof for theorem 4.1 for two metrics of explanation quality: sufficiency and
incomprehensiveness, from Table 1. The proof for sufficiency is illustrated in Figure 5. The proof for
incomprehensivess is illustrated in Figure 6

Proof. Let X = (X1,X2) where X1 and X2 are independent and each follows Unif(− 1
2 ,

1
2 ). Let

us define one binary personal attribute s ∈ {0, 1} as S = 1(X1 +X2 > 0) and assume that we seek
to predict Y = S. Then, h0(x) = 1(X1 +X2 > 0) and hp(x) = 1(S > 0) are the generic and
personalized classifiers of interest.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

�������������������������������
����������
��������	���������

���������
��������

����������������������������������������
���������������������

����� ��������­�����­����������������
������������������������������������������������������������

Figure 5: Comparing a generic model (h0) and a personalized model (hp) on prediction and expla-
nation (sufficiency). Top-left: The generic model h0 uses both X1 and X2 for predictions, with its
decision boundary defined by X1 +X2 > 0. The personalized model, hp, has access to the group
attribute S (defined as S = 1(X1 +X2 > 0)), and its prediction rule is to output S. Bottom-left:
Since both classifiers achieve perfect accuracy (on both groups s = 0 and s = 1), the Group Benefit
of Personalization (G−BoPP ) is 0 on both groups, and thus: γP = 0. Top-right: In the sufficiency
evaluation, where only the most important feature is kept, hp achieves perfect prediction since it
relies solely on S, reaching a sufficiency cost of 0 for each group. In contrast, h0, using only X1, now
makes prediction errors and has a worst sufficiency cost of 1

4 for each group. Bottom-right: Since the
personalized model has better sufficiency than the generic model, the G-BoP is positive and equal to
1
4 for both groups, and hence γx = 1

4 > 0. Hence, personalization can enhance explainability even
though prediction accuracy remains the same.
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Prediction. Both classifiers achieve perfect accuracy. Therefore, BoPP (h0, hp) = 0.

In particular, they also achieve perfect accuracy when we restrict the input X to any subgroup,
subgroup s = 0 or subgroup s = 1, such that:

G-BoPP (h0, hp, s = 0) = G-BoPP (h0, hp, s = 1) = BoPP (h0, hp) = 0,

⇒ γP (h0, hp) = min
s∈{0,1}

G-BoPP (h0, hp, s) = 0.

Explanation (sufficiency). We now test sufficiency by evaluating the accuracy of classifiers using
only the important feature.

For model h0, its important feature set J0 is either {X1} or {X2}. Without loss of generality, let
J0 = {X1}. For the personalized model, Jp = {S}.

For sufficiency, we compute:

Pr(h0(X) ̸= h0(XJ0)) = Pr(X1 +X2 ≤ 0|X1 > 0)Pr(X1 > 0)

+ Pr(X1 +X2 > 0|X1 ≤ 0)Pr(X1 ≤ 0) (2)

=
1

4
,

where the computation per group also gives:

Pr(h0(X) ̸= h0(XJ0)|s = 0) = Pr(h0(X) ̸= h0(XJ0)|s = 1) =
1

4
.

On the other hand, the sufficiency for hp is

Pr(hp(X,S) ̸= hp(XJp ,SJp)) = 0,

as Jp = {S} is sufficient to make a prediction for hp. The computation per group also gives 0, since
the model makes perfect predictions independently of the value taken by S.

Thus, BoPX in terms of sufficiency is also 1
4 . Computing this quantity per group gives:

G-BoPX(h0, hp, s = 0) = G-BoPX(h0, hp, s = 1) =
1

4
,

⇒ γsuff(h0, hp) = min
s∈{0,1}

G-BoPX(h0, hp, s) =
1

4
. (3)

Explanation (incomprehensiveness) Incomprehensiveness is the opposite of comprehensiveness.
For clarity, we provide the computations for comprehensiveness first.

Comprehensiveness of h0 is

Pr(h0(X) ̸= h0(X\J0
)) = Pr(X1 +X2 ≤ 0|X2 > 0)Pr(X2 > 0)

+ Pr(X1 +X2 > 0|X2 ≤ 0)Pr(X2 ≤ 0) (4)

= Pr(X1 +X2 ≤ 0|X2 > 0) · 1
2
+ Pr(X1 +X2 > 0|X2 ≤ 0) · 1

2
= Pr(X1 +X2 ≤ 0|X2 > 0) (due to symmetry of the distribution)

=

∫
x2>0,x1+x2≤0

Pr(x1, x2)dx1dx2/Pr(X2 > 0)

= 2 ·
∫ 1

2

x2=0

Pr(x2)

∫
x1≤−x2

Pr(x1)dx1dx2

= 2 ·
∫ 1

2

x2=0

Pr(x2)(−x2 +
1

2
)dx2

= 2 ·
[
−1

2
x2
2 +

1

2
x2

] 1
2

0

=
1

4
.
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Figure 6: Comparing a generic model (h0) and a personalized model (hp) on prediction and explana-
tion (incomprehensiveness). Both achieve perfect accuracy, but hp relies solely on S = 1(X1+X2 >
0), yielding higher incomprehensiveness. Hence, personalization can improve explainability even
when accuracy is unchanged: here, γP = 0 and γX > 0.

Hence, incomprehensiveness of h0 is − 1
4 .

Computing this quantity per group gives, by symmetry of the problem:

Pr(h0(X) ̸= h0(X\J0
) | s = 0) = Pr(h0(X) ̸= h0(X\J0

) | s = 1)

=
1

2
Pr(h0(X) ̸= h0(X\J0

))

=
1

4
. (5)

Hence, incomprehensiveness per group is also − 1
4 .

For hp, comprehensiveness is:

Pr(hp(X,S) ̸= hp(X\Jp
,S\Jp

)) =
1

2
,

as without S, hp can only make a random guess. Hence, incomprehensiveness for each group is − 1
2 .

Computing this quantity per group also gives 1
2 since hp makes a random guess independently of the

subgroup considered:

Pr(hp(X) ̸= hp(X\Jp
) | s = 0) = Pr(hp(X) ̸= hp(X\Jp

) | s = 1)

= Pr(hp(X) ̸= hp(X\Jp
))

=
1

2
. (6)

while the incomprehensiveness per group is therefore − 1
2 .

Hence, BoPX in terms of incomprehensiveness is 1
4 .
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Computing this quantity per group gives:

G-BoPX(h0, hp, s = 0) = G-BoPX(h0, hp, s = 1) =
1

4
,

⇒ γincomp(h0, hp) = min
s∈{0,1}

G-BoPX(h0, hp, s) =
1

4
. (7)

C.2 PROOF FOR THEOREM 4.2:

We provide the proof for Theorem 4.2, for explainability incomprehensiveness.

Proof. Let X = (X) where X follows Unif(− 1
2 ,

1
2 ). Define one binary personal attribute s ∈ {0, 1}

as S = X and assume that the true label that we seek to predict is Y = X > 0. We define the
classifiers of interest as:

h0(X) = 1(X > 0), hp(X,S) =
1

2
(X+ S).

Prediction. Both h0 and hp are perfectly aligned with the ground truth and yield ŷ = Y. Therefore,
they achieve perfect accuracy. In particular, they also achieve perfect accuracy when we restrict the
input X to any subgroup, subgroup s = 0 or subgroup s = 1, such that:

G-BoPP (h0, hp, s = 0) = G-BoPP (h0, hp, s = 1) = BoPP (h0, hp) = 0,

⇒ γP (h0, hp) = min
s∈{0,1}

G-BoPP (h0, hp, s) = 0.

Therefore, BoPP (h0, hp) = 0.

Explanation (sufficiency). For h0, the most important feature is X, while for hp, the most important
feature is S.

We now test sufficiency by evaluating the accuracy of classifiers using only the important feature.

• For h0, keeping X results in the original predictor. Therefore, prediction does not change at
all and the feature is maximally sufficient for both groups (G-BoPsuff = 0 for s = 0 and
s = 1, hence γX = 0.

• For hp, keeping S does not change the prediction output because 1
2X > 0 = X > 0.

Therefore, prediction does not change at all and the feature is maximally sufficient for both
groups (G-BoPsuff = 0 for s = 0 and s = 1, hence γX = 0

Therefore, BoPX = 0 for sufficiency.

Explanation (incomprehensiveness) In this setting, we evaluate incomprehensiveness by measur-
ing the degradation in model predictions when the most important feature is removed.

• Removing X from h0: For h0, incomprehensiveness is:

Pr(h0(X) ̸= hp())) =
1

2
,

as without X, h0 can only make a random guess. Hence, incomprehensiveness for each
group is 1

2 and γX = 1
2 .

• Removing S from hp: For hp, we compute:

Pr
(
hp(X,S) ̸= hp(X)

)
= Pr(X+ S ≤ 0 | X > 0)Pr(X > 0)

+ Pr(X+ S > 0 | X ≤ 0)Pr(X ≤ 0)

= 1
4 . (8)
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where the computation per group also gives:

Pr(hp(X,S) ̸= hp(X)|s = 0) = Pr(hp(X,S) ̸= hp(X)|s = 1) =
1

4
.

Hence, γX = 1
4 .

Therefore, BoP-X = − 1
4 .

C.3 PROOF FOR THEOREM C.1:

Personalization might not alter predictive accuracy across groups, but it might affect explainability
differently for different groups, as emphasized in the next theorem.
Theorem C.1. There exists a data distribution PX,S,Y such that the Bayes optimal classifiers h0 and
hp satisfy G-BoPP (h0, hp, s) = 0 (measured by 0-1 loss) for all groups s, but some groups have
G-BoPP (h0, hp, s) > 0 while others have G-BoPP (h0, hp, s) < 0 (measured by sufficiency and
incomprehensiveness).

We provide the proof for Theorem C.1, for two measures of explanability evaluation: sufficiency
and incomprehensiveness, as illustrated in Figure 7 and Figure 8. Figure 7 illustrates the proof
for sufficiency, where both generic h0 and personalized hp models predict perfectly (left), yet only
keeping the most important feature for each (right) shows that the personalized model is more
explainable for the group (s′ = 1, s = 0), and less explainable for group (s′ = 0, s = 1). Figure 8
illustrates the proof for incomprehensiveness.

