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Abstract
Mathematical reasoning tasks pose significant
challenges for large language models (LLMs) be-
cause they require precise logical deduction and
sequence analysis. In this work, we introduce
the concept of critical tokens – elements within
reasoning trajectories that significantly influence
incorrect outcomes. We present a novel frame-
work for identifying these tokens through rollout
sampling and demonstrate their substantial diver-
gence from traditional error tokens. Through ex-
tensive experiments on datasets such as GSM8K
and MATH500, we show that identifying and
replacing critical tokens significantly improves
model accuracy. We propose an efficient method-
ology for pinpointing these tokens in large-scale
datasets using contrastive estimation and extend
this framework to enhance model training pro-
cesses with direct preference optimization (DPO).
Experimental results on GSM8K and MATH500
benchmarks with the widely used models Llama-3
(8B and 70B) and Deepseek-math (7B) demon-
strate the effectiveness of the proposed approach,
cDPO. Our results underscore the potential of
leveraging critical tokens to reduce errors in rea-
soning tasks, advancing the development of AI
systems capable of robust logical deduction.

1. Introduction
In the domain of artificial intelligence, mathematical rea-
soning tasks are seen as a crucible for evaluating the pro-
ficiency of large language models (LLMs) (Cobbe et al.,
2021; Hendrycks et al., 2021; Yuan et al., 2023; Ahn et al.,
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2024; Yu et al.; Collins et al., 2024). These tasks neces-
sitate logical and sequential deduction to derive solutions,
making them challenging for models trained primarily on
general language processing. The chain of thought (COT)
method (Wei et al., 2022) has significantly improved the
reasoning capability of LLMs by employing a series of in-
termediate reasoning steps, or reasoning trajectories. Prior
research has categorized trajectory errors based on mod-
ifications required to correct the COT, such as calculator
errors, with the objective of identifying avenues for model
improvement (Wei et al., 2022; Wang et al., 2023).

Despite these advancements, the token-level discrepancies
within mathematical reasoning contexts have not been sys-
tematically explored. Our study seeks to bridge this gap by
introducing a novel framework for identifying and quanti-
fying the impact of critical tokens on model accuracy. We
define critical tokens in mathematical reasoning as crucial
components within an incorrect trajectory that significantly
alter the final outcome. We utilize rollout sampling to iden-
tify tokens that substantially influence the correctness of rea-
soning trajectories. Our findings reveal that critical tokens
often diverge from human-annotated error tokens, highlight-
ing their unique role in disrupting logical coherence and
computational accuracy. By analyzing the characteristics of
critical tokens through word type and positional analysis, we
provide novel insights into their nature and influence mech-
anisms. Furthermore, manipulating a single critical token
in incorrect trajectories can significantly enhance accuracy,
underscoring their pivotal role in error mitigation.

Building on these insights, we illustrate how critical tokens
can enhance reasoning capabilities within Direct Preference
Optimization (DPO), a commonly used reinforcement learn-
ing algorithm. Although DPO proves effective for general
tasks, it encounters difficulties in mathematical reasoning
because it may reduce the generation likelihood of positive
examples due to lexical similarities with negative examples.
Our proposed method, cDPO, addresses this issue by tar-
geting critical tokens unique to negative examples, thereby
improving the model’s ability to differentiate between pos-
itive and negative instances. cDPO involves the efficient
identification and penalization of critical tokens predom-
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an initial installment of $125, which represents 25% of the total amount she 
owed. So the total amount she owes is: 125 / 0.25 = 500. The answer is 500.

$125 initially. She still owes $125 * 0.75 = $93.75. The answer is $93.75.

125 dollars. 75% is 3/4. 3/4 of 125 is 3/4 x 125 = 93.75. The answer is 93.75.

125 dollars initially. If she still owes 75% of that, that is 0.75 x 125 = 93.75 
dollars. The answer is 93.75.

✔

Question: 
Mathilda is determined to pay back 
the money she owes a friend so she 
decides to pay an initial installment of 
$125. If she still has 75% left to pay, 
how much did she owe originally? 

