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Abstract

Large language models (LLMs) have achieved
remarkable success across various domains,
driving significant technological advancements
and innovations. Despite the rapid growth in
model scale and capability, systematic, data-
driven research on how structural configura-
tions affect performance remains scarce. To ad-
dress this gap, we present a large-scale dataset
encompassing diverse open-source LLM struc-
tures and their performance across multiple
benchmarks. Leveraging this dataset, we con-
duct a systematic, data mining-driven analysis
to uncover the relationship between structural
configurations and performance. Our study be-
gins with a review of the historical development
of LLMs and an exploration of potential future
trends. We then analyze how various struc-
tural choices impact performance across bench-
marks and validate our findings using mecha-
nistic interpretability techniques. By provid-
ing data-driven insights into LLM optimization,
our work aims to guide the targeted develop-
ment and application of future models.

1 Introduction

Large language models (LLMs) have revolution-
ized a wide range of domains, including natural lan-
guage understanding and generation (Radford et al.,
2019), as well as multimodal applications (Achiam
et al., 2023), driving significant advancements in
both technology and real-world applications. Mod-
els such as GPT-3 (Brown et al., 2020), Qwen (Bai
et al., 2023), and Llama (Touvron et al., 2023a)
have demonstrated outstanding performance by
leveraging scaling laws (Kaplan et al., 2020), which
link improvements in model performance with in-
creases in model size, training data, and compu-
tational resources. These models have set new
benchmarks across various fields. However, de-
spite the remarkable progress in scaling up these
models, a systematic exploration of the relationship

between structural configurations and task-specific
performance remains lacking.

As LLMs become increasingly complex and
resource-intensive, deploying these models in real-
world applications presents significant challenges
in terms of cost and energy consumption (Zhao
et al., 2023; Kaddour et al., 2023). While structural
configurations are known to influence model per-
formance (Yang et al., 2024b; Dong et al., 2023),
their effects across different tasks and application
domains have not been comprehensively analyzed.
The growing complexity of LLMs necessitates a
deeper exploration of the trade-offs between var-
ious structural designs, computational resources,
and model performance.

To address these challenges, we present a large-
scale dataset encompassing various open-source
LLMs structural configurations and their perfor-
mance across multiple benchmarks, providing a
foundation for data-driven insights into the rela-
tionship between model structure and performance.
This paper reviews the historical development of
LLMs and explores how structural configurations
impact LLMs performance. Additionally, we em-
ploy mechanistic interpretability techniques to in-
vestigate the mechanism of models across diverse
benchmarks, further validating the phenomena un-
covered in the dataset. Through this analysis, we
provide valuable insights for optimizing LLMs de-
sign, contributing to the development of models
that are not only powerful and scalable but also
efficient and adaptable to diverse applications.

Our key contributions are summarized as fol-
lows:

» Large-Scale Open-Source LLMs Structure
and Performance Dataset: We introduce
a large-scale dataset containing a variety of
open-source LLMs structural configurations
and their performance on multiple bench-
marks, offering a foundation for data-driven



insights into the relationship between model
structure and performance.

* Study on the Impact of Structure on Per-
formance: We systematically examine the in-
fluence of structural configurations on LLMs
performance, focusing on key parameters such
as layer depth.

¢ Mechanistic Interpretability Analysis and
Validation: We employ layer-pruning and
gradient analysis techniques to validate the
findings regarding the impact of layer depth
on performance across different benchmarks,
as mined from the LLMs structure and perfor-
mance dataset.

2 Related Work

2.1 Model Evaluation

In the field of LLMs, evaluating and comparing
model performance is crucial for advancing tech-
nology. One of the most prominent platforms for
benchmarking is the Open LLM Leaderboard (the
leaderboard, Beeching et al., 2023; Fourrier et al.,
2024), hosted by HuggingFace, which provides a
standardized environment for evaluating various
large-scale models across numerous tasks.
Although the leaderboard provides practical per-
formance comparisons between LLMs, it overlooks
the structural configurations of the models. There
has been limited exploration of the relationships
between these configurations and the performance
across different datasets. Our work aims to ad-
dress this gap by combining model structural con-
figurations with performance data from the leader-
board. This additional dimension provides valuable
insights into how model structure affects perfor-
mance, complementing the benchmark scores.

2.2 Mechanistic Interpretability

Mechanistic interpretability (MI) (Olah et al., 2020;
Sharkey et al., 2025) is an emerging subfield of
interpretability that aims to understand a neural
network model by reverse-engineering its internal
computations. Recently, MI has garnered signif-
icant attention for interpreting transformer-based
LLMs, showing promise in providing insights into
the functions of various model components (e.g.,
neurons, attention heads), offering mechanistic ex-
planations for different model behaviors, and en-
abling users to optimize the utilization of LLMs

(Rai et al., 2024; Luo and Specia, 2024; Zhao et al.,
2024).