Proof. Let X = (X1,X2) where X1 and X2 are independent and follow Unif(−1, 1). Define two
binary personal attributes s ∈ {0, 1} and s′ ∈ {0, 1} such that the true label that we seek to predict is
Y = S · S′. We define the classifiers of interest as:

h0(X) = 1(X1 +X2 > 0) · 1(X2 < 0), hp(X,S) = S · S′.

Prediction. Both h0 and hp are perfectly aligned with the ground truth and yield ŷ = Y. Therefore,
they achieve perfect accuracy. In particular, this holds for both values of S and S′:

G-BoPP

s′\s s = 0 s = 1
s′ = 0 0 0
s′ = 1 0 0

Such that we get:
γP (h0, hp) = min

s,s′∈{0,1}
G-BoPP (h0, hp, s) = 0.

Explanation (sufficiency). For h0, the most important feature is X1, while for hp, the most
important feature is S.

We now test sufficiency by evaluating the accuracy of classifiers using only the important feature.

• For h0, keeping only X1 results in a constant predictor h0(X1) = 0. This fails to recover ŷ
when s = 1 and s′ = 1 (red orange dot), leading to an error for the subgroup (s = 1, s′ = 1),
while the three other subgroups still enjoy perfect prediction.

• For hp, keeping only S yields hp(S) = S, which fails to recover ŷ when s = 1 and s′ = 0
(red blue circles) but still correctly predicts for the other three subgroups.

Combining per-group values gives: such that we get:

γX(h0, hp) = min
s∈{0,1}

G-BoPsuff(h0, hp, s) = −1.
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Figure 7: Comparing a generic model (h0) and a personalized model (hp) on prediction and expla-
nation (sufficiency). Top-left: The generic model h0 uses both X1 and X2 for predictions with its
decision boundary defined by 1(X1 +X2 > 0) · 1(X1 < 0). The personalized model, hp instead
predicts using the binary group attributes s ∈ 0, 1 and s′ ∈ 0, 1 via the rule s · s′. Bottom-left: Both
classifiers achieve perfect accuracy across all four groups, hence γP = 0. Top-right: Sufficiency
evaluation reveals a difference in explanation quality. For h0, keeping only the top feature X1

results in a constant prediction h0(X1) = 0, causing an error for the group s = s′ = 1 (orange
circle). For hp, keeping only S yields hp(S) = S, which fails to recover the true Y for the group
(s = 1, s′ = 0) (blue circles). Bottom-right: Thus, the G-BoP is positive for s = s′ = 1 but negative
for s = 1, s′ = 0, yielding γX < 0. This shows that even with identical predictive performance, the
models rely on different features, and personalization can reduce sufficiency-based explainability for
some groups.
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G-BoPsuff

s′\s s = 0 s = 1
s′ = 0 0 −1
s′ = 1 0 1

Explanation (incomprehensiveness) In this setting, we evaluate incomprehensiveness by measur-
ing the degradation in model predictions when the most important feature is removed.

The generic classifier is h0(X) = 1(X1 +X2 > 0) · 1(X1 < 0) and the personalized classifier is
hp(X,S) = S · S′. The most important feature for h0 is X1 and for hp is S.

• Removing X1 from h0: Without X1, the classifier reduces to the constant function
h0(X\X1

) = 0. This leads to an incorrect prediction when s = 1 and s′ = 1.

• Removing S from hp: The personalized model becomes hp(X,S\S) = S′, which ignores
S. This leads to an incorrect prediction when s = 0 and s′ = 1, since the true label is y = 0
but hp = 1.

All other combinations yield correct predictions even when the important feature is removed.

G-BoPincomp

s′\s s = 0 s = 1
s′ = 0 0 0
s′ = 1 1 -1

This yields the minimum group benefit of personalization is:

γincomp
X (h0, hp) = min

s,s′∈{0,1}
G-BoPincomp(h0, hp, s, s

′) = −1.

C.4 PROOF FOR THEOREM 4.3:

See Figure 9 for a visualization of Theorem 4.3 for a linear model with h0 and hp Bayes optimal
regressors.

Proof. A Bayes optimal regressor using a subset of variables from indices in J ⊆ [1, . . . , t + k]
would be given as:

ŷ = h∗
J(XJ ,SJ) =

∑
j∈J,
j≤t

αjXj +
∑
j∈J,

j≥t+1

αjSj−t, (9)

where h∗
J represents a Bayes optimal regressor for the given subset J , and XJ and SJ are sub-vectors

of X and S, using the indices in J .

In what follows, we denote \J as a shorthand notation for [1, . . . t+ k] \ J .

From equation 9 and the definition of the true response Y =
∑

j≤t αjXj +
∑

j≥t+1 αjSj−t,+ϵ we
obtain:

MSE(h0) =

t+k∑
j=t+1

α2
jVar(St+j) + Var(ϵ), (10)

MSE(hp) = Var(ϵ). (11)
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Figure 8: Comparing a generic model (h0) and a personalized model (hp) on prediction and expla-
nation (incomprehensiveness). Both achieve perfect accuracy, but removing each most important
features yields different prediction performances. We find that γP = 0 while γX < 0.

������������������������������� ���������������������
������
	�������������	��������������
�������������������������
�����������	����������	����	�
�����������	����������	����	�

�������������������	����������	� ����������������	����������	�

Figure 9: For a linear model, absence of benefit in explanation quality means that there is also an
absence of benefit in prediction accuracy, as illustrated here (see Theorem 4.3). We consider a linear
model Y = X + S + ϵ, with h0 and hp Bayes optimal regressors. In this example, absence of
benefit of personalization for the explanation quality, BoP-Xsuff = 0 evaluated in terms of sufficiency
(left column) means: E[∥h0(X̃) − h0(X̃J)∥2] = E[∥hp(X̃) − hp(X̃J)∥2] ⇒ var(X) = 0. Then,
absence of benefit of personalization for the explanation quality, BoP-Xcomp = 0 evaluated in terms of
comprehensiveness (right column) means: E[∥h0(X̃)− h0(X̃\J)∥2] = E[∥h0(X̃)− h0(X̃\J)∥2] ⇒
var(S) = var(X) ⇒ var(S) = 0. This allows us to conclude that, in terms of prediction accuracy
(middle column): MSE0 = MSEp and hence there is also no benefit of personalization in prediction
:BoP-P = 0.
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We define J0 and Jp as a set of important features for h0 and hp. Note that J0 and Jp are the same
across all samples for the additive model. Then, the sufficiency of the explanation for h0 and hp is
written as:

E[∥h0(X̃)− h0(X̃J0)∥2] =
∑

j∈\J0,
j≤t

α2
jVar(Xt) (12)

E[∥hp(X̃)− hp(X̃Jp)∥2] =
∑

j∈\Jp,
j≤t

α2
jVar(Xt) +

∑
j∈\Jp,
j≥t+1

α2
jVar(Sj−t). (13)

Similarly, the comprehensiveness of the explanation for h0 and hp is written as:

E[∥h0(X̃)− h0(X̃\J0
)∥2] =

∑
j∈J0,
j≤t

α2
jVar(Xt) (14)

E[∥hp(X̃)− hp(X̃\Jp
)∥2] =

∑
j∈Jp,
j≤t

α2
jVar(Xt) +

∑
j∈Jp,
j≥t+1

α2
jVar(Sj−t). (15)

Then, our assumption of BoP-X = 0 for sufficiency becomes:

E[∥h0(X̃)− h0(X̃J0)∥2] = E[∥hp(X̃)− hp(X̃Jp)∥2] (16)

⇒
∑

j∈\J0,
j≤t

α2
jVar(Xt) =

∑
j∈\Jp,
j≤t

α2
jVar(Xt) +

∑
j∈\Jp,
j≥t+1

α2
jVar(Sj−t) (17)

Similarly, our assumption of BoP-X = 0 for comprehensiveness becomes:

E[∥h0(X̃)− h0(X̃\J0
)∥2] = E[∥hp(X̃)− hp(X̃\Jp

)∥2] (18)

⇒
∑
j∈J0,
j≤t

α2
jVar(Xt) =

∑
j∈Jp,
j≤t

α2
jVar(Xt) +

∑
j∈Jp,
j≥t+1

α2
jVar(Sj−t). (19)

Summing both equations:∑
j∈\J0

j≤t

α2
j Var(Xt) +

∑
j∈J0
j≤t

α2
j Var(Xt) =

∑
j∈\Jp

j≤t

α2
j Var(Xt) +

∑
j∈\Jp

j≥t+1

α2
j Var(Sj−t)

+
∑
j∈Jp

j≤t

α2
j Var(Xt) +

∑
j∈Jp

j≥t+1

α2
j Var(Sj−t)

⇒ Var(X) = Var(X) + Var(S)

⇒ Var(S) = 0. (20)

Since Var(S) = 0, we have that MSE(h0) = MSE(hp) and thus: BoP-P = 0 which concludes the
proof.

We can make the same claim with similar logic for a classifier where Y is given as:

Y = 1(α1X1 + · · ·αtXt + αt+1S1 + · · ·+ αt+kSk + ϵ > 0). (21)

The derivations above are made at the population level, i.e., without distinguishing subgroups
in the data. However, the reasoning also applies for subgroups, where we define subgroups to
be defined by 1(S ≥ 0) taking values in {0, 1}. In other words, if G-BoPsuff(h0, hp, s) = 0
and G-BoPincomp(h0, hp, s) = 0 then G-BoPP (h0, hp, s) = 0 for any s ∈ {0, 1}. However, we
note that we can only make a statement on γ(h0, hp) (prediction accuracy) for the case where
γsufficiency(h0, hp) = 0 and γincomprehensiveness(h0, hp) = 0 if the following is true: the group realizing
the minima in the three γ’s is the same group.
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D PROOF OF THEOREMS ON LOWER BOUNDS FOR THE PROBABILITY OF
ERROR

As in (Monteiro Paes et al., 2022), we will prove every theorem for the flipped hypothesis test defined
as:

H0 : γ(h0, hp;D) ≤ ϵ ⇔ Personalized hp performs worst: yields ϵ < 0 disadvantage
H1 : γ(h0, hp;D) ≥ 0 ⇔ Personalized hp performs at least as good as generic h0.

where we emphasize that ϵ < 0.