Response: 
Let’s think step by step. She owed 
$125 initially, She still has 75% left to 
pay, So she owes $125 * 0.75 = 
$93.75. The answer is $93.75. paid 125 dollars. She owes 75% of the original amount. 100% minus 75% is 25%. 

125 / 0.25 is 500. The answer is 500.

$125 as an initial installment with 75% left to pay. So, the total owed is 125 
wes is: 125 / 0.25 = 500. The answer is 500.

owed

✘

✘

✘

✔

✔

Figure 1. An illustration of the critical token “owed” shows that it fails to lead to the correct answer in any case. Replacing it with an
alternative can significantly increase model accuracy.

inantly found in negative examples, refining the model’s
learning process and enhancing its understanding of positive
outcomes. Experimental results on GSM8K and MATH500
benchmarks using widely recognized models like Llama-3
(8B and 70B) and Deepseek-math (7B) demonstrate that
our approach surpasses strong DPO baselines, such as Tok-
enDPO (Zeng et al., 2024) and RPO (Liu et al., 2024; Pang
et al., 2024), across all evaluated scenarios.

In summary, our contributions are three-fold:

• We introduce the concept of critical tokens in mathemat-
ical reasoning tasks and empirically validate their exis-
tence through extensive rollout sampling, distinguishing
them from traditional error tokens.

• We propose an efficient approach using contrastive esti-
mation to practically identify critical tokens in large-scale
training data, requiring only as little as 0.002% of the
computational cost of rollout sampling for GSM8K.

• We develop cDPO, an innovative approach that leverages
critical tokens within DPO, enhancing the algorithm’s
ability to distinguish between positive and negative exam-
ples in mathematical reasoning.

2. Critical Tokens in Mathematic Reasoning
In this section, we explore the concept of “critical tokens”
in mathematical reasoning tasks and their impact on model
accuracy. We begin by defining critical tokens as pivotal
points in incorrect reasoning trajectories that significantly in-
fluence outcomes using the example in Figure 1. To validate
the presence of critical tokens, we perform rollout sampling,
identifying tokens with zero correctness scores that meet

specific conditions in sequence analysis. Our findings reveal
that critical tokens differ from human-annotated error to-
kens in a substantial proportion of cases, emphasizing their
unique role in reasoning failure (Table 1). Further experi-
mentation shows that replacing critical tokens boosts model
accuracy significantly, highlighting their importance in er-
ror reduction (Figure 2). We conclude with an analysis of
critical tokens based on word types and positional attributes
(Table 2), providing insights into their characteristics.

Intuition Mathematical reasoning tasks require logical
and sequential deduction to find solutions. We have ob-
served that within incorrect reasoning trajectories, certain
tokens are pivotal in leading to incorrect outcomes. These to-
kens disrupt the logical flow, misrepresent relationships, or
introduce computational errors, thus significantly affecting
the final result. Unlike other tokens that may have negligible
effects on the reasoning process, these “critical tokens” are
crucial points of failure. Identifying these tokens is essen-
tial because avoiding or correcting them can often result in
correct outcomes, even within an incorrect trajectory. As
illustrated in Figure 1, the token “owed” is predominantly re-
sponsible for incorrect reasoning trajectories as it misguides
the logical deduction process. In contrast, prompting the
model to decode alternative tokens like “paid” significantly
increases the likelihood of producing a correct final result.

Empirical Validation with Rollout Sampling To empiri-
cally validate the existence of critical tokens, we conducted
64 rollout samplings for each token within an incorrect tra-
jectory. We calculated a score for each token based on the
correctness ratio of the generated completions, to quantify
its influence on the trajectory. The first token that meets the
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Table 1. The ratio of incorrect trajectories where critical tokens are different from error tokens across to the error types.

Error Types GSM8K Training Data MATH500 Training Data

#Count Critical != Error #Count Critical != Error

Calculation Error 60 56.7% 54 79.6%
One step Missing 17 72.7% 8 87.5%
Semantic Misund. 22 82.3% 17 100.0%

Degeneration 1 100.0% 21 95.2%

Total 100 65.0% 100 87.0%

Table 2. Analysis of identified critical tokens.

