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ABSTRACT

Clustering nodes in heterophilous graphs is challenging as traditional methods
assume that effective clustering is characterized by high intra-cluster and low inter-
cluster connectivity. To address this, we introduce HeNCler —a novel approach for
Heterophilous Node Clustering. HeNCler learns a similarity graph by optimizing
a clustering-specific objective based on weighted kernel singular value decomposi-
tion. Our approach enables spectral clustering on an asymmetric similarity graph,
providing flexibility for both directed and undirected graphs. By solving the primal
problem directly, our method overcomes the computational difficulties of traditional
adjacency partitioning-based approaches. Experimental results show that HeNCler
significantly improves node clustering performance in heterophilous graph settings,
highlighting the advantage of its asymmetric graph-learning framework.

1 INTRODUCTION

Graph neural networks (GNNs) have substantially advanced machine learning applications to graph-
structured data by effectively propagating node attributes end-to-end. Typically, GNNs rely on the
assumption of homophily, where nodes with similar labels are more likely to be connected (Zheng
et al., 2024; Wu et al., 2021). The homophily assumption holds true in contexts such as social
networks and citation graphs, where models like GCN (Kipf & Welling, 2017), GIN (Xu et al., 2019),
and GraphSAGE (Hamilton et al., 2017) excel at tasks like node classification and graph prediction.

However, in heterophilous datasets, such as web page and transaction networks, edges often link
nodes with differing labels. Models like GAT (Veličković et al., 2018) and various graph transformers
(Ying et al., 2022; Dwivedi & Bresson, 2021) have demonstrated improved performance on these
datasets. Their attention mechanisms learning edge importance provide a straightforward way to
reduce the reliance on homophily for supervised tasks.

Our work specifically addresses unsupervised attributed node clustering tasks. Such tasks necessitate
entirely unsupervised or self-supervised learning approaches. For instance, auto-encoder type
models (Park et al., 2019; Pan et al., 2020) are primarily focused on node representation learning
rather than clustering, making them less suited for directly improving cluster-ability. Various self-
supervised, contrastive learning techniques (Hassani & Ahmadi, 2020; You et al., 2020) enhance
node representation learning in homophilous settings only and lack a specific clustering objective. At
the same time, several self-supervised methods have been developed to handle heterophilous graphs
(Chen et al., 2022; Xiao et al., 2022; Yuan et al., 2023). For example, MUSE (Yuan et al., 2023)
extracts semantic and contextual views for contrastive learning. However, these methods are designed
for the general node representation learning task and lack a clustering objective.

In contrast, S3GC (Devvrit et al., 2022) employs a self-supervised approach specifically designed
for clustering. It however assumes homophily by leveraging random walk co-occurrences to infer
proximity-based similarities. MinCutPool (Bianchi et al., 2020) and DMoN (Tsitsulin et al., 2023)
introduce unsupervised losses linked to graph structure, with strong theoretical ties to spectral
clustering and graph modularity, respectively. These methods are suited for undirected graphs only,
and moreover rely on partitioning the adjacency matrix where effective clustering correlates with
high intra-cluster and low inter-cluster similarity—a premise often invalid in heterophilous graphs.

This paper introduces HeNCler, a novel approach for node clustering in heterophilous graphs,
illustrated in Figure 1. Existing works overlook the asymmetric relationships in heterophilous
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Table 1: Qualitative comparison of HeNCler with several baselines. In the table, |V|, |B|, and |E|
denote the total number of nodes, the mini-batch size, and the number of edges respectively.

BASELINES OURS

MINCUTP. DMON S3GC MUSE HENCLER

CAN HANDLE HETEROPHILY ✗ ✗ ✗ ✓ ✓
DIRECTED GRAPHS ✗ ✗ ✓ ✓ ✓
HAS CLUSTERING OBJECTIVE ✓ ✓ ✓ ✗ ✓
SPACE COMPLEXITY O(|V|2) O(|V|+ |E|) O(|B|) O(|V|+ |E|) O(|B|)
TIME COMPLEXITY O(|V|+ |E|) O(|V|+ |E|) O(|V|) O(|V|+ |E|) O(|V|)

u

v

u

v

u

v

S = (Φ,Ψ,S)

ϕ(x) ψ(x)

sim(u, v)̸=sim(v, u)

Figure 1: HeNCler Overview. Starting from a heterophilous graph, where nodes with the same label
are not close to each other (left), HeNCler learns two sets of node representations, {ϕ(xv)}v∈V and
{ψ(xv)}v∈V , forming a bipartite graph S (middle), where the similarity between nodes is defined as
Suv = sim(u, v) = ϕ(xu)

⊤ψ(xv). Due to the clustering objective, nodes that should belong to the
same cluster are positioned closer together in the learned graph. These clusters are then identified
using spectral biclustering through wKSVD (right).

graphs, as shown in Table 1. HeNCler addresses this by using weighted kernel singular value
decomposition (wKSVD) to induce a learned asymmetric similarity graph for both directed and
undirected graphs. The dual problem of wKSVD aligns with asymmetric kernel spectral clustering,
enabling the interpretation of similarities without homophily. By solving the primal problem directly,
HeNCler overcomes computational difficulties and shows superior performance in node clustering
tasks within heterophilous graphs.

Contributions: Our contributions in this work can be summarized as follows:

• We introduce HeNCler, a kernel spectral biclustering framework designed to learn an
induced asymmetric similarity graph suited for node clustering of heterophilous graphs,
applicable to both directed and undirected graphs.

