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Abstract001

Large language models (LLMs) have achieved002
remarkable success across various domains,003
driving significant technological advancements004
and innovations. Despite the rapid growth in005
model scale and capability, systematic, data-006
driven research on how structural configura-007
tions affect performance remains scarce. To ad-008
dress this gap, we present a large-scale dataset009
encompassing diverse open-source LLM struc-010
tures and their performance across multiple011
benchmarks. Leveraging this dataset, we con-012
duct a systematic, data mining-driven analysis013
to uncover the relationship between structural014
configurations and performance. Our study be-015
gins with a review of the historical development016
of LLMs and an exploration of potential future017
trends. We then analyze how various struc-018
tural choices impact performance across bench-019
marks and validate our findings using mecha-020
nistic interpretability techniques. By provid-021
ing data-driven insights into LLM optimization,022
our work aims to guide the targeted develop-023
ment and application of future models.024

1 Introduction025

Large language models (LLMs) have revolution-026

ized a wide range of domains, including natural lan-027

guage understanding and generation (Radford et al.,028

2019), as well as multimodal applications (Achiam029

et al., 2023), driving significant advancements in030

both technology and real-world applications. Mod-031

els such as GPT-3 (Brown et al., 2020), Qwen (Bai032

et al., 2023), and Llama (Touvron et al., 2023a)033

have demonstrated outstanding performance by034

leveraging scaling laws (Kaplan et al., 2020), which035

link improvements in model performance with in-036

creases in model size, training data, and compu-037

tational resources. These models have set new038

benchmarks across various fields. However, de-039

spite the remarkable progress in scaling up these040

models, a systematic exploration of the relationship041

between structural configurations and task-specific 042

performance remains lacking. 043

As LLMs become increasingly complex and 044

resource-intensive, deploying these models in real- 045

world applications presents significant challenges 046

in terms of cost and energy consumption (Zhao 047

et al., 2023; Kaddour et al., 2023). While structural 048

configurations are known to influence model per- 049

formance (Yang et al., 2024b; Dong et al., 2023), 050

their effects across different tasks and application 051

domains have not been comprehensively analyzed. 052

The growing complexity of LLMs necessitates a 053

deeper exploration of the trade-offs between var- 054

ious structural designs, computational resources, 055

and model performance. 056

To address these challenges, we present a large- 057

scale dataset encompassing various open-source 058

LLMs structural configurations and their perfor- 059

mance across multiple benchmarks, providing a 060

foundation for data-driven insights into the rela- 061

tionship between model structure and performance. 062

This paper reviews the historical development of 063

LLMs and explores how structural configurations 064

impact LLMs performance. Additionally, we em- 065

ploy mechanistic interpretability techniques to in- 066

vestigate the mechanism of models across diverse 067

benchmarks, further validating the phenomena un- 068

covered in the dataset. Through this analysis, we 069

provide valuable insights for optimizing LLMs de- 070

sign, contributing to the development of models 071

that are not only powerful and scalable but also 072

efficient and adaptable to diverse applications. 073

Our key contributions are summarized as fol- 074

lows: 075

• Large-Scale Open-Source LLMs Structure 076

and Performance Dataset: We introduce 077

a large-scale dataset containing a variety of 078

open-source LLMs structural configurations 079

and their performance on multiple bench- 080

marks, offering a foundation for data-driven 081
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insights into the relationship between model082