However, most research on MI has focused on
specific components or specialized tasks, without
providing a unified explanation of how the overall
structure of LLMs relates to their general capabil-
ities. In contrast, our study adopts a data-driven
approach: first, by uncovering phenomena through
mining structured datasets, and then applying MI
techniques to validate these phenomena, we aim
to achieve a comprehensive understanding of how
model structures and performance interact.

3 LLMs Structure and Performance
Dataset

Our dataset is sourced from the Hugging Face
model database and the Open LLM Leaderboard.
Model structure details are retrieved from struc-
tured configuration files of models available on
Hugging Face.

For model structural configuration, our dataset
primarily includes size (model size), d_model
(hidden dimension), d_ffn (FFN intermediate
size), heads (number of attention heads), layers
(layer depth), date (publication date), and, as an
additional feature, 1ikes (the number of user likes
on Hugging Face model pages).

For model performance, we extract evaluation
results from the Open LLM Leaderboard v1, which
provides performance metrics for open-source
LLMs across six widely used benchmarks : ARC-
Challenge (Clark et al., 2018), HellaSwag (Zellers
et al.,, 2019), MMLU (Hendrycks et al., 2020),
Truthful QA (Lin et al., 2021), WinoGrande (Sak-
aguchi et al., 2021), and GSM8K (Cobbe et al.,
2021).

The collected data is cleaned and manually ver-
ified. Models that are no longer available are re-
moved, and missing data is supplemented through
technical reports or source code, ensuring accuracy.
Additionally, potential errors are cross-checked dur-
ing this process. We categorize the models into
Mixture of Experts (MoE) and multimodal mod-
els. The dataset consists of approximately 160,000
model configuration entries, with roughly 6,000
entries containing performance metrics. The sta-
tistical properties of the model structure are sum-
marized in Table 1, while the performance score
distribution is shown in Figure 1. The details of the
dataset can be found in Appendix A.



Column Mean Mode Q1 Q2 Q3 Max Skewness Kurtosis Miss Rate
size 8 8 1 7 8 1018 12 357 18%
d_model |3284 4096 2048 4096 4096 50257 0 5 5%
d_ffn 12767 14336 9216 14336 14336 13100072 343 120913  21%
heads 28 32 16 32 32 5000 124 32475 5%
layers 30 32 24 32 32 8928 187 49768 5%
kv_heads |15 8 8 8 32 160 1 1 29%
vocab_size | 76579 32000 32000 50257 128256 5025700 4 272 4%
pos 30913 4096 2048 4096 32768 104857600 271 85268 7%
downloads | 1827 10 10 14 21 24279491 171 36681 5%
likes 2 0 0 0 0 5927 61 5392 5%

Table 1: Statistical summarization of our proposed dataset, includes various statistics for model structure attributes,
including Mean, Mode, Q1 (first quartile), Q2 (the middle value of the dataset), Q3 (third quartile), Skewness
(measure of asymmetry in the distribution), Kurtosis (measure of the "tailedness" of the distribution), and Miss

Rate (percentage of missing values in the dataset).
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Figure 1: The performance score distributions of open-
source LLMs across six benchmarks in our LLMs Struc-
ture and Performance Dataset, which illustrate overall
performance trends. The x-axis represents performance
scores, while the y-axis indicates the number of models
achieving each score.

4 Trends Uncovered from Data Analysis

The growth rate of MoE models has slowed,
while multimodal models continue to be widely
popular. We analyze the monthly variations in
the number of LLMs across different categories, as
shown in Figure 2. Since the release of ChatGPT in
November 2022, the number of LLMs has surged
rapidly, followed by a decline in recent months.
The trend in multimodal LLMs mirrors that of over-
all LLMs, as research on multimodal models is of-
ten conducted concurrently with base models by
the same institutions. In contrast, models based
on the MoE architecture saw a sharp increase after
the release of Mixtral 8x7B (Jiang et al., 2024) in
December 2023. However, its growth rate slowed
after six months. Although Deepseek and Qwen
have open-sourced smaller models better suited for
private deployment (Dai et al., 2024; Yang et al.,
2024a), MoE models still require more resources
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Figure 2: Monthly count distribution of new open-
source LLMs: MoE, multimodal, and all models over
time.

compared to dense models. Additionally, the ad-
ditional requirements for load balancing result in
greater challenges for fine-tuning MoE models,
such as instability (Dai et al., 2022).

LLaMA are the most popular base model. An-
alyzing open-source LLMs model types, such as
NameForCausallLM, provides insights into the base
models used for fine-tuning, as shown in Figure 3a.
LLaMA is the most widely adopted base model,
followed by the GPT series. Mistral, originating
from Europe, ranks third.

7B-scale and 70B-scale models are the most
popular. Figure 3b presents the number of likes
received by different models. We observe that 7B-
scale models are the most popular, offering strong
performance while maintaining relatively low re-
source consumption. Closely following are 70B-
scale models, which are highly valued for their
exceptional performance.