• We develop a primal-dual framework for a generic weighted kernel singular value decompo-
sition (wKSVD) model.

• We show that the dual wKSVD formulation allows for biclustering of bipartite/asymmetric
graphs, while we employ a computationally feasible implementation in the primal wKSVD
formulation.

• We further generalize our approach with trainable feature mappings, using node and edge
decoders, such that the similarity matrix to cluster is learned.

• We train HeNCler in the primal setting and demonstrate its superior performance on the
node clustering task for heterophilous attributed graphs. Our implementation is available in
supplementary materials.
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2 PRELIMINARIES AND RELATED WORK

We use lowercase symbols (e.g., x) for scalars, lowercase bold (e.g., x) for vectors and uppercase
bold (e.g.,X) for matrices. A single entry of a matrix is represented by Xij . ϕ(·) denotes a mapping
and ϕv = ϕ(xv) represents the mapping of node v in the induced feature space. We represent a
graph G by its vertices (i.e., nodes) V and edges E , G = (V, E), or by its node feature matrix and
adjacency matrix G = (X,A). For a bipartite graph, we have G = (I,J , E) or G = (XI ,XJ ,S)
where Sij is the edge weight between nodes i ∈ I and j ∈ J . Note that S is generally asymmetric
and rectangular, and that the adjacency matrix of the bipartite graph is given byA =

[
0 S

S⊤ 0

]
.

Kernel singular value decomposition KSVD (Suykens, 2016) sets up a primal-dual framework,
based on Lagrange duality, that formulates a variational principle in the primal formulation that
corresponds to the matrix singular value decomposition (SVD) in the dual for linear feature maps. By
employing non-linear feature mappings or asymmetric kernel functions, this framework allows for non-
linear extensions of the SVD problem. The KSVD framework can be applied on data structures such
as row and column features, directed graphs, and/or can exploit asymmetric similarity information
such as conditional probabilities (He et al., 2023). Interestingly, KSVD often outperforms the similar
though symmetric kernel principal component analysis model on tasks where the asymmetry is not
immediately apparent (Tao et al., 2024). A different connection is shown in Primal-Attention (Chen
et al., 2023), where the authors demonstrate the relation between canonical self-attention, which is
asymmetric, and KSVD. They show how to gain computational efficiency by considering a primal
equivalent of the attention mechanism.

Spectral clustering generalizations have been proposed in many settings. Spectral graph biclustering
(Dhillon, 2001) formulates the spectral clustering problem of a bipartite graph G = (I,J ,S) and
shows the equivalence with the SVD of the normalized matrix Sn = D

−1/2
1 SD

−1/2
2 , where

D1,ii =
∑
j Sij and D2,jj =

∑
i Sij . Cluster assignments for nodes I and nodes J can be inferred

from the left and right singular vectors respectively. Further, kernel spectral clustering (KSC) (Alzate
& Suykens, 2010) proposes a weighted kernel principal component analysis in which the dual
formulation corresponds to the random walks interpretation of the spectral clustering problem. KSC
and the aforementioned spectral biclustering formulation lack asymmetry and a primal formulation
respectively, which are limitations that our model will address.

Restricted kernel machines (RKM) (Suykens, 2017) possess primal and dual model formulations,
based on the concept of conjugate feature duality. It is an energy-based framework for (deep) kernel
machines, that shows relations with least-squares support vector machines (Suykens et al., 2002) and
restricted Boltzmann machines (Salakhutdinov, 2015). The RKM framework encompasses many
model classes, including classification, regression, kernel principal component analysis and KSVD,
and allows for deep kernel learning (Tonin et al., 2021) and deep kernel learning on graphs (Achten
et al., 2024). One possibility to represent the feature maps in RKMs is by means of deep neural
networks, e.g., for unsupervised representation learning (Pandey et al., 2021; 2022). RKM models can
work in either primal or dual setting, and with decomposition or gradient based algorithms (Achten
et al., 2023).

Homophilous node clustering methods like MinCutPool (Bianchi et al., 2020) and DMoN (Tsit-
sulin et al., 2023) introduce unsupervised loss functions within a graph neural network framework.
MinCutPool employs a relaxed version of the minimal cut loss applied to the adjacency matrix, while
DMoN optimizes the modularity score of clustering labels with respect to the adjacency structure.
Both of these methods rely on partitioning the adjacency matrix and inherently assume homophily.
Additionally, due to their theoretical underpinnings, these losses are only applicable to undirected
graphs. Beyond these adjacency partitioning-based approaches, self-supervised or contrastive meth-
ods have also been proposed (You et al., 2020; Hassani & Ahmadi, 2020; Devvrit et al., 2022).
These methods typically use graph proximity as their supervision signal, which similarly assumes
homophily. For example, S3GC (Devvrit et al., 2022) employs a self-supervised loss based on random
walk co-occurrences.

Heterophilous node clustering methods typically rely on self-supervised or contrastive techniques.
Gong et al. (Gong et al., 2023) propose Sparse Graph Anomaly Detection (SparseGAD), a method that
sparsifies graph structures to effectively reduce noise from irrelevant edges and enhance the detection
of closely related nodes. This technique reveals underlying node dependencies, accommodating
both homophilous and heterophilous relationships. Similarly, HGRL (Chen et al., 2022) employs
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self-supervised learning on heterophilous graphs by utilizing graph augmentation techniques to
capture global and higher-order structural information. MUSE (Yuan et al., 2023), on the other hand,
constructs semantic and contextual views to capture both node-level and neighborhood information
for contrastive learning, subsequently integrating these multi-view representations through a fusion
controller.