structure and performance.083

• Study on the Impact of Structure on Per-084

formance: We systematically examine the in-085

fluence of structural configurations on LLMs086

performance, focusing on key parameters such087

as layer depth.088

• Mechanistic Interpretability Analysis and089

Validation: We employ layer-pruning and090

gradient analysis techniques to validate the091

findings regarding the impact of layer depth092

on performance across different benchmarks,093

as mined from the LLMs structure and perfor-094

mance dataset.095

2 Related Work096

2.1 Model Evaluation097

In the field of LLMs, evaluating and comparing098

model performance is crucial for advancing tech-099

nology. One of the most prominent platforms for100

benchmarking is the Open LLM Leaderboard (the101

leaderboard, Beeching et al., 2023; Fourrier et al.,102

2024), hosted by HuggingFace, which provides a103

standardized environment for evaluating various104

large-scale models across numerous tasks.105

Although the leaderboard provides practical per-106

formance comparisons between LLMs, it overlooks107

the structural configurations of the models. There108

has been limited exploration of the relationships109

between these configurations and the performance110

across different datasets. Our work aims to ad-111

dress this gap by combining model structural con-112

figurations with performance data from the leader-113

board. This additional dimension provides valuable114

insights into how model structure affects perfor-115

mance, complementing the benchmark scores.116

2.2 Mechanistic Interpretability117

Mechanistic interpretability (MI) (Olah et al., 2020;118

Sharkey et al., 2025) is an emerging subfield of119

interpretability that aims to understand a neural120

network model by reverse-engineering its internal121

computations. Recently, MI has garnered signif-122

icant attention for interpreting transformer-based123

LLMs, showing promise in providing insights into124

the functions of various model components (e.g.,125

neurons, attention heads), offering mechanistic ex-126

planations for different model behaviors, and en-127

abling users to optimize the utilization of LLMs128

(Rai et al., 2024; Luo and Specia, 2024; Zhao et al., 129

2024). 130

However, most research on MI has focused on 131

specific components or specialized tasks, without 132

providing a unified explanation of how the overall 133

structure of LLMs relates to their general capabil- 134

ities. In contrast, our study adopts a data-driven 135

approach: first, by uncovering phenomena through 136

mining structured datasets, and then applying MI 137

techniques to validate these phenomena, we aim 138

to achieve a comprehensive understanding of how 139

model structures and performance interact. 140

3 LLMs Structure and Performance 141

Dataset 142

Our dataset is sourced from the Hugging Face 143

model database and the Open LLM Leaderboard. 144

Model structure details are retrieved from struc- 145

tured configuration files of models available on 146

Hugging Face. 147

For model structural configuration, our dataset 148

primarily includes size (model size), d_model 149

(hidden dimension), d_ffn (FFN intermediate 150

size), heads (number of attention heads), layers 151

(layer depth), date (publication date), and, as an 152

additional feature, likes (the number of user likes 153

on Hugging Face model pages). 154

For model performance, we extract evaluation 155

results from the Open LLM Leaderboard v1, which 156

provides performance metrics for open-source 157

LLMs across six widely used benchmarks : ARC- 158

Challenge (Clark et al., 2018), HellaSwag (Zellers 159

et al., 2019), MMLU (Hendrycks et al., 2020), 160

TruthfulQA (Lin et al., 2021), WinoGrande (Sak- 161

aguchi et al., 2021), and GSM8K (Cobbe et al., 162

2021). 163

The collected data is cleaned and manually ver- 164

ified. Models that are no longer available are re- 165

moved, and missing data is supplemented through 166

technical reports or source code, ensuring accuracy. 167

Additionally, potential errors are cross-checked dur- 168

ing this process. We categorize the models into 169

Mixture of Experts (MoE) and multimodal mod- 170

els. The dataset consists of approximately 160,000 171

model configuration entries, with roughly 6,000 172

entries containing performance metrics. The sta- 173

tistical properties of the model structure are sum- 174

marized in Table 1, while the performance score 175

distribution is shown in Figure 1. The details of the 176

dataset can be found in Appendix A. 177
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Column Mean Mode Q1 Q2 Q3 Max Skewness Kurtosis Miss Rate
size 8 8 1 7 8 1018 12 357 18%
d_model 3284 4096 2048 4096 4096 50257 0 5 5%
d_ffn 12767 14336 9216 14336 14336 13100072 343 120913 21%
heads 28 32 16 32 32 5000 124 32475 5%
layers 30 32 24 32 32 8928 187 49768 5%
kv_heads 15 8 8 8 32 160 1 1 29%
vocab_size 76579 32000 32000 50257 128256 5025700 4 272 4%
pos 30913 4096 2048 4096 32768 104857600 271 85268 7%
downloads 1827 10 10 14 21 24279491 171 36681 5%
likes 2 0 0 0 0 5927 61 5392 5%

Table 1: Statistical summarization of our proposed dataset, includes various statistics for model structure attributes,
including Mean, Mode, Q1 (first quartile), Q2 (the middle value of the dataset), Q3 (third quartile), Skewness
(measure of asymmetry in the distribution), Kurtosis (measure of the "tailedness" of the distribution), and Miss
Rate (percentage of missing values in the dataset).
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Figure 1: The performance score distributions of open-
source LLMs across six benchmarks in our LLMs Struc-
ture and Performance Dataset, which illustrate overall
performance trends. The x-axis represents performance
scores, while the y-axis indicates the number of models
achieving each score.

4 Trends Uncovered from Data Analysis178

The growth rate of MoE models has slowed,179

while multimodal models continue to be widely180

popular. We analyze the monthly variations in181

the number of LLMs across different categories, as182

shown in Figure 2. Since the release of ChatGPT in183

November 2022, the number of LLMs has surged184

rapidly, followed by a decline in recent months.185

The trend in multimodal LLMs mirrors that of over-186

all LLMs, as research on multimodal models is of-187

ten conducted concurrently with base models by188

the same institutions. In contrast, models based189

on the MoE architecture saw a sharp increase after190

the release of Mixtral 8x7B (Jiang et al., 2024) in191

December 2023. However, its growth rate slowed192

after six months. Although Deepseek and Qwen193

have open-sourced smaller models better suited for194

private deployment (Dai et al., 2024; Yang et al.,195

2024a), MoE models still require more resources196
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Figure 2: Monthly count distribution of new open-
source LLMs: MoE, multimodal, and all models over
time.

compared to dense models. Additionally, the ad- 197

ditional requirements for load balancing result in 198

greater challenges for fine-tuning MoE models, 199

such as instability (Dai et al., 2022). 200

LLaMA are the most popular base model. An- 201

alyzing open-source LLMs model types, such as 202

NameForCausalLM, provides insights into the base 203

models used for fine-tuning, as shown in Figure 3a. 204

LLaMA is the most widely adopted base model, 205

followed by the GPT series. Mistral, originating 206

from Europe, ranks third. 207

7B-scale and 70B-scale models are the most 208

popular. Figure 3b presents the number of likes 209

received by different models. We observe that 7B- 210

scale models are the most popular, offering strong 211

performance while maintaining relatively low re- 212

source consumption. Closely following are 70B- 213

scale models, which are highly valued for their 214

exceptional performance. 215

Models slightly larger than 7B, such as 8B or 216
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Figure 3: (a) Top 20 types of open-source LLMs sorted by model count. (b) Top 20 open-source LLMs sorted by
the number of likes.
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Figure 4: The performance evolution of major open-
source pre-trained models in the MMLU over time,
where the size of the data points reflects the model scale.

