

WHEN MACHINE LEARNING GETS PERSONAL: EVALUATING PREDICTION AND EXPLANATION

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

ABSTRACT

In high-stakes domains like healthcare, users often expect that sharing personal information with machine learning systems will yield tangible benefits, such as more accurate diagnoses and clearer explanations of contributing factors. However, the validity of this assumption remains largely unexplored. We propose a unified framework to *fairly quantify if personalizing a model improves both prediction and explanation for every group who provide personal data*. We show that its impacts on prediction and explanation can diverge: a model may become more or less explainable even when prediction is unchanged. For practical settings, we study a standard hypothesis test for detecting personalization effects on demographic groups. We derive a finite-sample lower bound on its probability of error as a function of group sizes, number of personal attributes, and desired benefit from personalization. This provides actionable insights, such as which dataset characteristics are necessary to test an effect, or the maximum effect that can be tested given a dataset. We apply our framework to real-world *tabular* datasets *using feature-attribution methods*, uncovering scenarios where effects are fundamentally untestable due to the dataset statistics. Our results highlight the need for joint evaluation of prediction and explanation in personalized models and the importance of designing models and datasets with sufficient information for such evaluation.

1 INTRODUCTION

In critical domains like healthcare and education, machine learning models are increasingly personalized by incorporating input attributes that encode personal characteristics. These attributes can be sensitive and linked to historical bias, such as sex or race, or costly, for example requiring expert-administered medical assessments. When users provide personal attributes to a model, they implicitly expect improved predictions, but does personalization consistently meet that expectation?

Personalization can indeed enhance predictive accuracy. For instance, cardiovascular risk prediction models often perform better when including sex (Paulus et al., 2016; Huang et al., 2024; Mosca et al., 2011) and race (Paulus et al., 2018). This is because men, women, and different racial groups exhibit different heart disease patterns. For example, hypertension is more common in African American populations (Flack et al., 2003). Hence, personalization enhances clinical predictions by capturing meaningful biological and sociocultural variation.

However, personalization can also pose risks. Including sensitive attributes such as race, gender, or age can amplify biases in machine learning and perpetuate damaging inequality. For example, Obermeyer et al. (2019) showed that a health algorithm relying on health care costs, an attribute shaped by racial inequities, systematically underestimated illness in Black patients compared to equally sick white patients. This reduced their access to extra care by over half.

Generally, personalization may benefit overall accuracy while harming specific groups, making such risks harder to detect. In sleep apnea classification, adding age and sex improved overall performance but increased errors for older women and younger men (Suriyakumar et al., 2023). Similar group disparities have been observed in explainable machine learning, where some users receive less faithful or reliable explanations than others (Balagopalan et al., 2022; Dai et al., 2022). *These gaps matter: when explanations are less faithful to the true model logic, they can give users an inaccurate picture of how the model makes decisions, leading to misplaced trust or missed warning signs.* Dai et al. (2022) illustrate this in a healthcare setting where explanations for men correctly reveal the model’s

reliance on a spurious feature, helping doctors override bad predictions, while explanations for women hide the spurious reasoning and instead highlight clinically relevant cues, causing doctors to trust incorrect predictions and resulting in higher misdiagnosis rates. However, these studies did not examine whether personalization itself contributes to explanation disparities, making it critical to assess whether model personalization may reduce explanation quality for some users. Hence, before personalizing a model, practitioners must consider if it delivers consistent gains across demographic groups in both prediction and explanation—see Fig. 1.

This showcases the need for a quantitative framework to **rigorously** and **fairly** assess the benefits and risks of personalization. We focus on two key goals of machine learning models in high-stakes settings like healthcare: *(i)* making accurate predictions and *(ii)* providing explanations for them. Our central question is: *how reliably can we evaluate whether personalization improves prediction accuracy and explanation quality, both overall and across groups?*

Contributions. We propose a comprehensive study of the impact of personalization for prediction accuracy and explanation quality in machine learning models. Specifically:

1. We show that even when personalization does not improve prediction, it can enhance or degrade explainability **in terms of how sufficient and comprehensive an explanation is**. This highlights the need to evaluate both independently **to ensure fairness** in settings where accuracy and interpretability are critical (Section 4).

2. We derive distribution-aware limits on when personalization cannot be reliably tested, showing how many attributes or samples are needed in finite datasets. Our theory extends prior work beyond binary classification to general supervised learning, revealing key differences between evaluating prediction and explanation in classification versus regression (Section 5).

3. We apply our proposed framework **to real-world tabular datasets** on classification and regression tasks, **revealing how empirically personalization seems to affect explanation and prediction differently** (Table 2). We illustrate how group-level gains from personalization are fundamentally untestable, thereby precluding statistical justification across different scenarios (Section 6).

Overall, we offer a cautionary perspective on the promise of personalized medicine and the personalization of machine learning in other critical domains. Even when personalizing a machine learning model could be beneficial, it might be impossible to reliably prove it—thus limiting its practical use.

2 RELATED WORKS

Studies that investigate how personalizing machine learning models influences group outcomes (Suriyakumar et al., 2023) are limited to a narrow subset of performance measures and do not address explanation quality as described next. Extended related works are in Appendix A.

Theory. Few works theoretically characterize the impact of personalization. Monteiro Paes et al. (2022) define the Benefit of Personalization (BoP) as the minimum performance gain any group can expect. While the *definition* applies to any supervised learning task and “performance” measure, the theory supporting its use is confined to binary performance measures, such as accuracy in binary classification (0/1 loss) or false negative and positive rates (Bernoulli variables). Hence, it does not extend to continuous metrics like regression accuracy or explanation quality for regression and fails to provide a complete framework. Moreover, the theorems make unrealistic assumptions about dataset statistics (e.g., demographic groups of equal size) that further restrict their applicability in real-world settings. The general impact of personalization therefore remains theoretically uncharacterized.

Empirical Evidence. While the impact of personalization on explanation quality has never been measured, a few empirical studies have evaluated the fairness of explanations. Specifically, Balagopalan et al. (2022) train a human-interpretable model to imitate the behavior of a blackbox model, and

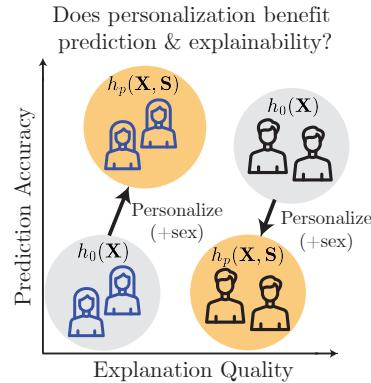


Figure 1: Impact of personalization on prediction and explanation: some groups benefit, others are harmed. h_0 is a generic model, h_p is a personalized model that takes an additional group attribute, S .

108 **Table 1: Costs of model h for group s used to evaluate the impact of personalization** on data
109 $(\tilde{\mathbf{X}}, \mathbf{Y})$ where $\tilde{\mathbf{X}} = \mathbf{X}$ for a generic model h_0 , $\tilde{\mathbf{X}} = (\mathbf{X}, \mathbf{S})$ for a personalized model h_p , while
110 $\mathbf{X}_{\setminus J}$ denotes the input when removing the most important features and \mathbf{X}_J is its complement
111 (see Section 4). Personalization benefits group $s \in \mathcal{S}$ if $C(h_0, s) - C(h_p, s) > 0$ and harms if
112 $C(h_0, s) - C(h_p, s) < 0$. Incomprehensiveness is abbreviated as Incomp.
113

$C(h, s)$		Classification	Regression
Explain Predict	Loss	$\Pr(h(\tilde{\mathbf{X}}) \neq \mathbf{Y} \mid \mathbf{S} = s)$	$\mathbb{E} [\ h(\tilde{\mathbf{X}}) - \mathbf{Y}\ ^2 \mid \mathbf{S} = s]$
	Evaluation metric	$-\text{AUC}(h, \mathbf{X}, \mathbf{Y} \mid \mathbf{S} = s)$	$-R^2(h, \mathbf{X}, \mathbf{Y} \mid \mathbf{S} = s)$
	Sufficiency	$\Pr(h(\tilde{\mathbf{X}}) \neq h(\tilde{\mathbf{X}}_J) \mid \mathbf{S} = s)$	$\mathbb{E} [\ h(\tilde{\mathbf{X}}) - h(\tilde{\mathbf{X}}_J)\ ^2 \mid \mathbf{S} = s]$
	Incomp.	$-\Pr(h(\tilde{\mathbf{X}}) \neq h(\tilde{\mathbf{X}}_{\setminus J}) \mid \mathbf{S} = s)$	$-\mathbb{E} [\ h(\tilde{\mathbf{X}}) - h(\tilde{\mathbf{X}}_{\setminus J})\ ^2 \mid \mathbf{S} = s]$

121 characterize *fidelity* as how well it matches the blackbox model predictions. They found that the
122 quality and reliability of explanations vary across different groups, but their experiments are restricted
123 to binary classifiers, and to fidelity as the only explanation method. By contrast, Dai et al. (2022)
124 evaluate various post hoc explanation methods across different evaluation metrics. They show that
125 explanations can vary in quality across demographic groups, leading to fairness concerns, though
126 their experiments are also restricted to binary classifiers. Neither work considers regression tasks or
127 examines how personalization would affect differences in explanation quality across groups. These
128 constraints limit the practical relevance of existing empirical results, as real-world scenarios do not
129 always align with such settings.

130 **Link to Fairness.** Fairness in machine learning aims to mitigate biased outcomes affecting individuals
131 or groups (Mehrabi et al., 2022). Past works have defined individual fairness, which seeks similar
132 performance for similar individuals (Dwork et al., 2011), or group fairness (Dwork & Ilvento, 2019;
133 Hardt et al., 2016), which seeks similar performance across different groups. Within this literature,
134 most methods, metrics, and analyses are intended for classification tasks (Pessach & Shmueli, 2022).
135 As for the fair regression literature, authors focus on designing fair learning methods (Hebert-Johnson
136 et al., 2018; Berk et al., 2017; Fukuchi et al., 2013; Pérez-Suay et al., 2017; Calders et al., 2013),
137 such as multicalibration, or defining fairness criteria for regression tasks (Gursoy & Kakadiaris, 2022;
138 Agarwal et al., 2019). By contrast, our approach does not require equal performance across individuals
139 or groups. Instead, we study a relaxed fairness notion: ensuring that no group is systematically
140 harmed by personalization. We propose a framework to evaluate whether this weaker fairness criterion
141 is satisfied, both theoretically and empirically, rather than proposing corrective algorithms.
142

143 3 BACKGROUND: BENEFIT OF PERSONALIZATION FRAMEWORK

144 Let $\mathcal{X}, \mathcal{S}, \mathcal{Y}$ denote, respectively, the input feature, group attribute, and outcome spaces. A *personalized model* $h_p : \mathcal{X} \times \mathcal{S} \rightarrow \mathcal{Y}$ aims to predict an outcome variable $y \in \mathcal{Y}$ using both an input feature
145 vector $x \in \mathcal{X}$ and a vector of group attributes $s \in \mathcal{S}$. In contrast, a *generic model* $h_0 : \mathcal{X} \rightarrow \mathcal{Y}$ does
146 not use group attributes. We consider that a fixed data distribution $P = P_{\mathbf{X}, \mathbf{S}, \mathbf{Y}}$ is given, and that h_0
147 and h_p are trained to minimize a loss over a training dataset $\mathcal{D}_{\text{train}}$.
148

149 **Cost.** We first evaluate how a model h (generic or personalized) performs for a given group.
150

151 **Definition 3.1** (Expected Group Cost). The expected cost of model h for the group $s \in \mathcal{S}$ as measured
152 by the cost function cost is defined as: $C(h, s) \triangleq \mathbb{E}_P[\text{cost}(h, \tilde{\mathbf{X}}, \mathbf{Y}) \mid \mathbf{S} = s]$, where $\tilde{\mathbf{X}} = \mathbf{X}$ for a
153 generic model h_0 , and $\tilde{\mathbf{X}} = (\mathbf{X}, \mathbf{S})$ for a personalized model h_p .
154

155 In what follows, we use cost and expected cost interchangeably, with the convention that lower cost
156 means better performance. In practice, the cost is evaluated over a set, \mathcal{D} , that is independent from the
157 train set. Costs of interest are shown in Table 1: top rows focus on prediction accuracy (loss and eval-
158 ution metrics), while bottom ones address explanation quality (sufficiency and incomprehensiveness).
159 As explanation metrics are less common than accuracy metrics, we review them next.

160 **Cost for Explanability.** We assume access to an *auxiliary explanation method* that assigns impor-
161 tance scores to input features—e.g., based on the magnitude of input gradients. Then, the *explanation
162 quality metric* measures whether the features with the highest importance scores are actually meaning-

162 ful (see Nauta et al. (2023) for a review). We use *sufficiency* and *incomprehensiveness* as explanation
 163 quality metrics to illustrate our framework and apply our framework using **Integrated Gradients**,
 164 **DeepLIFT** and **Shapley Value Sampling**. These metrics quantify the change in prediction when the
 165 most important features are removed or retained. For a comprehensive discussion of our rationale
 166 in selecting these metrics, see Appendix A. We emphasize that importance is defined relative to the
 167 explanation method, not to any ground truth. This is by design: the goal is not to assume a known set
 168 of truly important features, but to assess how well a given explanation method identifies features that
 169 meaningfully affect the model’s prediction.

170 **Benefit of Personalization.** We can quantify the impact of a personalized model in terms of the
 171 benefit of personalization, defined next:

172 **Definition 3.2** (Group Benefit of Personalization (G-BoP) (Monteiro Paes et al., 2022)). The gain
 173 from personalizing a model can be measured by $G\text{-BoP}(h_0, h_p, s) \triangleq C(h_0, s) - C(h_p, s)$, com-
 174 paring the costs of the generic h_0 and personalized models h_p for group $s \in \mathcal{S}$. By convention,
 175 $G\text{-BoP} > 0$ if the personalized model performs better than the generic one.

176 We use $G\text{-BoP}_P$ and $G\text{-BoP}_X$ to refer to G-BoP for prediction and explanation respectively – see
 177 Appendix B **Table 3** for concrete examples. For example, for prediction evaluation in regression using
 178 MSE is: $\mathbb{E} [\|h_0(\mathbf{X}) - \mathbf{Y}\|^2 | \mathbf{S} = s] - \mathbb{E} [\|h_p(\mathbf{X}, s) - \mathbf{Y}\|^2 | \mathbf{S} = s]$, and for incomprehensiveness
 179 $\mathbb{E} [\|h_p(\mathbf{X}, s) - h_p(\mathbf{X}_{\setminus j}, s_{\setminus j})\|^2 | \mathbf{S} = s] - \mathbb{E} [\|h_0(\mathbf{X}) - h_0(\mathbf{X}_{\setminus j})\|^2 | \mathbf{S} = s]$. To evaluate whether
 180 all groups benefit from personalization, or if any are harmed, we use the following definition as our
 181 final assessment metric:

182 **Definition 3.3** (Benefit of Personalization (BoP) (Monteiro Paes et al., 2022)). The BoP is defined as:
 183 $\gamma(h_0, h_p) \triangleq \min_{s \in \mathcal{S}} (G\text{-BoP}(h_0, h_p, s))$, i.e., the minimum group BoP value across groups $s \in \mathcal{S}$
 184 to capture the worst group improvement, or degradation, resulting from personalization.

186 A positive γ indicates that all groups receive better performance with respect to the cost function.
 187 Contrary to this, a negative γ reflects that at least one group is disadvantaged by personalization.
 188 When γ is small or negative, the practitioner might want to reconsider the use of personalized
 189 attributes in terms of fairness with respect to all groups. When γ is used to evaluate improvement in
 190 prediction and explanation, it is referred to as γ_P and γ_X , respectively.

191 *Remark.* The definitions of G-BoP and γ were originally introduced in Monteiro Paes et al. (2022).
 192 While formally applicable to any cost function, these definitions have only been studied and used
 193 with binary costs—such as 0-1 classification loss or false positive/negative rates—due to a theoretical
 194 gap that prevents their use with continuous costs, including an analysis of prediction and explanation
 195 for regression tasks. Since a holistic analysis of prediction and explanation across machine learning
 196 tasks is our primary focus, addressing this gap is central to our contribution in Section 5.

197 4 IMPACT OF PERSONALIZATION ON PREDICTION AND EXPLAINABILITY

199 This section provides the first formal analysis showing that personalization’s effect on prediction
 200 does not determine its effect on explainability, highlighting the need to evaluate both. A common
 201 intuition in machine learning is that if personalization improves prediction, it should also improve
 202 the quality of explanations derived from the model. This intuition is reflected in the XAI literature,
 203 where evaluation practices often conflate model accuracy with explanation correctness. For example,
 204 a recent survey notes that “these commentaries relate to the inherent coupling of evaluating the
 205 black box’ predictive accuracy with explanation quality. As pointed out by Robnik-Šikonja and
 206 Bohanec (Robnik-Sikonja & Bohanec, 2018), the correctness of an explanation and the accuracy of
 207 the predictive model may be orthogonal” (Nauta et al., 2023). This assumption also appears implicitly
 208 in many high-stakes applications, where explanations from high-performing models are used to
 209 draw insights about real-world structure (Elmarakeby et al., 2021; Chereda et al., 2021). Despite its
 210 prevalence, this presumed connection between predictive performance and explanation quality has
 211 not been formally analyzed in the context of personalization.

212 Theorems 4.1 and 4.2 prove that prediction gains and explanation gains can diverge, demonstrating
 213 that gains in prediction performance (measured by BoP_P) and gains in explanation quality (measured
 214 by BoP_X) need not align. Theorem 4.3 provides a partial converse, identifying an additive setting
 215 where the two align. Though idealized, this boundary case clarifies when practitioners can trust
 prediction and explanation to align. Proofs are in Appendix C.

216 **No Prediction Benefit Does not Imply No Explainability Benefit.** The following theorem shows
 217 that a personalized model may match a generic model in accuracy, yet offer better explanation. Thus,
 218 focusing only on prediction can overlook significant interpretability gains.

219 **Theorem 4.1.** *There exists a data distribution $P_{\mathbf{X}, \mathbf{S}, \mathbf{Y}}$ such that the Bayes optimal classifiers h_0 and
 220 h_p satisfy $\gamma_P(h_0, h_p) = 0$ (with γ_P measured by 0-1 loss) and $\gamma_X(h_0, h_p) > 0$ (with γ_X measured
 221 by sufficiency and incomprehensiveness).*

222 **Example 1.** We illustrate Theorem 4.1 with a real-world example. Consider a model with many input
 223 features that are partially redundant, for instance, a loan approval model that uses credit score, income,
 224 and debt-to-income ratio. Adding a personal feature that is highly correlated with existing features
 225 may not change the predictions. However, it can alter the explanation if that feature is the most direct
 226 or informative input. For example, adding a binary feature like "pre-approved by another bank",
 227 which is strongly correlated with existing features, may leave predictions unchanged, but an explainer
 228 might now assign most importance to this new feature because it provides a clearer justification.
 229 Figure 5 illustrates the construction behind the proof for sufficiency, where both generic h_0 and
 230 personalized h_p models predict perfectly (left side), yet only keeping the most important feature
 231 for each (right side) shows that the personalized model is more explainable. For this distribution,
 232 $G\text{-BoP}_P(h_0, h_p, s) = 0$ and $G\text{-BoP}_X(h_0, h_p, s) > 0$ for each group s , so all groups are impacted
 233 similarly by personalization. Figure 6 illustrates the proof for incomprehensiveness.

234 **No Prediction Harm Does Not Imply No Explainability Harm.** A personalized model may
 235 match a generic model in accuracy yet offer worse explanations. Thus, focusing only on predictive
 236 performance can obscure significant harms to explainability.

237 **Theorem 4.2.** *There exists a data distribution $P_{\mathbf{X}, \mathbf{S}, \mathbf{Y}}$ such that the Bayes optimal classifiers
 238 h_0 and h_p satisfy $\gamma_P = 0$ (with γ_P measured by 0-1 loss) and $\gamma_X < 0$ (with γ_X measured by
 239 incomprehensiveness).*

240 **Example 2.** To illustrate Theorem 4.2 consider a pneumonia detection model using chest X-ray
 241 findings that perfectly predict outcomes. Adding white blood cell count leaves accuracy unchanged,
 242 but the personalized model now splits importance between X-ray findings and white blood cell count.
 243 The explanation is worse because it's now split across two features, making it less clear which feature
 244 drives the decision, even though the X-ray alone was already perfectly predictive. Additionally,
 245 Theorem C.1 proves this phenomena for both sufficiency and incomprehensiveness by showing
 246 how personalization can affect explainability differently for different groups. [Figure 7](#) and [Figure 8](#)
 247 illustrate the proof for Theorem C.1.

248 **Remark.** Feature collinearity can affect explanations in general, but it plays a particularly relevant
 249 role in a personalized setting. Personalization introduces new features that might be correlated to
 250 existing ones, which may create redundant pathways in the model, not just in the data. If this happens,
 251 generic and personalized models can make the same predictions, but the personalized model's added
 252 pathway changes how explanation methods distribute importance.

253 Together, Theorems 4.1, 4.2 and C.1 show that knowing $\gamma_P = 0$ provides no information about γ_X .
 254 This motivates the need to evaluate both prediction and explainability, as we offer to do in Section 5.

255 **Absence of explainability benefit can imply absence of prediction benefit.** We now ask the
 256 converse: can a lack of explainability benefit imply no predictive benefit? We show that this **is**
 257 true, for a simple additive model, as long as two notions of explainability measures –sufficiency and
 258 incomprehensiveness– do not see any benefit.

259 **Theorem 4.3.** *Assume that h_0 and h_p are Bayes optimal regressors and $P_{\mathbf{X}, \mathbf{S}, \mathbf{Y}}$ follows an additive
 260 model, i.e., $\mathbf{Y} = \alpha_1 \mathbf{X}_1 + \dots + \alpha_t \mathbf{X}_t + \alpha_{t+1} \mathbf{S}_1 + \dots + \alpha_{t+k} \mathbf{S}_k + \epsilon$, where $\mathbf{X}_1, \dots, \mathbf{X}_t$ and
 261 $\mathbf{S}_1, \dots, \mathbf{S}_k$ are independent, and ϵ is independent random noise. Then, if for $s \in \mathcal{S}$ we have
 262 $G\text{-BoP}_{\text{ suff}}(h_0, h_p, s) = G\text{-BoP}_{\text{ incomp}}(h_0, h_p, s) = 0$, then $G\text{-BoP}_P(h_0, h_p, s) = 0$. Consequently, if,
 263 for all groups s , $G\text{-BoP}_{\text{ suff}}(h_0, h_p, s) = G\text{-BoP}_{\text{ incomp}}(h_0, h_p, s) = 0$, then $\gamma_P = 0$.*

264 This theorem demonstrates that under an additive model, if there is no benefit in explanation quality,
 265 then there is also no benefit in prediction accuracy. [Figure 9](#) illustrates this proof. Additionally, we
 266 get the following corollary:

267 **Corollary 4.4.** *Under the assumptions of Theorem 4.3, if for $s \in \mathcal{S}$, we have $G\text{-BoP}_P(h_0, h_p, s) \neq$
 268 0 , then it also holds that $G\text{-BoP}_{\text{ suff}}(h_0, h_p, s) \neq 0$ or $G\text{-BoP}_{\text{ incomp}}(h_0, h_p, s) \neq 0$. Conse-
 269 quently, if $\gamma_P \neq 0$, then there exists a group $s \in \mathcal{S}$ such that $G\text{-BoP}_{\text{ suff}}(h_0, h_p, s) \neq 0$ or
 $G\text{-BoP}_{\text{ incomp}}(h_0, h_p, s) \neq 0$.*

270 This theorem means that an effect of personalization on prediction necessarily means an effect on
 271 explanation for at least one explainability measure and for at least one demographic group. This
 272 result establishes a rare direct link between explanation and prediction, in a simplified linear setting.
 273 Proving this for general models remains an open question. **We investigate whether the theorem still**
 274 **holds without assuming independence among \mathbf{X}_j 's and \mathbf{S}_j 's.** We find that it no longer does and get the
 275 following corollary:

276 **Corollary 4.5.** *Under the assumptions of Theorem 4.3, except that \mathbf{X} and \mathbf{S} are not assumed
 277 independent, suppose the following covariance condition holds:*

$$279 \sum_{\substack{i \in J_p \\ i \leq t}} \sum_{\substack{j \in J_p \\ j \geq t+1}} 2\alpha_i \alpha_j \text{Cov}(X_i, S_{j-t}) + \sum_{\substack{i \notin J_p \\ i \leq t}} \sum_{\substack{j \notin J_p \\ j \geq t+1}} 2\alpha_i \alpha_j \text{Cov}(X_i, S_{j-t}) = 0.$$

282 *Then having G-BoP_X positive for sufficiency and incomprehensiveness implies that $\text{G-BoP}_P = 0$.*

283 This confirms that the alignment in Theorem 4.3 is specific to the uncorrelated case and further
 284 supports our message: alignment between prediction and explanation benefits is not guaranteed and
 285 should not be assumed.

287 5 TESTING PERSONALIZATION'S IMPACT ON PREDICTION AND EXPLANATION

290 Having emphasized the importance of evaluating both prediction and explainability, we now introduce
 291 a methodology to assess them in practice. The true BoP γ , defined over the whole data distribution,
 292 is inaccessible and needs to be estimated from finite samples. Then, if its estimate $\hat{\gamma}$ is positive, one
 293 must consider whether the true γ is also likely to be positive. In scenarios where personalization
 294 incurs a price—such as requesting sensitive user information—one should determine how large $\hat{\gamma}$
 295 must be to ensure that the true benefit exceeds a desired threshold $\gamma \geq \epsilon$. This section analyzes the
 296 validity of BoP hypothesis testing and provides guidelines for its application.

297 5.1 VALIDITY OF HYPOTHESIS TESTS

299 **Hypothesis Tests.** Given an audit dataset \mathcal{D} with k binary group attributes, we want to know whether
 300 personalization improves each group by at least $\epsilon > 0$. We formalize the null and the alternative
 301 hypotheses using a standard framework for the BoP (Monteiro Paes et al., 2022):

$$302 H_0 : \gamma(h_0, h_p; \mathcal{D}) \leq 0 \Leftrightarrow \text{Personalized } h_p \text{ does not bring any gain for at least one group,} \\ 303 H_1 : \gamma(h_0, h_p; \mathcal{D}) \geq \epsilon \Leftrightarrow \text{Personalized } h_p \text{ yields at least } \epsilon \text{ improvement for all groups.}$$

305 Importantly, H_0 and H_1 are not complementary to each other, because we want to reject the null if
 306 the impact is both positive *and* practically meaningful, i.e., $\geq \epsilon$. With these hypotheses, we ask: can
 307 we rule out that there is no harm *and* assert a meaningful benefit of at least ϵ ?