While adjacency partitioning-based methods have demonstrated both theoretical and empirical success
for homophilous graphs, they have not been effectively extended to heterophilous graph learning. On
the other hand, self-supervised clustering approaches, though promising, often lack a clear clustering
interpretation. In the following section, we introduce HeNCler, which bridges these gaps.

3 METHOD

Model motivation Our approach employs an RKM auto-encoder framework, which has been
shown to be effective in unsupervised representation learning by jointly optimizing feature mappings
and projection matrices within a kernel-based setting (Pandey et al., 2022). To capture long-range
relational dependencies in heterophilous graphs, we utilize a KSVD loss, where a double feature
mapping yields a learned asymmetric similarity matrix. To further enhance the cluster-ability of
this matrix, we extend the loss function to a weighted KSVD (wKSVD) loss, which not only boosts
clustering performance but also offers a spectral graph biclustering interpretation. We next introduce
a general wKSVD framework, after which we introduce our HeNCler model that operates in the
primal setting while jointly learning the feature mappings end-to-end.

3.1 KERNEL SPECTRAL BICLUSTERING WITH ASYMMETRIC SIMILARITIES

Consider a dataset with two, possibly different, input sources {xi}ni=1 and {zj}mj=1, on which we
want to define an unsupervised learning task. To this end, we introduce a weighted kernel singular
value decomposition model (wKSVD), starting from the following primal optimization problem,
which is a weighted variant of the KSVD formulation:

min
U ,V ,e,r

J ≜ Tr(U⊤V )− 1

2

n∑
i=1

w1,ie
⊤
i Σ

−1ei −
1

2

m∑
j=1

w2,jr
⊤
j Σ

−1rj

s.t. {ei = U⊤ϕ(xi), ∀i = 1, . . . , n; rj = V
⊤ψ(zj),∀j = 1, . . . ,m}, (1)

with projection matricesU ,V ∈ Rdf×s; strictly positive weighting scalarsw1,i, w2,j ; latent variables
ei, rj ∈ Rs; diagonal and positive definite hyperparameter matrix Σ ∈ Rs×s; and centered feature
maps ϕ(·) : Rdx 7→ Rdf and ψ(·) : Rdz 7→ Rdf ; details on centering of the feature maps are provided
in Appendix A. The following derivation shows the equivalence with the spectral biclustering problem.

Proposition 1. The solution to the primal problem (1) can be obtained by solving the singular value
decomposition of

W
1/2
1 SW

1/2
2 =HeΣH

⊤
r , (2)

where W1 and W2 are diagonal matrices such that W1,ii = w1,i and W2,jj = w2,j , S = ΦΨ⊤

is an asymmetric similarity matrix where Sij = ϕ(xi)
⊤ψ(zj), Φ = [ϕ(x1) . . . ϕ(xn)]

⊤, Ψ =
[ψ(z1) . . . ψ(zm)]⊤, and whereHe = [he1 ...hen ]

⊤, andHr = [hr1 ...hrm ]⊤ are the left and right
singular vectors respectively; and by applying rj = Σhrj/

√
w2,j and ei = Σhei/

√
w1,i.

Proof. We now introduce dual variables hei and hrj using a case of Fenchel-Young inequality
(Rockafellar, 1974):

1

2
w1,i e

⊤
i Σ

−1ei+
1

2
h⊤
eiΣhei ≥

√
w1,i e

⊤
i hei ,

1

2
w2,j r

⊤
j Σ

−1rj+
1

2
h⊤
rjΣhrj ≥ √

w2,j r
⊤
j hrj ,

(3)
∀ei, rj ,hei ,hrj ∈ Rs, ∀w1,i, w2,j ∈ R>0, ∀Σ ∈ Rs×s≻0 . The above inequalities can be verified

by writing it in quadratic form: 1
2

[
e⊤
i h⊤

ei

] [ w1,iΣ
−1 −√

w1,i Is
−√

w1,i Is Σ

] [
ei

hei

]
≥ 0, ∀i, with Is

the s-dimensional identity matrix, which follows immediately from the Schur complement form:
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G(X,A)
ϕv
ψv

MLPrec(Uev||V ev;θrec)

σ(e⊤uU
⊤V rv)

ev
rv

S = ΦΨ⊤ hev
hrv

MLPψ(xv||PEv;θψ) V

MLPϕ(xv||PEv;θϕ) U

SVD(D
−1/2
1 SD

−1/2
2 )

Primal
Dual

Primal
Dual

Figure 2: The HeNCler model. HeNCler operates in the primal setting (top of the figure in red)
and uses a double multilayer perceptron (MLP) to map node representations to a feature space. The
obtained representations ϕv andψv are then projected to latent representations ev and rv respectively.
The wKSVD loss ensures that these latent representations correspond to the dual equivalent (bottom
of the figure in blue) i.e., a biclustering of the asymmetric similarity graph defined by S. The node
and edge reconstructions (dashed arrows) aid in the feature map learning.

for a matrix Q =
[

Q1 Q2

Q⊤
2 Q3

]
, one has Q ⪰ 0 if and only if Q1 ≻ 0 and the Schur complement

Q3 −Q⊤
2 Q

−1
1 Q2 ⪰ 0 (Boyd & Vandenberghe, 2004).