Models slightly larger than 7B, such as 8B or



llama

. gpt
mistral
qwen
stablelm
gemma
phi
mixtral
opt
bloom
llava

1]

falcon
florence

cohere

mpt

codegen
RefinedWebModel
starcoder

openelm

0 10000 20000 30000 40000

Frequency

50000 60000

(a)

bloom

Mixtral-8x7B-Instruct-v0.1
Llama-2-7b-chat
Meta-Llama-3-8B-Instruct
Mistral-7B-v0.1
Llama-3.1-8B-Instruct
phi-2

gemma-7b

starcoder
Mistral-7B-Instruct-v0.2

gpt2
falcon-fOb
Llama-2-70b-chat

dolly-v2-12b
Llama-3.1-Nemotron-70B-Instruct
Llama-2-7b

Reflection-Llama-3.1-70B
c4ai-command-r-plus
Mixtral-8x7B-v0.1
0 2000 4000 6000
Likes

(b

Figure 3: (a) Top 20 types of open-source LLMs sorted by model count. (b) Top 20 open-source LLMs sorted by

the number of likes.
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Figure 4: The performance evolution of major open-
source pre-trained models in the MMLU over time,
where the size of the data points reflects the model scale.

9B, are also well-received. While they exceed the
limits of 16GB memory setups, they remain de-
ployable on 24GB platforms like the RTX 3090 or
4090, suggesting a shift in mainstream individual
deployment from 16GB to 24GB of VRAM.

The performance of open-source LLMs have
steadily improved, and the size of models for
achieving the same performance is shrinking. As
shown in Figure 4, the release of ChatGPT spurred
a surge of new open-source models, accompanied
by rapid performance improvements. Over time,
these models increasingly rivaled closed-source
counterparts. A notable milestone came in Decem-
ber 2024, when Deepseek V3 (Liu et al., 2024)
surpassed GPT-4 on the MMLU benchmark.

Meanwhile, the model size required to achieve
comparable performance has steadily decreased.
In July 2023, matching GPT-3.5 required a 70B
model like LLaMA-2-70B (Touvron et al., 2023b),
whereas by May 2024, a 9B model such as Yi-1.5-
9B (Young et al., 2024) was sufficient.

Different Impact of Model Size and Train-

ing Strategy on Task Performance. To analyze
the impact of model size and training strategy on
performance, we visualize trends in Figure 5. To
reduce variance caused by skewed size distribu-
tion, we apply equal-frequency binning, ensuring
each bin contains the same number of models while
adapting to data density. The mean performance
score in each bin is used as the representative value,
while the interquartile range (IQR) of each bin in-
dicates performance variability.

We observe a general positive correlation be-
tween model size and performance for models
smaller than 10B and larger than 20B. However,
models in the 10B—20B range show an average
performance dip. This may be due to differing
learning dynamics in this range, though there is no
direct evidence. A more plausible explanation is
that sub-10B models have been extensively opti-
mized, while 10B—20B models, lacking both scale
advantages and popularity, have not reached their
full potential.

On the GSMS8K benchmark, performance dif-
ferences across models are more pronounced than
on other tasks, highlighting significant disparities
in mathematical capability. Improving math per-
formance requires careful model design and opti-
mization. Notably, post-training leads to the largest
gains on Truthful QA, demonstrating its effective-
ness in enhancing factual accuracy.

S Attributing LLMs Performance to
Structure Factors

Scores on ARC-C, HellaSwag, and WinoGrande
are highly correlated. We compute Spearman
rank correlation coefficients (Fieller et al., 1957)
to assess performance relationships across datasets
(Figure 6). This non-parametric metric ranges from
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Figure 5: Performance of different datasets across different model size and training strategies, with equal-frequency
binning and interquartile range (IQR) shading to capture performance variation.
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—1 to 1, indicating the strength and direction of
monotonic associations. The results reveal strong
correlations among ARC-C, HellaSwag, and Wino-
Grande, likely due to their shared focus on reason-
ing ability.

Regression analysis demonstrates a signifi-
cant correlation between model structure, hyper-
parameters, and performance. We aim to explore
the relationship between structure, hyperparame-
ters, and the performance of LLMs. To this end,
we selected a set of key parameters and employed
various machine learning (ML) algorithms for re-
gression analysis to investigate how these parame-
ters correlate with model performance, including
Random Forest (Breiman, 2001), Linear Regres-
sion, Decision Tree (Quinlan, 2014), SVR (Cortes,
1995), Ridge (Hoerl and Kennard, 1970), Lasso
Regression (Tibshirani, 1996), k-Nearest Neigh-
bors (Kramer and Kramer, 2013), and Gradient

and feature importance.

Boosting (Friedman, 2001). Especially, we fine-
tuned the LLaMA-2-7B model for regression tasks
using LLaMA-Factory (Zheng et al., 2024) and
LoRA (Hu et al., 2021) techniques, employing a
text-based format. The detailed experiment config-
urations of the models used, along with examples
of predictions from the fine-tuned LLaMA-2-7B,
can be found in Appendix B.1 and Appendix B.2.