Error Types Word Types Relative Positions

Function Content Number Operator Punct. Before After

100 Instances from GSM8K Training Data
Calculation Error 10 14 19 10 7 17 17
One step Missing 5 2 9 0 1 9 5
Semantic Misund. 3 6 3 3 7 7 9
Degeneration 0 0 1 0 0 0 1
Total 18 22 32 13 15 33 32

100 Instances from MATH500 Training Data
Calculation Error 10 10 15 17 2 30 13
One step Missing 3 0 2 3 0 6 1
Semantic Misund. 4 3 2 6 2 10 7
Degeneration 6 3 6 5 1 10 10
Total 23 16 25 31 5 56 31

following two conditions is identified as the critical token:

• The token’s correctness score is 0;

• The scores of all subsequent tokens are below 5%.

We analyzed 100 incorrect trajectories from Llama3-8B-
base, randomly selected from the MATH training dataset,
and successfully identified the critical token in all cases. In
addition, by examining 100 random incorrect trajectories
from the GSM8K training data, we identified the critical
token in 99 cases out of 100. For the outlier case, we iden-
tified a critical token that only satisfied the first condition.
These results demonstrate the existence of critical tokens.

Critical Tokens Are Not Necessarily Error Tokens Re-
searchers might hypothesize that critical tokens tend to co-
incide with error tokens, given their definition (i.e., the
correctness ratio of rollout samplings is 0). However, Ta-
ble 1 demonstrates that critical tokens frequently differ from
human-annotated error tokens across various error types
(Wei et al., 2022; Wang et al., 2023).

In the GSM8K training dataset, 65% of the critical tokens
do not match the error tokens, while this disparity increases

to 87% in the MATH500 training dataset. This variance is
further nuanced when examining specific error categories.
For example, in the GSM8K data, calculation errors show a
56.7% mismatch, which suggests that nearly half the time
the critical tokens identified do not correspond to the actual
error tokens. One-step missing error demonstrates a higher
72.7% discrepancy, and semantic misunderstandings show
an even greater divergence of 82.3%. Notably, degeneration
errors—though based on a single occurrence—exhibit a
complete 100% discrepancy with error tokens.

In the MATH500 dataset, a similar pattern is observed. Cal-
culation errors exhibit a 79.6% discrepancy, one-step miss-
ing errors an 87.5% mismatch, semantic misunderstandings
a 100% divergence, and degeneration errors a significant
95.2% discrepancy. The results in MATH500, particularly
the large differences in degeneration errors, underscore the
complexity involved in high-precision domains.

These findings underscore a critical insight: while critical to-
kens are valuable for flagging potential issues in a trajectory,
there isn’t always a direct correlation with human-annotated
error tokens. This divergence emphasizes the intricate na-
ture of error detection and correction in algorithmic analyses,
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suggesting that critical tokens capture a broader context of
underlying issues, possibly before an error becomes evident.
Analysis of Critical Tokens We analyze critical tokens
from the following perspectives, as detailed in Table 2.

Tokens are categorized into five types based on their lin-
guistic roles: function words, content words, and numbers.
Additionally, operators (e.g., mathematical symbols) and
punctuation marks are identified. Our analysis reveals differ-
ing patterns across error types and datasets, highlighting the
complexity of math reasoning tasks. In the GSM8K dataset,
calculation errors predominantly occur with numbers (19
instances) and are fairly distributed among other word types.
On the other hand, one step missing errors primarily involve
numbers and function words. This suggests an emphasis on
numerical manipulation where precision in number usage
and function words indicating operations are critical. The
MATH500 dataset follows a somewhat similar trend, though
it exhibits a higher occurrence of operator-related calcula-
tion errors (17 instances), indicating a more frequent use
of complex mathematical operations in this dataset. This
accentuates the need for careful handling of operators in
mathematical computations.