By substituting the constraints of (1) and inequalities (3) into the objective function of (1), we obtain
an objective in primal and dual variables as an upper bound on the primal objective J̄ ≥ J :

min
U ,V ,he,hr

J̄ ≜ Tr(U⊤V )−
n∑
i=1

√
w1,i ϕ(xi)

⊤Uhei +
1

2

n∑
i=1

h⊤
eiΣhei

−
m∑
j=1

√
w2,j ψ(zj)

⊤V hri +
1

2

m∑
j=1

h⊤
rjΣhrj . (4)

Next, we formulate the stationarity conditions of problem (4):

∂J̄

∂V
= 0 ⇒ U =

∑m
j=1

√
w2,j ψ(zj)h

⊤
rj ,

∂J̄

∂hei
= 0 ⇒ Σhei =

√
w1,i U

⊤ϕ(xi),

∂J̄

∂U
= 0 ⇒ V =

∑n
i=1

√
w1,i ϕ(xi)h

⊤
ei ,

∂J̄

∂hrj
= 0 ⇒ Σhrj =

√
w2,j V

⊤ψ(zj),

(5)

from which we then eliminate the primal variables U and V . This yields the eigenvalue problem:

[
0 W

1/2
1 SW

1/2
2

W
1/2
2 S⊤W

1/2
1 0

] [
He

Hr

]
=

[
He

Hr

]
Σ, (6)

where 0 is an all-zeros matrix. Note that, by Lanczos’ Theorem (Lanczos, 1958), the above eigenvalue
problem is equivalent with (2), and that the stationarity conditions (5) provide the relationships
between primal and dual variables, which concludes the proof.

We have thus shown the connection between the primal (1) and dual formulation (2). Similarly to the
KSVD framework, the wKSVD framework can be used for learning with asymmetric kernel functions
and/or rectangular data sources. The spectral biclustering problem can now easily be obtained by
choosing the weights w1,i and w2,j appropriately.

5
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Corollary 2. Given Proposition 1, and by choosingW1 andW2 to equalD−1/2
1 andD−1/2

2 , where
D1,ii =

∑
j Sij and D2,jj =

∑
i Sij , we obtain the random walk interpretationD−1/2

1 SD
−1/2
2 =

HeΣH
⊤
r of the spectral graph bipartitioning problem for the bipartite graph S = (Φ,Ψ,S).

Moreover, the wKSVD framework is more general as, on the one hand, one can use a given similarity
matrix (e.g. adjacency matrix of a graph) or (asymmetric) kernel function in the dual, or, on the other
hand, one can choose to use explicitly defined (deep) feature maps in both primal or dual.

3.2 THE HENCLER MODEL

HeNCler employs the wKSVD framework in a graph setting, where the dataset is a node set V and
where the asymmetry arises from employing to different mappings that operate on the nodes given
the entire graph G = (X ,A). Our method is visualized in Figure 2, where red indicates the primal
setting of the framework and blue the dual.

In the preceding subsection, we showed that problem (1) has an equivalent dual problem correspond-
ing to the graph bipartitioning problem, when w1,i and w2,j are chosen to equal the square root of
the inverse of the out-degree and in-degree of a similarity graph S respectively. This similarity graph
S depends on the feature mappings ϕ(·) and ψ(·), which for our method does not only depend on the
node of interest, but also on the rest of the input graph and the learnable parameters. The mappings
for node v thus become ϕ(xv,G;θϕ) and ψ(xv,G;θψ) and we will ease these notations to ϕ(xv)
and ψ(xv). The ability of our method to learn these feature mappings is an important aspect of
our contribution, as a key motivation behind our model is that we need to learn new similarities for
clustering heterophilous graphs. The loss function is comprised of three terms: the wKSVD-loss, a
node-reconstruction loss, and an edge-reconstruction loss:

LwKSVD(U ,V ,Σ,θϕ,θψ) + LNodeRec(U ,V ,θϕ,θψ,θrec) + LEdgeRec(U ,V ,θϕ,θψ),

where the trainable parameters of the model are in the the multilayer perceptron (MLP) feature maps
(θϕ and θψ), the MLP node decoder (θrec), in the U and V projection matrices, and in the singular
values Σ. All these parameters are trained end-to-end and we next explain the losses in more detail.

wKSVD-loss Instead of solving the SVD in the dual formulation, HeNCler leverages the primal
formulation (1) of the wKSVD framework for greater computational efficiency. While equation (1)
assumes that the feature maps ϕ(·) and ψ(·) are fixed, HeNCler utilizes parametric functions ϕ(·;θϕ)
and ψ(·;θψ), enabling it to learn new similarities between nodes. By incorporating regularization
terms for these functions and defining the weighting scalars asw1,v = D−1

1,vv = 1/
∑
u ϕ(xv)

⊤ψ(xu)

and w2,v = D−1
2,vv = 1/

∑
u ϕ(xu)

⊤ψ(xv), we derive the wKSVD-loss:

LwKSVD ≜ −
|V|∑
v=1

D−1
1,vv ϕ(xv)

⊤UΣ−1U⊤ϕ(xv)−
|V|∑
v=1

D−1
2,vv ψ(xv)

⊤V Σ−1V ⊤ψ(xv)

+ Tr(U⊤V) +

|V|∑
v=1

√
D−1

1,vv D−1
2,vv ϕ(xv)

⊤ψ(xv). (7)

The primal formulation of HeNCler (7) can be understood as follows: The first two terms aim to
maximize the weighted variance of the learned node representations e and r. The third and fourth
terms act as regularizers, encouraging asymmetry by penalizing the similarity between U and V ,
and between ϕ(xv) and ψ(xv), respectively.