308 The improvement ϵ is in cost function units, and represents the improvement for the group that
 309 benefits the least from the personalized model. The value ϵ is domain-specific and should be chosen
 310 by the practitioner. For example, in healthcare, if personalization requires time-intensive and sensitive
 311 inputs—like mental health assessments—it may only be justified if it improves diagnostic accuracy
 312 by at least a few points, making ϵ a clinically and ethically meaningful threshold. In such cases, ϵ
 313 becomes a threshold for balancing speed and clinical value.

314 Once ϵ is chosen, the practitioner may run the hypothesis test by computing the estimate $\hat{\gamma}$ on \mathcal{D} and
 315 follow the rule: $\hat{\gamma} \geq \epsilon \Rightarrow \text{Reject } H_0: \text{Conclude that personalization yields at least } \epsilon \text{ improvement for}$
 316 *all groups.* We note that different testing strategies could also be used. To capture this generality, we
 317 define a decision function $\Psi : (h_0, h_p, \mathcal{D}, \epsilon) \rightarrow \{0, 1\}$, where $\Psi = 1$ indicates rejection of H_0 . In
 318 our case, $\Psi(h_0, h_p, \mathcal{D}, \epsilon) = (\hat{\gamma} \geq \epsilon)$. Regardless of its specific form, our goal is to assess the validity
 319 of *any* test aiming to evaluate the impact of personalization γ .

320 **Invalidity of the Tests: Probability of Error.** We quantify the (in)validity of a test in terms of its
 321 probability of error: $P_e = \Pr(\text{Rejecting } H_0 | H_0 \text{ is true}) + \Pr(\text{Failing to reject } H_0 | H_1 \text{ is true})$.

323 We propose to derive a minimax lower bound on the error probability P_e . This involves considering
 the worst-case data distributions that maximizes P_e and the best possible decision function Ψ that

minimizes it. Notably, a high lower bound guarantees a high error probability for *any* test with H_0 and H_1 on the BoP, flagging settings where testing the impact of personalization is unreliable.

Theorem 5.1. Consider k binary group attributes, $\mathcal{S} \triangleq \{0, 1\}^k$, that specify $d \triangleq |\mathcal{S}| = 2^k$ groups, each containing m_j individuals, $j = 1, \dots, d$. Let H_0 (resp. H_1) denotes the data distributions under which the generic model h_0 (resp. the personalized model h_p) performs better, i.e., $\gamma \leq 0$ (resp. $\gamma \geq \epsilon$). Then, there exists $P_0 \in H_0$ (resp. $P_1 \in H_1$), for which the individual benefit of personalization $\mathbf{B} = \text{cost}(h_0, \tilde{\mathbf{X}}, \mathbf{Y}) - \text{cost}(h_p, \tilde{\mathbf{X}}, \mathbf{Y})$, follows a probability density p (resp. p_ϵ for one group), where $\mathbb{E}_p[\mathbf{B}] = 0$, and $\mathbb{E}_{p_\epsilon}[\mathbf{B}] = \epsilon$, such that:

$$\min_{\Psi} \max_{\substack{P_0 \in H_0 \\ P_1 \in H_1}} P_e \geq 1 - \frac{1}{2\sqrt{d}} \left[\frac{1}{d} \sum_{j=1}^d \mathbb{E}_{p_\epsilon} \left[\frac{p_\epsilon(\mathbf{B})}{p(\mathbf{B})} \right]^{m_j} - 1 \right]^{\frac{1}{2}}. \quad (1)$$

The proof for Theorem 5.1 is in Appendix D.1. Crucially, this lower bound can be tailored to the practitioner’s specific use case, i.e., to the distribution of the individual benefit \mathbf{B} under H_0 and H_1 . For example, if \mathbf{B} is known or observed to follow a Laplace distribution with scale b , the practitioner should choose $p = \text{Laplace}(0, b)$ and $p_\epsilon = \text{Laplace}(\epsilon, b)$. Figure 3 shows the expression of the lower bound for the Laplace distribution (proof provided in Appendix D.8). If none of these standard distributions provided in the appendix are a good match for the BoP distribution, Theorem 5.1 remains valid for any distribution, as long as its probability density function is known. In such cases, practitioners may use flexible density estimation tools, such as normalizing flows, to approximate the PDF from data and apply Theorem 5.1 directly. The next corollary expresses it for distributions in the exponential family, which we use to find a bound for when \mathbf{B} follows a Gaussian distribution (see Appendix D.5).

Corollary 5.2. The lower bound in Th. 5.1 for distributions p, p_ϵ in the exponential family (parameter

$$\theta$$
, moment generating function M) is: $1 - \frac{1}{2\sqrt{d}} \left[\frac{1}{d} \sum_{j=1}^d \left(\frac{M_p(2\Delta\theta)}{M_p(\Delta\theta)^2} \right)^{m_j} - 1 \right]^{\frac{1}{2}}$ with $\Delta\theta = \theta_\epsilon - \theta$.

The proof for Corollary 5.2 is in Appendix D.2. These results generalize and tighten an existing bound for categorical distribution only (Monteiro Paes et al., 2022) (see Appendix D.3) and provide the first general framework to evaluate the (in)validity of hypothesis tests on personalization for prediction and explanation, and across supervised machine learning tasks.

Remark. These bounds apply to any metric that can be formulated as an evaluation score and used to compare model performance across subgroups (across classification and regression)—i.e., our statistical testing tools are not tied to any particular explainability or performance measure or method.

Experimental Design: Group Attributes, Sample Size, and Detectable Gain. We investigate how probability of error depends on the dataset, and how it determines their ability to test the impact of personalization. For example, with a fixed number of individuals N , a larger number of personal attributes k increases the number of groups $d = 2^k$, reducing the number of samples per group, which increases the risk of error. Accordingly, if the practitioner commits to a fixed k to test a desired gain ϵ (resp. fixed k and N), they need a minimum group size m to keep the error bound below a desired level, as shown next.

Corollary 5.3. To ensure $\min \max P_e \leq v$ for a chosen threshold v , equal group sizes must satisfy $m \geq m_{\min}$, where: $m_{\min} = \frac{\log(4 \cdot 2^k (1-v)^2 + 1)}{\log(1+4\epsilon^2)}$ for a categorical BoP, $m_{\min} = \frac{\sigma^2}{\epsilon^2} \log(2^{2+k} (1 + 2^{-2-k} - 2v + v^2))$ for a Gaussian BoP of variance σ^2 , and $m_{\min} = \frac{b}{\epsilon} \log(2^{2+k} (1 + 2^{-2-k} - 2v + v^2))$ for a Laplace BoP of scale b .

Appendix E provide practitioners with another dataset-specific feasibility check: Corollary E.1 bounds the maximum number of attributes that can be used before the lower bound error exceeds 50%.

5.2 PRACTICAL CONSIDERATIONS WHEN TESTING PREDICTION AND EXPLANATION

We examine how the lower bound in Theorem 5.1 depends on the distribution of individual BoPs \mathbf{B} , and how this determines the practitioner’s ability to test for prediction or explanation gains.

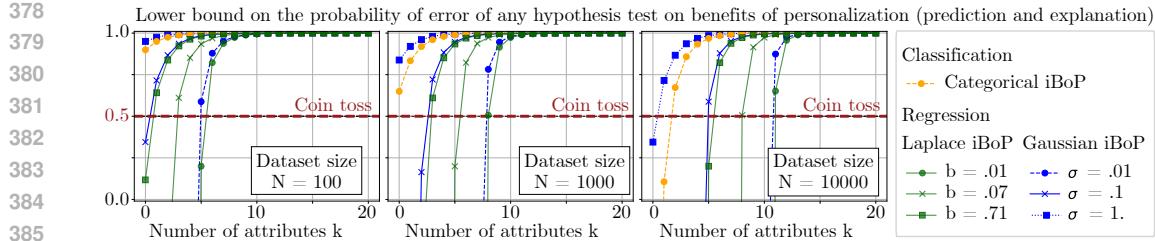


Figure 2: Testing personalization for prediction and explanation depends on learning task. Lower bound on the probability of error P_e with respect to number of personal attributes k , for dataset sizes $N = 10^2, 10^3$, and 10^4 with $\epsilon = 0.01$. In classification (orange), the bound is fixed by the categorical nature of the individual BoP (iBoP) and is identical for prediction and explanation. In regression (green and blue), P_e depends on the spread of individual BoPs—parameterized by variance σ^2 (Gaussian) or scale b (Laplace). Smaller variance or scale allows more attributes before testing becomes unreliable ($P_e \geq 0.5$). Computed for $m = \lceil N/d \rceil$ samples per group with $d = 2^k$ groups.

Testing Prediction and Explanation in Classification Tasks. When the task is classification with 0-1 loss, the individual BoPs follow categorical distributions with values in $\{-1, 0, 1\}$:

$$\mathbf{B}_P = (h_0(\mathbf{X}) \neq \mathbf{Y}) - (h_p(\mathbf{X}, \mathbf{S}) \neq \mathbf{Y}), \quad \mathbf{B}_X = (h_0(\mathbf{X}) \neq h_0(\mathbf{X}, J)) - (h_p(\mathbf{X}, \mathbf{S}) \neq h_0(\mathbf{X}, J, \mathbf{S}, J))$$

for prediction and explanation (e.g., sufficiency), respectively –see costs in Table 1. In this setting, the lower bound in Theorem 5.1 is identical for prediction and explanation (see Figure 3, bottom): either both are testable, or neither is.

Figure 2 shows the lower bound on the probability of error P_e as a function of k , for typical dataset sizes in medical settings $N \in \{10^2, 10^3, 10^4\}$. In classification (orange curves), even a small number of personal attributes k leads to high error lower bounds. For instance, at $N = 100$ and $k = 1$, the bound already exceeds 85%, making reliable testing impossible for both prediction and explanation.

Testing Prediction and Explanation in Regression Tasks. In regression, the situation is more nuanced. For instance, with MSE loss, we have continuously valued individual BoP random variables:

$$\mathbf{B}_P = |h_0(\mathbf{X}) - \mathbf{Y}|^2 - |h_p(\mathbf{X}, \mathbf{S}) - \mathbf{Y}|^2, \quad \mathbf{B}_X = |h_0(\mathbf{X}) - h_0(\mathbf{X}, I)|^2 - |h_p(\mathbf{X}, \mathbf{S}) - h_0(\mathbf{X}, I, \mathbf{S}, I)|^2,$$

for prediction and explanation, respectively. Suppose these follow Laplace distributions with scales b_P and b_X . Then, the lower bounds will differ for prediction and explanation (Figure 3, bottom): one could be testable while the other is not, highlighting an asymmetry absent in the classification case.

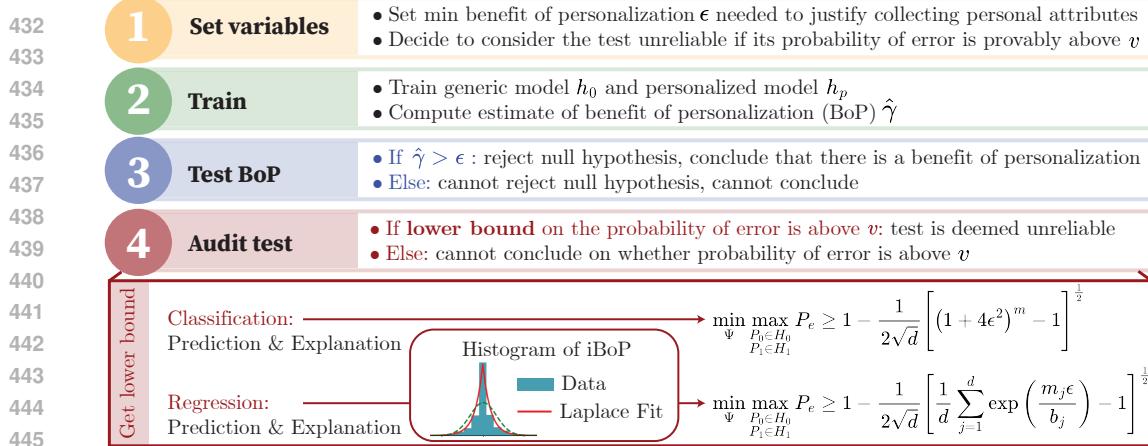
As illustrated in Figure 2, smaller scale values (b) allow for a larger number of personal attributes k_{\max} to be tested without theoretical barriers. Unlike classification, there is no proof that regression tasks cannot support reliable testing of personalization for dataset sizes encountered in medical settings $N \in \{10^2, 10^3, 10^4\}$, even with many personal attributes k .

6 CASE STUDIES: EVALUATING PERSONALIZATION ON REAL DATASETS

We illustrate how to use our results to investigate the impact of personalization on prediction and explanation, to reveal the many cases where reliable testing is in fact impossible. This section focuses on one real-world healthcare scenario, while other scenarios are provided in Appendix G.

Remark. Across these hypothesis tests we always evaluate if there is a benefit of personalization, i.e. $\gamma > \epsilon > 0$, but interested practitioners may want to evaluate whether an existing machine learning model could harm one group. In that case the hypothesis test should be flipped, i.e. $\gamma \leq \epsilon \leq 0$.

Healthcare Scenario. Consider MIMIC-III (Medical Information Mart for Intensive Care) (Johnson et al., 2016), a dataset of patients admitted to critical care units at a large tertiary hospital –containing vital signs, medications, lab results, diagnoses, imaging reports, and outcomes such as length of stay. Suppose that a practitioner has developed a deep learning model to predict a patient’s length of stay (regression) or whether the length of stay exceeds 3 days (classification) – see details in Appendix F.1. They are wondering whether their model should be personalized by including (or not) two personal attributes: $\text{Age} \times \text{Race} \in \{18 - 45, 45+\} \times \{\text{White(W)}, \text{NonWhite(NW)}\}$. However, they are

Figure 3: **Summary of the steps to test BoP for prediction and explanation.**Table 2: Benefits of personalization ($\hat{C}(h_0) - \hat{C}(h_p)$) on the MIMIC-III test set for predicting length of stay (LOS): regression or classification ($LOS > 3$ days). Incomprehensiveness is abbreviated as incomp. and population as pop. Values that are worsened by h_p are colored red.

Group	n	Classification			Sufficiency	n	Regression		
		Prediction	Incomp.	Sufficiency			Prediction	Incomp.	Sufficiency
White, 45+	8443	0.0063	-0.0226	0.0053		8379	0.0021	-0.0906	0.1914
White, 18–45	1146	0.0044	0.0489	0.0244		1197	0.0023	0.1219	0.2223
NonWhite, 45+	3052	-0.0026	-0.0023	0.0029		3044	0.0108	-0.0501	0.3494
NonWhite, 18–45	696	-0.0216	0.0560	0.0072		717	0.0212	0.0441	0.3293
All Pop.	13337	0.0026	-0.0077	0.0065		13337	0.0051	-0.0550	0.2376
Minimal BoP	13337	-0.0216	-0.0226	0.0029		13337	0.0021	-0.0906	0.1914

concerned this could disadvantage some groups, not only by reducing prediction accuracy but also by limiting the ability to uncover factors that explain critical care duration. We provide a step-by-step procedure to use our framework to evaluate the benefit of personalization (summarized in Figure 3).

① Select ϵ and v , report empirical benefits of personalization. The practitioner first chooses the minimum improvement they expect from personalization— ϵ_P for prediction and ϵ_X for explanation (e.g., $\epsilon_P = \epsilon_X = 0.002$). They then set a tolerance threshold v for the probability of error beyond which they will not trust the hypothesis test (e.g., $v = 50\%$).

② Report empirical benefits of personalization The practitioner trains h_0 and h_p (with additional attributes age and race) and reports empirical personalization benefits in Table 2 (0–1 loss for classification, MSE for regression). They utilize the Integrated Gradients explainer method and evaluate it using the sufficiency and incomprehensiveness metrics. Across tasks, some groups seem to show benefits for prediction but harm for explanation, and vice versa. This should not be surprising given the results of Section 4, which show that prediction and explanation gains can diverge.

③ Perform hypothesis test. The practitioner assesses whether $\hat{\gamma}$ exceeds ϵ_P or ϵ_X . It does for all metrics with a positive $\hat{\gamma}$, hence they can reject the null hypothesis for these cases.

④ Assess reliability of the results. Next, the practitioner assesses whether the empirical results are statistically meaningful using the framework from Section 5. For the classification model, the lower bound on the probability of error exceeds 80% (Figure 4, $\epsilon = 0.002$), indicating that it is not even possible to test whether personalization helps or harms performance. As a result, the practitioner would likely retain the generic classifier. For the regression model, they examine the distributions of individual BoPs, B_P and B_X (Figure 3, bottom, and Appendix F.1). Sufficiency is best fit by Gaussians with varying variances; prediction and incomprehensiveness align with Laplace distributions of different scales. The corresponding lower bounds on error exceed 80% for sufficiency—making it untestable—but fall below 10% for prediction and incomprehensiveness (Figure 4, $\epsilon = 0.002$). Now, we provide insights that were gained from applying our framework to this scenario, and others in Appendix G.

486 **Insight: A high empirical benefit of personalization $\hat{\gamma}$ can be misleading.** As shown in Table 2 and
 487 **lower bounded in ④**, the regression experiment reports the largest apparent benefit for sufficiency
 488 ($\hat{\gamma} = 0.1914$), yet the data did not permit a valid test, making the result inconclusive. Prediction
 489 showed a much smaller benefit ($\hat{\gamma} = 0.0021$), but our analysis found no barriers to testing, and the
 490 null was rejected. This shows that large $\hat{\gamma}$ does not guarantee a valid conclusion; empirical values
 491 must be paired with our framework to assess validity.

492 **Insight: The choice of improvement threshold ϵ is key.** Increasing ϵ reduces the lower bound on the probability of error P_e ,
 493 making hypothesis testing potentially less unreliable (Figure 4), but also raises the bar for rejecting
 494 the null, requiring a larger $\hat{\gamma}$. Thus, ϵ trades off test validity against ability to detect effects.
 495 In real-world application, ϵ reflects the minimum performance gain a practitioner needs to justify collecting costly personal data (e.g., genetic markers in healthcare). For instance, $\epsilon = 0.002$ in length-of-stay prediction accuracy may be worthwhile. Converting this back to original units is approximately 0.06 days more accurate. When scaled across just 100 patients daily, this small individual gain translates into a significant cumulative benefit: 6 days of hospital stay better estimated per day across those 100 patients. This illustrates that ϵ should be set based on practical value, not statistical convenience, even though higher ϵ values tend to make hypothesis tests more reliable. Our framework’s impact is not just to suggest practitioners pick a threshold, but to provide the tool to determine if their data can even support a statistically meaningful conclusion at that threshold, replacing intuition with a quantitative, evidence-based decision.

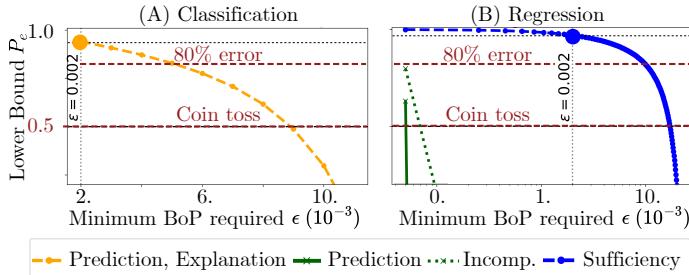


Figure 4: **Lower bound of P_e vs. ϵ on MIMIC-III:** classification (A) and regression with Laplace (green) and Gaussian (blue) models for the individual BoPs (B). At the minimum BoP set in this case study ($\epsilon = 0.002$), testing personalization for prediction and explanation is impossible for classification (same for sufficiency for regression) as $P_e \geq 80\%$ regardless of the hypothesis test.

515 **Insight: Results do not depend on the explanation method.** Table 2 reports results with Integrated
 516 Gradients (Sundararajan et al., 2017). Since our framework applies to any explanation method, we
 517 test whether this choice affects the evaluation of the impact of personalization. Appendix G analyzes
 518 Shapley Value Sampling Štrumbelj & Kononenko (2010) and DeepLIFT Shrikumar et al. (2017),
 519 finding substantial agreement across the methods—though effect sizes differ.

520 **Insight: Personalization is hard to evaluate across medical datasets.** To show the practicality of
 521 the framework, we also include experiments on the UCI Heart Dataset (Janosi et al., 1989) and the
 522 MIMIC-III Kidney injury cohort Suriyakumar et al. (2023), again utilizing a range of explanation
 523 methods (see Appendix G). Using the same ϵ as above, no test is valid for the S.V.S explainer on
 524 the UCI Heart dataset, as elaborated on in the caption of Table 4. This shows the difficulty of
 525 reliably evaluating personalization. More generally, this analysis points to a limitation of personalized
 526 medicine and healthcare: while personalization may yield improvements, demonstrating them reliably
 527 can be infeasible—restricting applicability.

529 CONCLUDING REMARKS

531 We present a unified framework for evaluating the benefits of personalization with respect to both
 532 prediction accuracy and explanation quality, facilitating nuanced decisions regarding the use of
 533 personal attributes. Our analysis shows that in many practical settings, particularly classification
 534 tasks, the statistical conditions required to validate personalization are often unmet. As a result, even
 535 when personalization shows empirical gains, meaningful validation may not be feasible.

536 **Limitations & Future Work.** While we relax several assumptions relative to prior work, our
 537 theoretical results still rely on assumptions not always met in practice; further reducing them remains
 538 an important direction. Additionally, while we focused on explanation quality due to its importance
 539 in clinical adoption, our results in Section 5 extend to other goals. Future work can build on this
 framework to evaluate additional desiderata such as fairness, robustness, and uncertainty calibration.

540 REFERENCES
541

542 Alekh Agarwal, Miroslav Dudík, and Zhiwei Steven Wu. Fair regression: Quantitative definitions
543 and reduction-based algorithms, 2019. URL <https://arxiv.org/abs/1905.12843>.

544 Subhan Ali, Filza Akhlaq, Ali Shariq Imran, Zenun Kastrati, Sher Muhammad Daudpota, and
545 Muhammad Moosa. The enlightening role of explainable artificial intelligence in medical health-
546 care domains: A systematic literature review. *Computers in Biology and Medicine*, 166:107555,
547 2023. ISSN 0010-4825. doi: <https://doi.org/10.1016/j.combiomed.2023.107555>. URL <https://www.sciencedirect.com/science/article/pii/S001048252301020X>.

548 Aparna Balagopalan, Haoran Zhang, Kimia Hamidieh, Thomas Hartvigsen, Frank Rudzicz, and
549 Marzyeh Ghassemi. The road to explainability is paved with bias: Measuring the fairness of
550 explanations. In *2022 ACM Conference on Fairness, Accountability, and Transparency*, FAccT '22.
551 ACM, June 2022. doi: [10.1145/3531146.3533179](https://doi.org/10.1145/3531146.3533179). URL <http://dx.doi.org/10.1145/3531146.3533179>.

552 Richard Berk, Hoda Heidari, Shahin Jabbari, Matthew Joseph, Michael Kearns, Jamie Morgenstern,
553 Seth Neel, and Aaron Roth. A convex framework for fair regression, 2017. URL <https://arxiv.org/abs/1706.02409>.

554 Toon Calders, Asim Karim, Faisal Kamiran, Wasif Ali, and Xiangliang Zhang. Controlling attribute
555 effect in linear regression. *2013 IEEE 13th International Conference on Data Mining*, pp. 71–80,
556 2013. URL <https://api.semanticscholar.org/CorpusID:16541789>.

557 Tirtha Chanda, Katja Hauser, Sarah Hobelsberger, Tabea-Clara Bucher, Carina Nogueira Garcia,
558 Christoph Wies, Harald Kittler, Philipp Tschandl, Cristian Navarrete-Dechent, Sebastian Podlipnik,
559 Emmanouil Chousakos, Iva Crnaric, Jovana Majstorovic, Linda Alhajwan, Tanya Foreman, Sandra
560 Peternel, Sergei Sarap, İrem Özdemir, Raymond L. Barnhill, Mar Llamas-Velasco, Gabriela Poch,
561 Sören Korsing, Wiebke Sondermann, Frank Friedrich Gellrich, Markus V. Heppt, Michael Erd-
562 mann, Sebastian Haferkamp, Konstantin Drexler, Matthias Goebeler, Bastian Schilling, Jochen S.
563 Utikal, Kamran Ghoreschi, Stefan Fröhling, Eva Krieghoff-Henning, Alexander Salava, Alexander
564 Thiem, Alexandris Dimitrios, Amr Mohammad Ammar, Ana Sanader Vučemilović, Andrea Miyuki
565 Yoshimura, Andzelka Ilieva, Anja Gesierich, Antonia Reimer-Taschenbrecker, Antonios G. A.
566 Kolios, Arturs Kalva, Arzu Ferhatosmanoğlu, Aude Beyens, Claudia Pföhler, Dilara İlhan Erdil,
567 Dobrila Jovanovic, Emoke Racz, Falk G. Bechara, Federico Vaccaro, Florentia Dimitriou, Gunel
568 Rasulova, Hulya Cenk, Irem Yanatma, Isabel Kolm, Isabelle Hoorens, Iskra Petrovska Sheshova,
569 Ivana Jocic, Jana Knuever, Janik Fleißner, Janis Raphael Thamm, Johan Dahlberg, Juan José Lluch-
570 Galcerá, Juan Sebastián Andreani Figueroa, Julia Holzgruber, Julia Welzel, Katerina Damevska,
571 Kristine Elisabeth Mayer, Lara Valeska Maul, Laura Garzona-Navas, Laura Isabell Bley, Lau-
572 renz Schmitt, Lena Reipen, Lidia Shafik, Lidija Petrovska, Linda Golle, Luise Jopen, Magda
573 Gogilidze, Maria Rosa Burg, Martha Alejandra Morales-Sánchez, Martyna Śląwińska, Miriam
574 Mengoni, Miroslav Dragolov, Nicolás Iglesias-Pena, Nina Booken, Nkechi Anne Enechukwu,
575 Oana-Diana Persa, Olumayowa Abimbola Oninla, Panagiota Theofilogiannakou, Paula Kage,
576 Roque Rafael Oliveira Neto, Rosario Peralta, Rym Afionuni, Sandra Schuh, Saskia Schnabl-Scheu,
577 Seçil Vural, Sharon Hudson, Sonia Rodriguez Saa, Sören Hartmann, Stefana Damevska, Stefanie
578 Finck, Stephan Alexander Braun, Tim Hartmann, Tobias Welponer, Tomica Sotirovski, Vanda
579 Bondare-Ansberga, Verena Ahlgren-Siess, Verena Gerlinde Frings, Viktor Simeonovski, Zorica
580 Zafirovik, Julia-Tatjana Maul, Saskia Lehr, Marion Wobser, Dirk Debus, Hassan Riad, Manuel P.
581 Pereira, Zsuzsanna Lengyel, Alise Balcere, Amalia Tsakiri, Ralph P. Braun, and Titus J. Brinker.
582 Dermatologist-like explainable ai enhances trust and confidence in diagnosing melanoma. *Nature
583 Communications*, 15(1), January 2024. ISSN 2041-1723. doi: [10.1038/s41467-023-43095-4](https://doi.org/10.1038/s41467-023-43095-4). URL
584 <http://dx.doi.org/10.1038/s41467-023-43095-4>.