As shown in (Monteiro Paes et al., 2022), proving the bound for the original hypothesis test is
equivalent to proving the bound for the flipped hypothesis test, since estimating γ is as hard as
estimating −γ. In every section that follows, H0, H1 refer to the flipped hypothesis test.

Here, we first prove a proposition that is valid for all of the cases that we consider in the next sections.
Proposition D.1. Consider PX,S,y is a distribution of data, for which the generic model h0 performs
better, i.e., the true γ is such that γ(h0, hp,D) < 0, and QX,S,y is a distribution of data points for
which the personalized model performs better, i.e., the true γ is such that γ(h0, hp,D) > 0. Consider
a decision rule Ψ that represents any hypothesis test. We have the following bound on the probability
of error Pe:

min
Ψ

max
P0∈H0
P1∈H1

Pe ≥ 1− TV (P ∥ Q),

for any well-chosen P ∈ H0 and any well-chosen Q ∈ H1. Here TV refers to the total variation
between probability distributions P and Q.

Proof. Consider h0 and hp fixed. Take one decision rule Ψ that represents any hypothesis test.
Consider a dataset such that H0 is true, i.e., D ∼ P0 and a dataset such that H1 is true, i.e., D ∼ P1.

It might seem weird to use two datasets to compute the same quantity Pe, i.e., one dataset to compute
the first term in Pe, and one dataset to compute the second term in Pe. However, this is just a
reflection of the fact that the two terms in Pe come from two different settings: H0 true or H0 false,
which are disjoint events: in the same way that H0 cannot be simultaneously true and false, yet each
term in Pe consider one or the other case; then we use one or the other dataset.

We have:

Pe = Pr(Rejecting H0|H0 true) + Pr(Failing to reject H0|H1 true)
= Pr(Ψ(h0, hp,D, ϵ) = 1|D ∼ P0) + Pr(Ψ(h0, hp,D, ϵ) = 0|D ∼ P1)

= Pr(Ψ(D) = 1|D ∼ P0) + Pr(Ψ(D) = 0|D ∼ P1) simplifying notations
= 1− Pr(Ψ(D) = 0|D ∼ P0) + Pr(Ψ(D) = 0|D ∼ P1) complementary event
= 1− P0(EΨ) + P1(EΨ) writing EΨ the event Ψ(D) = 0

= 1− (P0(EΨ)− P1(EΨ))

Now, we will bound this quantity:

min
Ψ

max
P0∈H0
P1∈H1

Pe = min
Ψ

max
P0∈H0
P1∈H1

1− (P0(EΨ)− P1(EΨ))

≥ max
P0∈H0
P1∈H1

min
Ψ

[1− (P0(EΨ)− P1(EΨ))] using minmax inequality

= max
P0∈H0
P1∈H1

[
1−max

Ψ
(P0(EΨ)− P1(EΨ))

]
to minimize over Ψ, we maximize (P0(EΨ)− P1(EΨ))

≥ max
P0∈H0
P1∈H1

[
1− max

events A
(P0(A)− P1(A))

]
because the max is now over all possible events A

The maximization is broadened to consider all possible events A. This increases the set over which
the maximum is taken. Because Ψ is only a subset of all possible events, maximizing over all events
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A (which includes Ψ) will result in a value that is at least as large as the maximum over Ψ. In other
words, extending the set of possible events can only make the maximum greater or the same.

= max
P0∈H0
P1∈H1

[1− TV (P0 ∥ P1)] by definition of the total variation (TV)

= 1− min
P0∈H0
P1∈H1

TV (P0 ∥ P1)

≥ 1− TV (P ∥ Q) for any P ∈ H0 and Q ∈ H1.

This is true because the total variation distance TV (P ∥ Q) for any particular pair P and Q cannot
be smaller than the minimum total variation distance across all pairs. We recall that, by definition,
the total variation of two probability distributions P,Q is the largest possible difference between the
probabilities that the two probability distributions can assign to the same event A.

Next, we prove a lemma that will be useful for the follow-up proofs.
Lemma D.2. Consider a random variable a such that E[a] = 1. Then:

E[(a− 1)2] = E[a2]− 1 (22)

Proof. We have that:

E[(a− 1)2] = E[a2 − 2a+ 1]

= E[a2]− 2E[a] + 1 (linearity of the expectation)

= E[a2]− 2 + 1(E[a] = 1 by assumption)

= E[a2]− 1.

D.1 PROOF FOR ANY PROBABILITY DISTRIBUTION AND ANY NUMBER OF SAMPLES IN EACH
GROUP

Below, we find the lower bound for the probability of error for any probability distribution of the BoP,
and any number of samples per group.
Theorem D.3 (Lower bound for any probability distribution BoP.). The lower bound writes:

min
Ψ

max
P0∈H0
P1∈H1

Pe ≥ 1− 1

2
√
d

1
d

d∑
j=1

Epϵ

[
pϵ(B)

p(B)

]mj

− 1

 1
2

(23)

where P0 is a distribution of data, for which the generic model h0 performs better, i.e., the true γ is
such that γ(h0, hp,D) < 0, and P1 is a distribution of data points for which the personalized model
performs better, i.e., the true γ is such that γ(h0, hp,D) ≥ ϵ. Dataset D is drawn from an unknown
distribution and has d groups where d = 2k, with each group having mj samples.

Proof. By Proposition D.1, we have that:

min
Ψ

max
P0∈H0
P1∈H1

Pe ≥ 1− TV (P ∥ Q)

for any well-chosen P ∈ H0 and any well-chosen Q ∈ H1. We will design two probability
distributions P,Q defined on the N data points (X1,S1,Y1), ..., (XN,SN,YN) of the dataset D to
compute an interesting right hand side term. An “interesting” right hand side term is a term that makes
the lower bound as tight as possible, i.e., it relies on distributions P,Q for which TV (P ∥ Q) is small,
i.e., probability distributions that are similar. To achieve this, we will first design the distribution
Q ∈ H1, and then propose P as a very small modification of Q, just enough to allows it to verify
P ∈ H0.
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Mathematically, P , Q are distributions on the dataset D, i.e., on N i.i.d. realizations
of the random variables X,S,Y. Thus, we wish to design probability distributions on
(X1,S1,Y1), ..., (XN,SN,YN).

However, we note that the dataset distribution is only meaningful in terms of how each triplet
(Xi,Si,Yi) impacts the value of the individual BOP Bi. Indeed, since Bi is a function of the data
point Zi = (Xi,Si,Yi), that we denote f such that Bi = f(Zi), any probability distribution on Zi

will yield a probability distribution on Bi and any distribution on the dataset Z1, ...,ZN will yield a
distribution on B1, ...,BN.

Conversely, let be given P̃ (b1, ..., bN ) = ΠN
i=1P̃i(bi) a distribution on B1, ...,BN defined by N

independent distributions P̃i for i = 1, .., N , such that the support of each P̃i is restricted to the image
of f . We propose to build a probability distribution P (z1, ..., zN ) = ΠN

i=1Pi(zi) on Z1, ...,ZN that
will ensure that f(Z1), ..., f(ZN) is distributed as P̃ .

First, for each Pi we restrict Pi so that, for every value bi that Bi can take according to P̃i, there exists
a unique zi with positive density, concentrated as a Dirac at zi, and such that we have f(zi) = bi.
Existence is guaranteed since Bi takes values in the image of f . Uniqueness is guaranteed because
we can assign 0 mass to the potential non-unique values. Equivalently, f is a bijection from supp(Pi)
to the set of values taken by Bi for each i.

Next, for all zi ∈ supp(Pi), we explicitly construct Pi(zi) as follows:

Pi(zi) = P̃i(fi(zi)) ·
∣∣∣∣(df−1

i (bi)

dbi

)∣∣∣∣−1

,

where fi now denotes the restriction of f to supp(Pi). We construct Qi analogously for any
i = 1, ..., N .

Now moving back to the full dataset of N samples, we relate the TV between P and Q over the
full dataset Z = Z1, · · · ,ZN to the TV between P̃ and Q̃ over B = B1, · · · ,BN by a change of
variables:

TV (P ∥ Q) = 1
2

∫
|P (z1, . . . , zN )−Q(z1, . . . , zN )| dz1 · · · dzN

= 1
2

∫ ∣∣∣∣∣
N∏
i=1

Pi(zi)−
N∏
i=1

Qi(zi)

∣∣∣∣∣ dz1 · · · dzN
where (z1, . . . , zN ) = F (b1, . . . , bN ), and F (b1, . . . , bN ) =

(
f−1
1 (b1), . . . , f

−1
N (bN )

)
.

= 1
2

∫
b1···bN

∣∣∣∣∣
N∏
i=1

Pi

(
f−1
i (bi)

)
−

N∏
i=1

Qi

(
f−1
i (bi)

)∣∣∣∣∣ · |det (JF(b1, . . . , bN ))| db1 . . . dbN

= 1
2

∫
b1···bN

∣∣∣∣∣
N∏
i=1

Pi

(
f−1
i (bi)

)
−

N∏
i=1

Qi

(
f−1
i (bi)

)∣∣∣∣∣ ·
N∏
i=1

∂zi(bi)

∂bi
db1 · · · dbN

= 1
2

∫
b1···bN

∣∣∣∣∣
N∏
i=1

Pi

(
f−1
i (bi)

)
−

N∏
i=1

Qi

(
f−1
i (bi)

)∣∣∣∣∣
N∏
i=1

(
df−1

i (bi)

dbi

)
db1 · · · dbN

= 1
2

∫
b1···bN

∣∣∣∣∣
[

N∏
i=1

df−1
i

db
(bi)

][
N∏
i=1

Pi

(
f−1
i (bi)

)]
−

[
N∏
i=1

df−1
i

dbi
(bi)

][
N∏
i=1

Qi

(
f−1
i (bi)

)]∣∣∣∣∣ db1 · · · dbN
= 1

2

∫
b1,...,bN

∣∣∣∣∣
N∏
i=1

Pi

(
f−1
i (bi)

)
·
∣∣∣∣df−1

i (bi)

dbi

∣∣∣∣− N∏
i=1

Qi

(
f−1
i (bi)

)
·
∣∣∣∣df−1

i (bi)

dbi

∣∣∣∣
∣∣∣∣∣ db1 · · · dbN

= 1
2

∫
b1,...,bN

∣∣∣∣∣
N∏
i=1

P̃i(bi)−
N∏
i=1

Q̃i(bi)

∣∣∣∣∣ db1 · · · dbN by def. of Pi and P̃i for all i.
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Thus, we design probability distributions P,Q on n i.i.d. realizations of an auxiliary random variable
B, with values in R, defined as:

B = ℓ(h0(X),Y)− ℓ(hp(X,S),Y). (24)

Intuitively, Bi represents how much the triplet (Xi,Si,Yi) contributes to the value of the BOP.
bi > 0 means that the personalized model provided a better prediction than the generic model on the
triplet (xi, si, yi) corresponding to the data point i.