The position of critical tokens is analyzed relative to the
corresponding error tokens, categorizing them as occurring
before or after the error tokens. If the critical token is the
error token itself, it is not counted. In GSM8K, critical
tokens are almost evenly distributed: 33 occur before and
32 after the error. However, in MATH500, more critical
tokens occur before error tokens, suggesting that critical
tokens capture a broader context of underlying issues in the
complex MATH500 problems, potentially before an error
becomes evident.

Impact of Critical Tokens We investigate the effect of
critical tokens by replacing them with alternative tokens
during model decoding. Specifically, let ti be a critical token
in a given trajectory, and let T<i = {t1, . . . , ti−1} represent
the preceding tokens. We perform k rollout samples based
on two different prefixes and calculate the Pass@k metric:

• w/ critical tokens: The prefix is {t1, . . . , ti}. Based on
the definition of critical token, all Pass@k scores are zero.

• w/o critical tokens: The prefix is {t1, . . . , ti−1}, exclud-
ing the critical token ti. We force the model to decode an
alternative token at the same position, using the model’s
probability distribution while masking out the critical to-
ken. This substitution allows us to explore if it leads to
improved outcomes in model predictions.

Figure 2 displays the results on 100 instances sampled indi-
vidually from the GSM8K and MATH500 training datasets.
By replacing critical tokens with alternative tokens, we
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Figure 2. Impact of critical tokens on reasoning accuracy. Re-
placing critical tokens with alternatives (“w/o Critical Tokens”)
can significantly increase model accuracy on both GSM8K and
MATH500, highlighting the importance of these tokens.

observed a significant improvement in the model’s perfor-
mance on these datasets, with Pass@1 accuracy reaching
approximately 30% and Pass@64 increasing to over 90%.
These results underscore the crucial role that critical tokens
play as potential stumbling blocks in the reasoning process.
By preventing the model from proceeding with these criti-
cal tokens and suggesting alternatives, we enable a higher
likelihood of reaching accurate conclusions.

The findings emphasize the importance of understanding
and manipulating critical tokens to enhance model perfor-
mance, especially in complex reasoning tasks. By identi-
fying these critical tokens in reasoning trajectories, we can
mitigate the risk of errors, thereby significantly improving
the model’s effectiveness. Such insights could be instru-
mental in refining training processes and increasing the
reliability of AI systems in real-world applications.

3. Enhancing Reasoning Capability with
Critical Tokens

In this section, we demonstrate how reasoning capabili-
ties, trained with commonly-used DPO, can be enhanced
by using critical tokens. Despite the success of DPO in
general instruction tuning tasks, challenges persist when
it is applied to reasoning and mathematical tasks. Studies
have delved into this issue from an optimization perspective,
identifying that these algorithms often diminish the genera-
tion likelihood of positive examples in reasoning tasks due
to the lexical similarity between positive and negative exam-
ples. This overlap can lead to a situation where the model
struggles to effectively prioritize and generate the correct tra-
jectory during reasoning or mathematical problem-solving
tasks. As a result, the adopted approach is to optimize pref-
erences while ensuring that high generation likelihoods are
maintained exclusively for positive examples (Liu et al.,
2024; Pang et al., 2024; Pal et al., 2024; Feng et al., 2024).
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However, these approaches still attribute high likelihood to
tokens that appear in both negative and positive examples,
thereby failing to adequately distinguish between truly ben-
eficial features and those that are merely ubiquitous across
positive and negative examples.

In this work, we mitigate this problem by leveraging critical
tokens that occur only in negative examples. By focusing on
these tokens, we aim to enhance the model’s ability to effec-
tively differentiate between positive and negative examples.
Our approach involves the identification and penalization
of critical tokens that are prevalent exclusively in negative
examples. This allows us to adjust the model’s learning
process by reducing the likelihood of these negative-specific
tokens, thereby refining the model’s understanding of what
constitutes a positive outcome. By explicitly incorporating a
mechanism that penalizes frequent negative-example tokens,
we ensure that the model learns to prioritize features that
truly contribute to successful task completion.