9B, are also well-received. While they exceed the217

limits of 16GB memory setups, they remain de-218

ployable on 24GB platforms like the RTX 3090 or219

4090, suggesting a shift in mainstream individual220

deployment from 16GB to 24GB of VRAM.221

The performance of open-source LLMs have222

steadily improved, and the size of models for223

achieving the same performance is shrinking. As224

shown in Figure 4, the release of ChatGPT spurred225

a surge of new open-source models, accompanied226

by rapid performance improvements. Over time,227

these models increasingly rivaled closed-source228

counterparts. A notable milestone came in Decem-229

ber 2024, when Deepseek V3 (Liu et al., 2024)230

surpassed GPT-4 on the MMLU benchmark.231

Meanwhile, the model size required to achieve232

comparable performance has steadily decreased.233

In July 2023, matching GPT-3.5 required a 70B234

model like LLaMA-2-70B (Touvron et al., 2023b),235

whereas by May 2024, a 9B model such as Yi-1.5-236

9B (Young et al., 2024) was sufficient.237

Different Impact of Model Size and Train-238

ing Strategy on Task Performance. To analyze 239

the impact of model size and training strategy on 240

performance, we visualize trends in Figure 5. To 241

reduce variance caused by skewed size distribu- 242

tion, we apply equal-frequency binning, ensuring 243

each bin contains the same number of models while 244

adapting to data density. The mean performance 245

score in each bin is used as the representative value, 246

while the interquartile range (IQR) of each bin in- 247

dicates performance variability. 248

We observe a general positive correlation be- 249

tween model size and performance for models 250

smaller than 10B and larger than 20B. However, 251

models in the 10B–20B range show an average 252

performance dip. This may be due to differing 253

learning dynamics in this range, though there is no 254

direct evidence. A more plausible explanation is 255

that sub-10B models have been extensively opti- 256

mized, while 10B–20B models, lacking both scale 257

advantages and popularity, have not reached their 258

full potential. 259

On the GSM8K benchmark, performance dif- 260

ferences across models are more pronounced than 261

on other tasks, highlighting significant disparities 262

in mathematical capability. Improving math per- 263

formance requires careful model design and opti- 264

mization. Notably, post-training leads to the largest 265

gains on TruthfulQA, demonstrating its effective- 266

ness in enhancing factual accuracy. 267

5 Attributing LLMs Performance to 268

Structure Factors 269

Scores on ARC-C, HellaSwag, and WinoGrande 270

are highly correlated. We compute Spearman 271

rank correlation coefficients (Fieller et al., 1957) 272

to assess performance relationships across datasets 273

(Figure 6). This non-parametric metric ranges from 274
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Figure 5: Performance of different datasets across different model size and training strategies, with equal-frequency
binning and interquartile range (IQR) shading to capture performance variation.
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Figure 6: Spearman rank correlation coefficients matrix
of performance across different benchmarks.

–1 to 1, indicating the strength and direction of275

monotonic associations. The results reveal strong276

correlations among ARC-C, HellaSwag, and Wino-277

Grande, likely due to their shared focus on reason-278

ing ability.279

Regression analysis demonstrates a signifi-280

cant correlation between model structure, hyper-281

parameters, and performance. We aim to explore282

the relationship between structure, hyperparame-283

ters, and the performance of LLMs. To this end,284

we selected a set of key parameters and employed285

various machine learning (ML) algorithms for re-286

gression analysis to investigate how these parame-287

ters correlate with model performance, including288

Random Forest (Breiman, 2001), Linear Regres-289

sion, Decision Tree (Quinlan, 2014), SVR (Cortes,290

1995), Ridge (Hoerl and Kennard, 1970), Lasso291

Regression (Tibshirani, 1996), k-Nearest Neigh-292

bors (Kramer and Kramer, 2013), and Gradient293
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Figure 7: Regression analysis of key parameters and
performance across different benchmarks using the Ran-
dom Forest algorithm, with corresponding R2 scores
and feature importance.