Consider the event b = (b1, ..., bN ) ∈ RN of N realizations of B. For simplicity in our computations,
we divide this event into the d groups, i.e., we write instead: bj = (b

(1)
j , ..., b

(m)
j ), since each group

j has mj samples. Thus, we have: b = {b(k)j }j=1...d,k=1...m indexed by j, k where j = 1...d is the
group in which this element is, and k = 1...mj is the index of the element in that group.

Design Q. Next, we continue designing a distribution Q (since we have justified that we can define
them on B) on this set of events that will (barely) verify H1, i.e., such that the expectation of B
according to Q will give γ = 0. We recall that γ = 0 means that the minimum benefit across groups
is 0, implying that there might be some groups that have a > 0 benefit.

Given p as a distribution with mean µ = 0 , we propose the following distribution for Q

Qj(bj) =

m∏
k=1

p(b
(k)
j ), for every group j = 1....d

Q(b) =

d∏
j=1

Qj(bj).

We verify that we have designed Q correctly, i.e., we verify that Q ∈ H1. When the dataset is
distributed according to Q, we have:

γ = min
s∈S

Cs(h0, s)− Cs(hp, s)

= min
s∈S

EQ[ℓ(h0(X),Y) | S = s]− EQ[ℓ(hp(X),Y) | S = s] (by definition of group cost)

= min
s∈S

EQ[ℓ(h0(X),Y)− ℓ(hp(X),Y) | S = s] (by linearity of expectation)

= min
s∈S

EQ[B | S = s] (by definition of random variable B)

= min
s∈S

0 (by definition of the probability distribution on B)

= 0.

Thus, we find that γ = 0 which means that γ ≥ 0, i.e., Q ∈ H1.

Design P . Next, we design P as a small modification of the distribution Q, that will just be enough
to get P ∈ H0. We recall that P ∈ H0 means that γ ≤ ϵ where ϵ < 0 in the flipped hypothesis test.
This means that, under H0, there is one group that suffers a decrease of performance of |ϵ| because of
the personalized model.

Given p as a distribution with µ = 0, and pϵ a distribution with mean µ = ϵ < 0, we have:

Pj(bj) =

mj∏
k=1

p(b
(k)
j ), for every group j = 1....d,

P ϵ
j (bj) =

mj∏
k=1

pϵ(b
(k)
j ), for every group j = 1....d,

P (b) =
1

d

d∑
j=1

P ϵ
j (bj)

∏
j′ ̸=j

Pj′(bj′).

Intuitively, this distribution represents the fact that there is one group for which the personalized
model worsen performances by |ϵ|.We assume that this group can be either group 1, or group 2,
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etc, or group d, and consider these to be disjoint events: i.e., exactly only one group suffers the |ϵ|
performance decrease. We take the union of these disjoint events and sum of probabilities using the
Partition Theorem (Law of Total Probability) in the definition of P above.

We verify that we have designed P correctly, i.e., we verify that P ∈ H0. When the dataset is
distributed according to P , we have:

γ = min
s∈S

Cs(h0, s)− Cs(hp, s)

= min
s∈S

EP [B | S = s] (same computations as for Q ∈ H1)

= min(ϵ, 0, ..., 0) (since exactly one group has mean ϵ)
= ϵ (since ϵ < 0).

Thus, we find that γ = ϵ which means that γ ≤ 0, i.e., P ∈ H0.

Compute total variation TV (P ∥ Q). We have verified that Q ∈ H1 and that P ∈ H0. We
use these probability distributions to compute the lower bound to Pe. First, we compute their total
variation:

TV (P ∥ Q) =
1

2

∫
b1,...,bj

|P (b1, ..., bj)−Q(b1, ..., bj)| db1...dbj (TV for probability density functions)

=
1

2

∫
b1,...,bj

∣∣∣∣∣∣1d
d∑

j=1

P ϵ
j (bj)

∏
j′ ̸=j

Pj′(bj′)−
d∏

j=1

Qj(bj)

∣∣∣∣∣∣ db1...dbj (definition of P,Q)

=
1

2

∫
b1,...,bj

∣∣∣∣∣∣1d
d∑

j=1

P ϵ
j (bj)

Pj(bj)

d∏
j′=1

Pj′(bj′)−
d∏

j=1

Qj(bj)

∣∣∣∣∣∣ db1...dbj (adding missing j′ = j)

=
1

2

∫
b1,...,bj

∣∣∣∣∣∣1d
d∑

j=1

P ϵ
j (bj)

Pj(bj)

d∏
j′=1

Qj′(bj′)−
d∏

j=1

Qj(bj)

∣∣∣∣∣∣ db1...dbj (Pj = Qj by construction)

=
1

2

∫
b1,...,bj

d∏
j=1

Qj(bj)

∣∣∣∣∣∣1d
d∑

j=1

P ϵ
j (bj)

Pj(bj)
− 1

∣∣∣∣∣∣ db1...dbj (extracting the product)

=
1

2
EQ

∣∣∣∣∣∣1d
d∑

j=1

P ϵ
j (bj)

Pj(bj)
− 1

∣∣∣∣∣∣
 (recognizing an expectation with respect to Q)

=
1

2
EQ

∣∣∣∣∣∣1d
d∑

j=1

∏mj

k=1 p
ϵ(b

(k)
j )∏mj

k=1 p(b
(k)
j )

− 1

∣∣∣∣∣∣
 (definition of Pj and P

(ϵ)
j )

≤ 1

2
EQ


∣∣∣∣∣∣1d

d∑
j=1

∏mj

k=1 p
ϵ(b

(k)
j )∏mj

k=1 p(b
(k)
j )

− 1

∣∣∣∣∣∣
2

1/2

(Cauchy-Schwartz)

Auxiliary computation to apply Lemma D.2 Next, we will apply Lemma D.2. For this, we need
to prove that the expectation of the first term is 1. We have:

EQ

1
d

d∑
j=1

∏mj

k=1 p
ϵ(b

(k)
j )∏mj

k=1 p(b
(k)
j )


=

1

d

d∑
j=1

EQ

[∏mj

k=1 p
ϵ(b

(k)
j )∏mj

k=1 p(b
(k)
j )

]
(linearity of expectation)
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=
1

d

d∑
j=1

EQ

[
mj∏
k=1

pϵ(b
(k)
j )

p(b
(k)
j )

]
(rearranging the product)

=
1

d

d∑
j=1

mj∏
k=1

EQ

[
pϵ(b

(k)
j )

p(b
(k)
j )

]
(product of independent variables)

=
1

d

d∑
j=1

mj∏
k=1

Ep

[
pϵ(b

(k)
j )

p(b
(k)
j )

]
(definition of Q)

=
1

d

d∑
j=1

mj∏
k=1

∫ +∞

−∞

pϵ(b)

p(b)
p(b)db (definition of expectation in p)

=
1

d

d∑
j=1

mj∏
k=1

∫ +∞

−∞
pϵ(b)db (simplify)

=
1

d

d∑
j=1

mj∏
k=1

1 (probability density function integrates to 1)

=
1

d

d∑
j=1

1 (term independent of k)

=
1

d
d (term independent of j)

= 1.

Continue by applying Lemma D.2. This auxiliary computation shows that we meet the assumption
of Lemma D.2. Thus, we continue the computation of the lower bound of the TV by applying
Lemma D.2.

TV (P ∥ Q)

≤ 1

2
EQ


1

d

d∑
j=1

∏mj

k=1 p
ϵ(b

(k)
j )∏mj

k=1 p(b
(k)
j )

2

− 1


1
2

Lemma D.2

=
1

2
EQ


1

d

d∑
j=1

zj

2

− 1


1
2

defining zj =

∏mj

k=1 p
ϵ(b

(k)
j )∏mj

k=1 p(b
(k)
j )

=

mj∏
k=1

pϵ(b
(k)
j )

p(b
(k)
j )

=
1

2
EQ

 1

d2

d∑
j,j′=1

zjzj′ − 1

 1
2

expanding the square of the sum

=
1

2
EQ

 1

d2

 d∑
j=1

z2j +

d∑
j,j′=1,j ̸=j′

zj .zj′

− 1

 1
2

,

where we split the double sum to get independent variables in the second term.

We get by linearity of the expectation, E[aX + bY ] = aE[X] + bE[Y ]:

TV (P ∥ Q)

≤ 1

2
EQ

 1

d2

 d∑
j=1

z2j +

d∑
j,j′=1,j ̸=j′

zj .zj′

− 1

 1
2
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=
1

2

 1

d2

 d∑
j=1

EQ[z
2
j ] +

d∑
j,j′=1,j ̸=j′

EQ[zj .zj′ ]

− 1

 1
2

=
1

2

 1

d2

 d∑
j=1

EQ

(mj∏
k=1

pϵ(b
(k)
j )

p(b
(k)
j )

)2
+

d∑
j,j′=1,j ̸=j′

EQ

[(
mj∏
k=1

pϵ(b
(k)
j )

p(b
(k)
j )

)
.