585 Hryhorii Chereda, Annalen Bleckmann, Katharina Menck, et al. Explaining decisions of graph
586 convolutional neural networks: patient-specific molecular subnetworks responsible for metastasis
587 prediction in breast cancer. *Genome Medicine*, 13(1):42, 2021. doi: [10.1186/s13073-021-00845-7](https://doi.org/10.1186/s13073-021-00845-7).
588 URL <https://doi.org/10.1186/s13073-021-00845-7>.

589 Jessica Dai, Sohini Upadhyay, Ulrich Aivodji, Stephen H. Bach, and Himabindu Lakkaraju. Fairness
590 via explanation quality: Evaluating disparities in the quality of post hoc explanations. In *Pro-
591 ceedings of the 2022 AAAI/ACM Conference on AI, Ethics, and Society*, AIES '22, pp. 203–214.

594 ACM, July 2022. doi: 10.1145/3514094.3534159. URL <http://dx.doi.org/10.1145/3514094.3534159>.

595

596

597 Sanjoy Dasgupta, Nave Frost, and Michal Moshkovitz. Framework for evaluating faithfulness of
598 local explanations, 2022. URL <https://arxiv.org/abs/2202.00734>.

599

600 Jay DeYoung, Sarthak Jain, Nazneen Fatema Rajani, Eric Lehman, Caiming Xiong, Richard Socher,
601 and Byron C. Wallace. ERASER: A benchmark to evaluate rationalized NLP models. In Dan
602 Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault (eds.), *Proceedings of the 58th Annual
603 Meeting of the Association for Computational Linguistics*, pp. 4443–4458, Online, July 2020.
604 Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.408. URL <https://aclanthology.org/2020.acl-main.408>.

605

606 Yuhan Du, Anna Markella Antoniadi, Catherine McNestry, Fionnuala M. McAuliffe, and Catherine
607 Mooney. The role of xai in advice-taking from a clinical decision support system: A comparative
608 user study of feature contribution-based and example-based explanations. *Applied Sciences*, 12
609 (20), 2022. ISSN 2076-3417. doi: 10.3390/app122010323. URL <https://www.mdpi.com/2076-3417/12/20/10323>.

610

611 Cynthia Dwork and Christina Ilvento. Fairness under composition. Schloss Dagstuhl – Leibniz-
612 Zentrum für Informatik, 2019. doi: 10.4230/LIPICS.ITALCS.2019.33. URL <https://drops.dagstuhl.de/entities/document/10.4230/LIPICS.ITALCS.2019.33>.

613

614 Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Rich Zemel. Fairness through
615 awareness, 2011. URL <https://arxiv.org/abs/1104.3913>.

616

617 Haitham A. Elmarakeby, Jaeil Hwang, Rami Arafah, et al. Biologically informed deep neu-
618 ral network for prostate cancer discovery. *Nature*, 598(7880):348–352, 2021. doi: 10.1038/s41586-021-03922-4. URL <https://doi.org/10.1038/s41586-021-03922-4>.

619

620 John M Flack, Keith C Ferdinand, and Samar A Nasser. Epidemiology of hypertension and cardio-
621 vascular disease in african americans. *The Journal of Clinical Hypertension*, 5(1):5–11, 2003.

622

623 Kazuto Fukuchi, Toshihiro Kamishima, and Jun Sakuma. Prediction with model-based neutral-
624 ity. In *ECML/PKDD*, 2013. URL <https://api.semanticscholar.org/CorpusID:6964544>.

625

626 Susanne Gaube, Harini Suresh, Martina Raue, Eva Lermer, Timo K. Koch, Matthias F. C. Hude-
627 cek, Alun D. Ackery, Samir C. Grover, Joseph F. Coughlin, Dieter Frey, Felipe C. Kitamura,
628 Marzyeh Ghassemi, and Errol Colak. Non-task expert physicians benefit from correct ex-
629 plainable AI advice when reviewing X-rays. *Scientific Reports*, 13:1383, January 2023. doi:
10.1038/s41598-023-28633-w.

630

631 Furkan Gursoy and Ioannis A. Kakadiaris. Error parity fairness: Testing for group fairness in
632 regression tasks, 2022. URL <https://arxiv.org/abs/2208.08279>.

633

634 Moritz Hardt, Eric Price, and Nathan Srebro. Equality of opportunity in supervised learning, 2016.
URL <https://arxiv.org/abs/1610.02413>.

635

636 Ursula Hebert-Johnson, Michael Kim, Omer Reingold, and Guy Rothblum. Multicalibration: Cal-
637 ibration for the (Computationally-identifiable) masses. In Jennifer Dy and Andreas Krause
638 (eds.), *Proceedings of the 35th International Conference on Machine Learning*, volume 80 of
639 *Proceedings of Machine Learning Research*, pp. 1939–1948. PMLR, 10–15 Jul 2018. URL
<https://proceedings.mlr.press/v80/hebert-johnson18a.html>.

640

641 Bi Huang, Mayank Dalakoti, and Gregory Y H Lip. How far are we from accurate sex-specific
642 risk prediction of cardiovascular disease? One size may not fit all. *Cardiovascular Research*,
643 120(11):1237–1238, 06 2024. ISSN 0008-6363. doi: 10.1093/cvr/cvae135. URL <https://doi.org/10.1093/cvr/cvae135>.

644

645 Alon Jacovi and Yoav Goldberg. Towards faithfully interpretable NLP systems: How should we
646 define and evaluate faithfulness? In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault
647 (eds.), *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*,
648 pp. 4198–4205, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.386. URL <https://aclanthology.org/2020.acl-main.386>.

648 Andras Janosi, William Steinbrunn, Matthias Pfisterer, and Robert Detrano. Heart Disease. UCI
 649 Machine Learning Repository, 1989. DOI: <https://doi.org/10.24432/C52P4X>.

650

651 Alistair E.W. Johnson, Tom J. Pollard, Lu Shen, Li-wei H. Lehman, Mengling Feng, Mohammad
 652 Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G. Mark. Mimic-iii,
 653 a freely accessible critical care database. *Scientific data*, 3(1):160035–160035, 2016. ISSN
 654 2052-4463.

655 Qing Lyu, Marianna Apidianaki, and Chris Callison-Burch. Towards faithful model explanation in
 656 nlp: A survey, 2024. URL <https://arxiv.org/abs/2209.11326>.

657

658 Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan. A survey
 659 on bias and fairness in machine learning, 2022. URL <https://arxiv.org/abs/1908.09635>.

660

661 Lucas Monteiro Paes, Carol Long, Berk Ustun, and Flavio Calmon. On the epistemic limits of
 662 personalized prediction. *Advances in Neural Information Processing Systems*, 35:1979–1991,
 663 2022.

664 P. A. Moreno-Sánchez. Improvement of a prediction model for heart failure survival through
 665 explainable artificial intelligence. *Frontiers in Cardiovascular Medicine*, 10:1219586, 2023. doi:
 666 10.3389/fcvm.2023.1219586. URL <https://doi.org/10.3389/fcvm.2023.1219586>.

667

668 Lori Mosca, Elizabeth Barrett-Connor, and Nanette Wenger. Sex/gender differences in cardiovascular
 669 disease prevention what a difference a decade makes. *Circulation*, 124:2145–54, 11 2011. doi:
 670 10.1161/CIRCULATIONAHA.110.968792.

671

672 Meike Nauta, Jan Trienes, Shreyasi Pathak, Elisa Nguyen, Michelle Peters, Yasmin Schmitt, Jörg
 673 Schlötterer, Maurice van Keulen, and Christin Seifert. From anecdotal evidence to quantitative
 674 evaluation methods: A systematic review on evaluating explainable ai. *ACM Computing Surveys*,
 675 55(13s):1–42, July 2023. ISSN 1557-7341. doi: 10.1145/3583558. URL <http://dx.doi.org/10.1145/3583558>.

676

677 Ziad Obermeyer, Brian Powers, Christine Vogeli, and Sendhil Mullainathan. Dissecting racial bias in
 678 an algorithm used to manage the health of populations. *Science*, 366(6464):447–453, October 2019.
 679 ISSN 1095-9203. doi: 10.1126/science.aax2342. URL <http://dx.doi.org/10.1126/science.aax2342>.

680

681 Jessica Paulus, Benjamin Wessler, Christine Lundquist, Lana Yh, Gowri Raman, Jennifer Lutz, and
 682 David Kent. Field synopsis of sex in clinical prediction models for cardiovascular disease. *Circulation: Cardiovascular Quality and Outcomes*, 9:S8–S15, 02 2016. doi: 10.1161/CIRCOUTCOMES.115.002473.

682

683

684 Jessica Paulus, Benjamin Wessler, Christine Lundquist, and David Kent. Effects of race are rarely
 685 included in clinical prediction models for cardiovascular disease. *Journal of General Internal
 686 Medicine*, 33, 05 2018. doi: 10.1007/s11606-018-4475-x.

686

687 Dana Pessach and Erez Shmueli. A review on fairness in machine learning. *ACM Comput. Surv.*, 55
 688 (3), feb 2022. ISSN 0360-0300. doi: 10.1145/3494672. URL <https://doi.org/10.1145/3494672>.

689

690 Adrián Pérez-Suay, Valero Laparra, Gonzalo Mateo-García, Jordi Muñoz-Marí, Luis Gómez-Chova,
 691 and Gustau Camps-Valls. Fair kernel learning, 2017. URL <https://arxiv.org/abs/1710.05578>.

692

693 M. Robnik-Sikonja and Marko Bohanec. Perturbation-based explanations of prediction models.
 694 In *Human and Machine Learning*, 2018. URL <https://api.semanticscholar.org/CorpusID:52198297>.

695

696 Ahmed M. A. Salih, Ilaria Boscolo Galazzo, Polyxeni Gkontra, Elisa Rauseo, Aaron Mark Lee,
 697 Karim Lekadir, Petia Radeva, Steffen E. Petersen, and Gloria Menegaz. A review of evaluation
 698 approaches for explainable ai with applications in cardiology. *Artificial Intelligence Review*, 57,
 699 2024. URL <https://api.semanticscholar.org/CorpusID:271833894>.

702 Sofia Serrano and Noah A. Smith. Is attention interpretable? In Anna Korhonen, David Traum, and
 703 Lluís Màrquez (eds.), *Proceedings of the 57th Annual Meeting of the Association for Computational
 704 Linguistics*, pp. 2931–2951, Florence, Italy, July 2019. Association for Computational Linguistics.
 705 doi: 10.18653/v1/P19-1282. URL <https://aclanthology.org/P19-1282/>.

706 Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through
 707 propagating activation differences. *CoRR*, abs/1704.02685, 2017. URL <http://arxiv.org/abs/1704.02685>.

708
 709
 710 Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks:
 711 Visualising image classification models and saliency maps, 2014. URL <https://arxiv.org/abs/1312.6034>.

712
 713 Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg. Smoothgrad:
 714 removing noise by adding noise, 2017. URL <https://arxiv.org/abs/1706.03825>.

715
 716 Erik Štrumbelj and Igor Kononenko. An efficient explanation of individual classifications using game
 717 theory. *Journal of Machine Learning Research*, 11(1):1–18, 2010. URL <http://jmlr.org/papers/v11/strumbelj10a.html>.

718
 719 Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks, 2017.
 720 URL <https://arxiv.org/abs/1703.01365>.

721
 722 Vinith M. Suriyakumar, Marzyeh Ghassemi, and Berk Ustun. When personalization harms: Reconsi-
 723 dering the use of group attributes in prediction, 2023. URL <https://arxiv.org/abs/2206.02058>.

724
 725 Berk Ustun, Alexander Spangher, and Yang Liu. Actionable recourse in linear classification. In
 726 *Proceedings of the Conference on Fairness, Accountability, and Transparency*, FAT* ’19, pp.
 727 10–19, New York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450361255.
 728 doi: 10.1145/3287560.3287566. URL <https://doi.org/10.1145/3287560.3287566>.

729
 730 Fan Yin, Zhouxing Shi, Cho-Jui Hsieh, and Kai-Wei Chang. On the sensitivity and stability of model
 731 interpretations in nlp, 2022. URL <https://arxiv.org/abs/2104.08782>.

732
 733 Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. Explainability in graph neural networks: A
 734 taxonomic survey, 2022. URL <https://arxiv.org/abs/2012.15445>.

735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755

756 **A EXTENDED RELATED WORKS**
757758 We provide additional extended works about explainability methods and fairness of recourse below.
759760 **Explainability** Typical approaches to model explanation involve measuring how much each input
761 feature contributes to the model’s output, highlighting important inputs to promote user trust. This
762 process often involves using gradients or hidden feature maps to estimate the importance of inputs
763 (Simonyan et al., 2014; Smilkov et al., 2017; Sundararajan et al., 2017; Yuan et al., 2022). For
764 instance, gradient-based methods use backpropagation to compute the gradient of the output with
765 respect to inputs, with higher gradients indicating greater importance (Sundararajan et al., 2017; Yuan
766 et al., 2022). We focus on feature-attribution explanations as they remain the most widely used form of
767 post hoc interpretability in practice (Nauta et al., 2023). To reflect a range of underlying assumptions,
768 we employ three distinct and widely adopted explainers: Integrated Gradients (gradient-based),
769 DeepLIFT (backpropagation-based), and Shapley value sampling (perturbation-based).
770771 The quality of these explanations is often evaluated using the principle of *faithfulness* (Lyu et al., 2024;
772 Dasgupta et al., 2022; Jacovi & Goldberg, 2020), which measures how accurately an explanation
773 represents the reasoning of the underlying model. Two key aspects of faithfulness are *sufficiency*
774 and *comprehensiveness* (De Young et al., 2020; Yin et al., 2022); the former assesses whether the
775 inputs deemed important are adequate for the model’s prediction, and the latter examines if these
776 features capture the essence of the model’s decision-making process. We selected these metrics
777 as they are widely-adopted, model-agnostic measures that directly assess explanation faithfulness
778 through standard perturbation-based evaluation (Serrano & Smith, 2019), aligning with established
779 principles of correctness and completeness in the explainability literature (Nauta et al., 2023).
780781 **Explanations in Practice: Medical Domain** Explainable AI methods are widely deployed in the
782 medical domain, and clinicians routinely interact with explanations when interpreting AI outputs. A
783 recent review identified 454 medical AI articles published between 2018–2022, with 93 analyzed in
784 depth, showing extensive use of explainable AI techniques across diagnostic and clinical decision-
785 support applications (Ali et al., 2023; Salih et al., 2024). A growing body of work shows that
786 explainable AI is already shaping consequential medical decisions across multiple clinical domains.
787 In obstetrics, explainable decision-support systems for gestational diabetes significantly influence
788 clinicians’ choices and advice-taking behavior, demonstrating that explanations directly affect medical
789 judgment (Du et al., 2022). In dermatology, domain-specific explanations increase diagnostic
790 accuracy, confidence, and trust, highlighting clinicians’ willingness to adopt explainable AI systems
791 in practice (Chanda et al., 2024). In radiology, physicians achieve their highest diagnostic accuracy
792 when receiving AI advice paired with visual explanatory annotations, with non-experts benefiting
793 most from explainable guidance (Gaube et al., 2023). In cardiology, explainable AI methods are
794 used to select and justify heart-failure survival prediction models, with explainability explicitly
795 enabling clinicians to understand model reasoning and make more informed treatment decisions
796 (Moreno-Sánchez, 2023). Together, these studies demonstrate that explanations influence diagnosis,
797 trust, and decision pathways in real clinical environments—underscoring the importance of evaluating
798 whether explanations faithfully reflect model behavior.
799800 **Fairness of Recourse** A related line of work examines fairness of algorithmic recourse, which
801 studies whether different demographic groups face unequal effort to obtain favorable outcomes from
802 a predictive model. Ustun et al. (2019) show that recourse burden can vary sharply across groups,
803 even when recommended actions look formally identical, either because the recourse itself differs or
804 because the real-world effort required to carry it out is unequal. This line of work demonstrates that
805 fair prediction does not guarantee fair recourse. Our framework offers a complementary perspective:
806 instead of analyzing post-hoc interventions, we study when personalization produces unequal benefits
807 or harms across groups in prediction and explanation. Like the recourse literature, our results highlight
808 that different desiderata, here, prediction benefit and explanation benefit, can diverge and therefore
809 must be evaluated jointly.
810811 **B BoP**
812813 In the following table, we show how these abstract definitions can be used to measure BoP for both
814 predictions and explanations, each across both classification and regression tasks. The empirical
815

810 population and group BoP are defined as: $\hat{\text{BoP}}(h_0, h_p) = \hat{C}(h_0) - \hat{C}(h_p)$ and $\hat{\text{BoP}}(h_0, h_p, s) =$
 811 $\hat{C}(h_0, s) - \hat{C}(h_p, s)$, respectively.
 812

813 Table 3: Formal definitions of the benefit of personalization for prediction and explanation metrics,
 814 evaluated for subgroup s . The generic model h_0 takes input \mathbf{X} , while the personalized model h_p
 815 takes input (\mathbf{X}, \mathbf{S}) ; this corresponds to the quantity previously denoted as $\hat{\mathbf{X}}$ when referring to an
 816 unspecified model h in Table 1. For the explanation metrics, $\mathbf{X}_{\setminus J}$ denotes the input obtained when
 817 removing the most important features, and \mathbf{X}_J denotes the complementary set of features that are
 818 kept. Likewise, $\mathbf{s}_{\setminus J}$ and \mathbf{s}_J denote the removed and retained subsets of the personalized attribute s .
 819 Higher BoP values in each row indicate a greater benefit of personalization for subgroup s .
 820

Evaluation Type	Benefit of personalization for group s
Predict (Classification, 0-1 loss)	$\Pr(h_0(\mathbf{X}) \neq \mathbf{Y} \mid \mathbf{S} = s) - \Pr(h_p(\mathbf{X}, s) \neq \mathbf{Y} \mid \mathbf{S} = s)$
Predict (Regression, MSE)	$\mathbb{E} [\ h_0(\mathbf{X}) - \mathbf{Y}\ ^2 \mid \mathbf{S} = s] - \mathbb{E} [\ h_p(\mathbf{X}, s) - \mathbf{Y}\ ^2 \mid \mathbf{S} = s]$
Explain (Sufficiency, classification, 0-1 loss)	$\Pr(h_0(\mathbf{X}) \neq h_0(\mathbf{X}_J) \mid \mathbf{S} = s) - \Pr(h_p(\mathbf{X}, s) \neq h_p(\mathbf{X}_J, s_J) \mid \mathbf{S} = s)$
Explain (Sufficiency, regression, MSE)	$\mathbb{E} [\ h_0(\mathbf{X}) - h_0(\mathbf{X}_J)\ ^2 \mid \mathbf{S} = s] - \mathbb{E} [\ h_p(\mathbf{X}, s) - h_p(\mathbf{X}_J, s_J)\ ^2 \mid \mathbf{S} = s]$
Explain (Incomprehensiveness, classification, 0-1 loss)	$\Pr(h_p(\mathbf{X}, s) \neq h_p(\mathbf{X}_{\setminus J}, s_{\setminus J}) \mid \mathbf{S} = s) - \Pr(h_0(\mathbf{X}) \neq h_0(\mathbf{X}_{\setminus J}) \mid \mathbf{S} = s)$
Explain (Incomprehensiveness, regression, MSE)	$\mathbb{E} [\ h_p(\mathbf{X}, s) - h_p(\mathbf{X}_{\setminus J}, s_{\setminus J})\ ^2 \mid \mathbf{S} = s] - \mathbb{E} [\ h_0(\mathbf{X}) - h_0(\mathbf{X}_{\setminus J})\ ^2 \mid \mathbf{S} = s]$

C COMPARISON BOP FOR PREDICTION AND BOP FOR EXPLAINABILITY PROOFS

831 In this section, we present the full proofs comparing the impact of personalization on prediction
 832 accuracy versus explanation quality, highlighting situations under which their effects diverge or align.
 833

C.1 PROOF FOR THEOREM 4.1

835 We provide the proof for theorem 4.1 for two metrics of explanation quality: sufficiency and
 836 incomprehensiveness, from Table 1. The proof for sufficiency is illustrated in Figure 5. The proof for
 837 incomprehensiveness is illustrated in Figure 6
 838

839 *Proof.* Let $\mathbf{X} = (\mathbf{X}_1, \mathbf{X}_2)$ where \mathbf{X}_1 and \mathbf{X}_2 are independent and each follows $\text{Unif}(-\frac{1}{2}, \frac{1}{2})$. Let
 840 us define one binary personal attribute $s \in \{0, 1\}$ as $\mathbf{S} = \mathbf{1}(\mathbf{X}_1 + \mathbf{X}_2 > 0)$ and assume that we seek
 841 to predict $\mathbf{Y} = \mathbf{S}$. Then, $h_0(x) = \mathbf{1}(\mathbf{X}_1 + \mathbf{X}_2 > 0)$ and $h_p(x) = \mathbf{1}(\mathbf{S} > 0)$ are the generic and
 842 personalized classifiers of interest.
 843

844 **Prediction.** Both classifiers achieve perfect accuracy. Therefore, $\text{BoP}_P(h_0, h_p) = 0$.
 845

846 In particular, they also achieve perfect accuracy when we restrict the input \mathbf{X} to any subgroup,
 847 subgroup $s = 0$ or subgroup $s = 1$, such that:
 848

$$\begin{aligned} \text{G-BoP}_P(h_0, h_p, s = 0) &= \text{G-BoP}_P(h_0, h_p, s = 1) = \text{BoP}_P(h_0, h_p) = 0, \\ &\Rightarrow \gamma_P(h_0, h_p) = \min_{s \in \{0, 1\}} \text{G-BoP}_P(h_0, h_p, s) = 0. \end{aligned}$$

851 **Explanation (sufficiency).** We now test sufficiency by evaluating the accuracy of classifiers using
 852 only the important feature.
 853

854 For model h_0 , its important feature set J_0 is either $\{\mathbf{X}_1\}$ or $\{\mathbf{X}_2\}$. Without loss of generality, let
 855 $J_0 = \{\mathbf{X}_1\}$. For the personalized model, $J_p = \{\mathbf{S}\}$.
 856

For sufficiency, we compute:

$$\begin{aligned} \Pr(h_0(\mathbf{X}) \neq h_0(\mathbf{X}_{J_0})) &= \Pr(\mathbf{X}_1 + \mathbf{X}_2 \leq 0 \mid \mathbf{X}_1 > 0) \Pr(\mathbf{X}_1 > 0) \\ &\quad + \Pr(\mathbf{X}_1 + \mathbf{X}_2 > 0 \mid \mathbf{X}_1 \leq 0) \Pr(\mathbf{X}_1 \leq 0) \\ &= \frac{1}{4}, \end{aligned} \tag{2}$$

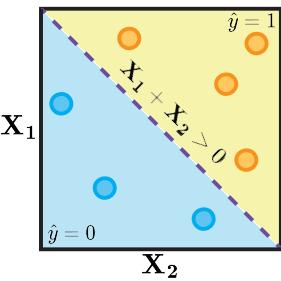
861 where the computation per group also gives:
 862

$$\Pr(h_0(\mathbf{X}) \neq h_0(\mathbf{X}_{J_0}) \mid s = 0) = \Pr(h_0(\mathbf{X}) \neq h_0(\mathbf{X}_{J_0}) \mid s = 1) = \frac{1}{4}.$$

864
865
866
867
868
869
870
871
872
873
874
875

Prediction Accuracy (0-1 Loss)

Both generic and personalized classifier have perfect accuracy



$$h_0 = \mathbf{1}(\mathbf{X}_1 + \mathbf{X}_2 > 0) \quad h_p = \mathbf{S}$$

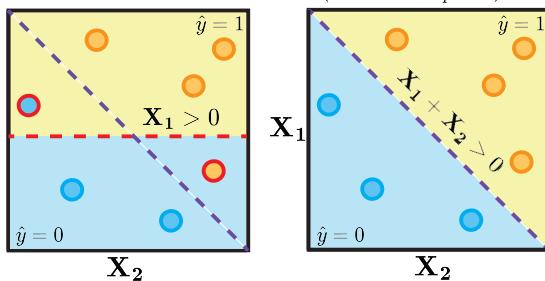
$$C(h_0, s) = C(h_p, s)$$

0	0
---	---

$$\Rightarrow G\text{-BoP}_P \begin{array}{|c|c|} \hline 0 & 0 \\ \hline s=0 & s=1 \\ \hline \end{array} \Rightarrow \gamma_P = 0$$

Explanation Quality - Sufficiency

Only keep the most important feature of the original classifiers ($h_0 : \mathbf{X}_1, h_p : \mathbf{S}$)



$$h_0 = \mathbf{1}(\mathbf{X}_1 > 0)$$

$$C(h_0, s)$$

1/4	1/4
$s=0$	$s=1$

$$h_p = \mathbf{S}$$

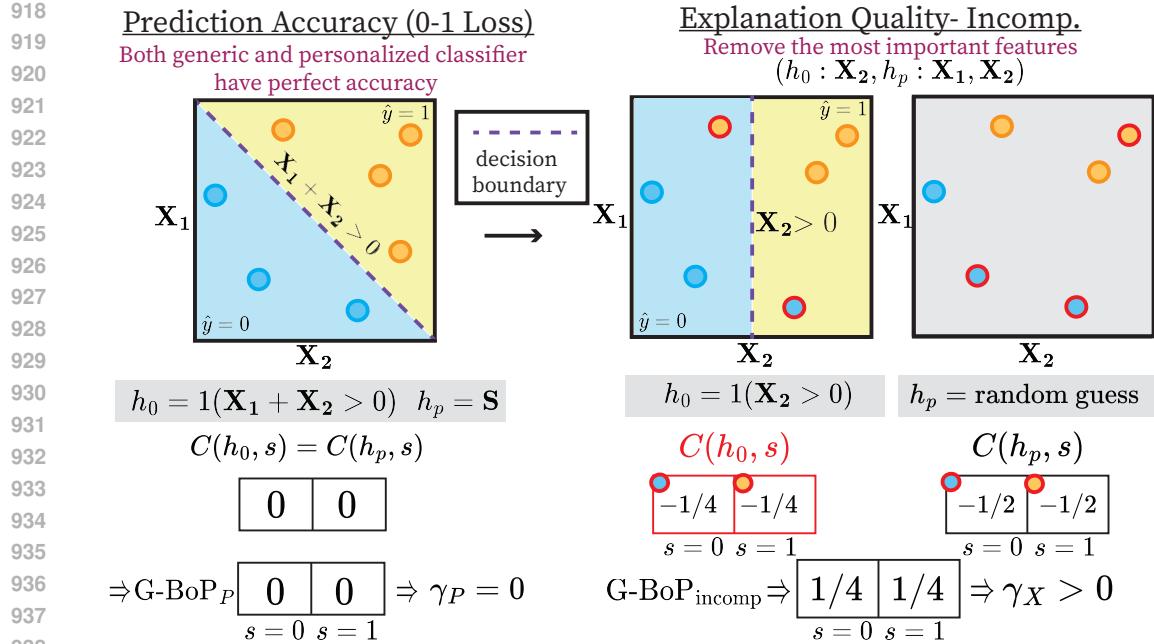
$$C(h_p, s)$$

0	0
$s=0$	$s=1$

$$\text{G-BoP}_{\text{suff}} \Rightarrow \begin{array}{|c|c|} \hline 1/4 & 1/4 \\ \hline s=0 & s=1 \\ \hline \end{array} \Rightarrow \gamma_X > 0$$

Figure 5: Comparing a generic model (h_0) and a personalized model (h_p) on prediction and explanation (sufficiency). Top-left: The generic model h_0 uses both \mathbf{X}_1 and \mathbf{X}_2 for predictions, with its decision boundary defined by $\mathbf{X}_1 + \mathbf{X}_2 > 0$. The personalized model, h_p , has access to the group attribute \mathbf{S} (defined as $\mathbf{S} = \mathbf{1}(\mathbf{X}_1 + \mathbf{X}_2 > 0)$), and its prediction rule is to output \mathbf{S} . Bottom-left: Since both classifiers achieve perfect accuracy (on both groups $s = 0$ and $s = 1$), the Group Benefit of Personalization ($G\text{-BoP}_P$) is 0 on both groups, and thus: $\gamma_P = 0$. Top-right: In the sufficiency evaluation, where only the most important feature is kept, h_p achieves perfect prediction since it relies solely on \mathbf{S} , reaching a sufficiency cost of 0 for each group. In contrast, h_0 , using only \mathbf{X}_1 , now makes prediction errors and has a worst sufficiency cost of $\frac{1}{4}$ for each group. Bottom-right: Since the personalized model has better sufficiency than the generic model, the G-BoP is positive and equal to $\frac{1}{4}$ for both groups, and hence $\gamma_x = \frac{1}{4} > 0$. Hence, personalization can enhance explainability even though prediction accuracy remains the same.