Boosting (Friedman, 2001). Especially, we fine- 294

tuned the LLaMA-2-7B model for regression tasks 295

using LLaMA-Factory (Zheng et al., 2024) and 296

LoRA (Hu et al., 2021) techniques, employing a 297

text-based format. The detailed experiment config- 298

urations of the models used, along with examples 299

of predictions from the fine-tuned LLaMA-2-7B, 300

can be found in Appendix B.1 and Appendix B.2. 301

We utilize the R2 score, also known as the coef- 302

ficient of determination, to assess the effectiveness 303

of each regression method. R2 is given by Equa- 304

tion 1: 305

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
, (1) 306

where yi are the actual values, ŷi are the predicted 307

values, and ȳ is the mean of the actual values. A 308

higher R2 indicates a better fit of the model to the 309

data. 310

The corresponding R2 scores are shown in Ta- 311

ble 2. Machine learning results reveal a clear cor- 312

relation between model structure and performance, 313
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Model ARC-C MMLU TruthfulQA GSM8K HellaSwag WinoGrande
Random Forest 75% 81% 58% 70% 66% 73%
Linear Regression 52% 54% 32% 44% 41% 50%
Decision Tree 69% 79% 54% 63% 57% 68%
SVR 64% 68% 46% 58% 51% 62%
Ridge 52% 54% 32% 44% 41% 50%
Lasso Regression 52% 54% 32% 44% 41% 50%
k-Nearest Neighbors 71% 77% 50% 67% 62% 69%
Gradient Boosting 72% 78% 56% 67% 64% 71%
MLP 68% 74% 49% 64% 56% 66%
LLM Fine-tune 60% 65% 17% 39% 51% 56%

Table 2: R2 scores when predicting LLMs’ performance across different datasets using key parameters with various
methods.
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Figure 8: Regression analysis of model structure and performance using Random Forest algorithm. (a) Predicting
performance using structure; (b) Predicting structure using performance.

with random forest achieving the highest predictive314

accuracy. We also compute the Mean Absolute315

Error (MAE), which remains below 6 for most316

tasks except GSM8K, indicating practical predic-317

tive value. Moreover, the fine-tuned model can rea-318

sonably predict performance across benchmarks us-319

ing a text-based format, suggesting a future where320

LLMs autonomously analyze data, adapt structures,321

and evolve to meet new challenges (Tao et al.,322

2024).323

Model size and release date are the primary324

factors influencing performance. To evaluate325

the impact of these features, we extracted feature326

importance from the Random Forest algorithm,327

which demonstrated the best performance among328

the tested methods. This feature importance re-329

flects the contribution of each feature in reducing330

Gini impurity across all tree splits (Genuer et al.,331

2010). Formally, the feature importance of feature332

f is given by Equation 2:333

If =
∑
t∈T

∆Gini(t, f), (2)334

where T represents the set of all decision trees, and 335

∆Gini(t, f) denotes the decrease in Gini impurity 336

at node t resulting from the use of feature f for 337

splitting. 338

As presented in Figure 7, we observe that bench- 339

mark performance is most strongly correlated with 340

model size and release date. The correlation with 341

model size is relatively straightforward. The re- 342

lease date reflects not only improvements in train- 343

ing techniques but also a steady increase in pre- 344

training token counts: from 1T in LLaMA, to 2T 345

in LLaMA-2, 8T in Mistral (Jiang et al., 2023), 346

and roughly 15T in the latest models (Dubey et al., 347

2024). 348

Layer depth and dffn impact different types 349

of benchmarks. We analyzed key structural vari- 350

ables—layers (layer depth), d_ffn (FFN inter- 351

mediate size), d_model (hidden dimension), and 352

heads (attention heads)—as shown in Figure 8a. 353

Our results suggest that layers mainly affects 354

reasoning tasks (e.g., ARC-C, HellaSwag, Wino- 355

Grande), while d_ffn more strongly influences 356

mathematical ability and knowledge accuracy, as 357
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seen in GSM8K, MMLU, and TruthfulQA. Ex-358

periments analyzing the impact of developer pro-359

ficiency and development timing (Appendix C.1)360

reinforce the robustness and generalizability of our361

findings.362

This aligns with prior analyses: layer depth gov-363

erns the degree of non-linearity, thereby enhancing364

reasoning abilities (Jin et al., 2024; Mueller and365

Linzen, 2023; Ye et al., 2024), whereas empirical366

studies indicate that LLMs store knowledge mainly367

in the FFNs (Geva et al., 2020; Stolfo et al., 2023),368

with larger dffn substantially boosting memory ca-369

pacity. This also concurs with findings that increas-370

ing the number of experts in MoE models—viewed371

as an extension of the FFNs—improves perfor-372

mance on knowledge-intensive tasks but not on373

reasoning (Jelassi et al., 2024; Fedus et al., 2022).374

Furthermore, Mirzadeh et al. (2024) observe that375

even minor modifications to the GSM8K dataset376

cause a significant performance drop, suggesting377

that current LLMs primarily rely on memoriza-378

tion to solve mathematical problems. Meanwhile,379

Stolfo et al. (2023) find that LLMs mainly exe-380

cute basic arithmetic operations within the FFNs.381

Together, these studies explain why dffn plays a382

more critical role than layer depth on the GSM8K383

task.384

Additionally, we collected extra performance385

data on BigCodeBench and IFEval to address the386

incomplete task coverage. We then conducted re-387

gression analysis on these datasets using random388

forest models, achieving R2 scores of 66.2% and389

48.2%, respectively. Feature importance scores,390

presented in Table 3, indicate that layer depth is391

the most influential factor for coding-related tasks,392

likely due to their reasoning-intensive nature. In393

contrast, instruction-following tasks are more sen-394

sitive to the capacity of FFNs, with dffn identified395

as the dominant contributor.396

Benchmark layers d_model d_ffn heads
BigCodeBench 35.4% 33.5% 23.1% 8.1%
IFEval 29.3% 25.2% 39.0% 6.5%

Table 3: Feature importance of structural configurations
in random forest regression models for BigCodeBench
and IFEval.