We utilize the R? score, also known as the coef-
ficient of determination, to assess the effectiveness
of each regression method. R? is given by Equa-
tion 1:

> i (yi — )
Yim Wi =9’

where y; are the actual values, y; are the predicted
values, and § is the mean of the actual values. A
higher R? indicates a better fit of the model to the
data.

The corresponding R? scores are shown in Ta-
ble 2. Machine learning results reveal a clear cor-
relation between model structure and performance,

R?P=1- (1)



TruthfulQA GSMS8K HellaSwag WinoGrande

Model ARC-C MMLU
Random Forest 75 % 81%
Linear Regression 52% 54%
Decision Tree 69% 79%
SVR 64% 68%
Ridge 52% 54%
Lasso Regression 52% 54%
k-Nearest Neighbors | 71% 77%
Gradient Boosting 72% 78%
MLP 68% 74%
LLM Fine-tune 60% 65%

58% 70% 66 % 73%
32% 44% 41% 50%
54% 63% 57% 68%
46% 58% 51% 62%
32% 44% 41% 50%
32% 44% 41% 50%
50% 67% 62% 69%
56% 67% 64% 71%
49% 64% 56% 66%
17% 39% 51% 56%

Table 2: R? scores when predicting LLMs’ performance across different datasets using key parameters with various

methods.
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Figure 8: Regression analysis of model structure and performance using Random Forest algorithm. (a) Predicting
performance using structure; (b) Predicting structure using performance.

with random forest achieving the highest predictive
accuracy. We also compute the Mean Absolute
Error (MAE), which remains below 6 for most
tasks except GSMS8K, indicating practical predic-
tive value. Moreover, the fine-tuned model can rea-
sonably predict performance across benchmarks us-
ing a text-based format, suggesting a future where
LLMs autonomously analyze data, adapt structures,
and evolve to meet new challenges (Tao et al.,
2024).

Model size and release date are the primary
factors influencing performance. To evaluate
the impact of these features, we extracted feature
importance from the Random Forest algorithm,
which demonstrated the best performance among
the tested methods. This feature importance re-
flects the contribution of each feature in reducing
Gini impurity across all tree splits (Genuer et al.,
2010). Formally, the feature importance of feature
f is given by Equation 2:

Iy =) AGini(t, f),

teT

2

where T represents the set of all decision trees, and
AGini(t, f) denotes the decrease in Gini impurity
at node ¢ resulting from the use of feature f for
splitting.

As presented in Figure 7, we observe that bench-
mark performance is most strongly correlated with
model size and release date. The correlation with
model size is relatively straightforward. The re-
lease date reflects not only improvements in train-
ing techniques but also a steady increase in pre-
training token counts: from 1T in LLaMA, to 2T
in LLaMA-2, 8T in Mistral (Jiang et al., 2023),
and roughly 15T in the latest models (Dubey et al.,
2024).

Layer depth and d; s, impact different types
of benchmarks. We analyzed key structural vari-
ables—layers (layer depth), d_ffn (FFN inter-
mediate size), d_model (hidden dimension), and
heads (attention heads)—as shown in Figure 8a.
Our results suggest that layers mainly affects
reasoning tasks (e.g., ARC-C, HellaSwag, Wino-
Grande), while d_ffn more strongly influences
mathematical ability and knowledge accuracy, as



seen in GSM8K, MMLU, and Truthful QA. Ex-
periments analyzing the impact of developer pro-
ficiency and development timing (Appendix C.1)
reinforce the robustness and generalizability of our
findings.

This aligns with prior analyses: layer depth gov-
erns the degree of non-linearity, thereby enhancing
reasoning abilities (Jin et al., 2024; Mueller and
Linzen, 2023; Ye et al., 2024), whereas empirical
studies indicate that LLMs store knowledge mainly
in the FFNs (Geva et al., 2020; Stolfo et al., 2023),
with larger d t,, substantially boosting memory ca-
pacity. This also concurs with findings that increas-
ing the number of experts in MoE models—viewed
as an extension of the FFNs—improves perfor-
mance on knowledge-intensive tasks but not on
reasoning (Jelassi et al., 2024; Fedus et al., 2022).

Furthermore, Mirzadeh et al. (2024) observe that
even minor modifications to the GSM8K dataset
cause a significant performance drop, suggesting
that current LLMs primarily rely on memoriza-
tion to solve mathematical problems. Meanwhile,
Stolfo et al. (2023) find that LLMs mainly exe-
cute basic arithmetic operations within the FFNs.
Together, these studies explain why d s, plays a
more critical role than layer depth on the GSM8K
task.