908
909
910
911
912
913
914
915
916
917



934
935
936
937
938

Figure 6: Comparing a generic model (h_0) and a personalized model (h_p) on prediction and explanation (incomprehensiveness). Both achieve perfect accuracy, but h_p relies solely on $\mathbf{S} = 1(\mathbf{X}_1 + \mathbf{X}_2 > 0)$, yielding higher incomprehensiveness. Hence, personalization can improve explainability even when accuracy is unchanged: here, $\gamma_P = 0$ and $\gamma_X > 0$.

939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

On the other hand, the sufficiency for h_p is

$$\Pr(h_p(\mathbf{X}, \mathbf{S}) \neq h_p(\mathbf{X}_{J_p}, \mathbf{S}_{J_p})) = 0,$$

as $J_p = \{\mathbf{S}\}$ is sufficient to make a prediction for h_p . The computation per group also gives 0, since the model makes perfect predictions independently of the value taken by \mathbf{S} .

Thus, BoP_X in terms of sufficiency is also $\frac{1}{4}$. Computing this quantity per group gives:

$$\begin{aligned} \text{G-BoP}_X(h_0, h_p, s=0) &= \text{G-BoP}_X(h_0, h_p, s=1) = \frac{1}{4}, \\ \Rightarrow \gamma_{\text{suff}}(h_0, h_p) &= \min_{s \in \{0,1\}} \text{G-BoP}_X(h_0, h_p, s) = \frac{1}{4}. \end{aligned} \quad (3)$$

Explanation (incomprehensiveness) Incomprehensiveness is the opposite of comprehensiveness. For clarity, we provide the computations for comprehensiveness first.

972

Comprehensiveness of h_0 is

973

$$\begin{aligned}
974 \quad \Pr(h_0(\mathbf{X}) \neq h_0(\mathbf{X}_{\setminus \mathbf{J}_0})) &= \Pr(\mathbf{X}_1 + \mathbf{X}_2 \leq 0 | \mathbf{X}_2 > 0) \Pr(\mathbf{X}_2 > 0) \\
975 \quad &+ \Pr(\mathbf{X}_1 + \mathbf{X}_2 > 0 | \mathbf{X}_2 \leq 0) \Pr(\mathbf{X}_2 \leq 0) \\
976 \quad &= \Pr(\mathbf{X}_1 + \mathbf{X}_2 \leq 0 | \mathbf{X}_2 > 0) \cdot \frac{1}{2} + \Pr(\mathbf{X}_1 + \mathbf{X}_2 > 0 | \mathbf{X}_2 \leq 0) \cdot \frac{1}{2} \\
977 \quad &= \Pr(\mathbf{X}_1 + \mathbf{X}_2 \leq 0 | \mathbf{X}_2 > 0) \quad (\text{due to symmetry of the distribution}) \\
978 \quad &= \int_{x_2 > 0, x_1 + x_2 \leq 0} \Pr(x_1, x_2) dx_1 dx_2 / \Pr(\mathbf{X}_2 > 0) \\
979 \quad &= 2 \cdot \int_{x_2=0}^{\frac{1}{2}} \Pr(x_2) \int_{x_1 \leq -x_2} \Pr(x_1) dx_1 dx_2 \\
980 \quad &= 2 \cdot \int_{x_2=0}^{\frac{1}{2}} \Pr(x_2) (-x_2 + \frac{1}{2}) dx_2 \\
981 \quad &= 2 \cdot \left[-\frac{1}{2}x_2^2 + \frac{1}{2}x_2 \right]_0^{\frac{1}{2}} \\
982 \quad &= \frac{1}{4}.
\end{aligned} \tag{4}$$

992

Hence, incomprehensiveness of h_0 is $-\frac{1}{4}$.

993

Computing this quantity per group gives, by symmetry of the problem:

994

995

$$\begin{aligned}
996 \quad \Pr(h_0(\mathbf{X}) \neq h_0(\mathbf{X}_{\setminus \mathbf{J}_0}) | s = 0) &= \Pr(h_0(\mathbf{X}) \neq h_0(\mathbf{X}_{\setminus \mathbf{J}_0}) | s = 1) \\
997 \quad &= \frac{1}{2} \Pr(h_0(\mathbf{X}) \neq h_0(\mathbf{X}_{\setminus \mathbf{J}_0})) \\
998 \quad &= \frac{1}{4}.
\end{aligned} \tag{5}$$

1000

Hence, incomprehensiveness per group is also $-\frac{1}{4}$.

1001

For h_p , comprehensiveness is:

1002

1003

1004

1005

1006

$$\Pr(h_p(\mathbf{X}, \mathbf{S}) \neq h_p(\mathbf{X}_{\setminus \mathbf{J}_p}, \mathbf{S}_{\setminus \mathbf{J}_p})) = \frac{1}{2},$$

1007

as without \mathbf{S} , h_p can only make a random guess. Hence, incomprehensiveness for each group is $-\frac{1}{2}$.

1008

1009

1010

Computing this quantity per group also gives $\frac{1}{2}$ since h_p makes a random guess independently of the subgroup considered:

1011

1012

1013

1014

1015

1016

$$\begin{aligned}
1017 \quad \Pr(h_p(\mathbf{X}) \neq h_p(\mathbf{X}_{\setminus \mathbf{J}_p}) | s = 0) &= \Pr(h_p(\mathbf{X}) \neq h_p(\mathbf{X}_{\setminus \mathbf{J}_p}) | s = 1) \\
1018 \quad &= \Pr(h_p(\mathbf{X}) \neq h_p(\mathbf{X}_{\setminus \mathbf{J}_p})) \\
1019 \quad &= \frac{1}{2}.
\end{aligned} \tag{6}$$

1016

while the incomprehensiveness per group is therefore $-\frac{1}{2}$.

1017

1018

Hence, BoP $_X$ in terms of incomprehensiveness is $\frac{1}{4}$.

1019

Computing this quantity per group gives:

1020

1021

1022

1023

1024

1025

$$\begin{aligned}
1026 \quad \text{G-BoP}_X(h_0, h_p, s = 0) &= \text{G-BoP}_X(h_0, h_p, s = 1) = \frac{1}{4}, \\
1027 \quad \Rightarrow \gamma_{\text{incomp}}(h_0, h_p) &= \min_{s \in \{0,1\}} \text{G-BoP}_X(h_0, h_p, s) = \frac{1}{4}.
\end{aligned} \tag{7}$$

□

1026 C.2 PROOF FOR THEOREM 4.2:

1027

1028 We provide the proof for Theorem 4.2, for explainability incomprehensiveness.

1029

1030 *Proof.* Let $\mathbf{X} = (\mathbf{X})$ where \mathbf{X} follows $\text{Unif}(-\frac{1}{2}, \frac{1}{2})$. Define one binary personal attribute $s \in \{0, 1\}$
1031 as $\mathbf{S} = \mathbf{X}$ and assume that the true label that we seek to predict is $\mathbf{Y} = \mathbf{X} > 0$. We define the
1032 classifiers of interest as:

1033
$$h_0(\mathbf{X}) = \mathbb{1}(\mathbf{X} > 0), h_p(\mathbf{X}, \mathbf{S}) = \frac{1}{2}(\mathbf{X} + \mathbf{S}).$$

1034

1035

1036 **Prediction.** Both h_0 and h_p are perfectly aligned with the ground truth and yield $\hat{y} = \mathbf{Y}$. Therefore,
1037 they achieve perfect accuracy. In particular, they also achieve perfect accuracy when we restrict the
1038 input \mathbf{X} to any subgroup, subgroup $s = 0$ or subgroup $s = 1$, such that:

1039
$$\begin{aligned} \text{G-BoP}_P(h_0, h_p, s = 0) &= \text{G-BoP}_P(h_0, h_p, s = 1) = \text{BoP}_P(h_0, h_p) = 0, \\ 1040 &\Rightarrow \gamma_P(h_0, h_p) = \min_{s \in \{0, 1\}} \text{G-BoP}_P(h_0, h_p, s) = 0. \end{aligned}$$

1041

1042 Therefore, $\text{BoP}_P(h_0, h_p) = 0$.

1043

1044 **Explanation (sufficiency).** For h_0 , the most important feature is \mathbf{X} , while for h_p , the most important
1045 feature is \mathbf{S} .

1046

1047 We now test sufficiency by evaluating the accuracy of classifiers using only the important feature.

1048

1049

- 1050 For h_0 , keeping \mathbf{X} results in the original predictor. Therefore, prediction does not change at
1051 all and the feature is maximally sufficient for both groups ($\text{G-BoP}_{\text{suff}} = 0$ for $s = 0$ and
1052 $s = 1$, hence $\gamma_X = 0$).
- 1053 For h_p , keeping \mathbf{S} does not change the prediction output because $\frac{1}{2}\mathbf{X} > 0 = \mathbf{X} > 0$.
1054 Therefore, prediction does not change at all and the feature is maximally sufficient for both
1055 groups ($\text{G-BoP}_{\text{suff}} = 0$ for $s = 0$ and $s = 1$, hence $\gamma_X = 0$)

1056 Therefore, $\text{BoP}_X = 0$ for sufficiency.

1057

1058 **Explanation (incomprehensiveness)** In this setting, we evaluate incomprehensiveness by measuring
1059 the degradation in model predictions when the most important feature is removed.

1060

1061

- **Removing \mathbf{X} from h_0 :** For h_0 , incomprehensiveness is:

1062

1063
$$\Pr(h_0(\mathbf{X}) \neq h_p(\mathbf{X})) = \frac{1}{2},$$

1064

1065 as without \mathbf{X} , h_0 can only make a random guess. Hence, incomprehensiveness for each
1066 group is $\frac{1}{2}$ and $\gamma_X = \frac{1}{2}$.

1066

1067

- **Removing \mathbf{S} from h_p :** For h_p , we compute:

1068

1069
$$\begin{aligned} \Pr(h_p(\mathbf{X}, \mathbf{S}) \neq h_p(\mathbf{X})) &= \Pr(\mathbf{X} + \mathbf{S} \leq 0 \mid \mathbf{X} > 0) \Pr(\mathbf{X} > 0) \\ 1070 &\quad + \Pr(\mathbf{X} + \mathbf{S} > 0 \mid \mathbf{X} \leq 0) \Pr(\mathbf{X} \leq 0) \\ 1071 &= \frac{1}{4}. \end{aligned} \tag{8}$$

1072

1073 where the computation per group also gives:

1074

1075
$$\Pr(h_p(\mathbf{X}, \mathbf{S}) \neq h_p(\mathbf{X}) \mid s = 0) = \Pr(h_p(\mathbf{X}, \mathbf{S}) \neq h_p(\mathbf{X}) \mid s = 1) = \frac{1}{4}.$$

1076

1077 Hence, $\gamma_X = \frac{1}{4}$.

1078

1079 Therefore, $\text{BoP}_X = -\frac{1}{4}$.

□

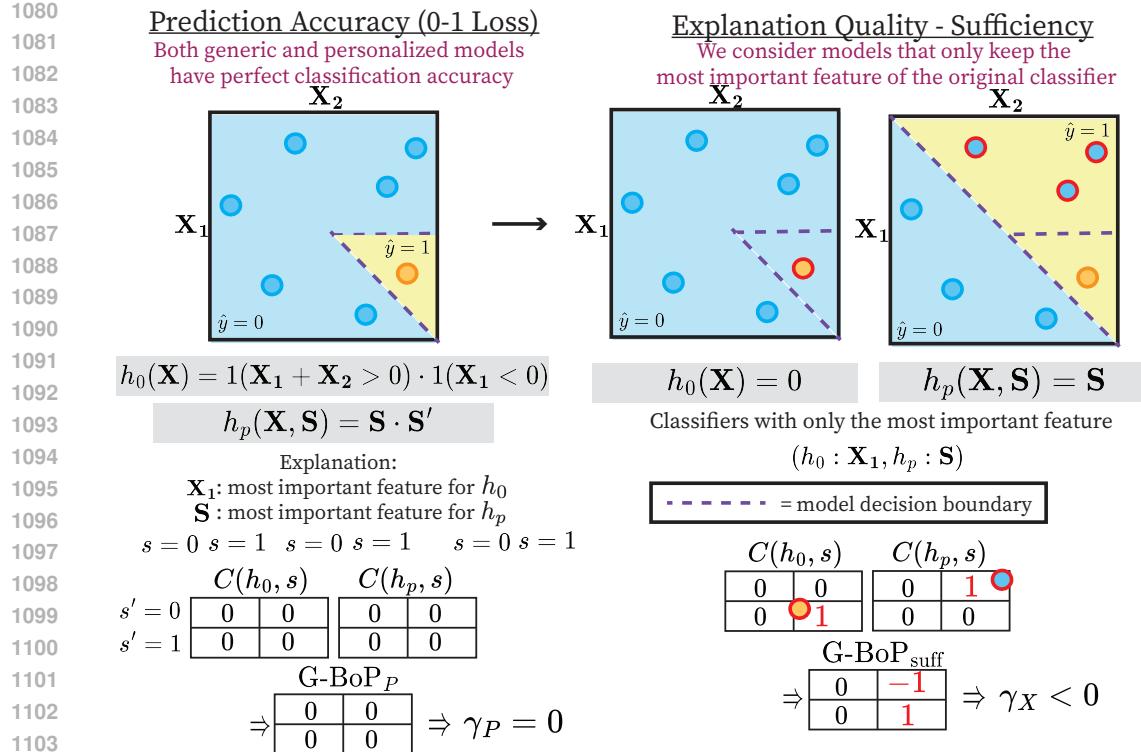


Figure 7: Comparing a generic model (h_0) and a personalized model (h_p) on prediction and explanation (sufficiency). Top-left: The generic model h_0 uses both \mathbf{X}_1 and \mathbf{X}_2 for predictions with its decision boundary defined by $1(\mathbf{X}_1 + \mathbf{X}_2 > 0) \cdot 1(\mathbf{X}_1 < 0)$. The personalized model, h_p instead predicts using the binary group attributes $s \in \{0, 1\}$ and $s' \in \{0, 1\}$ via the rule $s \cdot s'$. Bottom-left: Both classifiers achieve perfect accuracy across all four groups, hence $\gamma_P = 0$. Top-right: Sufficiency evaluation reveals a difference in explanation quality. For h_0 , keeping only the top feature \mathbf{X}_1 results in a constant prediction $h_0(\mathbf{X}_1) = 0$, causing an error for the group $s = s' = 1$ (orange circle). For h_p , keeping only \mathbf{S} yields $h_p(\mathbf{S}) = \mathbf{S}$, which fails to recover the true \mathbf{Y} for the group $(s = 1, s' = 0)$ (blue circles). Bottom-right: Thus, the G-BoP is positive for $s = s' = 1$ but negative for $s = 1, s' = 0$, yielding $\gamma_X < 0$. This shows that even with identical predictive performance, the models rely on different features, and personalization can reduce sufficiency-based explainability for some groups.

C.3 PROOF FOR THEOREM C.1:

Personalization might not alter predictive accuracy across groups, but it might affect explainability differently for different groups, as emphasized in the next theorem.

Theorem C.1. *There exists a data distribution $P_{\mathbf{X}, \mathbf{S}, \mathbf{Y}}$ such that the Bayes optimal classifiers h_0 and h_p satisfy $\text{G-BoP}_P(h_0, h_p, s) = 0$ (measured by 0-1 loss) for all groups s , but some groups have $\text{G-BoP}_P(h_0, h_p, s) > 0$ while others have $\text{G-BoP}_P(h_0, h_p, s) < 0$ (measured by sufficiency and incomprehensiveness).*

We provide the proof for Theorem C.1, for two measures of explainability evaluation: sufficiency and incomprehensiveness, as illustrated in Figure 7 and Figure 8. Figure 7 illustrates the proof for sufficiency, where both generic h_0 and personalized h_p models predict perfectly (left), yet only keeping the most important feature for each (right) shows that the personalized model is more explainable for the group ($s' = 1, s = 0$), and less explainable for group ($s' = 0, s = 1$). Figure 8 illustrates the proof for incomprehensiveness.

Proof. Let $\mathbf{X} = (\mathbf{X}_1, \mathbf{X}_2)$ where \mathbf{X}_1 and \mathbf{X}_2 are independent and follow $\text{Unif}(-1, 1)$. Define two binary personal attributes $s \in \{0, 1\}$ and $s' \in \{0, 1\}$ such that the true label that we seek to predict is

1134 $\mathbf{Y} = \mathbf{S} \cdot \mathbf{S}'$. We define the classifiers of interest as:

1135
$$h_0(\mathbf{X}) = \mathbb{1}(\mathbf{X}_1 + \mathbf{X}_2 > 0) \cdot \mathbb{1}(\mathbf{X}_2 < 0), \quad h_p(\mathbf{X}, \mathbf{S}) = \mathbf{S} \cdot \mathbf{S}'.$$

1137 **Prediction.** Both h_0 and h_p are perfectly aligned with the ground truth and yield $\hat{y} = \mathbf{Y}$. Therefore,
1138 they achieve perfect accuracy. In particular, this holds for both values of \mathbf{S} and \mathbf{S}' :

1139
$$\text{G-BoP}_P$$

1140

1141

1142

1143

1144

$s' \setminus s$	$s = 0$	$s = 1$
$s' = 0$	0	0
$s' = 1$	0	0

1145 Such that we get:

1146
$$\gamma_P(h_0, h_p) = \min_{s, s' \in \{0, 1\}} \text{G-BoP}_P(h_0, h_p, s) = 0.$$

1147 **Explanation (sufficiency).** For h_0 , the most important feature is \mathbf{X}_1 , while for h_p , the most
1148 important feature is \mathbf{S} .

1149 We now test sufficiency by evaluating the accuracy of classifiers using only the important feature.

1150

1151

1152

1153

1154

1155

1156

1157

1158

- For h_0 , keeping only \mathbf{X}_1 results in a constant predictor $h_0(\mathbf{X}_1) = 0$. This fails to recover \hat{y} when $s = 1$ and $s' = 1$ (red orange dot), leading to an error for the subgroup $(s = 1, s' = 1)$, while the three other subgroups still enjoy perfect prediction.
- For h_p , keeping only \mathbf{S} yields $h_p(\mathbf{S}) = \mathbf{S}$, which fails to recover \hat{y} when $s = 1$ and $s' = 0$ (red blue circles) but still correctly predicts for the other three subgroups.

1159 Combining per-group values gives: such that we get:

1160

1161
$$\text{G-BoP}_{\text{suff}}$$

1162

1163

1164

1165

$s' \setminus s$	$s = 0$	$s = 1$
$s' = 0$	0	-1
$s' = 1$	0	1

1166

1167

1168
$$\gamma_X(h_0, h_p) = \min_{s \in \{0, 1\}} \text{G-BoP}_{\text{suff}}(h_0, h_p, s) = -1.$$

1169 **Explanation (incomprehensiveness)** In this setting, we evaluate incomprehensiveness by measuring
1170 the degradation in model predictions when the most important feature is removed.

1171 The generic classifier is $h_0(\mathbf{X}) = \mathbb{1}(\mathbf{X}_1 + \mathbf{X}_2 > 0) \cdot \mathbb{1}(\mathbf{X}_1 < 0)$ and the personalized classifier is
1172 $h_p(\mathbf{X}, \mathbf{S}) = \mathbf{S} \cdot \mathbf{S}'$. The most important feature for h_0 is \mathbf{X}_1 and for h_p is \mathbf{S} .

1173

1174

1175

1176

1177

1178

1179

1180

1181

- **Removing \mathbf{X}_1 from h_0 :** Without \mathbf{X}_1 , the classifier reduces to the constant function $h_0(\mathbf{X}_{\setminus \mathbf{X}_1}) = 0$. This leads to an incorrect prediction when $s = 1$ and $s' = 1$.
- **Removing \mathbf{S} from h_p :** The personalized model becomes $h_p(\mathbf{X}, \mathbf{S}_{\setminus \mathbf{S}}) = \mathbf{S}'$, which ignores \mathbf{S} . This leads to an incorrect prediction when $s = 0$ and $s' = 1$, since the true label is $y = 0$ but $h_p = 1$.

1182 All other combinations yield correct predictions even when the important feature is removed.

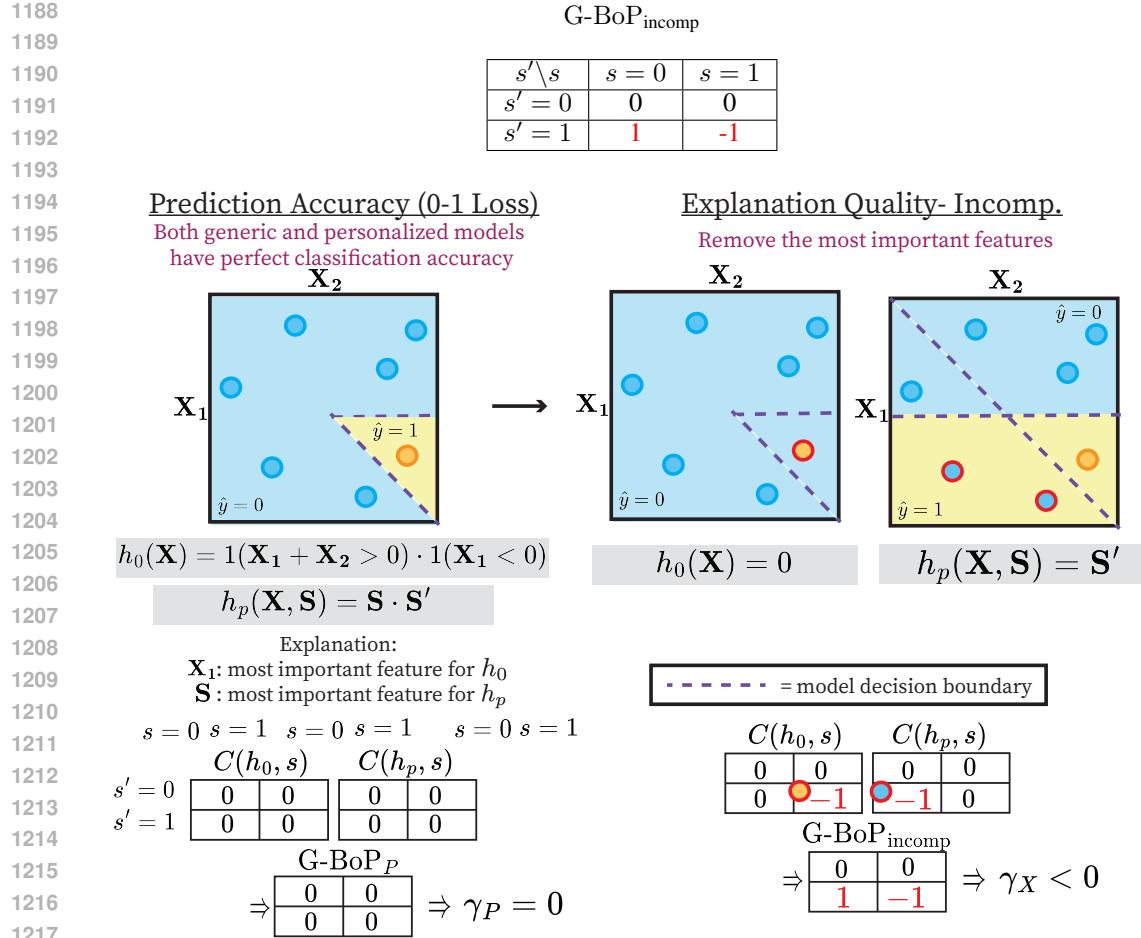
1183 This yields the minimum group benefit of personalization is:

1184

1185
$$\gamma_X^{\text{incomp}}(h_0, h_p) = \min_{s, s' \in \{0, 1\}} \text{G-BoP}_{\text{incomp}}(h_0, h_p, s, s') = -1.$$

1186

□



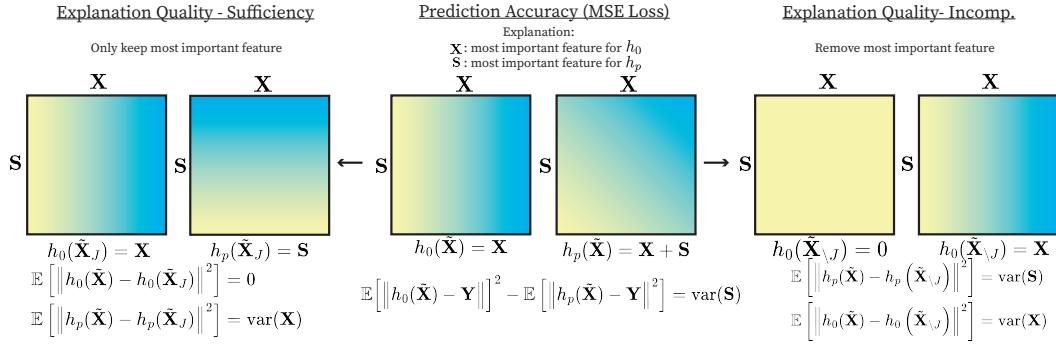


Figure 9: For a linear model, absence of benefit in explanation quality means that there is also an absence of benefit in prediction accuracy, as illustrated here (see Theorem 4.3). We consider a linear model $\mathbf{Y} = \mathbf{X} + \mathbf{S} + \epsilon$, with h_0 and h_p Bayes optimal regressors. In this example, absence of benefit of personalization for the explanation quality, $\text{BoP-X}^{\text{suff}} = 0$ evaluated in terms of sufficiency (left column) means: $\mathbb{E}[\|h_0(\tilde{\mathbf{X}}) - h_0(\tilde{\mathbf{X}}_J)\|^2] = \mathbb{E}[\|h_p(\tilde{\mathbf{X}}) - h_p(\tilde{\mathbf{X}}_J)\|^2] \Rightarrow \text{var}(\mathbf{X}) = 0$. Then, absence of benefit of personalization for the explanation quality, $\text{BoP-X}^{\text{comp}} = 0$ evaluated in terms of comprehensiveness (right column) means: $\mathbb{E}[\|h_0(\tilde{\mathbf{X}}) - h_0(\tilde{\mathbf{X}}_{\setminus J})\|^2] = \mathbb{E}[\|h_0(\tilde{\mathbf{X}}) - h_0(\tilde{\mathbf{X}})\|^2] \Rightarrow \text{var}(\mathbf{S}) = \text{var}(\mathbf{X}) \Rightarrow \text{var}(\mathbf{S}) = 0$. This allows us to conclude that, in terms of prediction accuracy (middle column): $\text{MSE}_0 = \text{MSE}_p$ and hence there is also no benefit of personalization in prediction: $\text{BoP-P} = 0$.