(
mj∏
k=1

pϵ(b
(k)
j′ )

p(b
(k)
j′ )

)]− 1

 1
2

=
1

2

 1

d2

 d∑
j=1

EQ

(mj∏
k=1

pϵ(b
(k)
j )

p(b
(k)
j )

)2


+

d∑
j,j′=1
j ̸=j′

EQ

[
mj∏
k=1

pϵ(b
(k)
j )

p(b
(k)
j )

]
EQ

[mj′∏
k=1

pϵ(b
(k)
j′ )

p(b
(k)
j′ )

]− 1

1
2

(product of independent variables)

=
1

2

 1

d2

 d∑
j=1

mj∏
k=1

Ep

(pϵ(b
(k)
j )

p(b
(k)
j )

)2


+

d∑
j,j′=1
j ̸=j′

mj∏
k=1

Ep

[
pϵ(b

(k)
j )

p(b
(k)
j )

] mj′∏
k=1

Ep

[
pϵ(b

(k)
j′ )

p(b
(k)
j′ )

]− 1

1
2

(product of independent variables and def. of Q)

=
1

2

 1

d2

 d∑
j=1

mj∏
k=1

Ep

(pϵ(b
(k)
j )

p(b
(k)
j )

)2
+

d∑
j,j′=1,j ̸=j′

mj∏
k=1

1

mj∏
k=1

1

− 1

 1
2

(auxiliary computation below)

=
1

2

 1

d2

 d∑
j=1

mj∏
k=1

Ep

(pϵ(b
(k)
j )

p(b
(k)
j )

)2
+

d∑
j,j′=1,j ̸=j′

1

− 1

 1
2

(term independent of k)

=
1

2

 1

d2

 d∑
j=1

mj∏
k=1

Ep

(pϵ(b
(k)
j )

p(b
(k)
j )

)2
+ (d2 − d)

− 1

 1
2

(term independent of j)

=
1

2

 1

d2

 d∑
j=1

Ep

[(
pϵ(B)

p(B)

)2
]mj

+ (d2 − d)

− 1

 1
2

(term independent of k)

=
1

2

 1

d2

d∑
j=1

Ep

[(
pϵ(B)

p(B)

)2
]mj

+ 1− 1

d
− 1

 1
2

(distribute 1/d2)

=
1

2

 1

d2

d∑
j=1

Ep

[(
pϵ(B)

p(B)

)2
]mj

− 1

d

 1
2

(simplify)

=
1

2
√
d

1
d

d∑
j=1

Ep

[(
pϵ(B)

p(B)

)2
]mj

− 1

 1
2

(extract 1/
√
d)

=
1

2
√
d

1
d

d∑
j=1

(∫ +∞

−∞

(
pϵ(b)

p(b)

)2

p(b)db

)mj

− 1

 1
2

(definition of expectation)
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=
1

2
√
d

1
d

d∑
j=1

(∫ +∞

−∞

pϵ(b)2

p(b)
db

)mj

− 1

 1
2

(simplify p(b))

=
1

2
√
d

1
d

d∑
j=1

Epϵ

[
pϵ(B)

p(B)

]mj

− 1

 1
2

(def of expectation)

Auxiliary computation in 1 We show that:

Ep

[
pϵ(b

(k)
j′ )

p(b
(k)
j′ )

]

=

∫ +∞

−∞

pϵ(b)

p(b)
p(b)db

=

∫ +∞

−∞
pϵ(b)db simplify p(b)

= 1 probability density function pϵ integrates to 1.

Final result: This gives the final result:

min
Ψ

max
P0∈H0
P1∈H1

Pe ≥ 1− TV (P ∥ Q)

⇒ min
Ψ

max
P0∈H0
P1∈H1

Pe ≥ 1− 1

2
√
d

1
d

d∑
j=1

Epϵ

[
pϵ(B)

p(B)

]mj

− 1

 1
2

D.2 PROOF FOR DISTRIBUTION IN AN EXPONENTIAL FAMILY

We consider a fixed exponential family in it natural parameterization, i.e., probability distributions of
the form:

fX(x | θ) = h(x) exp(θ ·T(x)−A(θ)), (25)
where θ is the only parameter varying between two distributions from that family, i.e., the functions
η, T and A are fixed. We recall a few properties of any exponential family (EF) that will be useful in
our computations.

First, the moment generating function (MGF) for the natural sufficient statistic T (x) is equal to:

MT (t) = exp (A(θ + t)−A(θ)) .

Then, the moments for T (x), when θ is a scalar parameter, are given by:

E[T ] = A′(θ)

V[T ] = A′′(θ).

Since the variance is non-negative V[T ] ≥ 0, this means that we have A′′(θ) > 0 and thus A′ is
monotonic and bijective. We will use that fact in the later computations.

In the following, we recall that the categorical distribution and the Gaussian distribution with fixed
variance σ2 are members of the exponential family.

Example: Categorical distributions as a EF The categorical variable has probability density
function:

p(x | π) = exp

(
K∑

k=1

xk log πk

)
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= exp

(
K−1∑
k=1

xk log πk +

(
1−

K−1∑
k=1

xk

)
log

(
1−

K−1∑
k=1

πk

))

= exp

(
K−1∑
k=1

log

(
πk

1−
∑K−1

k=1 πk

)
xk + log

(
1−

K−1∑
k=1

πk

))

where we have used the fact thatπK = 1−
∑K−1

k=1 πk.

We note that we need to use the PDF of the categorical that uses a minimal (i.e., K − 1) set of
parameters. We define h(x), T (x), θ ∈ RK−1 and A(θ) as:

h(x) = 1

T (x) = x,

θk = log

(
πk

1−
∑K−1

k=1 πk

)
= log

(
πk

πK

)
, for k = 1, ...,K − 1

A(θ) = − log

(
1−

K−1∑
k=1

πk

)
= log

(
1

1−
∑K−1

k=1 πk

)
= log

( ∑K
k=1 πk

1−
∑K−1

k=1 πk

)
= log

(
K∑

k=1

eθk

)
,

which shows that the categorical distribution is within the EF. For convenience we have defined θK
setting it to 0 as per the Equation above.

Now, we adapt these expressions for the case of a Categorical variable with only K = 3 values
x1 = −1, x2 = 1 and x3 = 0 such that π3 = 0, i.e., there is no mass on the x3 = 0, and we denote
π1 = p1 and π2 = p2 and π3 = 1− p1 − p2 = 0. We get:

h(x) = 1

T (x) = x,

θ1 = log

(
p1
p2

)
, and θ2 = 0 by convention, as above, θ3 = log

(
π3

p2

)
= −∞

A(θ1) = log
(
eθ1 + eθ2 + eθ3

)
= log

(
eθ1 + 1 + 0

)
= log

(
e
log

(
p1
p2

)
+ 1

)
= log

(
p1
p2

+ 1

)
,

where, in the proofs, we will have p1 = 1
2 + ϵ and p3 = 1

2 − ϵ such that the expectation is
−1.( 12 + ϵ) + 1.( 12 − ϵ) = −2ϵ.

Example: Gaussian distribution with fixed variance as a EF The Gaussian distribution with
fixed variance has probability density function:

p (x | µ) = 1√
2πσ2

exp

(
− (x− µ)2

2σ2

)
=

1√
2πσ2

exp

(
−x2 − 2xµ+ µ2

2σ2

)
=

1√
2πσ2

exp

(
− x2

2σ2

)
exp

(
2xµ− µ2

2σ2

)
=

1√
2πσ2

exp

(
− x2

2σ2

)
exp

(
xµ

σ2
− µ2

2σ2

)
.

We define h(x), T (x), θ ∈ R and A(θ) as:

h(x) =
1√
2πσ2

exp

(
− x2

2σ2

)
T (x) = x,

θ =
µ

σ2
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A(θ) =
µ2

2σ2
=

σ2θ2

2
.

which shows that the Gaussian distribution with fixed variance σ2 is within the EF.
Proposition D.4. The lower bound for the exponential family with any number of samples in each
group writes:

min
Ψ

max
P0∈H0
P1∈H1

Pe ≥ 1− 1

2
√
d

[
1

d

d∑
j=1

(
Mp(2∆θ)

Mp(∆θ)2

)mj

− 1

] 1
2

Proof. By Theorem D.3, we have:

min
Ψ

max
P0∈H0
P1∈H1

Pe ≥ 1− 1

2
√
d

1
d

d∑
j=1

Epϵ

[
pϵ(B)

p(B)

]mj

− 1

 1
2

Plug in the exponential family Under the assumption of an exponential family distribution for the
random variable B, we have:

min
Ψ

max
P0∈H0
P1∈H1

Pe

≥ 1− 1

2
√
d

1
d

d∑
j=1

Epϵ

[
h(B) exp(θϵ.T (B)−A(θϵ))

h(B) exp(θ0.T (B)−A(θ0))

]mj

− 1

 1
2

= 1− 1

2
√
d

1
d

d∑
j=1

Epϵ

[
exp(θϵ.T (B)−A(θϵ))

exp(θ0.T (B)−A(θ0))

]mj

− 1

 1
2

simplifying h

= 1− 1

2
√
d

1
d

d∑
j=1

Epϵ

[
exp(θϵ.T (B)−A(θϵ)) exp(−θ0.T (B) +A(θ0))

]mj

− 1

 1
2

properties of exp

= 1− 1

2
√
d

1
d

d∑
j=1

Epϵ

[
exp(A(θ0)−A(θϵ))

· exp
(
(θϵ − θ0) · T (B)

) ]mj

− 1

] 1
2

(properties of exp and rearranging terms)

= 1− 1

2
√
d

1
d

d∑
j=1

exp(A(θ0)−A(θϵ))mjEpϵ

[
exp((θϵ − θ0)T (B))

]mj

− 1

 1
2

= 1− 1

2
√
d

1
d

d∑
j=1

exp(A(θ0)−A(θϵ))mjMpϵ(∆θ)mj − 1

 1
2

(def. of MGF of T (B): Mpϵ(t) = Epϵ [exp(t · T (B))] with ∆θ = θϵ − θ0)

We define ∆θ = θϵ − θ0. Here, we will apply the properties of EF regarding moment generating
functions, i.e., for the pϵ with natural parameter θϵ:

Mpϵ(t) = exp (A(θϵ + t)−A(θϵ)) ⇒ Mpϵ(−∆θ) = exp (A(θ0)−A(θϵ)) ,

⇒ Mpϵ(∆θ) = exp (A(2θϵ − θ0)−A(θϵ)) ,

And, for p associated with natural parameter θ0:

Mp(t) = exp (A(θ0 + t)−A(θ0)) ⇒ Mp(−∆θ) = exp (A(2θ0 − θϵ)−A(θ0)) ,
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⇒ Mp(∆θ) = exp (A(θϵ)−A(θ0)) ,

⇒ Mp(∆θ)2 = exp (2A(θϵ)− 2A(θ0))

⇒ Mp(2∆θ) = exp (A(2θϵ − θ0)−A(θ0))

So, that we have on the one hand:

Mpϵ(−∆θ)Mpϵ(∆θ) = exp (A(θ0)−A(θϵ)) . exp (A(2θϵ − θ0)−A(θϵ))

and on the other hand:
Mp(2∆θ)

Mp(∆θ)2
=

exp (A(2θϵ − θ0)−A(θ0))

exp (2A(θϵ)− 2A(θ0))

=
exp (A(2θϵ − θ0))

exp (2A(θϵ)− 2A(θ0))
· 1

exp (A(θ0))

=
exp (A(2θϵ − θ0))

exp (2A(θϵ)−A(θ0))

= exp (A(2θϵ − θ0) +A(θ0)−A(θϵ)−A(θϵ))

= exp (A(θ0)−A(θϵ) +A(2θϵ − θ0)−A(θϵ))

= exp (A(θ0)−A(θϵ)) . exp (A(2θϵ − θ0)−A(θϵ))

Consequently, we get two equivalent expressions for our final result:

= 1− 1

2
√
d

1
d

d∑
j=1

exp(A(θ0)−A(θϵ))mj exp (A(2θϵ − θ0)−A(θϵ))
mj − 1

 1
2

= 1− 1

2
√
d

1
d

d∑
j=1

(Mpϵ(−∆θ)Mpϵ(∆θ))
mj − 1

 1
2

(first expression)

= 1− 1

2
√
d

1
d

d∑
j=1

(
Mp(2∆θ)

Mp(∆θ)2

)mj

− 1

 1
2

(second expression)

We will use the second expression.

D.3 PROOF FOR CATEGORICAL BOP

Here, we apply the exponential family result found in D.2 to find the lower bound for a categorical
distribution.
Corollary D.5. [Lower bound for categorical individual BoP for any number of samples in each
group (Monteiro Paes et al., 2022)] The lower bound writes:

min
Ψ

max
P0∈H0
P1∈H1

Pe ≥ 1− 1

2
√
d

[
1

d

d∑
j=1

(
1 + 4ϵ2

)mj − 1

] 1
2

where PX,S,Y is a distribution of data, for which the generic model h0 performs better, i.e., the true γ
is such that γ(h0, hp,D) < 0, and QX,S,Y is a distribution of data points for which the personalized
model performs better, i.e., the true γ is such that γ(h0, hp,D) ≥ ϵ.

Proof. By Proposition D.4, we have:

min
Ψ

max
P0∈H0
P1∈H1

Pe ≥ 1− 1

2
√
d

[
1

d

d∑
j=1

(
Mp(2∆θ)

Mp(∆θ)2

)mj

− 1

] 1
2
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Plug in Categorical assumption We find the bound for the categorical case. For the categorical,
we have θ = θ1 and:

θ0 = log

(
p1
p2

)
= log

1/2

1/2
= 0

θϵ = log

(
pϵ1
pϵ2

)
= log

(
1/2 + ϵ

1/2− ϵ

)
= log

(
1 + 2ϵ

1− 2ϵ

)
A(θ0) = log

(
eθ0 + 1

)
= log(2)

A(θϵ) = log
(
eθϵ + 1

)
= log

(
1 + 2ϵ

1− 2ϵ
+ 1

)
= log

(
1 + 2ϵ+ 1− 2ϵ

1− 2ϵ

)
= log

(
2

1− 2ϵ

)
A(2θϵ) = log

(
e2θϵ + 1

)
= log

(
(eθϵ)2 + 1

)
= log

((
1 + 2ϵ

1− 2ϵ

)2

+ 1

)

= log

(
1 + 4ϵ+ 4ϵ2

1− 4ϵ+ 4ϵ2
+ 1

)
= log

(
1 + 4ϵ+ 4ϵ2 + 1− 4ϵ+ 4ϵ2

1− 4ϵ+ 4ϵ2

)
= log

(
2 + 8ϵ2

1− 4ϵ+ 4ϵ2

)

We also have: ∆θ = θϵ.

Accordingly, we have:

Mp(∆θ) = exp (A(θ0 +∆θ)−A(θ0))

= exp (A(θϵ)−A(θ0))

= exp

(
log

(
2 + ϵ

1− 2ϵ

)
− log(2)

)
= exp log

(
1

2

(
2

1− 2ϵ

))
=

1

1− 2ϵ

Mp(2∆θ) = exp (A(θ0 + 2∆θ)−A(θ0))

= exp (A(2θϵθ)−A(θ0))

= exp

(
log

(
2 + 8ϵ2

1− 4ϵ+ 4ϵ2

)
− log(2)

)
= exp log

(
1

2

2 + 8ϵ2

1− 4ϵ+ 4ϵ2

)
=

1 + 4ϵ2

1− 4ϵ+ 4ϵ2

And the lower bound becomes:

min
Ψ

max
P0∈H0
P1∈H1

Pe ≥ 1− TV (P ∥ Q)

⇒ min
Ψ

max
P0∈H0
P1∈H1

Pe ≥ 1− 1

2
√
d

[
1

d

d∑
j=1

(
Mp(2∆θ)

Mp(∆θ)2

)mj

− 1

] 1
2
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= 1− 1

2
√
d

[
1

d

d∑
j=1

 1+4ϵ2

1−4ϵ+4ϵ2(
1

1−2ϵ

)2


mj

− 1

] 1
2

= 1− 1

2
√
d

[
1

d

d∑
j=1

(
1+4ϵ2

1−4ϵ+4ϵ2

1
1−4ϵ+4ϵ2

)mj

− 1

] 1
2

= 1− 1

2
√
d

[
1

d

d∑
j=1

(
1 + 4ϵ2

)mj − 1

] 1
2

D.4 MAXIMUM ATTRIBUTES (CATEGORICAL BOP) FOR ALL PEOPLE

In the case where dataset D is drawn from an unknown distribution and has d groups where d = 2k,
with each group having m = ⌊N/d⌋ samples, Corollary D.5 becomes:

min
Ψ

max
P0∈H0
P1∈H1

Pe ≥ 1− 1

2
√
d

[ (
1 + 4ϵ2

)m − 1

] 1
2

Corollary D.6 (Maximum attributes (categorical) for all people). Consider auditing a personalized
classifier hp to verify if it provides a gain of ϵ = 0.01 to each group on an auditing dataset D.
Consider an auditing dataset with N = 8× 109 samples, or one sample for each person on earth. If
hp uses more than k ≥ 18 binary group attributes, then for any hypothesis test there will exist a pair
of probability distributions PX,G,Y ∈ H0, QX,G,Y ∈ H1 for which the test results in a probability
of error that exceeds 50%.

k ≥ 18 =⇒ min
Ψ

max
PX,G,Y ∈H0

QX,G,Y ∈H1

Pe ≥
1

2
. (26)

D.5 PROOF FOR GAUSSIAN BOP

Here, we do the proof assuming that the BoP is a normal variable with a second moment bounded by
σ2.

Corollary D.7. [Lower bound for Gaussian BoP for any number of samples in each group] The
lower bound writes:

min
Ψ

max
P0∈H0
P1∈H1

Pe ≥ 1− 1

2
√
d

[
1

d

d∑
j=1

exp

(
mjϵ

2

σ2

)
− 1

] 1
2

where PX,S,Y is a distribution of data, for which the generic model h0 performs better, i.e., the true γ
is such that γ(h0, hp,D) < 0, and QX,S,Y is a distribution of data points for which the personalized
model performs better, i.e., the true γ is such that γ(h0, hp,D) > 0.

Proof. By Proposition D.4, we have:

min
Ψ

max
P0∈H0
P1∈H1

Pe ≥ 1− 1

2
√
d

[
1

d

d∑
j=1

(
Mp(2∆θ)

Mp(∆θ)2

)mj

− 1

] 1
2
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Plug in Gaussian assumption We find the bound for the Gaussian case. For the Gaussian, we
have:

θ0 =
µ0

σ2
= 0

θϵ =
µϵ

σ2
=

ϵ

σ2

A(θ0) =
σ2θ20
2

= 0

A(θϵ) =
σ2θ2ϵ
2

=
ϵ2

2σ2

A(2θϵ) =
σ24θ2ϵ

2
=

2ϵ2

σ2

because µ0 = 0 and µϵ = ϵ by construction. Thus, we also have: ∆θ = θϵ.