Additionally, we collected extra performance
data on BigCodeBench and IFEval to address the
incomplete task coverage. We then conducted re-
gression analysis on these datasets using random
forest models, achieving R? scores of 66.2% and
48.2%, respectively. Feature importance scores,
presented in Table 3, indicate that layer depth is
the most influential factor for coding-related tasks,
likely due to their reasoning-intensive nature. In
contrast, instruction-following tasks are more sen-
sitive to the capacity of FFNs, with d ¢, identified
as the dominant contributor.

Benchmark layers d_model d_ffn heads
BigCodeBench | 35.4% 33.5% 23.1% 8.1%
IFEval 293% 252% 39.0% 6.5%

Table 3: Feature importance of structural configurations
in random forest regression models for BigCodeBench
and IFEval.

MMLU is the most representative benchmark.
Our analysis reveals that MMLU performance is
the key feature for predicting model structure, as
shown by the feature importance values in Fig-
ure 8b. This supports the hypothesis that MMLU

scores best capture overall model performance and
aligns with how organizations like OpenAl, An-
thropic, Mistral, and Qwen typically showcase
model capabilities on MMLU.

6 Mechanistic Interpretability Analysis

6.1 Validating the Impact of Layer Depth via
Layer Pruning

We apply the ShortGPT (Men et al., 2024) method
to prune LLaMA-2-7B to validate the impact of
layer depth. The experiments on the Qwen-2-7B
models are shown in Appendix C.3. By pruning a
small number of less important layers, we aim to
minimize disruption to the model’s overall capabil-
ities while allowing us to observe how changes in
depth affect performance across various tasks. To
identify these layers, we use the Block Influence
(BI) metric, defined for the i*" layer is given by
Equation 3:

T
X Xiv1t

BL = 1 - Ex ,
' ! | X ¢l 21| Xig1.¢l2

3)

where X ; is the t'" row of the hidden state at

layer i. A lower BI score indicates higher cosine
similarity between X; and X, suggesting that
the layer contributes less transformation and is thus
less critical.

By averaging BI scores over multiple bench-
marks for the LLLaMA-2-7B model, we observe
consistent patterns across layers, as shown in Ap-
pendix C.2, making it challenging to use BI scores
alone to differentiate the functional roles of individ-
ual layers across tasks. Therefore, we prune layers
21 through 29, which have the lowest BI scores. We
also find that BI scores tend to be higher in early
and final layers, and lower in middle-to-later layers,
consistent with prior work (Kim et al., 2024).

We observe an anomaly in the GSM8K bench-
mark, which requires models to generate precise
numerical answers rather than selecting from mul-
tiple choices as in other benchmarks. This unique
task structure makes GSM8K not directly compa-
rable to the others. Therefore, we exclude GSM8K
from this experiment.

After pruning these layers, we evaluate the
model using Im-evaluation-harness (Gao et al.,
2024) following the leaderboard protocols, com-
paring its performance before and after pruning
across multiple benchmarks. The results are shown
in Figure 9.
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Figure 10: Layer-wise gradient analysis during fine-
tuning of Qwen-2-0.5B on the ARC-C and Truthful QA
benchmarks.

Pruning leads to significant performance drops
on benchmarks where layer depth is a critical factor
(ARC-C, HellaSwag, WinoGrande), confirming the
random forest regression results (Figure 8a). Con-
versely, benchmarks less dependent on layer depth
(e.g., MMLU, TruthfulQA) show minimal degra-
dation, with Truthful QA even improving slightly,
further validating our analysis.

6.2 Validating Findings through Layer-wise
Gradient Analysis

Following the gradient analysis methodology of
Li et al. (2024), we evaluate the gradients during
fine-tuning of Qwen-2-0.5B on the ARC-C and
Truthful QA benchmarks, which are representative
tasks where layers depth and dg,, respectively, are
identified as the most influential structural factors.

Our analysis focuses on six major weight ma-
trices in each decoder layer: the Query (Q), Key
(K), Value (V), and Output (O) projections in the
attention module, as well as the Up (U) and Down
(D) projections in the FFN module. We denote
X €e{Q,K,V,0,U,D}.

The loss Ly corresponds to the cross-entropy
loss for next-token prediction used in supervised
fine-tuning, where only the response tokens con-
tribute to the overall loss, and instructions are ig-

nored. We perform multiple backward passes until
gradients from all entries in the dataset are accu-
mulated.

For the weight matrix X; of the i-th layer and
its corresponding gradient G x ;, we measure the
concentration of its gradient spectrum on dominant
singular values using the Nuclear Norm sy ;. This
provides insights into the gradient behavior across
different layers and tasks. The Nuclear Norm is
given by Equation 4:

min(m,n)
sxi=Gxille = D loyl, )
j=1
where o; denotes the j-th singular value, computed
via singular value decomposition (SVD), as shown
in Equation 5:

Y = diag (01,02, ‘e
Gx;=USV'.