We define J_0 and J_p as a set of important features for h_0 and h_p . Note that J_0 and J_p are the same across all samples for the additive model. Then, the sufficiency of the explanation for h_0 and h_p is written as:

$$\mathbb{E}[\|h_0(\tilde{\mathbf{X}}) - h_0(\tilde{\mathbf{X}}_{J_0})\|^2] = \sum_{\substack{j \in J_0, \\ j \leq t}} \alpha_j^2 \text{Var}(\mathbf{X}_t) \quad (12)$$

$$\mathbb{E}[\|h_p(\tilde{\mathbf{X}}) - h_p(\tilde{\mathbf{X}}_{J_p})\|^2] = \sum_{\substack{j \in J_p, \\ j \leq t}} \alpha_j^2 \text{Var}(\mathbf{X}_t) + \sum_{\substack{j \in J_p, \\ j \geq t+1}} \alpha_j^2 \text{Var}(\mathbf{S}_{j-t}). \quad (13)$$

Similarly, the comprehensiveness of the explanation for h_0 and h_p is written as:

$$\mathbb{E}[\|h_0(\tilde{\mathbf{X}}) - h_0(\tilde{\mathbf{X}}_{\setminus J_0})\|^2] = \sum_{\substack{j \in J_0, \\ j \leq t}} \alpha_j^2 \text{Var}(\mathbf{X}_t) \quad (14)$$

$$\mathbb{E}[\|h_p(\tilde{\mathbf{X}}) - h_p(\tilde{\mathbf{X}}_{\setminus J_p})\|^2] = \sum_{\substack{j \in J_p, \\ j \leq t}} \alpha_j^2 \text{Var}(\mathbf{X}_t) + \sum_{\substack{j \in J_p, \\ j \geq t+1}} \alpha_j^2 \text{Var}(\mathbf{S}_{j-t}). \quad (15)$$

Then, our assumption of $\text{BoP-X} = 0$ for sufficiency becomes:

$$\mathbb{E}[\|h_0(\tilde{\mathbf{X}}) - h_0(\tilde{\mathbf{X}}_{J_0})\|^2] = \mathbb{E}[\|h_p(\tilde{\mathbf{X}}) - h_p(\tilde{\mathbf{X}}_{J_p})\|^2] \quad (16)$$

$$\Rightarrow \sum_{\substack{j \in J_0, \\ j \leq t}} \alpha_j^2 \text{Var}(\mathbf{X}_t) = \sum_{\substack{j \in J_p, \\ j \leq t}} \alpha_j^2 \text{Var}(\mathbf{X}_t) + \sum_{\substack{j \in J_p, \\ j \geq t+1}} \alpha_j^2 \text{Var}(\mathbf{S}_{j-t}) \quad (17)$$

Similarly, our assumption of $\text{BoP-X} = 0$ for comprehensiveness becomes:

$$\mathbb{E}[\|h_0(\tilde{\mathbf{X}}) - h_0(\tilde{\mathbf{X}}_{\setminus J_0})\|^2] = \mathbb{E}[\|h_p(\tilde{\mathbf{X}}) - h_p(\tilde{\mathbf{X}}_{\setminus J_p})\|^2] \quad (18)$$

$$\Rightarrow \sum_{\substack{j \in J_0, \\ j \leq t}} \alpha_j^2 \text{Var}(\mathbf{X}_t) = \sum_{\substack{j \in J_p, \\ j \leq t}} \alpha_j^2 \text{Var}(\mathbf{X}_t) + \sum_{\substack{j \in J_p, \\ j \geq t+1}} \alpha_j^2 \text{Var}(\mathbf{S}_{j-t}). \quad (19)$$

1296 Summing both equations:
1297

$$\begin{aligned}
1298 \sum_{\substack{j \in J_0 \\ j \leq t}} \alpha_j^2 \text{Var}(\mathbf{X}_t) + \sum_{\substack{j \in J_0 \\ j \leq t}} \alpha_j^2 \text{Var}(\mathbf{X}_t) &= \sum_{\substack{j \in J_p \\ j \leq t}} \alpha_j^2 \text{Var}(\mathbf{X}_t) + \sum_{\substack{j \in J_p \\ j \geq t+1}} \alpha_j^2 \text{Var}(\mathbf{S}_{j-t}) \\
1300 &\quad + \sum_{\substack{j \in J_p \\ j \leq t}} \alpha_j^2 \text{Var}(\mathbf{X}_t) + \sum_{\substack{j \in J_p \\ j \geq t+1}} \alpha_j^2 \text{Var}(\mathbf{S}_{j-t}) \\
1301 &\Rightarrow \text{Var}(\mathbf{X}) = \text{Var}(\mathbf{X}) + \text{Var}(\mathbf{S}) \\
1302 &\Rightarrow \text{Var}(\mathbf{S}) = 0. \tag{20}
1303
\end{aligned}$$

1304 Since $\text{Var}(\mathbf{S}) = 0$, we have that $\text{MSE}(h_0) = \text{MSE}(h_p)$ and thus: $\text{BoP-P} = 0$ which concludes the
1305 proof.
1306

1307 We can make the same claim with similar logic for a classifier where \mathbf{Y} is given as:
1308

$$1309 \mathbf{Y} = \mathbf{1}(\alpha_1 \mathbf{X}_1 + \cdots + \alpha_t \mathbf{X}_t + \alpha_{t+1} \mathbf{S}_1 + \cdots + \alpha_{t+k} \mathbf{S}_k + \epsilon > 0). \tag{21}$$

1310 The derivations above are made at the population level, i.e., without distinguishing subgroups
1311 in the data. However, the reasoning also applies for subgroups, where we define subgroups to
1312 be defined by $\mathbf{1}(\mathbf{S} \geq 0)$ taking values in $\{0, 1\}$. In other words, if $\text{G-BoP}_{\text{suff}}(h_0, h_p, s) = 0$
1313 and $\text{G-BoP}_{\text{incomp}}(h_0, h_p, s) = 0$ then $\text{G-BoP}_P(h_0, h_p, s) = 0$ for any $s \in \{0, 1\}$. However, we
1314 note that we can only make a statement on $\gamma(h_0, h_p)$ (prediction accuracy) for the case where
1315 $\gamma_{\text{sufficiency}}(h_0, h_p) = 0$ and $\gamma_{\text{incomprehensiveness}}(h_0, h_p) = 0$ if the following is true: the group realizing
1316 the minima in the three γ 's is the same group. \square
1317

1318 D PROOF OF THEOREMS ON LOWER BOUNDS FOR THE PROBABILITY OF 1319 ERROR

1320 As in (Monteiro Paes et al., 2022), we will prove every theorem for the flipped hypothesis test defined
1321 as:
1322

$$\begin{aligned}
1323 H_0 : \gamma(h_0, h_p; \mathcal{D}) \leq \epsilon &\Leftrightarrow \text{Personalized } h_p \text{ performs worst: yields } \epsilon < 0 \text{ disadvantage} \\
1324 H_1 : \gamma(h_0, h_p; \mathcal{D}) \geq 0 &\Leftrightarrow \text{Personalized } h_p \text{ performs at least as good as generic } h_0.
\end{aligned}$$

1325 where we emphasize that $\epsilon < 0$.
1326

1327 As shown in (Monteiro Paes et al., 2022), proving the bound for the original hypothesis test is
1328 equivalent to proving the bound for the flipped hypothesis test, since estimating γ is as hard as
1329 estimating $-\gamma$. In every section that follows, H_0, H_1 refer to the flipped hypothesis test.
1330

1331 Here, we first prove a proposition that is valid for all of the cases that we consider in the next sections.
1332

1333 **Proposition D.1.** Consider $P_{\mathbf{X}, \mathbf{S}, y}$ is a distribution of data, for which the generic model h_0 performs
1334 better, i.e., the true γ is such that $\gamma(h_0, h_p, \mathcal{D}) < 0$, and $Q_{\mathbf{X}, \mathbf{S}, y}$ is a distribution of data points for
1335 which the personalized model performs better, i.e., the true γ is such that $\gamma(h_0, h_p, \mathcal{D}) > 0$. Consider
1336 a decision rule Ψ that represents any hypothesis test. We have the following bound on the probability
1337 of error P_e :
1338

$$1339 \min_{\Psi} \max_{\substack{P_0 \in H_0 \\ P_1 \in H_1}} P_e \geq 1 - \text{TV}(P \parallel Q),$$

1340 for any well-chosen $P \in H_0$ and any well-chosen $Q \in H_1$. Here TV refers to the total variation
1341 between probability distributions P and Q .
1342

1343 *Proof.* Consider h_0 and h_p fixed. Take one decision rule Ψ that represents any hypothesis test.
1344 Consider a dataset such that H_0 is true, i.e., $\mathcal{D} \sim P_0$ and a dataset such that H_1 is true, i.e., $\mathcal{D} \sim P_1$.
1345

1346 It might seem weird to use two datasets to compute the same quantity P_e , i.e., one dataset to compute
1347 the first term in P_e , and one dataset to compute the second term in P_e . However, this is just a
1348 reflection of the fact that the two terms in P_e come from two different settings: H_0 true or H_0 false,
1349

1350 which are disjoint events: in the same way that H_0 cannot be simultaneously true and false, yet each
 1351 term in P_e consider one or the other case; then we use one or the other dataset.
 1352

1353 We have:

$$\begin{aligned}
 1354 \quad P_e &= \Pr(\text{Rejecting } H_0 | H_0 \text{ true}) + \Pr(\text{Failing to reject } H_0 | H_1 \text{ true}) \\
 1355 &= \Pr(\Psi(h_0, h_p, \mathcal{D}, \epsilon) = 1 | \mathcal{D} \sim P_0) + \Pr(\Psi(h_0, h_p, \mathcal{D}, \epsilon) = 0 | \mathcal{D} \sim P_1) \\
 1356 &= \Pr(\Psi(\mathcal{D}) = 1 | \mathcal{D} \sim P_0) + \Pr(\Psi(\mathcal{D}) = 0 | \mathcal{D} \sim P_1) \text{ simplifying notations} \\
 1357 &= 1 - \Pr(\Psi(\mathcal{D}) = 0 | \mathcal{D} \sim P_0) + \Pr(\Psi(\mathcal{D}) = 0 | \mathcal{D} \sim P_1) \text{ complementary event} \\
 1358 &= 1 - P_0(E_\Psi) + P_1(E_\Psi) \text{ writing } E_\Psi \text{ the event } \Psi(\mathcal{D}) = 0 \\
 1359 &= 1 - (P_0(E_\Psi) - P_1(E_\Psi)) \\
 1360 & \\
 1361 & \\
 1362 & \text{Now, we will bound this quantity:} \\
 1363 & \\
 1364 \min_{\Psi} \max_{\substack{P_0 \in H_0 \\ P_1 \in H_1}} P_e &= \min_{\Psi} \max_{\substack{P_0 \in H_0 \\ P_1 \in H_1}} 1 - (P_0(E_\Psi) - P_1(E_\Psi)) \\
 1365 & \\
 1366 &\geq \max_{\substack{P_0 \in H_0 \\ P_1 \in H_1}} \min_{\Psi} [1 - (P_0(E_\Psi) - P_1(E_\Psi))] \text{ using minmax inequality} \\
 1367 & \\
 1368 &= \max_{\substack{P_0 \in H_0 \\ P_1 \in H_1}} \left[1 - \max_{\Psi} (P_0(E_\Psi) - P_1(E_\Psi)) \right] \text{ to minimize over } \Psi, \text{ we maximize } (P_0(E_\Psi) - P_1(E_\Psi)) \\
 1369 & \\
 1370 &\geq \max_{\substack{P_0 \in H_0 \\ P_1 \in H_1}} \left[1 - \max_{\text{events } A} (P_0(A) - P_1(A)) \right] \text{ because the max is now over all possible events } A \\
 1371 & \\
 1372 & \\
 1373 & \\
 1374 & \text{The maximization is broadened to consider all possible events } A. \text{ This increases the set over which} \\
 1375 & \text{the maximum is taken. Because } \Psi \text{ is only a subset of all possible events, maximizing over all events} \\
 1376 & \text{ } A \text{ (which includes } \Psi \text{) will result in a value that is at least as large as the maximum over } \Psi. \text{ In other} \\
 1377 & \text{words, extending the set of possible events can only make the maximum greater or the same.} \\
 1378 & \\
 1379 & \\
 1380 &= \max_{\substack{P_0 \in H_0 \\ P_1 \in H_1}} [1 - TV(P_0 \parallel P_1)] \text{ by definition of the total variation (TV)} \\
 1381 & \\
 1382 &= 1 - \min_{\substack{P_0 \in H_0 \\ P_1 \in H_1}} TV(P_0 \parallel P_1) \\
 1383 & \\
 1384 &\geq 1 - TV(P \parallel Q) \text{ for any } P \in H_0 \text{ and } Q \in H_1. \\
 1385 & \\
 1386 & \\
 1387 & \text{This is true because the total variation distance } TV(P \parallel Q) \text{ for any particular pair } P \text{ and } Q \text{ cannot} \\
 1388 & \text{be smaller than the minimum total variation distance across all pairs. We recall that, by definition,} \\
 1389 & \text{the total variation of two probability distributions } P, Q \text{ is the largest possible difference between the} \\
 1390 & \text{probabilities that the two probability distributions can assign to the same event } A. \quad \square \\
 1391 & \\
 1392 & \text{Next, we prove a lemma that will be useful for the follow-up proofs.} \\
 1393 & \text{Lemma D.2. Consider a random variable } a \text{ such that } \mathbb{E}[a] = 1. \text{ Then:} \\
 1394 & \mathbb{E}[(a - 1)^2] = \mathbb{E}[a^2] - 1 \tag{22} \\
 1395 & \\
 1396 & \text{Proof. We have that:} \\
 1397 & \\
 1398 & \mathbb{E}[(a - 1)^2] = \mathbb{E}[a^2 - 2a + 1] \\
 1399 & = \mathbb{E}[a^2] - 2\mathbb{E}[a] + 1 \text{ (linearity of the expectation)} \\
 1400 & = \mathbb{E}[a^2] - 2 + 1(\mathbb{E}[a] = 1 \text{ by assumption}) \\
 1401 & = \mathbb{E}[a^2] - 1. \\
 1402 & \\
 1403 & \quad \square
 \end{aligned}$$

1404 **D.1 PROOF FOR THEOREM 5.1: ANY PROBABILITY DISTRIBUTION AND ANY NUMBER OF**
 1405 **SAMPLES IN EACH GROUP**
 1406

1407 Below, we find the lower bound for the probability of error for any probability distribution of the BoP,
 1408 and any number of samples per group.

1409 **Theorem.** *[Theorem 5.1, restated] The lower bound writes:*

$$1411 \min_{\Psi} \max_{\substack{P_0 \in H_0 \\ P_1 \in H_1}} P_e \geq 1 - \frac{1}{2\sqrt{d}} \left[\frac{1}{d} \sum_{j=1}^d \mathbb{E}_{p^{\epsilon}} \left[\frac{p^{\epsilon}(B)}{p(B)} \right]^{m_j} - 1 \right]^{\frac{1}{2}} \quad (23)$$

1412 where P_0 is a distribution of data, for which the generic model h_0 performs better, i.e., the true γ is
 1413 such that $\gamma(h_0, h_p, \mathcal{D}) < 0$, and P_1 is a distribution of data points for which the personalized model
 1414 performs better, i.e., the true γ is such that $\gamma(h_0, h_p, \mathcal{D}) \geq \epsilon$. Dataset \mathcal{D} is drawn from an unknown
 1415 distribution and has d groups where $d = 2^k$, with each group having m_j samples.

1416 **Proof.** By Proposition D.1, we have that:

$$1417 \min_{\Psi} \max_{\substack{P_0 \in H_0 \\ P_1 \in H_1}} P_e \geq 1 - TV(P \parallel Q)$$

1418 for any well-chosen $P \in H_0$ and any well-chosen $Q \in H_1$. We will design two probability
 1419 distributions P, Q defined on the N data points $(\mathbf{X}_1, \mathbf{S}_1, \mathbf{Y}_1), \dots, (\mathbf{X}_N, \mathbf{S}_N, \mathbf{Y}_N)$ of the dataset \mathcal{D} to
 1420 compute an interesting right hand side term. An “interesting” right hand side term is a term that makes
 1421 the lower bound as tight as possible, i.e., it relies on distributions P, Q for which $TV(P \parallel Q)$ is small,
 1422 i.e., probability distributions that are similar. To achieve this, we will first design the distribution
 1423 $Q \in H_1$, and then propose P as a very small modification of Q , just enough to allow it to verify
 1424 $P \in H_0$.

1425 Mathematically, P, Q are distributions on the dataset \mathcal{D} , i.e., on N i.i.d. realizations
 1426 of the random variables $\mathbf{X}, \mathbf{S}, \mathbf{Y}$. Thus, we wish to design probability distributions on
 1427 $(\mathbf{X}_1, \mathbf{S}_1, \mathbf{Y}_1), \dots, (\mathbf{X}_N, \mathbf{S}_N, \mathbf{Y}_N)$.

1428 However, we note that the dataset distribution is only meaningful in terms of how each triplet
 1429 $(\mathbf{X}_i, \mathbf{S}_i, \mathbf{Y}_i)$ impacts the value of the individual BOP \mathbf{B}_i . Indeed, since \mathbf{B}_i is a function of the data
 1430 point $\mathbf{Z}_i = (\mathbf{X}_i, \mathbf{S}_i, \mathbf{Y}_i)$, that we denote f such that $\mathbf{B}_i = f(\mathbf{Z}_i)$, any probability distribution on \mathbf{Z}_i
 1431 will yield a probability distribution on \mathbf{B}_i and any distribution on the dataset $\mathbf{Z}_1, \dots, \mathbf{Z}_N$ will yield a
 1432 distribution on $\mathbf{B}_1, \dots, \mathbf{B}_N$.

1433 Conversely, let be given $\tilde{P}(b_1, \dots, b_N) = \prod_{i=1}^N \tilde{P}_i(b_i)$ a distribution on $\mathbf{B}_1, \dots, \mathbf{B}_N$ defined by N
 1434 independent distributions \tilde{P}_i for $i = 1, \dots, N$, such that the support of each \tilde{P}_i is restricted to the image
 1435 of f . We propose to build a probability distribution $P(z_1, \dots, z_N) = \prod_{i=1}^N P_i(z_i)$ on $\mathbf{Z}_1, \dots, \mathbf{Z}_N$ that
 1436 will ensure that $f(\mathbf{Z}_1), \dots, f(\mathbf{Z}_N)$ is distributed as \tilde{P} .

1437 First, for each P_i we restrict P_i so that, for every value b_i that \mathbf{B}_i can take according to \tilde{P}_i , there exists
 1438 a unique z_i with positive density, concentrated as a Dirac at z_i , and such that we have $f(z_i) = b_i$.
 1439 Existence is guaranteed since \mathbf{B}_i takes values in the image of f . Uniqueness is guaranteed because
 1440 we can assign 0 mass to the potential non-unique values. Equivalently, f is a bijection from $\text{supp}(P_i)$
 1441 to the set of values taken by \mathbf{B}_i for each i .

1442 Next, for all $z_i \in \text{supp}(P_i)$, we explicitly construct $P_i(z_i)$ as follows:

$$1443 P_i(z_i) = \tilde{P}_i(f_i(z_i)) \cdot \left| \left(\frac{df_i^{-1}(b_i)}{db_i} \right) \right|^{-1},$$

1444 where f_i now denotes the restriction of f to $\text{supp}(P_i)$. We construct Q_i analogously for any
 1445 $i = 1, \dots, N$.

1446 Now moving back to the full dataset of N samples, we relate the TV between P and Q over the
 1447 full dataset $\mathbf{Z} = \mathbf{Z}_1, \dots, \mathbf{Z}_N$ to the TV between \tilde{P} and \tilde{Q} over $\mathbf{B} = \mathbf{B}_1, \dots, \mathbf{B}_N$ by a change of
 1448 variables:

1458
1459
1460 $TV(P \parallel Q) = \frac{1}{2} \int |P(z_1, \dots, z_N) - Q(z_1, \dots, z_N)| dz_1 \dots dz_N$
1461
1462 $= \frac{1}{2} \int \left| \prod_{i=1}^N P_i(z_i) - \prod_{i=1}^N Q_i(z_i) \right| dz_1 \dots dz_N$
1463
1464
1465 where $(z_1, \dots, z_N) = F(b_1, \dots, b_N)$, and $F(b_1, \dots, b_N) = (f_1^{-1}(b_1), \dots, f_N^{-1}(b_N))$.
1466
1467 $= \frac{1}{2} \int_{b_1 \dots b_N} \left| \prod_{i=1}^N P_i(f_i^{-1}(b_i)) - \prod_{i=1}^N Q_i(f_i^{-1}(b_i)) \right| \cdot |\det(\mathbf{J}_F(b_1, \dots, b_N))| db_1 \dots db_N$
1468
1469 $= \frac{1}{2} \int_{b_1 \dots b_N} \left| \prod_{i=1}^N P_i(f_i^{-1}(b_i)) - \prod_{i=1}^N Q_i(f_i^{-1}(b_i)) \right| \cdot \prod_{i=1}^N \frac{\partial z_i(b_i)}{\partial b_i} db_1 \dots db_N$
1470
1471 $= \frac{1}{2} \int_{b_1 \dots b_N} \left| \prod_{i=1}^N P_i(f_i^{-1}(b_i)) - \prod_{i=1}^N Q_i(f_i^{-1}(b_i)) \right| \prod_{i=1}^N \left(\frac{df_i^{-1}(b_i)}{db_i} \right) db_1 \dots db_N$
1472
1473
1474
1475 $= \frac{1}{2} \int_{b_1 \dots b_N} \left| \left[\prod_{i=1}^N \frac{df_i^{-1}}{db}(b_i) \right] \left[\prod_{i=1}^N P_i(f_i^{-1}(b_i)) \right] - \left[\prod_{i=1}^N \frac{df_i^{-1}}{db}(b_i) \right] \left[\prod_{i=1}^N Q_i(f_i^{-1}(b_i)) \right] \right| db_1 \dots db_N$
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485 Thus, we design probability distributions P, Q on n i.i.d. realizations of an auxiliary random variable
1486 \mathbf{B} , with values in \mathbb{R} , defined as:
1487
$$\mathbf{B} = \ell(h_0(\mathbf{X}), \mathbf{Y}) - \ell(h_p(\mathbf{X}, \mathbf{S}), \mathbf{Y}). \quad (24)$$

1488
1489 Intuitively, \mathbf{B}_i represents how much the triplet $(\mathbf{X}_i, \mathbf{S}_i, \mathbf{Y}_i)$ contributes to the value of the BOP.
1490 $b_i > 0$ means that the personalized model provided a better prediction than the generic model on the
1491 triplet (x_i, s_i, y_i) corresponding to the data point i .
1492 Consider the event $b = (b_1, \dots, b_N) \in \mathbb{R}^N$ of N realizations of \mathbf{B} . For simplicity in our computations,
1493 we divide this event into the d groups, i.e., we write instead: $b_j = (b_j^{(1)}, \dots, b_j^{(m)})$, since each group
1494 j has m_j samples. Thus, we have: $b = \{b_j^{(k)}\}_{j=1 \dots d, k=1 \dots m}$ indexed by j, k where $j = 1 \dots d$ is the
1495 group in which this element is, and $k = 1 \dots m_j$ is the index of the element in that group.
1496
1497 **Design Q .** Next, we continue designing a distribution Q (since we have justified that we can define
1498 them on \mathbf{B}) on this set of events that will (barely) verify H_1 , i.e., such that the expectation of B
1499 according to Q will give $\gamma = 0$. We recall that $\gamma = 0$ means that the minimum benefit across groups
1500 is 0, implying that there might be some groups that have a > 0 benefit.
1501 Given p as a distribution with mean $\mu = 0$, we propose the following distribution for Q
1502
1503
$$Q_j(b_j) = \prod_{k=1}^m p(b_j^{(k)}), \text{ for every group } j = 1 \dots d$$

1504
1505
1506
$$Q(b) = \prod_{j=1}^d Q_j(b_j).$$

1507
1508
1509 We verify that we have designed Q correctly, i.e., we verify that $Q \in H_1$. When the dataset is
1510 distributed according to Q , we have:
1511
$$\gamma = \min_{s \in S} C_s(h_0, s) - C_s(h_p, s)$$

$$\begin{aligned}
1512 &= \min_{s \in S} \mathbb{E}_Q[\ell(h_0(\mathbf{X}), \mathbf{Y}) \mid \mathbf{S} = s] - \mathbb{E}_Q[\ell(h_p(\mathbf{X}), \mathbf{Y}) \mid \mathbf{S} = s] \text{ (by definition of group cost)} \\
1513 &= \min_{s \in S} \mathbb{E}_Q[\ell(h_0(\mathbf{X}), \mathbf{Y}) - \ell(h_p(\mathbf{X}), \mathbf{Y}) \mid \mathbf{S} = s] \text{ (by linearity of expectation)} \\
1514 &= \min_{s \in S} \mathbb{E}_Q[B \mid \mathbf{S} = s] \text{ (by definition of random variable } \mathbf{B} \text{)} \\
1515 &= \min_{s \in S} 0 \text{ (by definition of the probability distribution on } \mathbf{B} \text{)} \\
1516 &= 0.
\end{aligned}$$