Accordingly, we have:

Mp(∆θ) = exp (A(θ0 +∆θ)−A(θ0)) = exp (A(θϵ)−A(θ0)) = exp

(
ϵ2

2σ2

)
Mp(2∆θ) = exp (A(θ0 + 2∆θ)−A(θ0)) = exp (A(2θϵ − θ0)) = exp (A(2θϵ)) = exp

(
2ϵ2

σ2

)

And the lower bound becomes:

min
Ψ

max
P0∈H0
P1∈H1

Pe ≥ 1− TV (P ∥ Q)

⇒ min
Ψ

max
P0∈H0
P1∈H1

Pe ≥ 1− 1

2
√
d

[
1

d

d∑
j=1

(
Mp(2∆θ)

Mp(∆θ)2

)mj

− 1

] 1
2

= 1− 1

2
√
d

[
1

d

d∑
j=1

 exp
(

2ϵ2

σ2

)
exp

(
ϵ2

2σ2

)2
mj

− 1

] 1
2

= 1− 1

2
√
d

[
1

d

d∑
j=1

exp
(

2ϵ2

σ2

)
exp

(
2ϵ2

2σ2

)
mj

− 1

] 1
2

= 1− 1

2
√
d

[
1

d

d∑
j=1

exp
(

2ϵ2

σ2

)
exp

(
ϵ2

σ2

)
mj

− 1

] 1
2

= 1− 1

2
√
d

[
1

d

d∑
j=1

exp

(
ϵ2

σ2

)mj

− 1

] 1
2

= 1− 1

2
√
d

[
1

d

d∑
j=1

exp

(
mjϵ

2

σ2

)
− 1

] 1
2

In the case where each group has a different standard deviation of their BoP distribution, this becomes:

= 1− 1

2
√
d

[
1

d

d∑
j=1

exp

(
mjϵ

2

σ2
j

)
− 1

] 1
2
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D.6 MAXIMUM ATTRIBUTES (GAUSSIAN BOP) FOR ALL PEOPLE

In the case where dataset D is drawn from an unknown distribution and has d groups where d = 2k,
with each group having m = ⌊N/d⌋ samples, Corollary D.7 becomes:

min
Ψ

max
P0∈H0
P1∈H1

Pe ≥ 1− 1

2
√
d

[
exp

(
mϵ2

σ2

)
− 1

] 1
2

Corollary D.8 (Maximum attributes (Gaussian BoP) for all people). Consider auditing a personalized
classifier hp to verify if it provides a gain of ϵ = 0.01 to each group on an auditing dataset D.
Consider an auditing dataset with σ = 0.1 and N = 8× 109 samples, or one sample for each person
on earth. If hp uses more than k ≥ 22 binary group attributes, then for any hypothesis test there will
exist a pair of probability distributions PX,G,Y ∈ H0, QX,G,Y ∈ H1 for which the test results in a
probability of error that exceeds 50%.

k ≥ 22 =⇒ min
Ψ

max
PX,G,Y ∈H0

QX,G,Y ∈H1

Pe ≥
1

2
. (27)

D.7 PROOF FOR THE SYMMETRIC GENERALIZED NORMAL DISTRIBUTION

We solve for the the bound assuming the BoP is a symmetric generalized Gaussian distribution.

Symmetric Generalized Gaussian The symmetric generalized Gaussian distribution, also known
as the exponential power distribution, is a generalization of the Gaussian distributions that include
the Laplace distribution. A probability distribution in this family has probability density function:

p(x|µ, α, β) = β

2αΓ(1/β)
exp

(
−
(
|x− µ|

α

)β
)
, (28)

with mean and variance:

E[X] = µ, V [X] =
α2Γ(3/β)

Γ(1/β)
. (29)

We can write the standard deviation σ = α
√

Γ(1/β)
Γ(3/β) = αγ(β) where we introduce the notation

γ(β) =
√

Γ(1/β)
Γ(3/β) . This notation will become convenient in our computations.

Example: Laplace The Laplace probability density function is given by:

f(x | µ, b) = 1

2b
exp

(
−|x− µ|

b

)
(30)

which is in the family for α = b and β = 1, since the gamma function verifies Γ(1) = (1− 1)! =
0! = 1.
Proposition D.9. [Lower bound for symmetric generalized Gaussian BoP for any number of samples
in each group] The lower bound writes:

min
Ψ

max
P0∈H0
P1∈H1

Pe ≥ 1− 1

2
√
d

1
d

d∑
j=1

Epϵ

[
exp

(
−|B − ϵ|β − |B|β

αβ

)]mj

− 1

 1
2

where PX,S,Y is a distribution of data, for which the generic model h0 performs better, i.e., the true γ
is such that γ(h0, hp,D) < 0, and QX,S,Y is a distribution of data points for which the personalized
model performs better, i.e., the true γ is such that γ(h0, hp,D) > 0.

Proof. By Theorem D.3, we have:

min
Ψ

max
P0∈H0
P1∈H1

Pe ≥ 1− 1

2
√
d

1
d

d∑
j=1

Epϵ

[
pϵ(B)

p(B)

]mj

− 1

 1
2
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Plug in the symmetric generalized Gaussian distribution Under the assumption that the random
variable B follows an exponential power distribution, we continue the computations as:

min
Ψ

max
P0∈H0
P1∈H1

Pe ≥ 1− 1

2
√
d

1d
d∑

j=1

Epϵ

[exp(−( |B−ϵ|
α

)β)
exp

(
−
(

|B|
α

)β)
]mj

− 1


1
2

= 1− 1

2
√
d

1
d

d∑
j=1

Epϵ

[
exp

(
−
(
|B − ϵ|

α

)β
)

· exp

((
|B|
α

)β
)]mj

− 1

 1
2

(property of exp)

= 1− 1

2
√
d

1
d

d∑
j=1

Epϵ

[
exp

(
−
(
|B − ϵ|

α

)β

+

(
|B|
α

)β
)]mj

− 1

 1
2

(property of exp)

= 1− 1

2
√
d

1
d

d∑
j=1

Epϵ

[
exp

(
−|B − ϵ|β − |B|β

αβ

)]mj

− 1

 1
2

(property of exp)

D.8 PROOF FOR LAPLACE BOP

Here, we do the proof assuming that the BoP is a Laplace distribution (for more peaked than the
normal variable).

Corollary D.10. [Lower bound for a Laplace BoP for any number of samples in each group] The
lower bound writes:

min
Ψ

max
P0∈H0
P1∈H1

Pe ≥ 1− 1

2
√
d

1
d

d∑
j=1

exp
(mjϵ

b

)
− 1

 1
2

where PX,S,Y is a distribution of data, for which the generic model h0 performs better, i.e., the true γ
is such that γ(h0, hp,D) < 0, and QX,S,Y is a distribution of data points for which the personalized
model performs better, i.e., the true γ is such that γ(h0, hp,D) > 0.

Proof. By Proposition D.9, we have:

min
Ψ

max
P0∈H0
P1∈H1

Pe ≥ 1− 1

2
√
d

1
d

d∑
j=1

Epϵ

[
exp

(
−|B − ϵ|β − |B|β

αβ

)]mj

− 1

 1
2

Plugging in our values of α and β shown to satisfy the Laplace probability density function we get:

= 1− 1

2
√
d

1
d

d∑
j=1

Epϵ

[
exp

(
−|B − ϵ| − |B|

b

)]mj

− 1

 1
2

Using bounds Since we are finding the worst case lower bound, we will find functions that upper
and lower bound |B − ϵ| − |B|. This function is lower bounded by ϵ and upper bounded by −ϵ since
ϵ < 0. Indeed, since ϵ < 0, there are three cases:

• 0 < B < B − ϵ: this gives |B − ϵ| − |B| = B − ϵ−B = −ϵ
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• B < 0 < B − ϵ : this gives |B − ϵ| − |B| = B − ϵ + B = 2B − ϵ > 2ϵ − ϵ = ϵ since
0 < B − ϵ.

• B < B − ϵ < 0: this gives |B − ϵ| − |B| = −B + ϵ+B = ϵ.

Thus, we have: ϵ ≤ |B − ϵ| − |B| ≤ −ϵ and:

ϵ ≤ |B − ϵ| −B| ≤ −ϵ

⇒ ϵ

b
≤ |B − ϵ| − |B|

b
≤ − ϵ

b

⇒ − ϵ

b
≥ −|B − ϵ| − |B|

b
≥ ϵ

b

⇒ exp
(
− ϵ

b

)
≥ exp

(
−|B − ϵ| − |B|

b

)
≥ exp

( ϵ
b

)
Thus, applying the expectation gives:

Epϵ

[
exp

(
− ϵ

b

)]
≥ Epϵ

[
exp

(
−|B − ϵ| − |B|

b

)]
≥ Epϵ

[
exp

( ϵ
b

)]
⇒ exp

(
− ϵ

b

)
≥ Epϵ

[
exp

(
−|B − ϵ| − |B|

b

)]
≥ exp

( ϵ
b

)
because the lower and upper bounds do not depend on B.

All the terms in these inequalities are positive, and the power function is increasing on positive
numbers. Thus, we get:

exp
(
− ϵ

b

)mj

≥ Epϵ

[
exp

(
−|B − ϵ| − |B|

b

)]mj

≥ exp
( ϵ
b

)mj

⇒ 1

d

d∑
j=1

exp
(
− ϵ

b

)mj

≥ 1

d

d∑
j=1

Epϵ

[
exp

(
−|B − ϵ| − |B|

b

)]mj

≥ 1

d

d∑
j=1

exp
( ϵ
b

)mj

⇒ 1

d

d∑
j=1

exp
(
−mjϵ

b

)
≥ 1

d

d∑
j=1

Epϵ

[
exp

(
−|B − ϵ| − |B|

b

)]mj

≥ 1

d

d∑
j=1

exp
(mjϵ

b

)

⇒ 1

d

d∑
j=1

exp
(
−mjϵ

b

)
− 1 ≥ 1

d

d∑
j=1

Epϵ

[
exp

(
−|B − ϵ| − |B|

b

)]mj

− 1 ≥ 1

d

d∑
j=1

exp
(mjϵ

b

)
− 1

⇒

1

d

d∑
j=1

exp
(
−mjϵ

b

)
− 1

 1
2

≥

1

d

d∑
j=1

Epϵ

[
exp

(
−|B − ϵ| − |B|

b

)]mj

− 1

 1
2

≥

1

d

d∑
j=1

exp
(mjϵ

b

)
− 1

 1
2

⇒ − 1

2
√
d

1

d

d∑
j=1

exp
(
−mjϵ

b

)
− 1

 1
2

≤ − 1

2
√
d

1

d

d∑
j=1

Epϵ

[
exp

(
−|B − ϵ| − |B|

b

)]mj

− 1

 1
2
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≤ − 1

2
√
d

1

d

d∑
j=1

exp
(mjϵ

b

)
− 1

 1
2

Back to Probability of error To maximize Pe, we take the function that gives us the lower bound.
Plugging this upper bound back into our equation for Pe:

min
Ψ

max
P0∈H0
P1∈H1

Pe ≥ 1− 1

2
√
d

1
d

d∑
j=1

exp
(
−mjϵ

b

)
− 1

 1
2

In the case where each group has a different scale parameter of their BoP distribution, this becomes:

min
Ψ

max
P0∈H0
P1∈H1

Pe ≥ 1− 1

2
√
d

1
d

d∑
j=1

exp

(
−mjϵ

bj

)
− 1

 1
2

Such that for the unflipped hypothesis testing with ϵ > 0 we get:

min
Ψ

max
P0∈H0
P1∈H1

Pe ≥ 1− 1

2
√
d

1
d

d∑
j=1

exp

(
mjϵ

bj

)
− 1

 1
2

D.9 MAXIMUM ATTRIBUTES (LAPLACE BOP) FOR ALL PEOPLE

In the case where dataset D is drawn from an unknown distribution and has d groups where d = 2k,
with each group having m = ⌊N/d⌋ samples, Corollary D.10 becomes:

min
Ψ

max
P0∈H0
P1∈H1

Pe ≥ 1− 1

2
√
d

[
exp

(mϵ

b

)
− 1
] 1

2

Corollary D.11 (Maximum attributes (Laplace) for all people). Consider auditing a personalized
classifier hp to verify if it provides a gain of ϵ = 0.01 to each group on an auditing dataset D.
Consider an auditing dataset with σ = 0.1 and N = 8× 109 samples, or one sample for each person
on earth. If hp uses more than k ≥ 26 binary group attributes, then for any hypothesis test there will
exist a pair of probability distributions PX,G,Y ∈ H0, QX,G,Y ∈ H1 for which the test results in a
probability of error that exceeds 50%.