) Umin(m,n)) )

®)

The results of this analysis are shown in Fig-
ure 10. We observe that gradients in the deeper
layers of the ARC-C benchmark remain relatively
high, indicating that deeper layers play a more criti-
cal role in successfully completing reasoning tasks.
This finding aligns with our earlier observation that
layer depth is the key structural factor for ARC-
C. In contrast, gradients in the deeper layers of
the Truthful QA benchmark are substantially lower,
suggesting that these layers contribute less to this
memory-centric task.

The experiment on LLaMA-3.2-3B is presented
in Appendix C.4. Meanwhile, a deeper investi-
gation into the gradient dynamics, as detailed in
Appendix C.5, further supports this hypothesis.

7 Conclusion

This study provides a comprehensive, data-driven
analysis of LLMs through a large-scale dataset that
captures structural configurations and their perfor-
mance across diverse benchmarks. By systemati-
cally tracing the evolution of LLMs, we identify
emerging trends and offer insights into future direc-
tions. Our findings underscore the critical influence
of structural configurations on model performance,
validated through mechanistic interpretability tech-
niques. This work delivers actionable, data-driven
guidance for optimizing LLM design, paving the
way for the development of more efficient, scal-
able, and adaptable models to meet the demands of
diverse real-world applications.



Limitations

This study focused on a specific set of tasks, poten-
tially limiting the generalizability of our findings.
Different applications may involve distinct require-
ments and data characteristic. Future work should
explore a broader range of tasks to improve the
robustness and applicability of our conclusions.

Our mechanistic interpretability analysis was
limited to methods such as layer pruning and gra-
dient analysis. While these techniques provided
valuable insights, they may not fully capture the
complex internal dynamics of LLMs. Future re-
search could incorporate a wider variety of inter-
pretability tools to validate and complement our
findings, thereby offering a more comprehensive
understanding of model behavior.

Ethics Statement

All training and evaluation datasets used in this
study are publicly available under open-access li-
censes and intended solely for research purposes.
These datasets contain no personal or identifiable
information, nor any offensive content. The data
analyzed in this work pertains exclusively to model
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All datasets developed or used in this research
will be released under the MIT License. We share
these resources to promote transparency, repro-
ducibility, and further research within the commu-
nity. We encourage others to build upon and im-
prove our work, provided they adhere to the terms
of the MIT License.
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Appendices

A Details of the LLMs Structure and Performance Dataset

A.1 Detailed Description of Each Column

As shown in Table 4, each column presents key metrics and attributes of the model, offering valuable
insights into characteristics such as its size, structure, and usage statistics.

Column | Name Unit  Description
size Model Size  Billions The overall parameter count of the model.
d_model | Hidden Dim 1 The size of the hidden state of the model. Usually describing how
wide the model is.
d_ffn Intermediate 1 The size of the intermediate state of the MLP (or GLU) in the FFN
Size of each Transformer Decoder Layer. A wider model usually has a
larger d_ffn.
heads Attention 1 The number of attention heads.
Head Count
layers Decoder 1 The number of Decoder layers. A deeper model is whose layer
Layer Count count is larger.
kv_heads | KV  Head 1 The number of KV heads. Related with GQA (MQA) and the size
Count of KV cache per token. Equal to the heads count for MHA, 4 to
16 times smaller for GQA variant.
vocab_size | Vocabulary 1 The available token count of the tokenizer, as well as the embed-
Size ding and LM_head component of the base model. Larger vocab
means less sequence length, more efficient in inference but at the
cost of more parameter.
pos Maximum 1 The maximum capable input sequence length. Relate with sin and
Input Posi- cos value caching of Rotary Positional Embedding, also indicating
tion the long context ability with the model.
downloads | Download 1 The download count on Hugging Face model pages, reflecting
Count actual usage and interest from the community.
likes Like Count 1 Users’ like count on Hugging Face model pages, reflecting com-

munity recognition.

Table 4: Description of each column from our LLMs Structure and Performance Dataset.

A.2 The example of the LLLMs Structure and Performance Dataset

As shown in Table 5, the structure parameters of several models and their performance across different
benchmarks are presented, including Llama-3-8B, Bloom (Le Scao et al., 2023), Mixtral-8x7B, Llama-2-
7B, and Mistral-7B.

B Experimental Details

B.1 Resources Used in the Experiments

All experiments were conducted on two RTX 4090 GPUs, utilizing a total of 200 GPU hours. The
tasks included regression analysis of model structure and performance, fine-tuning the LLaMA-2-7B
model for regression tasks using the Low-Rank Adaptation (LoRA) technique and the Llama-Factory
framework, pruning specific layers of the LLaMA-2-7B model, and evaluating the model on ARC-
C, TruthfulQA, WinoGrande, HellaSwag, and MMLU benchmarks using the Im-evaluation-harness.

https://github.com/hiyouga/LLaMA-Factory
https://github.com/EleutherAl/1lm-evaluation-harness
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Parameter Llama-3-8B bloom Mixtral-8x7B Llama-2-7B Mistral-7B
size 8 176 46 7 7
d_model 4096 14336 4096 4096 4096
d_ffn 14336 14336 11008 14336
heads 32 112 32 32 32
layers 32 70 32 32 32
kv_heads 8 8 32 8
vocab_size 128256 250880 32000 32000 32000
pos 8192 32768 4096 32768
likes 4883 4632 3920 3633 3259
downloads 556210 28821 2911366 927400 3147345
ARC-C 60.24 50.43 66.38 53.07 59.98
HellaSwag 82.23 76.41 86.46 78.59 83.31
MMLU 66.7 30.85 71.88 46.87 64.16
TruthfulQA 42.93 39.76 46.81 38.76 42.15
WinoGrande 78.45 72.06 81.69 74.03 78.37
GSMSK 45.19 6.9 57.62 14.48 37.83

Table 5: Examples from our LLMs Structure and Performance Dataset.