1520 Thus, we find that $\gamma = 0$ which means that $\gamma \geq 0$, i.e., $Q \in H_1$.
1521

1522 **Design P .** Next, we design P as a small modification of the distribution Q , that will just be enough
1523 to get $P \in H_0$. We recall that $P \in H_0$ means that $\gamma \leq \epsilon$ where $\epsilon < 0$ in the flipped hypothesis test.
1524 This means that, under H_0 , there is one group that suffers a decrease of performance of $|\epsilon|$ because of
1525 the personalized model.
1526

1527 Given p as a distribution with $\mu = 0$, and p^ϵ a distribution with mean $\mu = \epsilon < 0$, we have:
1528

$$\begin{aligned}
1529 &P_j(b_j) = \prod_{k=1}^{m_j} p(b_j^{(k)}), \text{ for every group } j = 1 \dots d, \\
1530 &P_j^\epsilon(b_j) = \prod_{k=1}^{m_j} p^\epsilon(b_j^{(k)}), \text{ for every group } j = 1 \dots d, \\
1531 &P(b) = \frac{1}{d} \sum_{j=1}^d P_j^\epsilon(b_j) \prod_{j' \neq j} P_{j'}(b_{j'}).
\end{aligned}$$

1532 Intuitively, this distribution represents the fact that there is one group for which the personalized
1533 model worsen performances by $|\epsilon|$. We assume that this group can be either group 1, or group 2,
1534 etc, or group d , and consider these to be disjoint events: i.e., exactly only one group suffers the $|\epsilon|$
1535 performance decrease. We take the union of these disjoint events and sum of probabilities using the
1536 Partition Theorem (Law of Total Probability) in the definition of P above.
1537

1538 We verify that we have designed P correctly, i.e., we verify that $P \in H_0$. When the dataset is
1539 distributed according to P , we have:
1540

$$\begin{aligned}
1541 &\gamma = \min_{s \in S} C_s(h_0, s) - C_s(h_p, s) \\
1542 &= \min_{s \in S} \mathbb{E}_P[\mathbf{B} \mid \mathbf{S} = s] \text{ (same computations as for } Q \in H_1 \text{)} \\
1543 &= \min(\epsilon, 0, \dots, 0) \text{ (since exactly one group has mean } \epsilon \text{)} \\
1544 &= \epsilon \text{ (since } \epsilon < 0 \text{).}
\end{aligned}$$

1545 Thus, we find that $\gamma = \epsilon$ which means that $\gamma \leq 0$, i.e., $P \in H_0$.
1546

1547 **Compute total variation $TV(P \parallel Q)$.** We have verified that $Q \in H_1$ and that $P \in H_0$. We
1548 use these probability distributions to compute the lower bound to P_e . First, we compute their total
1549 variation:
1550

$$\begin{aligned}
1551 &TV(P \parallel Q) = \frac{1}{2} \int_{b_1, \dots, b_j} |P(b_1, \dots, b_j) - Q(b_1, \dots, b_j)| db_1 \dots db_j \text{ (TV for probability density functions)} \\
1552 &= \frac{1}{2} \int_{b_1, \dots, b_j} \left| \frac{1}{d} \sum_{j=1}^d P_j^\epsilon(b_j) \prod_{j' \neq j} P_{j'}(b_{j'}) - \prod_{j=1}^d Q_j(b_j) \right| db_1 \dots db_j \text{ (definition of } P, Q \text{)} \\
1553 &= \frac{1}{2} \int_{b_1, \dots, b_j} \left| \frac{1}{d} \sum_{j=1}^d \frac{P_j^\epsilon(b_j)}{P_j(b_j)} \prod_{j'=1}^d P_{j'}(b_{j'}) - \prod_{j=1}^d Q_j(b_j) \right| db_1 \dots db_j \text{ (adding missing } j' = j \text{)}
\end{aligned}$$

$$\begin{aligned}
&= \frac{1}{2} \int_{b_1, \dots, b_j} \left| \frac{1}{d} \sum_{j=1}^d \frac{P_j^\epsilon(b_j)}{P_j(b_j)} \prod_{j'=1}^d Q_{j'}(b_{j'}) - \prod_{j=1}^d Q_j(b_j) \right| db_1 \dots db_j \quad (P_j = Q_j \text{ by construction}) \\
&= \frac{1}{2} \int_{b_1, \dots, b_j} \prod_{j=1}^d Q_j(b_j) \left| \frac{1}{d} \sum_{j=1}^d \frac{P_j^\epsilon(b_j)}{P_j(b_j)} - 1 \right| db_1 \dots db_j \quad (\text{extracting the product}) \\
&= \frac{1}{2} \mathbb{E}_Q \left[\left| \frac{1}{d} \sum_{j=1}^d \frac{P_j^\epsilon(b_j)}{P_j(b_j)} - 1 \right| \right] \quad (\text{recognizing an expectation with respect to } Q) \\
&= \frac{1}{2} \mathbb{E}_Q \left[\left| \frac{1}{d} \sum_{j=1}^d \frac{\prod_{k=1}^{m_j} p^\epsilon(b_j^{(k)})}{\prod_{k=1}^{m_j} p(b_j^{(k)})} - 1 \right| \right] \quad (\text{definition of } P_j \text{ and } P_j^{(\epsilon)}) \\
&\leq \frac{1}{2} \mathbb{E}_Q \left[\left| \frac{1}{d} \sum_{j=1}^d \frac{\prod_{k=1}^{m_j} p^\epsilon(b_j^{(k)})}{\prod_{k=1}^{m_j} p(b_j^{(k)})} - 1 \right|^2 \right]^{1/2} \quad (\text{Cauchy-Schwartz})
\end{aligned}$$

Auxiliary computation to apply Lemma D.2 Next, we will apply Lemma D.2. For this, we need to prove that the expectation of the first term is 1. We have:

$$\begin{aligned}
&\mathbb{E}_Q \left[\frac{1}{d} \sum_{j=1}^d \frac{\prod_{k=1}^{m_j} p^\epsilon(b_j^{(k)})}{\prod_{k=1}^{m_j} p(b_j^{(k)})} \right] \\
&= \frac{1}{d} \sum_{j=1}^d \mathbb{E}_Q \left[\frac{\prod_{k=1}^{m_j} p^\epsilon(b_j^{(k)})}{\prod_{k=1}^{m_j} p(b_j^{(k)})} \right] \quad (\text{linearity of expectation}) \\
&= \frac{1}{d} \sum_{j=1}^d \mathbb{E}_Q \left[\prod_{k=1}^{m_j} \frac{p^\epsilon(b_j^{(k)})}{p(b_j^{(k)})} \right] \quad (\text{rearranging the product}) \\
&= \frac{1}{d} \sum_{j=1}^d \prod_{k=1}^{m_j} \mathbb{E}_Q \left[\frac{p^\epsilon(b_j^{(k)})}{p(b_j^{(k)})} \right] \quad (\text{product of independent variables}) \\
&= \frac{1}{d} \sum_{j=1}^d \prod_{k=1}^{m_j} \mathbb{E}_p \left[\frac{p^\epsilon(b_j^{(k)})}{p(b_j^{(k)})} \right] \quad (\text{definition of } Q) \\
&= \frac{1}{d} \sum_{j=1}^d \prod_{k=1}^{m_j} \int_{-\infty}^{+\infty} \frac{p^\epsilon(b)}{p(b)} p(b) db \quad (\text{definition of expectation in } p) \\
&= \frac{1}{d} \sum_{j=1}^d \prod_{k=1}^{m_j} \int_{-\infty}^{+\infty} p^\epsilon(b) db \quad (\text{simplify}) \\
&= \frac{1}{d} \sum_{j=1}^d \prod_{k=1}^{m_j} 1 \quad (\text{probability density function integrates to 1}) \\
&= \frac{1}{d} \sum_{j=1}^d 1 \quad (\text{term independent of } k) \\
&= \frac{1}{d} d \quad (\text{term independent of } j) \\
&= 1.
\end{aligned}$$

Continue by applying Lemma D.2. This auxiliary computation shows that we meet the assumption of Lemma D.2. Thus, we continue the computation of the lower bound of the TV by applying

1620

Lemma D.2.

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

$$TV(P \parallel Q)$$

$$\leq \frac{1}{2} \mathbb{E}_Q \left[\left(\frac{1}{d} \sum_{j=1}^d \frac{\prod_{k=1}^{m_j} p^\epsilon(b_j^{(k)})}{\prod_{k=1}^{m_j} p(b_j^{(k)})} \right)^2 - 1 \right]^{\frac{1}{2}} \text{ Lemma D.2}$$

$$= \frac{1}{2} \mathbb{E}_Q \left[\left(\frac{1}{d} \sum_{j=1}^d z_j \right)^2 - 1 \right]^{\frac{1}{2}} \text{ defining } z_j = \frac{\prod_{k=1}^{m_j} p^\epsilon(b_j^{(k)})}{\prod_{k=1}^{m_j} p(b_j^{(k)})} = \prod_{k=1}^{m_j} \frac{p^\epsilon(b_j^{(k)})}{p(b_j^{(k)})}$$

$$= \frac{1}{2} \mathbb{E}_Q \left[\frac{1}{d^2} \sum_{j,j'=1}^d z_j z_{j'} - 1 \right]^{\frac{1}{2}} \text{ expanding the square of the sum}$$

$$= \frac{1}{2} \mathbb{E}_Q \left[\frac{1}{d^2} \left(\sum_{j=1}^d z_j^2 + \sum_{j,j'=1, j \neq j'}^d z_j \cdot z_{j'} \right) - 1 \right]^{\frac{1}{2}},$$

where we split the double sum to get independent variables in the second term.

We get by linearity of the expectation, $\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$:

$$TV(P \parallel Q)$$

$$\leq \frac{1}{2} \mathbb{E}_Q \left[\frac{1}{d^2} \left(\sum_{j=1}^d z_j^2 + \sum_{j,j'=1, j \neq j'}^d z_j \cdot z_{j'} \right) - 1 \right]^{\frac{1}{2}}$$

$$= \frac{1}{2} \left[\frac{1}{d^2} \left(\sum_{j=1}^d \mathbb{E}_Q[z_j^2] + \sum_{j,j'=1, j \neq j'}^d \mathbb{E}_Q[z_j \cdot z_{j'}] \right) - 1 \right]^{\frac{1}{2}}$$

$$= \frac{1}{2} \left[\frac{1}{d^2} \left(\sum_{j=1}^d \mathbb{E}_Q \left[\left(\prod_{k=1}^{m_j} \frac{p^\epsilon(b_j^{(k)})}{p(b_j^{(k)})} \right)^2 \right] + \sum_{j,j'=1, j \neq j'}^d \mathbb{E}_Q \left[\left(\prod_{k=1}^{m_j} \frac{p^\epsilon(b_j^{(k)})}{p(b_j^{(k)})} \right) \cdot \left(\prod_{k=1}^{m_{j'}} \frac{p^\epsilon(b_{j'}^{(k)})}{p(b_{j'}^{(k)})} \right) \right] \right) - 1 \right]^{\frac{1}{2}}$$

$$= \frac{1}{2} \left[\frac{1}{d^2} \left(\sum_{j=1}^d \mathbb{E}_Q \left[\left(\prod_{k=1}^{m_j} \frac{p^\epsilon(b_j^{(k)})}{p(b_j^{(k)})} \right)^2 \right] \right. \right.$$

$$\left. \left. + \sum_{\substack{j,j'=1 \\ j \neq j'}}^d \mathbb{E}_Q \left[\prod_{k=1}^{m_j} \frac{p^\epsilon(b_j^{(k)})}{p(b_j^{(k)})} \right] \mathbb{E}_Q \left[\prod_{k=1}^{m_{j'}} \frac{p^\epsilon(b_{j'}^{(k)})}{p(b_{j'}^{(k)})} \right] \right) - 1 \right]^{\frac{1}{2}} \text{ (product of independent variables)}$$

$$= \frac{1}{2} \left[\frac{1}{d^2} \left(\sum_{j=1}^d \prod_{k=1}^{m_j} \mathbb{E}_p \left[\left(\frac{p^\epsilon(b_j^{(k)})}{p(b_j^{(k)})} \right)^2 \right] \right. \right]$$

$$\left. \left. + \sum_{\substack{j,j'=1 \\ j \neq j'}}^d \prod_{k=1}^{m_j} \mathbb{E}_p \left[\frac{p^\epsilon(b_j^{(k)})}{p(b_j^{(k)})} \right] \prod_{k=1}^{m_{j'}} \mathbb{E}_p \left[\frac{p^\epsilon(b_{j'}^{(k)})}{p(b_{j'}^{(k)})} \right] \right) - 1 \right]^{\frac{1}{2}} \text{ (product of independent variables and def. of } Q)$$

$$= \frac{1}{2} \left[\frac{1}{d^2} \left(\sum_{j=1}^d \prod_{k=1}^{m_j} \mathbb{E}_p \left[\left(\frac{p^\epsilon(b_j^{(k)})}{p(b_j^{(k)})} \right)^2 \right] + \sum_{j,j'=1, j \neq j'}^d \prod_{k=1}^{m_j} \prod_{k=1}^{m_{j'}} \mathbb{E}_p \left[\left(\frac{p^\epsilon(b_j^{(k)})}{p(b_j^{(k)})} \right) \cdot \left(\frac{p^\epsilon(b_{j'}^{(k)})}{p(b_{j'}^{(k)})} \right) \right] \right) - 1 \right]^{\frac{1}{2}} \text{ (auxiliary computation below)}$$

$$\begin{aligned}
1674 &= \frac{1}{2} \left[\frac{1}{d^2} \left(\sum_{j=1}^d \prod_{k=1}^{m_j} \mathbb{E}_p \left[\left(\frac{p^\epsilon(b_j^{(k)})}{p(b_j^{(k)})} \right)^2 \right] + \sum_{j,j'=1, j \neq j'}^d 1 \right) - 1 \right]^{\frac{1}{2}} \text{ (term independent of } k) \\
1675 &= \frac{1}{2} \left[\frac{1}{d^2} \left(\sum_{j=1}^d \prod_{k=1}^{m_j} \mathbb{E}_p \left[\left(\frac{p^\epsilon(b_j^{(k)})}{p(b_j^{(k)})} \right)^2 \right] + (d^2 - d) \right) - 1 \right]^{\frac{1}{2}} \text{ (term independent of } j) \\
1676 &= \frac{1}{2} \left[\frac{1}{d^2} \left(\sum_{j=1}^d \mathbb{E}_p \left[\left(\frac{p^\epsilon(B)}{p(B)} \right)^2 \right]^{m_j} + (d^2 - d) \right) - 1 \right]^{\frac{1}{2}} \text{ (term independent of } k) \\
1677 &= \frac{1}{2} \left[\frac{1}{d^2} \sum_{j=1}^d \mathbb{E}_p \left[\left(\frac{p^\epsilon(B)}{p(B)} \right)^2 \right]^{m_j} + 1 - \frac{1}{d} - 1 \right]^{\frac{1}{2}} \text{ (distribute } 1/d^2) \\
1678 &= \frac{1}{2} \left[\frac{1}{d^2} \sum_{j=1}^d \mathbb{E}_p \left[\left(\frac{p^\epsilon(B)}{p(B)} \right)^2 \right]^{m_j} - \frac{1}{d} \right]^{\frac{1}{2}} \text{ (simplify)} \\
1679 &= \frac{1}{2\sqrt{d}} \left[\frac{1}{d} \sum_{j=1}^d \mathbb{E}_p \left[\left(\frac{p^\epsilon(B)}{p(B)} \right)^2 \right]^{m_j} - 1 \right]^{\frac{1}{2}} \text{ (extract } 1/\sqrt{d}) \\
1680 &= \frac{1}{2\sqrt{d}} \left[\frac{1}{d} \sum_{j=1}^d \left(\int_{-\infty}^{+\infty} \left(\frac{p^\epsilon(b)}{p(b)} \right)^2 p(b) db \right)^{m_j} - 1 \right]^{\frac{1}{2}} \text{ (definition of expectation)} \\
1681 &= \frac{1}{2\sqrt{d}} \left[\frac{1}{d} \sum_{j=1}^d \left(\int_{-\infty}^{+\infty} \frac{p^\epsilon(b)^2}{p(b)} db \right)^{m_j} - 1 \right]^{\frac{1}{2}} \text{ (simplify } p(b)) \\
1682 &= \frac{1}{2\sqrt{d}} \left[\frac{1}{d} \sum_{j=1}^d \mathbb{E}_{p^\epsilon} \left[\frac{p^\epsilon(B)}{p(B)} \right]^{m_j} - 1 \right]^{\frac{1}{2}} \text{ (def of expectation)}
\end{aligned}$$

1707 **Auxiliary computation in 1** We show that:

$$\begin{aligned}
1709 &\mathbb{E}_p \left[\frac{p^\epsilon(b_{j'}^{(k)})}{p(b_{j'}^{(k)})} \right] \\
1710 &= \int_{-\infty}^{+\infty} \frac{p^\epsilon(b)}{p(b)} p(b) db \\
1711 &= \int_{-\infty}^{+\infty} p^\epsilon(b) db \text{ simplify } p(b) \\
1712 &= 1 \text{ probability density function } p^\epsilon \text{ integrates to 1.}
\end{aligned}$$

1718 **Final result:** This gives the final result:

$$\begin{aligned}
1721 &\min_{\Psi} \max_{\substack{P_0 \in H_0 \\ P_1 \in H_1}} P_e \geq 1 - TV(P \parallel Q) \\
1722 &\Rightarrow \min_{\Psi} \max_{\substack{P_0 \in H_0 \\ P_1 \in H_1}} P_e \geq 1 - \frac{1}{2\sqrt{d}} \left[\frac{1}{d} \sum_{j=1}^d \mathbb{E}_{p^\epsilon} \left[\frac{p^\epsilon(B)}{p(B)} \right]^{m_j} - 1 \right]^{\frac{1}{2}}
\end{aligned}$$

□

1728 D.2 PROOF FOR COROLLARY 5.2 : ANY DISTRIBUTION IN AN EXPONENTIAL FAMILY
17291730 We consider a fixed exponential family in its natural parameterization, i.e., probability distributions of
1731 the form:

1732
$$f_X(x | \theta) = h(x) \exp(\theta \cdot \mathbf{T}(x) - A(\theta)), \quad (25)$$

1733 where θ is the only parameter varying between two distributions from that family, i.e., the functions
1734 η , T and A are fixed. We recall a few properties of any exponential family (EF) that will be useful in
1735 our computations.1736 First, the moment generating function (MGF) for the natural sufficient statistic $T(x)$ is equal to:
1737

1738
$$M^T(t) = \exp(A(\theta + t) - A(\theta)).$$

1739 Then, the moments for $T(x)$, when θ is a scalar parameter, are given by:
1740

1741
$$\mathbb{E}[T] = A'(\theta)$$

1742
$$\mathbb{V}[T] = A''(\theta).$$

1743 Since the variance is non-negative $\mathbb{V}[T] \geq 0$, this means that we have $A''(\theta) > 0$ and thus A' is
1744 monotonic and bijective. We will use that fact in the later computations.
17451746 In the following, we recall that the categorical distribution and the Gaussian distribution with fixed
1747 variance σ^2 are members of the exponential family.
17481749 **Example: Categorical distributions as a EF** The categorical variable has probability density
1750 function:

1751
$$\begin{aligned} 1752 p(x | \pi) &= \exp \left(\sum_{k=1}^K x_k \log \pi_k \right) \\ 1753 &= \exp \left(\sum_{k=1}^{K-1} x_k \log \pi_k + \left(1 - \sum_{k=1}^{K-1} x_k \right) \log \left(1 - \sum_{k=1}^{K-1} \pi_k \right) \right) \\ 1754 &= \exp \left(\sum_{k=1}^{K-1} \log \left(\frac{\pi_k}{1 - \sum_{k=1}^{K-1} \pi_k} \right) x_k + \log \left(1 - \sum_{k=1}^{K-1} \pi_k \right) \right) \end{aligned}$$

1755 where we have used the fact that $\pi_K = 1 - \sum_{k=1}^{K-1} \pi_k$.
17561757 We note that we need to use the PDF of the categorical that uses a minimal (i.e., $K - 1$) set of
1758 parameters. We define $h(x)$, $T(x)$, $\theta \in \mathbb{R}^{K-1}$ and $A(\theta)$ as:
1759

1760
$$h(x) = 1$$

1761
$$T(x) = x,$$

1762
$$\theta_k = \log \left(\frac{\pi_k}{1 - \sum_{k=1}^{K-1} \pi_k} \right) = \log \left(\frac{\pi_k}{\pi_K} \right), \text{ for } k = 1, \dots, K - 1$$

1763
$$A(\theta) = -\log \left(1 - \sum_{k=1}^{K-1} \pi_k \right) = \log \left(\frac{1}{1 - \sum_{k=1}^{K-1} \pi_k} \right) = \log \left(\frac{\sum_{k=1}^K \pi_k}{1 - \sum_{k=1}^{K-1} \pi_k} \right) = \log \left(\sum_{k=1}^K e^{\theta_k} \right),$$

1764 which shows that the categorical distribution is within the EF. For convenience we have defined θ_K
1765 setting it to 0 as per the Equation above.
17661767 Now, we adapt these expressions for the case of a Categorical variable with only $K = 3$ values
1768 $x_1 = -1$, $x_2 = 1$ and $x_3 = 0$ such that $\pi_3 = 0$, i.e., there is no mass on the $x_3 = 0$, and we denote
1769 $\pi_1 = p_1$ and $\pi_2 = p_2$ and $\pi_3 = 1 - p_1 - p_2 = 0$. We get:
1770

1771
$$h(x) = 1$$

1772
$$T(x) = x,$$

1773
$$\theta_1 = \log \left(\frac{p_1}{p_2} \right), \text{ and } \theta_2 = 0 \text{ by convention, as above, } \theta_3 = \log \left(\frac{\pi_3}{p_2} \right) = -\infty$$

1782 $A(\theta_1) = \log(e^{\theta_1} + e^{\theta_2} + e^{\theta_3}) = \log(e^{\theta_1} + 1 + 0) = \log\left(e^{\log\left(\frac{p_1}{p_2}\right)} + 1\right) = \log\left(\frac{p_1}{p_2} + 1\right),$
 1783
 1784 where, in the proofs, we will have $p_1 = \frac{1}{2} + \epsilon$ and $p_3 = \frac{1}{2} - \epsilon$ such that the expectation is
 1785 $-1 \cdot (\frac{1}{2} + \epsilon) + 1 \cdot (\frac{1}{2} - \epsilon) = -2\epsilon.$
 1786

1787 **Example: Gaussian distribution with fixed variance as a EF** The Gaussian distribution with
 1788 fixed variance has probability density function:
 1789

$$\begin{aligned} p(x | \mu) &= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \\ &= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{x^2 - 2x\mu + \mu^2}{2\sigma^2}\right) \\ &= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{x^2}{2\sigma^2}\right) \exp\left(\frac{2x\mu - \mu^2}{2\sigma^2}\right) \\ &= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{x^2}{2\sigma^2}\right) \exp\left(\frac{x\mu - \mu^2}{\sigma^2}\right). \end{aligned}$$

1800 We define $h(x)$, $T(x)$, $\theta \in \mathbb{R}$ and $A(\theta)$ as:
 1801

$$\begin{aligned} h(x) &= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{x^2}{2\sigma^2}\right) \\ T(x) &= x, \\ \theta &= \frac{\mu}{\sigma^2} \\ A(\theta) &= \frac{\mu^2}{2\sigma^2} = \frac{\sigma^2\theta^2}{2}. \end{aligned}$$

1810 which shows that the Gaussian distribution with fixed variance σ^2 is within the EF.