k ≥ 26 =⇒ min
Ψ

max
PX,G,Y ∈H0

QX,G,Y ∈H1

Pe ≥
1

2
. (31)

E LIMITS ON ATTRIBUTES AND SAMPLE SIZE

This section derives theoretical limits on the number of personal attributes and the sample size
required per group to ensure that the probability of error remains below a practitioner-specified
threshold.

Corollary E.1. Let N be the number of participants, and assume that each group j = 1, . . . , d has
mj = m =

⌊
N
d

⌋
samples. To ensure that the probability of error verifies minmaxPe ≤ 1/2, the

number of binary attributes k must be chosen such that k ≤ kmax, where:

kmax =


1.4427W

(
N log(4ϵ2 + 1)

)
(Categorical BoP)

1.4427W
(

ϵ2N
σ2

)
(Gaussian BoP, variance σ2)

1.4427W
(
ϵN
b

)
(Laplace BoP, scale b),

where W is the Lambert W function.
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Corollary E.2. Let N be the number of participants, and assume that each group j = 1, . . . , d has
mj = m =

⌊
N
d

⌋
samples. To ensure that the probability of error verifies minmaxPe ≤ v where v is

chosen by the practitioner, the size of the groups m must be m ≥ mmin, where:

mmin =


log(4·2k(1−v)2+1)

log(1+4ϵ2) (Categorical BoP)
σ2

ϵ2 log
(
22+k

(
1 + 2−2−k − 2v + v2

))
(Gaussian BoP, variance σ2)

b
ϵ log

(
22+k

(
1 + 2−2−k − 2v + v2

))
(Laplace BoP, scale b),

F MIMIC-III EXPERIMENT RESULTS

Below is all supplementary material for the MIMIC-III experiment. This includes G-BoP distribution
plots and plots showing how incomprehensiveness and sufficiency change over the number of features
removed.

F.1 EXPERIMENT PLOTS

Experiment Setup. We assume that the practitioner uses a 70/30 train-test split for both tasks and
compare two neural network models: a personalized model with one-hot encoded group attributes
(hp) and a generic model without them (h0). Regression outputs are normalized to zero mean and
unit variance.

Explanation Method and Explanation Evaluation metric. We assume that the practitioner gen-
erates the most important features of our models using Integrated Gradients from Captum as our
explanation method (Sundararajan et al., 2017). We assume that they use sufficiency and incom-
prehensiveness as our explanation evaluation metrics, where 50% of features are either kept or
removed.

Integrated Gradients extracts the most important features of each model by computing input-feature
attributions by integrating gradients along a path from a baseline to the input. To evaluate BoPX using
sufficiency and incomprehensiveness, we set r such that 50% of features are kept or removed. Plots
below depict how sufficiency and incomprehensiveness change for different values of r, as well as
show the individual BoP distributions. We use Integrated Gradients for its efficiency, interpretability,
and broad adoption, though our framework supports any attribution method.

In the following section, we show supplementary plots for the regression task on the auditing dataset.
We show the distribution of the BoP across participants for all three metrics we evaluate. We overlay
Laplace and Gaussian distributions to see which fit the individual BoP distribution best, illustrating
that prediction and incomprehensiveness are best fit by Laplace distributions and sufficiency by a
Gaussian distribution. Additionally, we show how incomprehensiveness and sufficiency change for
the number of important attributes r that are kept are removed.

Figure 10: Individual prediction cost for all groups using the square error loss function.
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Figure 11: Individual incomprehensiveness cost for all groups using the square error loss function.

Figure 12: Individual sufficiency cost for all groups using the square error loss function.

G ADDITIONAL DATASET RESULTS

The following is the experiment results G-BoPP and G-BoPX on the UCI Heart (Janosi et al., 1989)
and MIMIC-III Kidney injury dataset (Johnson et al., 2016) utilizing three explainer methods through
Captum: Integrated Gradients Sundararajan et al. (2017), Shapley Value Sampling (Štrumbelj &
Kononenko, 2010), and Deeplift (Shrikumar et al., 2017). Interestingly, we see a large amount of
agreement across these explainer methods: in nearly all cases, groups that benefited or were harmed
remain consistent across methods, although the amount by which this occurs varies. We compute
ϵlim, the value of ϵ for which the lower bound of Pe surpasses 50% for the Shapley Value Sampling
Method on the UCI Heart dataset to illustrate the full pipeline.
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Sufficiency per Group for Varying r Values
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Figure 13: Values of Sufficiency and Incomprehensiveness across varying r top features selected
using the square error loss function. Values are found for h0 and hp.
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Table 4: Experimental results on the UCI Heart test set, with columns for DeepLift (D.L.), Integrated
Gradients (I.G.), and Shapley Value Sampling (S.V.S.). The classification task is predicting heart
disease presence and the regression task is predicting ST depression induced by exercise. All
available features are used, and negative entries appear in red. Using our framework, we computed
ϵlim (for the S.V.S. explainer method) where the lower bound on Pe surpasses 50%. In classification,
ϵlim = 0.1156 for all metrics; in regression, ϵlim = 0.0163 for prediction (Laplace), 0.02 for
incomprehensiveness (Laplace), and 0.153 for sufficiency (Gaussian).

Classification Results

Group Prediction Incomp. D.L Suff. D.L Incomp. I.G. Suff. I.G. Incomp. S.V.S. Suff. S.V.S.

Female, 45+ 0.0000 0.0000 -0.0435 0.0000 -0.0435 0.0000 -0.0870
Female, 18–45 0.0000 -0.1429 0.0000 -0.1429 0.0000 0.0000 0.0000
Male, 45+ 0.0588 -0.0588 -0.0784 -0.0588 -0.1373 -0.0588 -0.1176
Male, 18–45 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000
All Pop. 0.0440 -0.0330 -0.0440 -0.0330 -0.0750 -0.0220 -0.0769

Minimal BoP 0.0000 -0.1429 -0.0784 -0.1429 -0.1373 -0.0588 -0.1176

Regression Results

Group Prediction Incomp. D.L Suff. D.L Incomp. I.G Suff. I.G Incomp. S.V.S. Suff. S.V.S.

Female, 45+ -0.3077 0.3528 0.1385 0.0980 0.2040 0.1747 0.3332
Female, 18–45 0.0521 -0.0004 0.1067 -0.0438 0.1774 -0.0207 0.0222
Male, 45+ 0.0914 0.0286 0.0531 0.0173 0.1381 0.0315 0.1617
Male, 18–45 -0.1410 0.1239 0.4293 0.1384 0.4365 0.1360 0.3592
All Pop. -0.0363 0.0791 0.1833 0.0523 0.2035 0.0779 0.2258

Minimal BoP -0.3077 -0.0004 0.0531 -0.0438 0.1381 -0.0207 0.0222

Table 5: Experimental results on the MIMIC-III Kidney test set, with columns for DeepLift (D.L.),
Integrated Gradients (I.G.), and Shapley Value Sampling (S.V.S.); negative values appear in red.
The regression task predicts hours to the next continuous renal replacement therapy (CRRT). For
classification, the target is patient mortality during the same hospital admission. Features include
recent lab measurements (e.g., sodium, potassium, creatinine) prior to CRRT, along with patient age,
hours in the ICU at CRRT administration, and the Sequential Organ Failure Assessment (SOFA)
score at admission.

Classification Results

Group Prediction Incomp. D.L Suff. D.L Incomp. I.G Suff. I.G Incomp. S.V.S. Suff. S.V.S.

Female, 45+ 0.0392 0.0392 -0.0784 0.0392 -0.0784 0.0392 -0.0196
Female, 18–45 0.0000 0.0000 0.3636 0.0000 0.3636 0.0000 0.3636
Male, 45+ 0.0164 -0.0164 0.0820 -0.0164 0.0984 -0.0164 0.0000
Male, 18–45 0.0000 0.0000 -0.0833 0.0000 -0.0833 0.0000 0.1667
All Pop. 0.0224 0.0074 0.0296 0.0074 0.0370 0.0074 0.0370

Minimal BoP 0.0000 -0.0164 -0.0833 -0.0164 -0.0833 -0.0164 -0.0196

Regression Results

Group Prediction Incomp. D.L Suff. D.L Incomp. I.G Suff. I.G Incomp. S.V.S. Suff. S.V.S.

Female, 45+ 0.7582 0.1440 -0.5722 0.1322 -0.6185 0.1380 -0.5414
Female, 18–45 0.5639 0.0177 -0.3325 0.0404 -0.2543 0.0649 -0.3107
Male, 45+ 0.3449 0.0258 -0.1180 0.0299 -0.1368 0.0310 -0.1518
Male, 18–45 0.4869 -0.1016 -0.1639 -0.0997 -0.1571 -0.0892 -0.2124
All Pop. -0.0093 0.0595 -0.3097 0.0584 -0.3311 0.0635 -0.3167

Minimal BoP -0.0093 -0.1016 -0.5722 -0.0997 -0.6185 -0.0892 -0.5414
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