For the two feature maps ϕ(·) and ψ(·), we employ two MLPs: ϕ(xv,G;θϕ) ≡ MLPϕ(xv||PEv;θϕ)
and ψ(xv,G;θψ) ≡ MLPψ(xv||PEv;θψ). We construct a random walks positional encoding (PE)
(Dwivedi et al., 2022) to embed the network’s structure and concatenate this encoding with the node
attributes. The MLPs have two linear layers with a LeakyReLU activation function in between,
followed by a batch normalization layer. The singular values in Σ are jointly learned, constrained to
lie between 0 and 1, with the additional condition that Tr(Σ− 1

2 ) = 1.

Reconstruction losses Since the feature maps ϕ(·) and ψ(·) need to be learned, an additional loss
function beyond the above regularization term is required to effectively optimize the parameters of
the MLPs. As the node clustering setting is completely unsupervised, we add a decoder network and

6
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a reconstruction loss. This technique has been proven to be effective for unsupervised learning in the
RKM-framework (Pandey et al., 2022), as well as for unsupervised node representation learning (Sun
et al., 2021). For heterophilous graphs, we argue that it is particularly important to also reconstruct
node features and not only the graph structure.

For the node reconstruction, we first project the e and r variables back to feature space, concatenate
these and then map to input space with another MLP. This MLP has also two layers and a leaky
ReLU activation function. The hidden layer size is set to the average of the latent dimension and
input dimension. With the mean-squared-error as the associated loss, this gives:

LNodeRec =
1

|V|
∑
v∈V

||MLPrec(Uev||V rv;θrec)− xv||2. (8)

To reconstruct edges, we use a simple dot-product decoder σ(e⊤uU
⊤V rv) where σ is the sigmoid

function. By using the e representation for source nodes and r for target nodes, this reconstruction is
asymmetric and can reconstruct directed graphs. We use a binary cross-entropy loss:

LEdgeRec =
1

|U|
∑

(u,v)∈U

BCE(σ(e⊤uU
⊤V rv), Euv), (9)

where U is a node-tuple set, resampled every epoch, containing 2|V| positive edges from E and 2|V|
negative edges from EC , and Euv ∈ {0, 1} indicates whether an edge (u, v) exist: (u, v) ∈ E .

Optimizer, constraints, and cluster assignment We use Adam (Kingma & Ba, 2015) for the
training of all parameters. The batch normalization in the MLP’s keeps the wKSVD-loss bounded
and the constraints on the singular values is enforced with a softmax function. Cluster assignments
are obtained by KMeans clustering on the concatenation of learned e and r node representations.

HeNCler jointly learns the wKSVD projection matrices, U and V , along with the feature map
parameters, θϕ and θψ . The wKSVD loss improves the cluster-ability of the learned similarity graph,
ensuring that e and r function as spectral biclustering embeddings. The two distinct feature maps
enable asymmetric learning, effectively capturing potential asymmetric relationships in the data,
while the reconstruction losses ensure robust and meaningful representation learning.

Table 2: Dataset statistics of the employed heterophilous graphs.

Dataset short # Nodes # Edges # Classes Directed H(G)
Texas tex 183 325 5 ✓ 0.000
Cornell corn 183 298 5 ✓ 0.150
Wisconsin wis 251 515 5 ✓ 0.084
Chameleon cha 2,277 31,371 5 ✗ 0.042
Squirrel squi 5,201 198,353 5 ✗ 0.031
Roman-empire rom 22,662 32,927 18 ✗ 0.021
Minesweeper mine 10,000 39,402 2 ✗ 0.009
Tolokers tol 11,758 519,000 2 ✗ 0.180

4 EXPERIMENTS

Datasets We assess the performance of HeNCler on heterophilous attributed graphs that are available
in literature. we use Texas, Cornell, and Wisconsin (Pei et al., 2020)1 , which are directed webpage
networks where edges encode hyperlinks between pages. Next, we use Chameleon and Squirrel
(Rozemberczki et al., 2021), which are undirected Wikipedia webpage networks where edges encode
mutual links. We further assess our model on the undirected graphs: Roman-empire, Minesweeper,
and Tolokers (Platonov et al., 2023), which are a graph representation of a Wikipedia article, a grid
graph based on the minesweeper game, and a crowd-sourcing network respectively. We include

1http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb
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Table 3: Experimental results on heterophilous graphs. We report NMI and F1 scores for 10 runs
(mean ± standard deviation), where higher values indicate better performance. The best results for
each metric are highlighted in bold.