MMLU is the most representative benchmark.397

Our analysis reveals that MMLU performance is398

the key feature for predicting model structure, as399

shown by the feature importance values in Fig-400

ure 8b. This supports the hypothesis that MMLU401

scores best capture overall model performance and 402

aligns with how organizations like OpenAI, An- 403

thropic, Mistral, and Qwen typically showcase 404

model capabilities on MMLU. 405

6 Mechanistic Interpretability Analysis 406

6.1 Validating the Impact of Layer Depth via 407

Layer Pruning 408

We apply the ShortGPT (Men et al., 2024) method 409

to prune LLaMA-2-7B to validate the impact of 410

layer depth. The experiments on the Qwen-2-7B 411

models are shown in Appendix C.3. By pruning a 412

small number of less important layers, we aim to 413

minimize disruption to the model’s overall capabil- 414

ities while allowing us to observe how changes in 415

depth affect performance across various tasks. To 416

identify these layers, we use the Block Influence 417

(BI) metric, defined for the ith layer is given by 418

Equation 3: 419

BIi = 1− EX,t

XT
i,tXi+1,t

∥Xi,t∥2∥Xi+1,t∥2
, (3) 420

where Xi,t is the tth row of the hidden state at 421

layer i. A lower BI score indicates higher cosine 422

similarity between Xi and Xi+1, suggesting that 423

the layer contributes less transformation and is thus 424

less critical. 425

By averaging BI scores over multiple bench- 426

marks for the LLaMA-2-7B model, we observe 427

consistent patterns across layers, as shown in Ap- 428

pendix C.2, making it challenging to use BI scores 429

alone to differentiate the functional roles of individ- 430

ual layers across tasks. Therefore, we prune layers 431

21 through 29, which have the lowest BI scores. We 432

also find that BI scores tend to be higher in early 433

and final layers, and lower in middle-to-later layers, 434

consistent with prior work (Kim et al., 2024). 435

We observe an anomaly in the GSM8K bench- 436

mark, which requires models to generate precise 437

numerical answers rather than selecting from mul- 438

tiple choices as in other benchmarks. This unique 439

task structure makes GSM8K not directly compa- 440

rable to the others. Therefore, we exclude GSM8K 441

from this experiment. 442

After pruning these layers, we evaluate the 443

model using lm-evaluation-harness (Gao et al., 444

2024) following the leaderboard protocols, com- 445

paring its performance before and after pruning 446

across multiple benchmarks. The results are shown 447

in Figure 9. 448
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Figure 9: Performance across different benchmarks of
Llama-2-7B before and after pruning 21-29 layers.
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Figure 10: Layer-wise gradient analysis during fine-
tuning of Qwen-2-0.5B on the ARC-C and TruthfulQA
benchmarks.

Pruning leads to significant performance drops449

on benchmarks where layer depth is a critical factor450

(ARC-C, HellaSwag, WinoGrande), confirming the451

random forest regression results (Figure 8a). Con-452

versely, benchmarks less dependent on layer depth453

(e.g., MMLU, TruthfulQA) show minimal degra-454

dation, with TruthfulQA even improving slightly,455

further validating our analysis.456

6.2 Validating Findings through Layer-wise457

Gradient Analysis458

Following the gradient analysis methodology of459

Li et al. (2024), we evaluate the gradients during460

fine-tuning of Qwen-2-0.5B on the ARC-C and461

TruthfulQA benchmarks, which are representative462

tasks where layers depth and dffn, respectively, are463

identified as the most influential structural factors.464

Our analysis focuses on six major weight ma-465

trices in each decoder layer: the Query (Q), Key466

(K), Value (V ), and Output (O) projections in the467

attention module, as well as the Up (U ) and Down468

(D) projections in the FFN module. We denote469

X ∈ {Q,K, V,O,U,D}.470

The loss Lθ corresponds to the cross-entropy471

loss for next-token prediction used in supervised472

fine-tuning, where only the response tokens con-473

tribute to the overall loss, and instructions are ig-474

nored. We perform multiple backward passes until 475

gradients from all entries in the dataset are accu- 476

mulated. 477

For the weight matrix Xi of the i-th layer and 478

its corresponding gradient GX,i, we measure the 479

concentration of its gradient spectrum on dominant 480

singular values using the Nuclear Norm sX,i. This 481

provides insights into the gradient behavior across 482

different layers and tasks. The Nuclear Norm is 483

given by Equation 4: 484

sX,i = ∥GX,i∥∗ =
min(m,n)∑

j=1

|σj |, (4) 485

where σj denotes the j-th singular value, computed 486

via singular value decomposition (SVD), as shown 487

in Equation 5: 488

Σ = diag
(
σ1, σ2, · · · , σmin(m,n)