Additionally, we performed gradient analysis during the fine-tuning of the Qwen-2-0.5B model on the
ARC-C and Truthful QA benchmarks.

B.2 Hyperparameter Configuration for Regression Models

For regression analysis of model structure and performance, various models were employed. The
hyperparameter configurations for these models are provided in Table 6.

The LLaMA-2-7B model was fine-tuned using a text-based format, where the model takes a different
structure as input and predicts performance across multiple datasets. As shown in Figure 11, the fine-tuned
model demonstrates strong performance in accurately predicting outcomes in the specified text format.

Model

Random Forest
Linear Regression
Decision Tree

SVR

Ridge

Lasso Regression
k-Nearest Neighbors

Hyperparameters

random_state=42, n_estimators=100, max_depth=None
fit_intercept=True, normalize=False

random_state=42, max_depth=None, min_samples_split=2
kernel=rbf, C=1.0, epsilon=0.1

alpha=1.0, fit_intercept=True

alpha=0.1, max_iter=1000

n_neighbors=5, algorithm=auto

Gradient Boosting n_estimators=100, learning_rate=0.1, max_depth=3
XGBoost objective=reg:squarederror, n_estimators=100, learning_rate=0.1
MLP hidden_layer_sizes=(32, 64, 32), max_iter=100, activation=relu

LLM Fine-tune

lora_target=all, learning_rate=1.0e-4, num_train_steps=3500

Table 6: Regression models and their key hyperparameters.
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Examples of Performance Regression Prediction using Fine - tuned Llama2 7B Model

Promptl: You are an Al model expert. Analyze the model structure and predict performance
metrics. Model Architecture: Num attention heads: 32, Num hidden layers: 32, Vocab size:
32000, Max position embeddings: 32768, Year: 2024, Month: 1, Day: 3, Model dimension:
4096, FFN hidden dimension: 14336, Model parameters: 7.000B

Truthl:

Prediction: ARC-C: , HellaSwag: , MMLU: , TruthfulQA: ,
WinoGrande: , GSM8K:

Answerl:

Prediction: ARC-C: , HellaSwag: , MMLU: , Truthful QA: ,
WinoGrande: , GSMSK:

Prompt2: You are an Al model expert. Analyze the model architecture and predict
performance metrics. Model Architecture: Num attention heads: 40, Num hidden layers: 36,
Vocab size: 50688, Max position embeddings: 2048, Year: 2023, Month: 2, Day: 27, Model
dimension: 5120, FEN hidden dimension: 20480, Model parameters: 12.000B

Truth2:

Prediction: ARC-C: , HellaSwag: , MMLU: , TruthfulQA: ,
WinoGrande: , GSM8K:

Answer2:

Prediction: ARC-C: , HellaSwag: , MMLU: , Truthful QA: ,
WinoGrande: , GSMSK:

Figure 11: Performance prediction examples using a fine-tuned Llama-2-7B model.

C Further Experiment Result

C.1 Analyzing the Impact of Developer Proficiency and Development Timing

The central goal of our study is to uncover unified relationships between model structure and performance
through large-scale data mining over structural datasets. Due to the breadth and diversity of our dataset,
we expect that secondary factors exert minimal influence on the extracted conclusions, as core patterns
can be robustly identified across a wide range of models.

Nevertheless, to ensure that our experimental conclusions are not affected by differences in the de-
velopment proficiency of various model providers, and to mitigate the possibility that our analysis is
overly skewed toward LLaMA-based models, we aimed to achieve broader model representation beyond
LLaMA-based architectures while maintaining high model quality.

To this end, we selected models from Hugging Face’s open-11m-leaderboard/official-providers
(e.g., LLaMA, MistralAl, DeepSeek, Qwen), which are known to follow high-quality training standards.
This filtering process resulted in a dataset where LLaMA-based models and their variants comprised only
27% of the total, effectively reducing potential bias due to their overrepresentation.

As shown in Figure 12a, our results remained consistent with earlier findings: layer depth emerged as
the most important structural parameter for ARC-C, HellaSwag, and WinoGrande, while dg, was most
critical for Truthful QA and GSM8K. MMLU was the only exception, likely due to data sparsity.