3.1. Efficient Identification of Critical Tokens

While it is straightforward to identify critical tokens using
rollout sampling as described in Section 2, such methods
incur prohibitively high sampling costs and face significant
scalability challenges. Moreover, existing methods (Guo
et al., 2023; Yoon et al., 2024) depend on external models for
token-level annotations, which, although providing effective
supervision signals, are costly and limited by the capabili-
ties of the external models. To efficiently identify critical
tokens, we propose a method called contrastive estimation,
which leverages models trained to learn patterns from both
correct and incorrect reasoning trajectories. Figure 3 depicts
the framework. By comparing the token-level likelihoods
produced by two separately trained models, contrastive esti-
mation can effectively pinpoint critical tokens contributing
to incorrect outcomes. The contrastive estimation probabil-
ity naturally highlights tokens (e.g., “owed”) that lead to
incorrect reasoning outcomes. We provide additional details
throughout the remainder of this section.

Training Positive and Negative Models To implement
the contrastive estimation, we need to develop models that
can effectively estimate a wide range of both correct and
incorrect reasoning distributions. To this end, we collect
reasoning trajectories based on the sampling strategy: given
a dataset of M instances D = {(xi, yi)}Mi=1, we utilize a
pre-trained LLM to sample N reasoning trajectories. Then,
we verify the outcome results based on the golden labels yi,
which yields ki positive reasoning trajectories and N − ki
negative reasoning trajectories, which is denoted as:

Dp = {(xi, {ypi,j}
k
j=1)}Mi=1

Dn = {(xi, {yni,j}Nj=k+1)}Mi=1

For training the positive model, we randomly selected a
single correct trajectory because we expect the model to
develop decisiveness using its own accurate reasoning paths.
For training the negative model, we chose the incorrect tra-
jectories that most frequently occur and account for 50%
of all incorrect cases. This approach ensures both variety
and representativeness, allowing us to accurately identify
critical tokens. For instance, if there are 10 incorrect tra-
jectories comprising 3 cases with the incorrect answer a,
2 cases with the incorrect answer b, and other cases with
answers {c, d, e, f, g} occurring only once each, we would
randomly select one incorrect trajectory from those with an-
swers a and b, as they appear in 5 cases in total. Finally, we
train the negative model on this example using two incorrect
trajectories: one with answer a and the other with b.

Contrastive Estimation With both the positive model and
the negative model available, we can automatically annotate
the likelihood of each token in an incorrect trajectory being a
critical token using contrastive estimation. Let x be a query,
and yn = {y1, . . . , yt, . . . , yT } be a negative example of
length T used in DPO training. We compute the likelihood
of token yt being a critical token, denoted as st, with the
following equation:

log st =(1 + β) logP p(yt|x,y<t)

− β logPn(yt|x,y<t)− logZ (1)

Here, β is a scaling hyperparameter, while P p(·) and Pn(·)
represent the probabilities from the positive and negative
models, respectively. The term logZ is the partition func-
tion used in the softmax computation. A low st indicates
a low likelihood under the correct pattern and a high likeli-
hood under the incorrect pattern, signaling the presence of
critical tokens. We further provide theoretical and empirical
analysis in Appendix A.

Efficiency Analysis of Contrastive Estimation To eval-
uate the computational efficiency of contrastive estimation
compared to rollout sampling, we estimate the number of
forward passes required. Rollout sampling, used to identify
critical tokens, incurs substantial inference costs as it relies
on sampling from the base model. For GSM8K, obtaining
critical tokens through rollout sampling for 100 incorrect
examples (64 samples per token) results in an average of
581,425 additional tokens per response (7,613,942 tokens
for MATH). Therefore, for n examples, rollout sampling
requires approximately 581, 425× n forward passes.