)
,

GX,i = UΣV ⊤.
(5) 489

The results of this analysis are shown in Fig- 490

ure 10. We observe that gradients in the deeper 491

layers of the ARC-C benchmark remain relatively 492

high, indicating that deeper layers play a more criti- 493

cal role in successfully completing reasoning tasks. 494

This finding aligns with our earlier observation that 495

layer depth is the key structural factor for ARC- 496

C. In contrast, gradients in the deeper layers of 497

the TruthfulQA benchmark are substantially lower, 498

suggesting that these layers contribute less to this 499

memory-centric task. 500

The experiment on LLaMA-3.2-3B is presented 501

in Appendix C.4. Meanwhile, a deeper investi- 502

gation into the gradient dynamics, as detailed in 503

Appendix C.5, further supports this hypothesis. 504

7 Conclusion 505

This study provides a comprehensive, data-driven 506

analysis of LLMs through a large-scale dataset that 507

captures structural configurations and their perfor- 508

mance across diverse benchmarks. By systemati- 509

cally tracing the evolution of LLMs, we identify 510

emerging trends and offer insights into future direc- 511

tions. Our findings underscore the critical influence 512

of structural configurations on model performance, 513

validated through mechanistic interpretability tech- 514

niques. This work delivers actionable, data-driven 515

guidance for optimizing LLM design, paving the 516

way for the development of more efficient, scal- 517

able, and adaptable models to meet the demands of 518

diverse real-world applications. 519
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Limitations520

This study focused on a specific set of tasks, poten-521

tially limiting the generalizability of our findings.522

Different applications may involve distinct require-523

ments and data characteristic. Future work should524

explore a broader range of tasks to improve the525

robustness and applicability of our conclusions.526

Our mechanistic interpretability analysis was527

limited to methods such as layer pruning and gra-528

dient analysis. While these techniques provided529

valuable insights, they may not fully capture the530

complex internal dynamics of LLMs. Future re-531

search could incorporate a wider variety of inter-532

pretability tools to validate and complement our533

findings, thereby offering a more comprehensive534

understanding of model behavior.535
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study are publicly available under open-access li-538

censes and intended solely for research purposes.539

These datasets contain no personal or identifiable540

information, nor any offensive content. The data541

analyzed in this work pertains exclusively to model542

structure and performance metrics.543

All datasets developed or used in this research544

will be released under the MIT License. We share545

these resources to promote transparency, repro-546

ducibility, and further research within the commu-547

nity. We encourage others to build upon and im-548

prove our work, provided they adhere to the terms549

of the MIT License.550
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Appendices812

A Details of the LLMs Structure and Performance Dataset813

A.1 Detailed Description of Each Column814

As shown in Table 4, each column presents key metrics and attributes of the model, offering valuable815

insights into characteristics such as its size, structure, and usage statistics.816

Column Name Unit Description
size Model Size Billions The overall parameter count of the model.

d_model Hidden Dim 1 The size of the hidden state of the model. Usually describing how
wide the model is.

d_ffn Intermediate
Size

1 The size of the intermediate state of the MLP (or GLU) in the FFN
of each Transformer Decoder Layer. A wider model usually has a
larger d_ffn.

heads Attention
Head Count

1 The number of attention heads.

layers Decoder
Layer Count

1 The number of Decoder layers. A deeper model is whose layer
count is larger.

kv_heads KV Head
Count

1 The number of KV heads. Related with GQA (MQA) and the size
of KV cache per token. Equal to the heads count for MHA, 4 to
16 times smaller for GQA variant.

vocab_size Vocabulary
Size

1 The available token count of the tokenizer, as well as the embed-
ding and LM_head component of the base model. Larger vocab
means less sequence length, more efficient in inference but at the
cost of more parameter.

pos Maximum
Input Posi-
tion

1 The maximum capable input sequence length. Relate with sin and
cos value caching of Rotary Positional Embedding, also indicating
the long context ability with the model.

downloads Download
Count

1 The download count on Hugging Face model pages, reflecting
actual usage and interest from the community.

likes Like Count 1 Users’ like count on Hugging Face model pages, reflecting com-
munity recognition.

Table 4: Description of each column from our LLMs Structure and Performance Dataset.

A.2 The example of the LLMs Structure and Performance Dataset817

As shown in Table 5, the structure parameters of several models and their performance across different818

benchmarks are presented, including Llama-3-8B, Bloom (Le Scao et al., 2023), Mixtral-8x7B, Llama-2-819

7B, and Mistral-7B.820

B Experimental Details821

B.1 Resources Used in the Experiments822

All experiments were conducted on two RTX 4090 GPUs, utilizing a total of 200 GPU hours. The823

tasks included regression analysis of model structure and performance, fine-tuning the LLaMA-2-7B824

model for regression tasks using the Low-Rank Adaptation (LoRA) technique and the Llama-Factory825

framework, pruning specific layers of the LLaMA-2-7B model, and evaluating the model on ARC-826

C, TruthfulQA, WinoGrande, HellaSwag, and MMLU benchmarks using the lm-evaluation-harness.827

https://github.com/hiyouga/LLaMA-Factory
https://github.com/EleutherAI/lm-evaluation-harness
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Parameter Llama-3-8B bloom Mixtral-8x7B Llama-2-7B Mistral-7B
size 8 176 46 7 7
d_model 4096 14336 4096 4096 4096
d_ffn 14336 14336 11008 14336
heads 32 112 32 32 32
layers 32 70 32 32 32
kv_heads 8 8 32 8
vocab_size 128256 250880 32000 32000 32000
pos 8192 32768 4096 32768
likes 4883 4632 3920 3633 3259
downloads 556210 28821 2911366 927400 3147345
ARC-C 60.24 50.43 66.38 53.07 59.98
HellaSwag 82.23 76.41 86.46 78.59 83.31
MMLU 66.7 30.85 71.88 46.87 64.16
TruthfulQA 42.93 39.76 46.81 38.76 42.15
WinoGrande 78.45 72.06 81.69 74.03 78.37
GSM8K 45.19 6.9 57.62 14.48 37.83

Table 5: Examples from our LLMs Structure and Performance Dataset.