Meanwhile, as shown in Figure 12b, performance on the MMLU dataset was identified as the most
important parameter for predicting the model’s architectural configuration, which aligns with previous
conclusions.

To avoid the impact of temporal variations, we augmented our Random Forest regression model with
the date variable. As shown in Figure 13, the resulting R? scores and feature importance indicate that
structural features continue to be significant even when accounting for temporal effects, supporting our

14



conclusion that benchmarks like ARC-C, HellaSwag, and Winogrande rely heavily on model depth. In
contrast, dg;, emerges as the dominant factor for MMLU, GSM8K, and TruthfulQA.

o
o
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Figure 12: Regression analysis of major high-quality model structure parameters and their performance across

benchmarks using the Random Forest algorithm. (a) Predicting performance from model structure; (b) Predicting
model structure from performance.
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Figure 13: Feature importance in the Random Forest model with date included. Structural features like depth and
d_ffn remain dominant despite temporal effects.

C.2 Analysis of BI Scores Across Layers in the LLaMA-2 7B Model across Different Benchmarks

As shown in Figure 14, we present the BI scores for different layers of the LLaMA-2-7B model across
various benchmarks. The analysis highlights the relative contribution of each layer to model performance
on tasks from diverse domains.

C.3 Layer Pruning Analysis with Qwen-2-7B

Similar to the pruning experiments conducted on LLaMA-2-7B, we also prune the Qwen-2-7B model and
observe consistent conclusions, as illustrated in Figure 15. Pruning leads to significant performance drops
on benchmarks where layer depth is a critical factor (e.g., ARC-C, HellaSwag, WinoGrande), confirming
the findings of the random forest regression analysis. Conversely, benchmarks that are less dependent on
layer depth (e.g., MMLU, TruthfulQA) exhibit minimal performance degradation, further validating our
analysis.

C.4 Layer-wise Gradient Analysis with LLaMA-3.2-3B

Similar to the layer-wise gradient analysis conducted on Qwen-2-0.5B, we performed the same experiment
on LLaMA-3.2-3B, as shown in Figure 16, and found results consistent with our original conclusions.
We observe that gradients in the deeper layers of the ARC-C benchmark remain relatively high, while
gradients in the deeper layers of the TruthfulQA benchmark are substantially lower. These results further
support our previous conclusions.
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Figure 14: BI scores of different layers in the LLaMA-2-7B model across various benchmarks.
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Figure 15: Performance across different benchmarks of Qwen-2-7B before and after pruning 21-25 layers.

C.5 Layer-wise Gradient Analysis with Different Language Styles

We further explore the dynamics of different layers within the model, particularly the deeper layers, to
explain how task dependencies vary with model depth. Following the methodology in Section 6.2, we
conducted gradient analysis across different corpora. Our findings, shown in Figure 17, reveal a significant
increase in gradients within the deeper FFN layers when the model encounters distinct linguistic styles or
archaic texts. In contrast, for corpora such as plain text or mathematical data, these layers do not exhibit
such anomalous gradient behavior.

We observed that the layers responsible for generating the additional gradient peaks largely correspond
to the layers excluded in the previous section. Larger gradients typically suggest insufficient training
of the corresponding model components. This implies that layers with large gradients in LLMs process
language-form-related components, rather than knowledge components abstracted from linguistic forms.
In other words, the increased gradient magnitude reflects a lower retention of knowledge within these
layers, explaining the insensitivity of knowledge-based tasks to layer removal. Conversely, reasoning
processes are closely tied to language itself, meaning the removal of these layers has a more significant
impact on such tasks.

D Explanation of Industry-Specific Jargons

We provide detailed explanations for potentially confusing industry-specific jargon mentioned in the paper,
ensuring clarity without compromising technical accuracy.
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Figure 16: Layer-wise gradient analysis during fine-tuning of LLaMA-3.2-3B on the ARC-C and Truthful QA
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Figure 17: Layer-wise gradient on different corpuses.

The Leaderboard: A standardized platform (e.g., Hugging Face’s Open LLM Leaderboard) for
comparing model performance across benchmarks.

MoE (Mixture of Experts): A neural network architecture that dynamically routes inputs to a subset
of specialized expert models, improving computational efficiency and scalability in large language models
(LLMs).

VRAM (Video Random Access Memory): The GPU’s dedicated memory, critical for deploying large
language models (LLMs) because its capacity constrains the maximum size of models that can be loaded
and run.

IQR (Interquartile Range): A statistical measure of data spread between the 25th and 75th percentiles,
reducing the influence of outliers. Applied in Figure 5 to capture performance fluctuations across model
sizes.

LLaMA-Factory: An open-source framework designed for fine-tuning, training, and deploying large
language models.

LoRA (Low-Rank Adaptation): A parameter-efficient fine-tuning technique that uses low-rank matrix
decomposition.

Gini Impurity: A measure of impurity in a dataset used in decision tree algorithms to determine the
best feature splits by evaluating class distribution at a node.
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