Baselines Ours

Dataset KMeans MinCutPool DMoN S3GC MUSE HeNCler

tex NMI 4.97±1.00 11.60±2.19 9.06±2.11 11.56±1.46 39.23±4.91 43.65±2.52

F1 59.27±0.83 55.26±0.56 47.76±4.79 43.69±2.74 65.96±3.52 71.39±2.16

corn NMI 5.42±2.04 17.04±1.61 12.49±2.51 14.48±1.79 38.99±2.73 41.52±4.35

F1 52.97±0.24 51.21±5.06 43.83±6.23 33.13±0.83 60.58±3.61 63.40±3.67

wis NMI 6.84±4.39 13.38±2.36 12.56±1.23 13.07±0.61 39.71±2.22 47.13±1.76

F1 56.16±0.58 55.63±2.96 45.72±7.85 31.71±2.25 58.94±3.09 68.30±2.17

cha NMI 0.44±0.11 11.88±1.99 12.87±1.86 15.83±0.26 23.06±0.28 23.89±0.84

F1 53.23±0.07 50.40±5.65 45.05±4.30 36.51±0.24 52.10±0.48 44.14±1.83

squi NMI 1.40±2.12 6.35±0.32 3.08±0.38 3.83±0.11 8.30±0.23 9.67±0.13

F1 54.05±2.72 55.26±0.57 49.21±2.74 35.08±0.18 50.07±5.99 36.51±2.39

rom NMI 35.20±1.79 9.97±2.02 13.14±0.53 14.48±0.21 40.50±0.73 36.99±0.61

F1 37.17±2.12 42.19±0.26 22.69±3.91 17.76±0.53 38.34±0.35 35.43±1.07

mine NMI 0.02±0.02 6.16±2.17 6.87±2.91 6.53±0.17 0.06±0.01 0.06±0.00

F1 73.63±3.58 71.76±8.86 70.42±9.47 48.78±0.63 75.77±2.24 76.48±1.56

tol NMI 3.04±2.83 6.68±0.98 6.69±0.20 5.99±0.05 6.67±0.55 6.73±0.59

F1 65.56±10.49 72.10±10.38 67.87±4.74 59.17±0.27 73.56±1.94 73.66±2.10

experimental results for additional homophilous datasets in Appendix B. The dataset statistics can be
consulted in Table 2, where the class insensitive edge homophily ratio H(G) (Lim et al., 2021) is a
homophily measure.

Model selection and metrics Model selection in this unsupervised setting is non-trivial, and the best
metric depends on the task at hand. Therefore, this is not the scope of this paper and we assess our
model agnostically to the model selection, and fairly w.r.t. to the baselines. We fix the hyperparameter
configuration of the models across all datasets. We train for a fixed number of epochs and keep
track of the evaluation metrics to report the best observed result. We repeat the training process 10
times and report average best results with standard deviations. We report the normalized mutual
information (NMI) and pairwise F1-scores, based on the class labels.

Baselines and hyperparameters We compare our model against several methods, including a simple
KMeans based on node attributes, adjacency partitioning-based approaches such as MinCutPool
(Bianchi et al., 2020) and DMoN (Tsitsulin et al., 2023), as well as S3GC (Devvrit et al., 2022)
and MUSE (Yuan et al., 2023), which represent the current state-of-the-art in homophilous and
heterophilous node clustering, respectively. For HeNCler, we fix the hyperparameters to: MLP
hidden dimensions 256, output dimensions 128, latent dimension s = 2 ×#classes, learning rate
0.01, and epochs 300. For the baselines, we used their code implementations and the default
hyperparameter settings as proposed by the authors. The number of clusters to infer is set to the
number of classes cfr. Table 2 for all methods. The experiments are run on a Nvidia V100 GPU.

Experimental results Table 3 presents the experimental results for heterophilous graphs. HeNCler
consistently demonstrates superior performance, significantly outperforming KMeans, MinCutPool,
DMoN, S3GC, and MUSE, especially on the directed graphs. For undirected graphs, HeNCler also
shows strong results, achieving the best performance in 5 out of 10 cases, compared to KMeans
(1/10), MinCutPool (2/10), DMoN (1/10), S3GC (0/10), and MUSE (1/10). These results highlight
HeNCler’s versatility and effectiveness in handling heterophilous graph structures.

Ablation studies We conduct several ablation studies, presented in Table 4. The ’Undirected’
variant refers to a simplified, symmetric version of the model that uses a single MLP for both the
ϕ(·) and ψ(·) mappings, i.e., ϕ(·) ≡ ψ(·). In this version, the model loses its asymmetry. The
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Table 4: Ablation study results. We report mean NMI and F1 scores for 10 runs (higher is better) for
different model configurations. Best results are highlighted in bold.

tex corn cha rom tol

Metric NMI F1 NMI F1 NMI F1 NMI F1 NMI F1

Undirected 27.58 65.20 18.12 53.69 19.91 44.08 33.17 33.57 6.33 73.89
Reconstr only 29.54 66.64 27.76 54.70 22.02 43.42 40.05 35.16 6.18 68.60
wKSVD only 31.64 62.83 20.63 47.12 22.60 42.98 35.99 35.30 4.42 68.45
HeNCler 43.65 71.39 41.52 63.40 23.89 44.14 36.99 35.43 6.73 73.66

’wKSVD only’ and ’Reconstr only’ variations reflect models that incorporate only the wKSVD
loss (LwKSVD) and the reconstruction losses (LNodeRec + LEdgeRec), respectively. Interestingly, as
shown in Table 4, even for undirected graphs, introducing asymmetry in HeNCler enhances clustering
performance. Furthermore, all loss components are shown to contribute positively to HeNCler’s
overall performance. For a comprehensive analysis, including results across all datasets and standard
deviations, we refer the reader to Table 7 in Appendix B.