1811 **Corollary.** [Corollary 5.2 (restated)] The lower bound for the exponential family with any number
 1812 of samples in each group writes:
 1813

$$\min_{\Psi} \max_{\substack{P_0 \in H_0 \\ P_1 \in H_1}} P_e \geq 1 - \frac{1}{2\sqrt{d}} \left[\frac{1}{d} \sum_{j=1}^d \left(\frac{M_p(2\Delta\theta)}{M_p(\Delta\theta)^2} \right)^{m_j} - 1 \right]^{\frac{1}{2}}$$

1818 *Proof.* By Theorem 5.1, we have:
 1819

$$\min_{\Psi} \max_{\substack{P_0 \in H_0 \\ P_1 \in H_1}} P_e \geq 1 - \frac{1}{2\sqrt{d}} \left[\frac{1}{d} \sum_{j=1}^d \mathbb{E}_{p^\epsilon} \left[\frac{p^\epsilon(B)}{p(B)} \right]^{m_j} - 1 \right]^{\frac{1}{2}}$$

1824 **Plug in the exponential family** Under the assumption of an exponential family distribution for the
 1825 random variable B , we have:
 1826

$$\begin{aligned} \min_{\Psi} \max_{\substack{P_0 \in H_0 \\ P_1 \in H_1}} P_e &\geq 1 - \frac{1}{2\sqrt{d}} \left[\frac{1}{d} \sum_{j=1}^d \mathbb{E}_{p^\epsilon} \left[\frac{h(B) \exp(\theta^\epsilon \cdot T(B) - A(\theta^\epsilon))}{h(B) \exp(\theta^0 \cdot T(B) - A(\theta^0))} \right]^{m_j} - 1 \right]^{\frac{1}{2}} \\ &= 1 - \frac{1}{2\sqrt{d}} \left[\frac{1}{d} \sum_{j=1}^d \mathbb{E}_{p^\epsilon} \left[\frac{\exp(\theta^\epsilon \cdot T(B) - A(\theta^\epsilon))}{\exp(\theta^0 \cdot T(B) - A(\theta^0))} \right]^{m_j} - 1 \right]^{\frac{1}{2}} \text{ simplifying } h \end{aligned}$$

$$\begin{aligned}
1836 &= 1 - \frac{1}{2\sqrt{d}} \left[\frac{1}{d} \sum_{j=1}^d \mathbb{E}_{p^\epsilon} \left[\exp(\theta^\epsilon \cdot T(B) - A(\theta^\epsilon)) \exp(-\theta^0 \cdot T(B) + A(\theta^0)) \right]^{m_j} - 1 \right]^{\frac{1}{2}} \text{ properties of exp} \\
1837 &= 1 - \frac{1}{2\sqrt{d}} \left[\frac{1}{d} \sum_{j=1}^d \mathbb{E}_{p^\epsilon} \left[\exp(A(\theta^0) - A(\theta^\epsilon)) \right. \right. \\
1838 &\quad \cdot \exp((\theta^\epsilon - \theta^0) \cdot T(B)) \left. \right]^{m_j} - 1 \left. \right]^{\frac{1}{2}} \text{ (properties of exp and rearranging terms)} \\
1839 &= 1 - \frac{1}{2\sqrt{d}} \left[\frac{1}{d} \sum_{j=1}^d \exp(A(\theta^0) - A(\theta^\epsilon))^{m_j} \mathbb{E}_{p^\epsilon} \left[\exp((\theta^\epsilon - \theta^0) T(B)) \right]^{m_j} - 1 \right]^{\frac{1}{2}} \\
1840 &= 1 - \frac{1}{2\sqrt{d}} \left[\frac{1}{d} \sum_{j=1}^d \exp(A(\theta^0) - A(\theta^\epsilon))^{m_j} M_{p^\epsilon}(\Delta\theta)^{m_j} - 1 \right]^{\frac{1}{2}} \\
1841 &\quad (\text{def. of MGF of } T(B): M_{p^\epsilon}(t) = \mathbb{E}_{p^\epsilon}[\exp(t \cdot T(B))] \text{ with } \Delta\theta = \theta^\epsilon - \theta^0) \\
1842 & \\
1843 & \\
1844 & \\
1845 & \\
1846 & \\
1847 & \\
1848 & \\
1849 & \\
1850 & \\
1851 & \\
1852 & \\
1853 & \\
1854 & \\
1855 & \\
1856 & \\
1857 & \\
1858 & \\
1859 & \\
1860 & \\
1861 & \\
1862 & \\
1863 & \\
1864 & \\
1865 & \\
1866 & \\
1867 & \\
1868 & \\
1869 & \\
1870 & \\
1871 & \\
1872 & \\
1873 & \\
1874 & \\
1875 & \\
1876 & \\
1877 & \\
1878 & \\
1879 & \\
1880 & \\
1881 & \\
1882 & \\
1883 & \\
1884 & \\
1885 & \\
1886 & \\
1887 & \\
1888 & \\
1889 & \\
\end{aligned}$$

We define $\Delta\theta = \theta_\epsilon - \theta_0$. Here, we will apply the properties of EF regarding moment generating functions, i.e., for the p^ϵ with natural parameter θ_ϵ :

$$\begin{aligned}
1857 \quad M_{p^\epsilon}(t) &= \exp(A(\theta_\epsilon + t) - A(\theta_\epsilon)) \Rightarrow M_{p^\epsilon}(-\Delta\theta) = \exp(A(\theta_0) - A(\theta_\epsilon)), \\
1858 \quad &\Rightarrow M_{p^\epsilon}(\Delta\theta) = \exp(A(2\theta_\epsilon - \theta_0) - A(\theta_\epsilon)),
\end{aligned}$$

1860 And, for p associated with natural parameter θ_0 :

$$\begin{aligned}
1861 \quad M_p(t) &= \exp(A(\theta_0 + t) - A(\theta_0)) \Rightarrow M_p(-\Delta\theta) = \exp(A(2\theta_0 - \theta_\epsilon) - A(\theta_0)), \\
1862 \quad &\Rightarrow M_p(\Delta\theta) = \exp(A(\theta_\epsilon) - A(\theta_0)), \\
1863 \quad &\Rightarrow M_p(\Delta\theta)^2 = \exp(2A(\theta_\epsilon) - 2A(\theta_0)) \\
1864 \quad &\Rightarrow M_p(2\Delta\theta) = \exp(A(2\theta_\epsilon - \theta_0) - A(\theta_0))
\end{aligned}$$

1866 So, that we have on the one hand:

$$1868 \quad M_{p^\epsilon}(-\Delta\theta) M_{p^\epsilon}(\Delta\theta) = \exp(A(\theta_0) - A(\theta_\epsilon)) \cdot \exp(A(2\theta_\epsilon - \theta_0) - A(\theta_\epsilon))$$

1869 and on the other hand:

$$\begin{aligned}
1871 \quad \frac{M_p(2\Delta\theta)}{M_p(\Delta\theta)^2} &= \frac{\exp(A(2\theta_\epsilon - \theta_0) - A(\theta_0))}{\exp(2A(\theta_\epsilon) - 2A(\theta_0))} \\
1872 &= \frac{\exp(A(2\theta_\epsilon - \theta_0))}{\exp(2A(\theta_\epsilon) - 2A(\theta_0))} \cdot \frac{1}{\exp(A(\theta_0))} \\
1873 &= \frac{\exp(A(2\theta_\epsilon - \theta_0))}{\exp(2A(\theta_\epsilon) - A(\theta_0))} \\
1874 &= \exp(A(2\theta_\epsilon - \theta_0) + A(\theta_0) - A(\theta_\epsilon) - A(\theta_\epsilon)) \\
1875 &= \exp(A(\theta_0) - A(\theta_\epsilon) + A(2\theta_\epsilon - \theta_0) - A(\theta_\epsilon)) \\
1876 &= \exp(A(\theta_0) - A(\theta_\epsilon)) \cdot \exp(A(2\theta_\epsilon - \theta_0) - A(\theta_\epsilon))
\end{aligned}$$

1882 Consequently, we get two equivalent expressions for our final result:

$$\begin{aligned}
1884 &= 1 - \frac{1}{2\sqrt{d}} \left[\frac{1}{d} \sum_{j=1}^d \exp(A(\theta^0) - A(\theta^\epsilon))^{m_j} \exp(A(2\theta_\epsilon - \theta_0) - A(\theta_\epsilon))^{m_j} - 1 \right]^{\frac{1}{2}} \\
1885 &= 1 - \frac{1}{2\sqrt{d}} \left[\frac{1}{d} \sum_{j=1}^d (M_{p^\epsilon}(-\Delta\theta) M_{p^\epsilon}(\Delta\theta))^{m_j} - 1 \right]^{\frac{1}{2}} \text{ (first expression)}
\end{aligned}$$

$$1890 = 1 - \frac{1}{2\sqrt{d}} \left[\frac{1}{d} \sum_{j=1}^d \left(\frac{M_p(2\Delta\theta)}{M_p(\Delta\theta)^2} \right)^{m_j} - 1 \right]^{\frac{1}{2}} \text{ (second expression)}$$

1894 We will use the second expression.

□

1898 D.3 PROOF FOR CATEGORICAL BoP

1900 Here, we apply the exponential family result found in D.2 to find the lower bound for a categorical
1901 distribution.

1902 **Corollary D.3.** [Lower bound for categorical individual BoP for any number of samples in each
1903 group (Monteiro Paes et al., 2022)] The lower bound writes:

$$1904 \min_{\Psi} \max_{\substack{P_0 \in H_0 \\ P_1 \in H_1}} P_e \geq 1 - \frac{1}{2\sqrt{d}} \left[\frac{1}{d} \sum_{j=1}^d (1 + 4\epsilon^2)^{m_j} - 1 \right]^{\frac{1}{2}}$$

1909 where $P_{\mathbf{X}, \mathbf{S}, Y}$ is a distribution of data, for which the generic model h_0 performs better, i.e., the true γ
1910 is such that $\gamma(h_0, h_p, \mathcal{D}) < 0$, and $Q_{\mathbf{X}, \mathbf{S}, Y}$ is a distribution of data points for which the personalized
1911 model performs better, i.e., the true γ is such that $\gamma(h_0, h_p, \mathcal{D}) \geq \epsilon$.

1913 *Proof.* By Corollary 5.2, we have:

$$1915 \min_{\Psi} \max_{\substack{P_0 \in H_0 \\ P_1 \in H_1}} P_e \geq 1 - \frac{1}{2\sqrt{d}} \left[\frac{1}{d} \sum_{j=1}^d \left(\frac{M_p(2\Delta\theta)}{M_p(\Delta\theta)^2} \right)^{m_j} - 1 \right]^{\frac{1}{2}}$$

1918 **Plug in Categorical assumption** We find the bound for the categorical case. For the categorical,
1919 we have $\theta = \theta_1$ and:

$$1921 \theta_0 = \log \left(\frac{p_1}{p_2} \right) = \log \frac{1/2}{1/2} = 0$$

$$1924 \theta_\epsilon = \log \left(\frac{p_1^\epsilon}{p_2^\epsilon} \right) = \log \left(\frac{1/2 + \epsilon}{1/2 - \epsilon} \right) = \log \left(\frac{1 + 2\epsilon}{1 - 2\epsilon} \right)$$

$$1926 A(\theta_0) = \log(e^{\theta_0} + 1) = \log(2)$$

$$1928 A(\theta_\epsilon) = \log(e^{\theta_\epsilon} + 1) = \log \left(\frac{1 + 2\epsilon}{1 - 2\epsilon} + 1 \right) = \log \left(\frac{1 + 2\epsilon + 1 - 2\epsilon}{1 - 2\epsilon} \right) = \log \left(\frac{2}{1 - 2\epsilon} \right)$$

$$1930 A(2\theta_\epsilon) = \log(e^{2\theta_\epsilon} + 1)$$

$$1931 = \log((e^{\theta_\epsilon})^2 + 1)$$

$$1933 = \log \left(\left(\frac{1 + 2\epsilon}{1 - 2\epsilon} \right)^2 + 1 \right)$$

$$1935 = \log \left(\frac{1 + 4\epsilon + 4\epsilon^2}{1 - 4\epsilon + 4\epsilon^2} + 1 \right)$$

$$1938 = \log \left(\frac{1 + 4\epsilon + 4\epsilon^2 + 1 - 4\epsilon + 4\epsilon^2}{1 - 4\epsilon + 4\epsilon^2} \right)$$

$$1940 = \log \left(\frac{2 + 8\epsilon^2}{1 - 4\epsilon + 4\epsilon^2} \right)$$

1943 We also have: $\Delta\theta = \theta_\epsilon$.

1944
1945

Accordingly, we have:

1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964

$$\begin{aligned}
M_p(\Delta\theta) &= \exp(A(\theta_0 + \Delta\theta) - A(\theta_0)) \\
&= \exp(A(\theta_\epsilon) - A(\theta_0)) \\
&= \exp\left(\log\left(\frac{2 + \epsilon}{1 - 2\epsilon}\right) - \log(2)\right) \\
&= \exp\log\left(\frac{1}{2}\left(\frac{2}{1 - 2\epsilon}\right)\right) \\
&= \frac{1}{1 - 2\epsilon} \\
M_p(2\Delta\theta) &= \exp(A(\theta_0 + 2\Delta\theta) - A(\theta_0)) \\
&= \exp(A(2\theta_\epsilon) - A(\theta_0)) \\
&= \exp\left(\log\left(\frac{2 + 8\epsilon^2}{1 - 4\epsilon + 4\epsilon^2}\right) - \log(2)\right) \\
&= \exp\log\left(\frac{1}{2}\frac{2 + 8\epsilon^2}{1 - 4\epsilon + 4\epsilon^2}\right) \\
&= \frac{1 + 4\epsilon^2}{1 - 4\epsilon + 4\epsilon^2}
\end{aligned}$$

1965

And the lower bound becomes:

1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987

$$\begin{aligned}
\min_{\Psi} \max_{\substack{P_0 \in H_0 \\ P_1 \in H_1}} P_e &\geq 1 - TV(P \parallel Q) \\
\Rightarrow \min_{\Psi} \max_{\substack{P_0 \in H_0 \\ P_1 \in H_1}} P_e &\geq 1 - \frac{1}{2\sqrt{d}} \left[\frac{1}{d} \sum_{j=1}^d \left(\frac{M_p(2\Delta\theta)}{M_p(\Delta\theta)^2} \right)^{m_j} - 1 \right]^{\frac{1}{2}} \\
&= 1 - \frac{1}{2\sqrt{d}} \left[\frac{1}{d} \sum_{j=1}^d \left(\frac{\frac{1+4\epsilon^2}{1-4\epsilon+4\epsilon^2}}{\left(\frac{1}{1-2\epsilon}\right)^2} \right)^{m_j} - 1 \right]^{\frac{1}{2}} \\
&= 1 - \frac{1}{2\sqrt{d}} \left[\frac{1}{d} \sum_{j=1}^d \left(\frac{\frac{1+4\epsilon^2}{1-4\epsilon+4\epsilon^2}}{\frac{1}{1-4\epsilon+4\epsilon^2}} \right)^{m_j} - 1 \right]^{\frac{1}{2}} \\
&= 1 - \frac{1}{2\sqrt{d}} \left[\frac{1}{d} \sum_{j=1}^d (1 + 4\epsilon^2)^{m_j} - 1 \right]^{\frac{1}{2}}
\end{aligned}$$

□

D.4 MAXIMUM ATTRIBUTES (CATEGORICAL BOP) FOR ALL PEOPLE

1988
1989
1990In the case where dataset \mathcal{D} is drawn from an unknown distribution and has d groups where $d = 2^k$, with each group having $m = \lfloor N/d \rfloor$ samples, Corollary D.3 becomes:1991
1992
1993
1994
1995

$$\min_{\Psi} \max_{\substack{P_0 \in H_0 \\ P_1 \in H_1}} P_e \geq 1 - \frac{1}{2\sqrt{d}} \left[(1 + 4\epsilon^2)^m - 1 \right]^{\frac{1}{2}}$$

1996
1997**Corollary D.4** (Maximum attributes (categorical) for all people). *Consider auditing a personalized classifier h_p to verify if it provides a gain of $\epsilon = 0.01$ to each group on an auditing dataset D . Consider an auditing dataset with $N = 8 \times 10^9$ samples, or one sample for each person on earth. If*

1998 h_p uses more than $k \geq 18$ binary group attributes, then for any hypothesis test there will exist a pair
 1999 of probability distributions $P_{X,G,Y} \in H_0$, $Q_{X,G,Y} \in H_1$ for which the test results in a probability
 2000 of error that exceeds 50%.

2001

$$2002 \quad k \geq 18 \implies \min_{\Psi} \max_{\substack{P_{X,G,Y} \in H_0 \\ Q_{X,G,Y} \in H_1}} P_e \geq \frac{1}{2}. \quad (26)$$

$$2003$$

$$2004$$

2005 D.5 PROOF FOR GAUSSIAN BOP

2006

2007 Here, we do the proof assuming that the BoP is a normal variable with a second moment bounded by
 2008 σ^2 .

2009 **Corollary D.5.** [Lower bound for Gaussian BoP for any number of samples in each group] The
 2010 lower bound writes:

2011

$$2012 \quad \min_{\Psi} \max_{\substack{P_0 \in H_0 \\ P_1 \in H_1}} P_e \geq 1 - \frac{1}{2\sqrt{d}} \left[\frac{1}{d} \sum_{j=1}^d \exp \left(\frac{m_j \epsilon^2}{\sigma^2} \right) - 1 \right]^{\frac{1}{2}}$$

$$2013$$

$$2014$$

2015 where $P_{X,S,Y}$ is a distribution of data, for which the generic model h_0 performs better, i.e., the true γ
 2016 is such that $\gamma(h_0, h_p, \mathcal{D}) < 0$, and $Q_{X,S,Y}$ is a distribution of data points for which the personalized
 2017 model performs better, i.e., the true γ is such that $\gamma(h_0, h_p, \mathcal{D}) > 0$.

$$2018$$

2019

Proof. By Corollary 5.2, we have:

2020

$$2021 \quad \min_{\Psi} \max_{\substack{P_0 \in H_0 \\ P_1 \in H_1}} P_e \geq 1 - \frac{1}{2\sqrt{d}} \left[\frac{1}{d} \sum_{j=1}^d \left(\frac{M_p(2\Delta\theta)}{M_p(\Delta\theta)^2} \right)^{m_j} - 1 \right]^{\frac{1}{2}}$$

$$2022$$

$$2023$$

2024

2025 **Plug in Gaussian assumption** We find the bound for the Gaussian case. For the Gaussian, we
 2026 have:

2027

$$\theta_0 = \frac{\mu_0}{\sigma^2} = 0$$

$$\theta_\epsilon = \frac{\mu_\epsilon}{\sigma^2} = \frac{\epsilon}{\sigma^2}$$

$$A(\theta_0) = \frac{\sigma^2 \theta_0^2}{2} = 0$$

$$A(\theta_\epsilon) = \frac{\sigma^2 \theta_\epsilon^2}{2} = \frac{\epsilon^2}{2\sigma^2}$$

$$A(2\theta_\epsilon) = \frac{\sigma^2 4\theta_\epsilon^2}{2} = \frac{2\epsilon^2}{\sigma^2}$$

$$2028$$

$$2029$$

$$2030$$

$$2031$$

$$2032$$

$$2033$$

$$2034$$

$$2035$$

$$2036$$

$$2037$$

because $\mu_0 = 0$ and $\mu_\epsilon = \epsilon$ by construction. Thus, we also have: $\Delta\theta = \theta_\epsilon$.

2038

Accordingly, we have:

2039

2040

2041

$$M_p(\Delta\theta) = \exp(A(\theta_0 + \Delta\theta) - A(\theta_0)) = \exp(A(\theta_\epsilon) - A(\theta_0)) = \exp\left(\frac{\epsilon^2}{2\sigma^2}\right)$$

2042

2043

2044

$$M_p(2\Delta\theta) = \exp(A(\theta_0 + 2\Delta\theta) - A(\theta_0)) = \exp(A(2\theta_\epsilon - \theta_0)) = \exp(A(2\theta_\epsilon)) = \exp\left(\frac{2\epsilon^2}{\sigma^2}\right)$$

2045

2046

And the lower bound becomes:

2047

2048

2049

2050

2051

$$\min_{\Psi} \max_{\substack{P_0 \in H_0 \\ P_1 \in H_1}} P_e \geq 1 - TV(P \parallel Q)$$

$$\Rightarrow \min_{\Psi} \max_{\substack{P_0 \in H_0 \\ P_1 \in H_1}} P_e \geq 1 - \frac{1}{2\sqrt{d}} \left[\frac{1}{d} \sum_{j=1}^d \left(\frac{M_p(2\Delta\theta)}{M_p(\Delta\theta)^2} \right)^{m_j} - 1 \right]^{\frac{1}{2}}$$

$$\begin{aligned}
2052 &= 1 - \frac{1}{2\sqrt{d}} \left[\frac{1}{d} \sum_{j=1}^d \left(\frac{\exp\left(\frac{2\epsilon^2}{\sigma^2}\right)}{\exp\left(\frac{\epsilon^2}{2\sigma^2}\right)^2} \right)^{m_j} - 1 \right]^{\frac{1}{2}} \\
2053 &= 1 - \frac{1}{2\sqrt{d}} \left[\frac{1}{d} \sum_{j=1}^d \left(\frac{\exp\left(\frac{2\epsilon^2}{\sigma^2}\right)}{\exp\left(\frac{2\epsilon^2}{2\sigma^2}\right)} \right)^{m_j} - 1 \right]^{\frac{1}{2}} \\
2054 &= 1 - \frac{1}{2\sqrt{d}} \left[\frac{1}{d} \sum_{j=1}^d \left(\frac{\exp\left(\frac{2\epsilon^2}{\sigma^2}\right)}{\exp\left(\frac{\epsilon^2}{\sigma^2}\right)} \right)^{m_j} - 1 \right]^{\frac{1}{2}} \\
2055 &= 1 - \frac{1}{2\sqrt{d}} \left[\frac{1}{d} \sum_{j=1}^d \exp\left(\frac{\epsilon^2}{\sigma^2}\right)^{m_j} - 1 \right]^{\frac{1}{2}} \\
2056 &= 1 - \frac{1}{2\sqrt{d}} \left[\frac{1}{d} \sum_{j=1}^d \exp\left(\frac{m_j \epsilon^2}{\sigma^2}\right) - 1 \right]^{\frac{1}{2}} \\
2057 & \\
2058 & \\
2059 & \\
2060 & \\
2061 & \\
2062 & \\
2063 & \\
2064 & \\
2065 & \\
2066 & \\
2067 & \\
2068 &
\end{aligned}$$

In the case where each group has a different standard deviation of their BoP distribution, this becomes:

$$\begin{aligned}
2072 &= 1 - \frac{1}{2\sqrt{d}} \left[\frac{1}{d} \sum_{j=1}^d \exp\left(\frac{m_j \epsilon^2}{\sigma_j^2}\right) - 1 \right]^{\frac{1}{2}} \\
2073 & \\
2074 & \\
2075 & \square
\end{aligned}$$

D.6 MAXIMUM ATTRIBUTES (GAUSSIAN BOP) FOR ALL PEOPLE

In the case where dataset \mathcal{D} is drawn from an unknown distribution and has d groups where $d = 2^k$, with each group having $m = \lfloor N/d \rfloor$ samples, Corollary D.5 becomes:

$$\min_{\Psi} \max_{\substack{P_0 \in H_0 \\ P_1 \in H_1}} P_e \geq 1 - \frac{1}{2\sqrt{d}} \left[\exp\left(\frac{m\epsilon^2}{\sigma^2}\right) - 1 \right]^{\frac{1}{2}}$$

Corollary D.6 (Maximum attributes (Gaussian BoP) for all people). *Consider auditing a personalized classifier h_p to verify if it provides a gain of $\epsilon = 0.01$ to each group on an auditing dataset D . Consider an auditing dataset with $\sigma = 0.1$ and $N = 8 \times 10^9$ samples, or one sample for each person on earth. If h_p uses more than $k \geq 22$ binary group attributes, then for any hypothesis test there will exist a pair of probability distributions $P_{X,G,Y} \in H_0$, $Q_{X,G,Y} \in H_1$ for which the test results in a probability of error that exceeds 50%.*

$$k \geq 22 \implies \min_{\Psi} \max_{\substack{P_{X,G,Y} \in H_0 \\ Q_{X,G,Y} \in H_1}} P_e \geq \frac{1}{2}. \quad (27)$$

D.7 PROOF FOR THE SYMMETRIC GENERALIZED NORMAL DISTRIBUTION

We solve for the the bound assuming the BoP is a symmetric generalized Gaussian distribution.

Symmetric Generalized Gaussian The symmetric generalized Gaussian distribution, also known as the exponential power distribution, is a generalization of the Gaussian distributions that include the Laplace distribution. A probability distribution in this family has probability density function:

$$p(x|\mu, \alpha, \beta) = \frac{\beta}{2\alpha\Gamma(1/\beta)} \exp\left(-\left(\frac{|x-\mu|}{\alpha}\right)^\beta\right), \quad (28)$$

with mean and variance:

$$\mathbb{E}[X] = \mu, \quad V[X] = \frac{\alpha^2\Gamma(3/\beta)}{\Gamma(1/\beta)}. \quad (29)$$

2106 We can write the standard deviation $\sigma = \alpha \sqrt{\frac{\Gamma(1/\beta)}{\Gamma(3/\beta)}} = \alpha \gamma(\beta)$ where we introduce the notation
 2107 $\gamma(\beta) = \sqrt{\frac{\Gamma(1/\beta)}{\Gamma(3/\beta)}}$. This notation will become convenient in our computations.
 2108
 2109

2110 **Example: Laplace** The Laplace probability density function is given by:
 2111

$$2112 \quad 2113 \quad f(x | \mu, b) = \frac{1}{2b} \exp\left(-\frac{|x - \mu|}{b}\right) \quad (30)$$

2114 which is in the family for $\alpha = b$ and $\beta = 1$, since the gamma function verifies $\Gamma(1) = (1 - 1)! = 0! = 1$.
 2115
 2116

2117 **Proposition D.7.** [Lower bound for symmetric generalized Gaussian BoP for any number of samples
 2118 in each group] The lower bound writes:
 2119

$$2120 \quad 2121 \quad \min_{\Psi} \max_{\substack{P_0 \in H_0 \\ P_1 \in H_1}} P_e \geq 1 - \frac{1}{2\sqrt{d}} \left[\frac{1}{d} \sum_{j=1}^d \mathbb{E}_{p^\epsilon} \left[\exp\left(-\frac{|B - \epsilon|^\beta - |B|^\beta}{\alpha^\beta}\right) \right]^{m_j} - 1 \right]^{\frac{1}{2}}$$

2123 where $P_{X,S,Y}$ is a distribution of data, for which the generic model h_0 performs better, i.e., the true γ
 2124 is such that $\gamma(h_0, h_p, \mathcal{D}) < 0$, and $Q_{X,S,Y}$ is a distribution of data points for which the personalized
 2125 model performs better, i.e., the true γ is such that $\gamma(h_0, h_p, \mathcal{D}) > 0$.
 2126

2127 *Proof.* By Theorem 5.1, we have:
 2128

$$2129 \quad 2130 \quad \min_{\Psi} \max_{\substack{P_0 \in H_0 \\ P_1 \in H_1}} P_e \geq 1 - \frac{1}{2\sqrt{d}} \left[\frac{1}{d} \sum_{j=1}^d \mathbb{E}_{p^\epsilon} \left[\frac{p^\epsilon(B)}{p(B)} \right]^{m_j} - 1 \right]^{\frac{1}{2}}$$

2133 **Plug in the symmetric generalized Gaussian distribution** Under the assumption that the random
 2134 variable B follows an exponential power distribution, we continue the computations as:
 2135

$$2136 \quad 2137 \quad \min_{\Psi} \max_{\substack{P_0 \in H_0 \\ P_1 \in H_1}} P_e \geq 1 - \frac{1}{2\sqrt{d}} \left[\frac{1}{d} \sum_{j=1}^d \mathbb{E}_{p^\epsilon} \left[\frac{\exp\left(-\left(\frac{|B - \epsilon|}{\alpha}\right)^\beta\right)}{\exp\left(-\left(\frac{|B|}{\alpha}\right)^\beta\right)} \right]^{m_j} - 1 \right]^{\frac{1}{2}} \\ 2138 \quad 2139 \quad = 1 - \frac{1}{2\sqrt{d}} \left[\frac{1}{d} \sum_{j=1}^d \mathbb{E}_{p^\epsilon} \left[\exp\left(-\left(\frac{|B - \epsilon|}{\alpha}\right)^\beta\right) \cdot \exp\left(\left(\frac{|B|}{\alpha}\right)^\beta\right) \right]^{m_j} - 1 \right]^{\frac{1}{2}} \\ 2140 \quad 2141 \quad \text{(property of exp)} \\ 2142 \quad 2143 \quad = 1 - \frac{1}{2\sqrt{d}} \left[\frac{1}{d} \sum_{j=1}^d \mathbb{E}_{p^\epsilon} \left[\exp\left(-\left(\frac{|B - \epsilon|}{\alpha}\right)^\beta + \left(\frac{|B|}{\alpha}\right)^\beta\right) \right]^{m_j} - 1 \right]^{\frac{1}{2}} \text{(property of exp)} \\ 2144 \quad 2145 \quad = 1 - \frac{1}{2\sqrt{d}} \left[\frac{1}{d} \sum_{j=1}^d \mathbb{E}_{p^\epsilon} \left[\exp\left(-\frac{|B - \epsilon|^\beta - |B|^\beta}{\alpha^\beta}\right) \right]^{m_j} - 1 \right]^{\frac{1}{2}} \text{(property of exp)} \\ 2146 \quad 2147 \quad 2148 \quad 2149 \quad 2150 \quad 2151 \quad 2152 \quad 2153 \quad 2154 \quad 2155 \quad 2156 \quad \square$$

D.8 PROOF FOR LAPLACE BoP

2157 Here, we do the proof assuming that the BoP is a Laplace distribution (for more peaked than the
 2158 normal variable).
 2159

2160
 2161 **Corollary D.8.** [Lower bound for a Laplace BoP for any number of samples in each group] The
 2162 lower bound writes:

$$2163 \min_{\Psi} \max_{\substack{P_0 \in H_0 \\ P_1 \in H_1}} P_e \geq 1 - \frac{1}{2\sqrt{d}} \left[\frac{1}{d} \sum_{j=1}^d \exp \left(\frac{m_j \epsilon}{b} \right) - 1 \right]^{\frac{1}{2}}$$

2166 where $P_{\mathbf{X}, \mathbf{S}, Y}$ is a distribution of data, for which the generic model h_0 performs better, i.e., the true γ
 2167 is such that $\gamma(h_0, h_p, \mathcal{D}) < 0$, and $Q_{\mathbf{X}, \mathbf{S}, Y}$ is a distribution of data points for which the personalized
 2168 model performs better, i.e., the true γ is such that $\gamma(h_0, h_p, \mathcal{D}) > 0$.
 2169

2170 *Proof.* By Proposition D.7, we have:

$$2172 \min_{\Psi} \max_{\substack{P_0 \in H_0 \\ P_1 \in H_1}} P_e \geq 1 - \frac{1}{2\sqrt{d}} \left[\frac{1}{d} \sum_{j=1}^d \mathbb{E}_{p^\epsilon} \left[\exp \left(-\frac{|B - \epsilon|^\beta - |B|^\beta}{\alpha^\beta} \right) \right]^{m_j} - 1 \right]^{\frac{1}{2}}$$

2175 Plugging in our values of α and β shown to satisfy the Laplace probability density function we get:

$$2177 = 1 - \frac{1}{2\sqrt{d}} \left[\frac{1}{d} \sum_{j=1}^d \mathbb{E}_{p^\epsilon} \left[\exp \left(-\frac{|B - \epsilon| - |B|}{b} \right) \right]^{m_j} - 1 \right]^{\frac{1}{2}}$$

2182 **Using bounds** Since we are finding the worst case lower bound, we will find functions that upper
 2183 and lower bound $|B - \epsilon| - |B|$. This function is lower bounded by ϵ and upper bounded by $-\epsilon$ since
 2184 $\epsilon < 0$. Indeed, since $\epsilon < 0$, there are three cases:

- 2186 • $0 < B < B - \epsilon$: this gives $|B - \epsilon| - |B| = B - \epsilon - B = -\epsilon$
- 2187 • $B < 0 < B - \epsilon$: this gives $|B - \epsilon| - |B| = B - \epsilon + B = 2B - \epsilon > 2\epsilon - \epsilon = \epsilon$ since
 2188 $0 < B - \epsilon$.
- 2189 • $B < B - \epsilon < 0$: this gives $|B - \epsilon| - |B| = -B + \epsilon + B = \epsilon$.