Additionally, we performed gradient analysis during the fine-tuning of the Qwen-2-0.5B model on the 828

ARC-C and TruthfulQA benchmarks. 829

B.2 Hyperparameter Configuration for Regression Models 830

For regression analysis of model structure and performance, various models were employed. The 831

hyperparameter configurations for these models are provided in Table 6. 832

The LLaMA-2-7B model was fine-tuned using a text-based format, where the model takes a different 833

structure as input and predicts performance across multiple datasets. As shown in Figure 11, the fine-tuned 834

model demonstrates strong performance in accurately predicting outcomes in the specified text format. 835

Model Hyperparameters
Random Forest random_state=42, n_estimators=100, max_depth=None
Linear Regression fit_intercept=True, normalize=False
Decision Tree random_state=42, max_depth=None, min_samples_split=2
SVR kernel=rbf, C=1.0, epsilon=0.1
Ridge alpha=1.0, fit_intercept=True
Lasso Regression alpha=0.1, max_iter=1000
k-Nearest Neighbors n_neighbors=5, algorithm=auto
Gradient Boosting n_estimators=100, learning_rate=0.1, max_depth=3
XGBoost objective=reg:squarederror, n_estimators=100, learning_rate=0.1
MLP hidden_layer_sizes=(32, 64, 32), max_iter=100, activation=relu
LLM Fine-tune lora_target=all, learning_rate=1.0e-4, num_train_steps=3500

Table 6: Regression models and their key hyperparameters.
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Examples of Performance Regression Prediction using Fine - tuned Llama2 7B Model

Prompt1: You are an AI model expert. Analyze the model structure and predict performance
metrics. Model Architecture: Num attention heads: 32, Num hidden layers: 32, Vocab size:
32000, Max position embeddings: 32768, Year: 2024, Month: 1, Day: 3, Model dimension:
4096, FFN hidden dimension: 14336, Model parameters: 7.000B
Truth1:
Prediction: ARC-C: 55.20, HellaSwag: 78.22, MMLU: 50.30, TruthfulQA: 57.08,
WinoGrande: 73.24, GSM8K: 11.45
Answer1:
Prediction: ARC-C: 67.41, HellaSwag: 86.78, MMLU: 64.07, TruthfulQA: 67.68,
WinoGrande: 81.61, GSM8K: 59.74

Prompt2: You are an AI model expert. Analyze the model architecture and predict
performance metrics. Model Architecture: Num attention heads: 40, Num hidden layers: 36,
Vocab size: 50688, Max position embeddings: 2048, Year: 2023, Month: 2, Day: 27, Model
dimension: 5120, FFN hidden dimension: 20480, Model parameters: 12.000B
Truth2:
Prediction: ARC-C: 41.38, HellaSwag: 70.26, MMLU: 25.63, TruthfulQA: 33.00,
WinoGrande: 66.46, GSM8K: 1.44
Answer2:
Prediction: ARC-C: 46.42, HellaSwag: 70.00, MMLU: 26.19, TruthfulQA: 39.19,
WinoGrande: 62.19, GSM8K: 0.61

Figure 11: Performance prediction examples using a fine-tuned Llama-2-7B model.

C Further Experiment Result836

C.1 Analyzing the Impact of Developer Proficiency and Development Timing837

The central goal of our study is to uncover unified relationships between model structure and performance838

through large-scale data mining over structural datasets. Due to the breadth and diversity of our dataset,839

we expect that secondary factors exert minimal influence on the extracted conclusions, as core patterns840

can be robustly identified across a wide range of models.841

Nevertheless, to ensure that our experimental conclusions are not affected by differences in the de-842

velopment proficiency of various model providers, and to mitigate the possibility that our analysis is843

overly skewed toward LLaMA-based models, we aimed to achieve broader model representation beyond844

LLaMA-based architectures while maintaining high model quality.845

To this end, we selected models from Hugging Face’s open-llm-leaderboard/official-providers846

(e.g., LLaMA, MistralAI, DeepSeek, Qwen), which are known to follow high-quality training standards.847

This filtering process resulted in a dataset where LLaMA-based models and their variants comprised only848

27% of the total, effectively reducing potential bias due to their overrepresentation.849

As shown in Figure 12a, our results remained consistent with earlier findings: layer depth emerged as850

the most important structural parameter for ARC-C, HellaSwag, and WinoGrande, while dffn was most851

critical for TruthfulQA and GSM8K. MMLU was the only exception, likely due to data sparsity.852