5 DISCUSSION

A key motivation behind HeNCler is to learn a new graph representation where nodes belonging
to the same cluster are positioned closer together, driven by the clustering objective. This results
in spectral biclustering embeddings that exhibit improved cluster-ability. Note that HeNCler uses
KMeans to obtain cluster assignments. Therefore, the comparisons between HeNCler and KMeans,
as shown in Tables 3 and 6 , demonstrate that our model enhances the cluster-ability of the node
representations relative to the original input features.

The asymmetry in HeNCler eliminates the undirected constraints of traditional adjacency partitioning-
based models, enabling superior performance on directed graphs, as shown in Table 3. Furthermore,
our ablation study in Table 4 shows that, while most of the performance on undirected graphs stem
from the graph learning component, HeNCler is additionally able to capture and learn meaningful
asymmetric information. This capacity to extract valuable asymmetric insights from symmetric
data is a common occurrence in KSVD frameworks (He et al., 2023; Tao et al., 2024). Importantly,
thanks to the added performance boost from asymmetry, on top of the benefits from similarity
learning, HeNCler outperforms state-of-the-art models, even when applied to undirected graphs.
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Figure 3: The learned matrix S = ΦΨ⊤ for
the Wisconsin (left) and Roman-empire (right)
dataset. Rows and columns are grouped according
to ground-truth node labels.

We visualize the learned similarity matrix S =
ΦΨ⊤ for two datasets in Figure 3. These ma-
trices are generally asymmetric, with the asym-
metry particularly pronounced in the directed
graph of the Wisconsin dataset. In contrast, the
Roman-Empire dataset, which is represented by
an undirected graph, exhibits less asymmetry in
the learned similarity matrix. This demonstrates
the adaptability of HeNCler to handle both di-
rected and undirected graphs. Further, given the
observable block structures, the learned similar-
ities are meaningful w.r.t. to the ground truth
node labels. Note however that our model op-
erates in the primal setting and directly projects
the learned mappings ϕ and ψ to their final embeddings e and r using U and V respectively,
avoiding quadratic space complexity and cubic time complexity of the SVD. This is the motivation of
employing a kernel based method, and exploiting the primal-dual framework that comes with it. In
fact, the matrices in Figure 3 are only constructed for the sake of this visualization.

Computational complexity The space and time complexity of the current implementation of
HeNCler are both linear w.r.t. the number of nodes O(|V|). Whereas MinCutPool and DMoN need
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all the node attributes in memory to calculate the loss w.r.t. the full adjacency matrix, HeNCler
is easily adaptable to work with minibatches which reduces space complexity to the minibatch
size O(|B|). Although HeNCler relies on edge reconstruction, the edge sampling avoids quadratic
complexity w.r.t. number of nodes, and is specifically designed to scale with the number of nodes,
rather than the number of edges. Assuming the graphs are sparse, we add an overview of space and
time complexity w.r.t. the number of nodes and edges for all methods in Table 1. A detailed table
with measured computation times is provided in Appendix C.

6 CONCLUSION AND FUTURE WORK

We tackle three limitations of current node clustering algorithms, that prevent these methods from
effectively clustering nodes in heterophilous graphs: they assume homophily in their loss, they are
only defined for undirected graphs and/or they lack a specific focus on clustering.

To this end, we introduce a weighted kernel SVD framework and harness its primal-dual equivalences.
HeNCler relies on the dual interpretation for its theoretical motivation, while it benefits from the
computational advantages of its implementation in the primal. In an end-to-end fashion, it learns
new similarities, which are asymmetric where necessary, and node embeddings resulting from the
spectral biclustering interpretation of these learned similarities. As empirical evidence shows, our
approach effectively eliminates the aforementioned limitations, significantly outperforming current
state-of-the-art alternatives.

HeNCler is the first heterophilous node clustering model that does not rely on contrastive learning
techniques. Future research could explore the integration of contrastive learning into HeNCler,
potentially combining the strengths of both approaches. Another next step can be to investigate how
to do the cluster assignments in a graph pooling setting (i.e., differentiable graph coarsening), to
enable end-to-end learning for downstream graph prediction tasks.
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A NOTE ON FEATURE MAP CENTERING

In the wKSVD framework, we assume that the feature maps are centered. More precisely, given two
arbitrary mappings ϕ(·) and ψ(·), the centered mappings are obtained by subtracting the weighted
mean:

ϕc(xi) = ϕ(xi)−
∑n
k=1 w1,k ϕ(xk)∑n

k=1 w1,k
,

ψc(zj) = ψ(zj)−
∑m
l=1 w2,l ψ(zl)∑m

l=1 w2,l
.

Although we use the primal formulation in this paper, we next show how to obtain this centering in
the dual for the sake of completeness. When using a kernel function or a given similarity matrix, one
has no access to the explicit mappings and has to do an equivalently centering in the dual using:

Sc =M1SM
⊤
2 ,

whereM1 andM2 are the centering matrices:

M1 = In − 1

1⊤
nW11n

1n1
⊤
nW1

M2 = Im − 1

1⊤
mW21m

1m1⊤
mW2,

with In and 1n a n×n identity matrix and a n-dimensional all-ones vector respectively. We omit the
subscript c in the paper and assume the feature maps are always centered. Note that this can easily be
achieved in the implementations by using the above equations.