2192 Thus, we have: $\epsilon \leq |B - \epsilon| - |B| \leq -\epsilon$ and:

$$\begin{aligned} 2194 \epsilon &\leq |B - \epsilon| - |B| \leq -\epsilon \\ 2195 \Rightarrow \frac{\epsilon}{b} &\leq \frac{|B - \epsilon| - |B|}{b} \leq -\frac{\epsilon}{b} \\ 2197 \Rightarrow -\frac{\epsilon}{b} &\geq -\frac{|B - \epsilon| - |B|}{b} \geq \frac{\epsilon}{b} \\ 2199 \Rightarrow \exp \left(-\frac{\epsilon}{b} \right) &\geq \exp \left(-\frac{|B - \epsilon| - |B|}{b} \right) \geq \exp \left(\frac{\epsilon}{b} \right) \end{aligned}$$

2202 Thus, applying the expectation gives:

$$\begin{aligned} 2204 \mathbb{E}_{p^\epsilon} \left[\exp \left(-\frac{\epsilon}{b} \right) \right] &\geq \mathbb{E}_{p^\epsilon} \left[\exp \left(-\frac{|B - \epsilon| - |B|}{b} \right) \right] \geq \mathbb{E}_{p^\epsilon} \left[\exp \left(\frac{\epsilon}{b} \right) \right] \\ 2206 \Rightarrow \exp \left(-\frac{\epsilon}{b} \right) &\geq \mathbb{E}_{p^\epsilon} \left[\exp \left(-\frac{|B - \epsilon| - |B|}{b} \right) \right] \geq \exp \left(\frac{\epsilon}{b} \right) \end{aligned}$$

2209 because the lower and upper bounds do not depend on B .

2210 All the terms in these inequalities are positive, and the power function is increasing on positive
 2211 numbers. Thus, we get:

$$2213 \exp \left(-\frac{\epsilon}{b} \right)^{m_j} \geq \mathbb{E}_{p^\epsilon} \left[\exp \left(-\frac{|B - \epsilon| - |B|}{b} \right) \right]^{m_j} \geq \exp \left(\frac{\epsilon}{b} \right)^{m_j}$$

$$\begin{aligned}
& \Rightarrow \frac{1}{d} \sum_{j=1}^d \exp\left(-\frac{\epsilon}{b}\right)^{m_j} \geq \frac{1}{d} \sum_{j=1}^d \mathbb{E}_{p^\epsilon} \left[\exp\left(-\frac{|B-\epsilon|-|B|}{b}\right) \right]^{m_j} \geq \frac{1}{d} \sum_{j=1}^d \exp\left(\frac{\epsilon}{b}\right)^{m_j} \\
& \Rightarrow \frac{1}{d} \sum_{j=1}^d \exp\left(-\frac{m_j \epsilon}{b}\right) \geq \frac{1}{d} \sum_{j=1}^d \mathbb{E}_{p^\epsilon} \left[\exp\left(-\frac{|B-\epsilon|-|B|}{b}\right) \right]^{m_j} \geq \frac{1}{d} \sum_{j=1}^d \exp\left(\frac{m_j \epsilon}{b}\right) \\
& \Rightarrow \frac{1}{d} \sum_{j=1}^d \exp\left(-\frac{m_j \epsilon}{b}\right) - 1 \geq \frac{1}{d} \sum_{j=1}^d \mathbb{E}_{p^\epsilon} \left[\exp\left(-\frac{|B-\epsilon|-|B|}{b}\right) \right]^{m_j} - 1 \geq \frac{1}{d} \sum_{j=1}^d \exp\left(\frac{m_j \epsilon}{b}\right) - 1 \\
& \Rightarrow \left(\frac{1}{d} \sum_{j=1}^d \exp\left(-\frac{m_j \epsilon}{b}\right) - 1 \right)^{\frac{1}{2}} \\
& \geq \left(\frac{1}{d} \sum_{j=1}^d \mathbb{E}_{p^\epsilon} \left[\exp\left(-\frac{|B-\epsilon|-|B|}{b}\right) \right]^{m_j} - 1 \right)^{\frac{1}{2}} \\
& \geq \left(\frac{1}{d} \sum_{j=1}^d \exp\left(\frac{m_j \epsilon}{b}\right) - 1 \right)^{\frac{1}{2}} \\
& \Rightarrow -\frac{1}{2\sqrt{d}} \left(\frac{1}{d} \sum_{j=1}^d \exp\left(-\frac{m_j \epsilon}{b}\right) - 1 \right)^{\frac{1}{2}} \\
& \leq -\frac{1}{2\sqrt{d}} \left(\frac{1}{d} \sum_{j=1}^d \mathbb{E}_{p^\epsilon} \left[\exp\left(-\frac{|B-\epsilon|-|B|}{b}\right) \right]^{m_j} - 1 \right)^{\frac{1}{2}} \\
& \leq -\frac{1}{2\sqrt{d}} \left(\frac{1}{d} \sum_{j=1}^d \exp\left(\frac{m_j \epsilon}{b}\right) - 1 \right)^{\frac{1}{2}}
\end{aligned}$$

Back to Probability of error To maximize P_e , we take the function that gives us the lower bound. Plugging this upper bound back into our equation for P_e :

$$\min_{\Psi} \max_{\substack{P_0 \in H_0 \\ P_1 \in H_1}} P_e \geq 1 - \frac{1}{2\sqrt{d}} \left[\frac{1}{d} \sum_{j=1}^d \exp\left(-\frac{m_j \epsilon}{b}\right) - 1 \right]^{\frac{1}{2}}$$

In the case where each group has a different scale parameter of their BoP distribution, this becomes:

$$\min_{\Psi} \max_{\substack{P_0 \in H_0 \\ P_1 \in H_1}} P_e \geq 1 - \frac{1}{2\sqrt{d}} \left[\frac{1}{d} \sum_{j=1}^d \exp\left(-\frac{m_j \epsilon}{b_j}\right) - 1 \right]^{\frac{1}{2}}$$

Such that for the unflipped hypothesis testing with $\epsilon > 0$ we get:

$$\min_{\Psi} \max_{\substack{P_0 \in H_0 \\ P_1 \in H_1}} P_e \geq 1 - \frac{1}{2\sqrt{d}} \left[\frac{1}{d} \sum_{j=1}^d \exp\left(\frac{m_j \epsilon}{b_j}\right) - 1 \right]^{\frac{1}{2}}$$

□

D.9 MAXIMUM ATTRIBUTES (LAPLACE BoP) FOR ALL PEOPLE

In the case where dataset \mathcal{D} is drawn from an unknown distribution and has d groups where $d = 2^k$, with each group having $m = \lfloor N/d \rfloor$ samples, Corollary D.8 becomes:

$$\min_{\Psi} \max_{\substack{P_0 \in H_0 \\ P_1 \in H_1}} P_e \geq 1 - \frac{1}{2\sqrt{d}} \left[\exp\left(\frac{m \epsilon}{b}\right) - 1 \right]^{\frac{1}{2}}$$

2268
 2269 **Corollary D.9** (Maximum attributes (Laplace) for all people). *Consider auditing a personalized*
 2270 *classifier h_p to verify if it provides a gain of $\epsilon = 0.01$ to each group on an auditing dataset D .*
 2271 *Consider an auditing dataset with $\sigma = 0.1$ and $N = 8 \times 10^9$ samples, or one sample for each person*
 2272 *on earth. If h_p uses more than $k \geq 26$ binary group attributes, then for any hypothesis test there will*
 2273 *exist a pair of probability distributions $P_{X,G,Y} \in H_0$, $Q_{X,G,Y} \in H_1$ for which the test results in a*
 2274 *probability of error that exceeds 50%.*

2275
$$k \geq 26 \implies \min_{\Psi} \max_{\substack{P_{X,G,Y} \in H_0 \\ Q_{X,G,Y} \in H_1}} P_e \geq \frac{1}{2}. \quad (31)$$

2278 **E LIMITS ON ATTRIBUTES AND SAMPLE SIZE**

2280 This section derives theoretical limits on the number of personal attributes and the sample size
 2281 required per group to ensure that the probability of error remains below a practitioner-specified
 2282 threshold.

2284 **Corollary E.1.** *Let N be the number of participants, and assume that each group $j = 1, \dots, d$ has*
 2285 *$m_j = m = \lfloor \frac{N}{d} \rfloor$ samples. To ensure that the probability of error verifies $\min \max P_e \leq 1/2$, the*
 2286 *number of binary attributes k must be chosen such that $k \leq k_{\max}$, where:*

2287
$$k_{\max} = \begin{cases} 1.4427W(N \log(4\epsilon^2 + 1)) & (\text{Categorical BoP}) \\ 1.4427W\left(\frac{\epsilon^2 N}{\sigma^2}\right) & (\text{Gaussian BoP, variance } \sigma^2) \\ 1.4427W\left(\frac{\epsilon N}{b}\right) & (\text{Laplace BoP, scale } b), \end{cases}$$

2291 where W is the Lambert W function.

2294 **F MIMIC-III EXPERIMENT RESULTS**

2296 Below is all supplementary material for the MIMIC-III experiment. This includes G-BoP distribution
 2297 plots and plots showing how incomprehensiveness and sufficiency change over the number of features
 2298 removed.

2300 **F.1 EXPERIMENT PLOTS**

2302 **Experiment Setup.** We assume that the practitioner uses a 70/30 train-test split for both tasks and
 2303 compare two neural network models: a personalized model with one-hot encoded group attributes
 2304 (h_p) and a generic model without them (h_0). Regression outputs are normalized to zero mean and
 2305 unit variance.

2306 **Explanation Method and Explanation Evaluation metric.** We assume that the practitioner generates
 2307 the most important features of our models using Integrated Gradients from Captum as our
 2308 explanation method (Sundararajan et al., 2017). We assume that they use sufficiency and incom-
 2309 prehensiveness as our explanation evaluation metrics, where 50% of features are either kept or
 2310 removed.

2311 Integrated Gradients extracts the most important features of each model by computing input-feature
 2312 attributions by integrating gradients along a path from a baseline to the input. To evaluate BoP_X using
 2313 sufficiency and incomprehensiveness, we set r such that 50% of features are kept or removed. Plots
 2314 below depict how sufficiency and incomprehensiveness change for different values of r , as well as
 2315 show the individual BoP distributions. We use Integrated Gradients for its efficiency, interpretability,
 2316 and broad adoption, though our framework supports any attribution method.

2317 In the following section, we show supplementary plots for the regression task on the auditing dataset.
 2318 We show the distribution of the BoP across participants for all three metrics we evaluate. We overlay
 2319 Laplace and Gaussian distributions to see which fit the individual BoP distribution best, illustrating
 2320 that prediction and incomprehensiveness are best fit by Laplace distributions and sufficiency by a
 2321 Gaussian distribution. Additionally, we show how incomprehensiveness and sufficiency change for
 the number of important attributes r that are kept are removed.

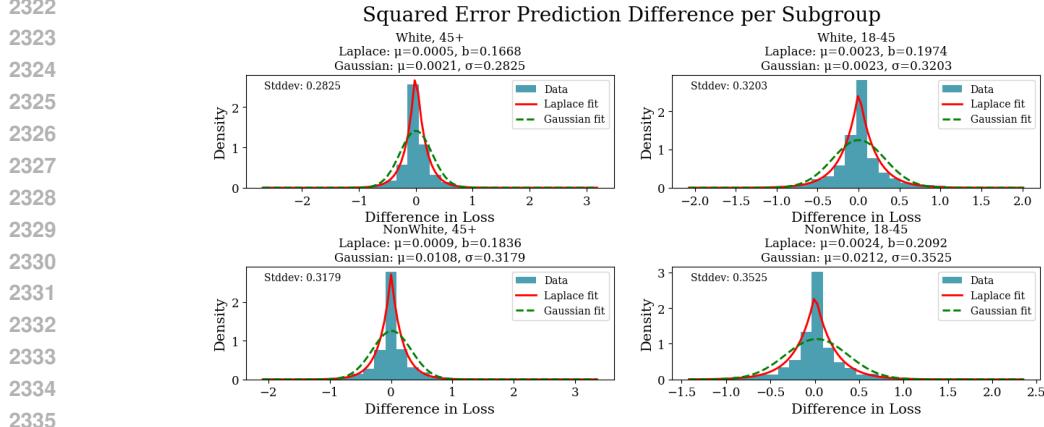


Figure 10: Individual prediction cost for all groups using the square error loss function.

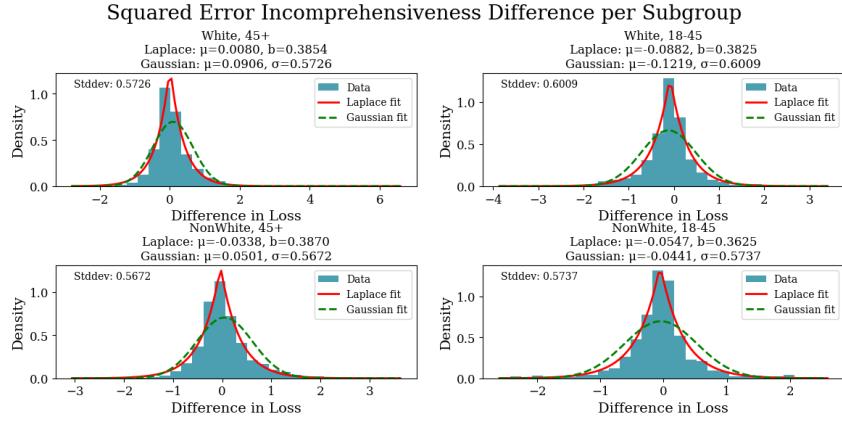


Figure 11: Individual incomprehensiveness cost for all groups using the square error loss function.

G ADDITIONAL DATASET RESULTS

The following is the experiment results G-BoP_P and G-BoP_X on the UCI Heart (Janosi et al., 1989) and MIMIC-III Kidney injury dataset (Johnson et al., 2016) utilizing three explainer methods through Captum: Integrated Gradients Sundararajan et al. (2017), Shapley Value Sampling (Štrumbelj & Kononenko, 2010), and Deeplift (Shrikumar et al., 2017). Interestingly, we see a large amount of agreement across these explainer methods: in nearly all cases, groups that benefited or were harmed remain consistent across methods, although the amount by which this occurs varies. We compute ϵ_{lim} , the value of ϵ for which the lower bound of P_e surpasses 50% for the Shapley Value Sampling Method on the UCI Heart dataset to illustrate the full pipeline.

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

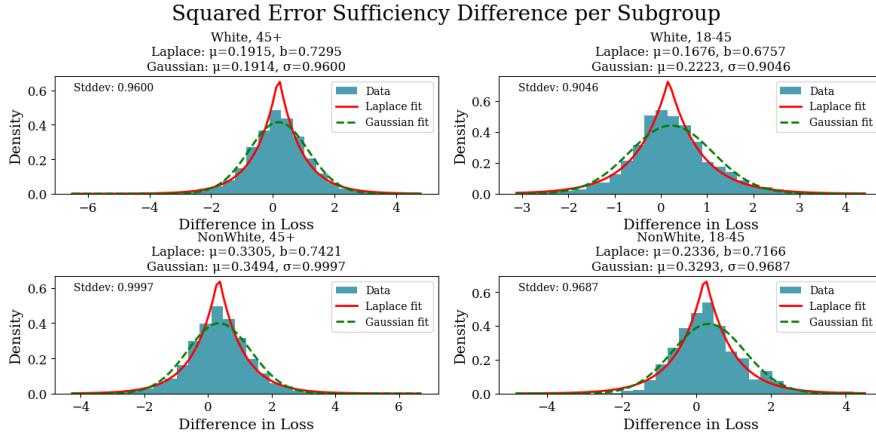


Figure 12: Individual sufficiency cost for all groups using the square error loss function.

2394

2395

2396

2397

2398

2399

2400

2401

2402

Table 4: Experimental results on the UCI Heart test set, with columns for DeepLift (D.L.), Integrated Gradients (I.G.), and Shapley Value Sampling (S.V.S.). The classification task is predicting heart disease presence and the regression task is predicting ST depression induced by exercise. All available features are used, and negative entries appear in red. Using our framework, we computed ϵ_{lim} (for the S.V.S. explainer method) where the lower bound on P_e surpasses 50%. In classification, $\epsilon_{\text{lim}} = 0.1156$ for all metrics; in regression, $\epsilon_{\text{lim}} = 0.0163$ for prediction (Laplace), 0.02 for incomprehensiveness (Laplace), and 0.153 for sufficiency (Gaussian). Given an $\epsilon = 0.002$, none of these tests are reliable.

2409

2410

2411

2412

Classification Results							
Group	Prediction	Incomp. D.L	Suff. D.L	Incomp. I.G.	Suff. I.G.	Incomp. S.V.S.	Suff. S.V.S.
Female, 45+	0.0000	0.0000	-0.0435	0.0000	-0.0435	0.0000	-0.0870
Female, 18-45	0.0000	-0.1429	0.0000	-0.1429	0.0000	0.0000	0.0000
Male, 45+	0.0588	-0.0588	-0.0784	-0.0588	-0.1373	-0.0588	-0.1176
Male, 18-45	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000	0.1000
All Pop.	0.0440	-0.0330	-0.0440	-0.0330	-0.0750	-0.0220	-0.0769
Minimal BoP	0.0000	-0.1429	-0.0784	-0.1429	-0.1373	-0.0588	-0.1176

2418

2419

2420

Regression Results							
Group	Prediction	Incomp. D.L	Suff. D.L	Incomp. I.G	Suff. I.G	Incomp. S.V.S.	Suff. S.V.S.
Female, 45+	-0.3077	0.3528	0.1385	0.0980	0.2040	0.1747	0.3332
Female, 18-45	0.0521	-0.0004	0.1067	-0.0438	0.1774	-0.0207	0.0222
Male, 45+	0.0914	0.0286	0.0531	0.0173	0.1381	0.0315	0.1617
Male, 18-45	-0.1410	0.1239	0.4293	0.1384	0.4365	0.1360	0.3592
All Pop.	-0.0363	0.0791	0.1833	0.0523	0.2035	0.0779	0.2258
Minimal BoP	-0.3077	-0.0004	0.0531	-0.0438	0.1381	-0.0207	0.0222

2427

2428

2429

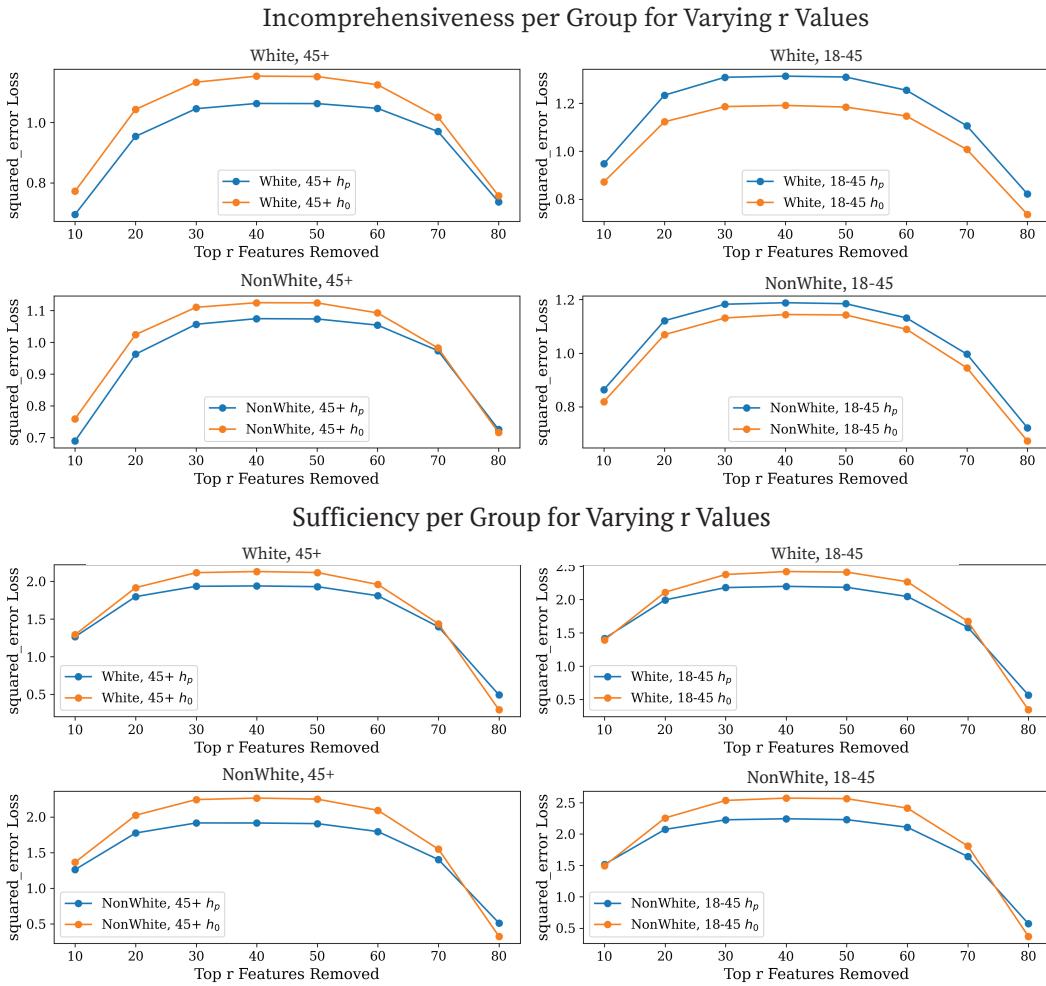


Figure 13: Values of Sufficiency and Incomprehensiveness across varying r top features selected using the square error loss function. Values are found for h_0 and h_p .

2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498

2499 Table 5: Experimental results on the MIMIC-III Kidney test set, with columns for DeepLift (D.L.),
 2500 Integrated Gradients (I.G.), and Shapley Value Sampling (S.V.S.); negative values appear in red.
 2501 The regression task predicts hours to the next continuous renal replacement therapy (CRRT). For
 2502 classification, the target is patient mortality during the same hospital admission. Features include
 2503 recent lab measurements (e.g., sodium, potassium, creatinine) prior to CRRT, along with patient age,
 2504 hours in the ICU at CRRT administration, and the Sequential Organ Failure Assessment (SOFA)
 2505 score at admission.

2506

Classification Results							
Group	Prediction	Incomp. D.L	Suff. D.L	Incomp. I.G	Suff. I.G	Incomp. S.V.S.	Suff. S.V.S.
Female, 45+	0.0392	0.0392	-0.0784	0.0392	-0.0784	0.0392	-0.0196
Female, 18–45	0.0000	0.0000	0.3636	0.0000	0.3636	0.0000	0.3636
Male, 45+	0.0164	-0.0164	0.0820	-0.0164	0.0984	-0.0164	0.0000
Male, 18–45	0.0000	0.0000	-0.0833	0.0000	-0.0833	0.0000	0.1667
All Pop.	0.0224	0.0074	0.0296	0.0074	0.0370	0.0074	0.0370
Minimal BoP	0.0000	-0.0164	-0.0833	-0.0164	-0.0833	-0.0164	-0.0196

2514

Regression Results							
Group	Prediction	Incomp. D.L	Suff. D.L	Incomp. I.G	Suff. I.G	Incomp. S.V.S.	Suff. S.V.S.
Female, 45+	0.7582	0.1440	-0.5722	0.1322	-0.6185	0.1380	-0.5414
Female, 18–45	0.5639	0.0177	-0.3325	0.0404	-0.2543	0.0649	-0.3107
Male, 45+	0.3449	0.0258	-0.1180	0.0299	-0.1368	0.0310	-0.1518
Male, 18–45	0.4869	-0.1016	-0.1639	-0.0997	-0.1571	-0.0892	-0.2124
All Pop.	-0.0093	0.0595	-0.3097	0.0584	-0.3311	0.0635	-0.3167
Minimal BoP	-0.0093	-0.1016	-0.5722	-0.0997	-0.6185	-0.0892	-0.5414

2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537