Meanwhile, as shown in Figure 12b, performance on the MMLU dataset was identified as the most853

important parameter for predicting the model’s architectural configuration, which aligns with previous854

conclusions.855

To avoid the impact of temporal variations, we augmented our Random Forest regression model with856

the date variable. As shown in Figure 13, the resulting R2 scores and feature importance indicate that857

structural features continue to be significant even when accounting for temporal effects, supporting our858
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conclusion that benchmarks like ARC-C, HellaSwag, and Winogrande rely heavily on model depth. In 859

contrast, dffn emerges as the dominant factor for MMLU, GSM8K, and TruthfulQA. 860
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Figure 12: Regression analysis of major high-quality model structure parameters and their performance across
benchmarks using the Random Forest algorithm. (a) Predicting performance from model structure; (b) Predicting
model structure from performance.
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Figure 13: Feature importance in the Random Forest model with date included. Structural features like depth and
d_ffn remain dominant despite temporal effects.

C.2 Analysis of BI Scores Across Layers in the LLaMA-2 7B Model across Different Benchmarks 861

As shown in Figure 14, we present the BI scores for different layers of the LLaMA-2-7B model across 862

various benchmarks. The analysis highlights the relative contribution of each layer to model performance 863

on tasks from diverse domains. 864

C.3 Layer Pruning Analysis with Qwen-2-7B 865

Similar to the pruning experiments conducted on LLaMA-2-7B, we also prune the Qwen-2-7B model and 866

observe consistent conclusions, as illustrated in Figure 15. Pruning leads to significant performance drops 867

on benchmarks where layer depth is a critical factor (e.g., ARC-C, HellaSwag, WinoGrande), confirming 868

the findings of the random forest regression analysis. Conversely, benchmarks that are less dependent on 869

layer depth (e.g., MMLU, TruthfulQA) exhibit minimal performance degradation, further validating our 870

analysis. 871

C.4 Layer-wise Gradient Analysis with LLaMA-3.2-3B 872

Similar to the layer-wise gradient analysis conducted on Qwen-2-0.5B, we performed the same experiment 873

on LLaMA-3.2-3B, as shown in Figure 16, and found results consistent with our original conclusions. 874

We observe that gradients in the deeper layers of the ARC-C benchmark remain relatively high, while 875

gradients in the deeper layers of the TruthfulQA benchmark are substantially lower. These results further 876

support our previous conclusions. 877
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Figure 14: BI scores of different layers in the LLaMA-2-7B model across various benchmarks.
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Figure 15: Performance across different benchmarks of Qwen-2-7B before and after pruning 21-25 layers.

C.5 Layer-wise Gradient Analysis with Different Language Styles878

We further explore the dynamics of different layers within the model, particularly the deeper layers, to879

explain how task dependencies vary with model depth. Following the methodology in Section 6.2, we880

conducted gradient analysis across different corpora. Our findings, shown in Figure 17, reveal a significant881

increase in gradients within the deeper FFN layers when the model encounters distinct linguistic styles or882

archaic texts. In contrast, for corpora such as plain text or mathematical data, these layers do not exhibit883

such anomalous gradient behavior.884

We observed that the layers responsible for generating the additional gradient peaks largely correspond885

to the layers excluded in the previous section. Larger gradients typically suggest insufficient training886

of the corresponding model components. This implies that layers with large gradients in LLMs process887

language-form-related components, rather than knowledge components abstracted from linguistic forms.888

In other words, the increased gradient magnitude reflects a lower retention of knowledge within these889

layers, explaining the insensitivity of knowledge-based tasks to layer removal. Conversely, reasoning890

processes are closely tied to language itself, meaning the removal of these layers has a more significant891

impact on such tasks.892

D Explanation of Industry-Specific Jargons893

We provide detailed explanations for potentially confusing industry-specific jargon mentioned in the paper,894

ensuring clarity without compromising technical accuracy.895
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Figure 16: Layer-wise gradient analysis during fine-tuning of LLaMA-3.2-3B on the ARC-C and TruthfulQA
benchmarks.
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Figure 17: Layer-wise gradient on different corpuses.

The Leaderboard: A standardized platform (e.g., Hugging Face’s Open LLM Leaderboard) for 896

comparing model performance across benchmarks. 897

MoE (Mixture of Experts): A neural network architecture that dynamically routes inputs to a subset 898

of specialized expert models, improving computational efficiency and scalability in large language models 899

(LLMs). 900

VRAM (Video Random Access Memory): The GPU’s dedicated memory, critical for deploying large 901

language models (LLMs) because its capacity constrains the maximum size of models that can be loaded 902

and run. 903

IQR (Interquartile Range): A statistical measure of data spread between the 25th and 75th percentiles, 904

reducing the influence of outliers. Applied in Figure 5 to capture performance fluctuations across model 905

sizes. 906

LLaMA-Factory: An open-source framework designed for fine-tuning, training, and deploying large 907

language models. 908

LoRA (Low-Rank Adaptation): A parameter-efficient fine-tuning technique that uses low-rank matrix 909

decomposition. 910

Gini Impurity: A measure of impurity in a dataset used in decision tree algorithms to determine the 911

best feature splits by evaluating class distribution at a node. 912
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