B ADDITIONAL EXPERIMENTS

Homophilous experiments Although our work primarily focuses on heterophilous graphs, we
further evaluate our model on homophilous citation networks Cora, Citeseer, and PubMed (Sen
et al., 2008; Yang et al., 2016). The dataset statistics can be consulted in Table 5. We employ the
same experimental setup as for the heterophilous datasets and report the experimental results in
Table 6. While S3GC achieves the best overall performance due to its alignment with the homophily
assumption, HeNCler outperforms adjacency partitioning methods like MinCutPool and DMoN.
Additionally, HeNCler demonstrates competitive performance with MUSE, the state-of-the-art in
heterophilous node clustering, further validating its robustness across different graph types.

Table 5: Dataset statistics of the employed homophilous graphs.

Dataset short # Nodes # Edges # Classes Directed H(G)
Cora cora 2,708 5,278 7 ✗ 0.765
CiteSeer cite 3,327 4,614 6 ✗ 0.627
Pubmed pub 19,717 44,325 3 ✗ 0.664

Comprehensive ablation study We provide the full ablation study results in Table 7, including all
datasets and standard deviations. We compare HeNCler with three simplified versions. ’Undirected’
reflects an undirected variant of the model with a single MLP decoder. ’wKSVD only’ and ’Reconstr
only’ is the model where only the wKSVD loss LwKSVD and the reconstruction losses LNodeRec +
LEdgeRec are used respectively. We observe that HeNCler performs better than its undirected version,
even for undirected graphs, and that all loss terms contribute to HeNCler’s performance.

C COMPUTATION TIMES

We trained MinCutPool, DMoN, and HeNCler for 300 iterations; and S3GC for 30 iterations on a
Nvidia V100 GPU, and report the computation times in Table 8. Figure 4 visualises these result
w.r.t. the number of nodes in the graph, showing the linear time complexity of HeNCler and that it is
insensitive to the number of edges. We conclude that HeNCler demonstrates fast computation times.
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Table 6: Experimental results on homophilous graphs. We report NMI and F1 scores for 10 runs
(mean ± standard deviation), where higher values indicate better performance. The best results for
each metric are highlighted in bold.

Baselines Ours

Dataset KMeans MinCutPool DMoN S3GC MUSE HeNCler

cora NMI 35.0±3.21 49.0±2.24 51.7±1.63 53.62±0.55 36.45±2.71 38.81±2.26

F1 36.0±2.12 47.1±1.78 51.8±2.02 60.12±0.46 50.78±2.79 47.93±2.60

cite NMI 19.9±2.90 29.5±3.21 30.3±1.09 43.56±0.65 39.03±1.99 34.83±2.21

F1 39.4 ±3.07 47.1±1.21 57.4±3.42 64.12±0.28 52.89±1.68 48.70±2.79

pub NMI 31.4±2.18 21.4±1.46 25.7±2.46 31.01±2.35 36.09±3.26 27.26±1.72

F1 59.2±2.32 44.5±2.47 34.3±2.05 69.12±1.39 61.26±1.50 51.17±1.75

Table 7: Full Ablation study results. We report NMI and F1 scores for 10 runs (mean ± standard
deviation in %) where higher is better. Best results are highlighted in bold.

ablations full model

dataset Undirected Reconstr only wKSVD only HeNCler

tex NMI 27.58±4.75 29.54±2.27 31.64±2.14 43.65±2.52

F1 65.20±2.06 66.64±1.83 62.83±3.91 71.39±2.16

corn NMI 18.12±2.57 27.76±3.29 20.63±5.92 41.52±4.35

F1 53.69±0.98 54.70±1.88 47.12±2.61 63.40±3.67

wis NMI 25.08±3.54 34.65±1.86 39.86±4.63 47.13±1.76

F1 57.13±1.34 62.28±1.58 63.60±2.46 68.30±2.17

cha NMI 19.91±0.48 22.02±0.25 22.60±0.57 23.89±0.84

F1 44.08±1.79 43.42±1.63 42.98±0.37 44.14±1.83

squi NMI 9.59±0.21 9.59±0.27 9.56±0.19 9.67±0.13

F1 55.43±0.03 53.74±3.77 36.42±1.85 36.51±2.39

rom NMI 33.17±1.25 40.05±0.82 35.99±0.95 36.99±0.61

F1 33.57±2.15 35.16±1.34 35.30±0.97 35.43±1.07

mine NMI 0.08±0.02 0.07±0.02 0.04±0.01 0.06±0.00

F1 76.15±2.25 76.05±2.16 73.77±3.40 76.48±1.56

tol NMI 6.33±0.94 6.18±0.67 4.42±0.54 6.73±0.59

F1 73.89±4.00 68.60±5.95 68.45±7.57 73.66±2.10
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Table 8: Computation times in seconds.

DATASET
BASELINES OURS

MINCUTP. DMON S3GC HENCLER

CHAMELEON 8 20 89 24
SQUIRREL 14 86 105 49
ROMAN-EMPIRE 67 71 312 57
AMAZON-RATING 109 93 195 63
MINESWEEPER 55 27 98 21
TOLOKERS 71 198 100 35
QUESTIONS 340 215 217 125
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Figure 4: Computation times of MinCutPool, DMoN, S3GC, and HeNCler w.r.t. the number of nodes
of the datasets. We observe that HeNCler scales linearly with the number of nodes, and that it is not
sensitive to the number of edges, as opposed to DMoN, showing a significant peak for the Tolokers
dataset due the large number of edges in this graph.
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