In contrast, contrastive estimation involves both training
and inference costs. On GSM8K, the dataset for training
the positive and negative models contains 26,131 examples
(68,391 examples for MATH), and SFT on this dataset re-
quires approximately 3×26, 131 = 78, 393 forward passes,
assuming a batch size of 1. For inference on n examples,
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𝑫 = {(𝒙𝒊, 𝒚𝒊
p, 𝒚𝒊𝒏, 𝒔𝒊𝒏)}𝒊=𝟏𝑴

𝑫𝒑 = {(𝒙𝒊, {𝒚𝒊,𝒋
𝒑 }𝒋=𝟏𝒌 )}𝒊=𝟏𝑴 𝑫𝒏 = {(𝒙𝒊, {𝒚𝒊,𝒋𝒏 }𝒋=𝒌+𝟏

𝑵 )}𝒊=𝟏𝑴

Sampling with Correctness Validation

Base Model

SFT SFT

Trained Model

Negative ModelPositive Model

Contrastive Estimation

cDPO

Base Model

She owed $125 initially…… The answer is $93.75.

Negative ModelPositive Model

Prediction

𝑫 = {(𝒙𝒊, 𝒚𝒊)}𝒊=𝟏𝑴

Figure 3. Pipeline of the proposed cDPO that involves the efficient identification and penalization of critical tokens that are prevalent
exclusively in negative examples.

contrastive estimation only requires each of the positive and
negative models to perform one forward pass per example,
totaling 2n. Consequently, the total cost for contrastive
estimation is 78, 393 + 2n forward passes for GSM8K,
which is significantly lower than the cost of rollout sam-
pling. For example, for GSM8K that consists of 7,500
examples, contrastive estimation requires only as little as
(78393+2*7500)/(581425*7500)=0.002% of the computa-
tional cost of rollout sampling. Despite its efficiency, con-
trastive estimation demonstrates reasonable alignment with
rollout-based supervision. Specifically, we measured the
Area Under the Curve (AUC) of CE with respect to rollout
on LLaMA-3-8B, obtaining values of 0.77 on GSM8K and
0.84 on MATH.

3.2. cDPO: Explicitly Penalizing Critical Tokens in DPO

Intuition Critical tokens in incorrect trajectories signif-
icantly contribute to errors, even when other tokens may
be correctly placed. By assigning token-level scores to
incorrect trajectories, we can specifically penalize critical
tokens without adversely affecting correct ones. Conversely,
scoring correct trajectories to encourage certain tokens can
inadvertently penalize other valid tokens, resulting in unde-
sired distribution shifts in DPO (Rafailov et al., 2024; Xu
et al., 2024). Therefore, we focus exclusively on scoring
tokens within incorrect trajectories and extend DPO from
the example level to the token level by utilizing token-level
rewards for preference optimization.

Formulation Given the pairwise preference dataset D =
{(xi, y

p
i , y

n
i )}Mi=1, the original DPO loss is formulated as:

ℓDPO = −
M∑
i=1

log σ(ϕ(xi, y
p
i )− ϕ(xi, y

n
i ))

Here, ϕ(x, y) is an implicit reward function, given by:

ϕ(x, y) = γ log
πθ(y | x)
πref(y | x)

where πθ(·|x) and πref(y|x) represent the policy model and
the reference model, respectively, and γ is the coefficient
for the KL divergence penalty.

We extend the sample-level DPO to token-level DPO with
critical rewards (i.e., cDPO). First, we modify the reward
function ϕ(x, y) to include token-level scores sni (Equa-
tion 1) as follows:

ϕs(x, y, s) = γ

T∑
t=1

(1− st) log
πθ(yt|x, y<t)

πref(yt|x, y<t)

where T is the total length of the response y, and st rep-
resents the token-level reward score in cDPO for the t-th
token. Accordingly, the objective of cDPO is formulated as:

ℓcDPO = −
M∑
i=1

log σ(ϕ(xi, y
p
i )− ϕs(xi, y

n
i , s

n
i ))

Note that only the reward function for the negative example
yn is modified. Intuitively, lower values of st suggest a
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higher likelihood of being critical tokens, which are more
prone to result in incorrect outcomes. By weighting each
token’s contribution with 1− st, the model effectively pe-
nalizes generating these critical tokens. This token-level
approach helps ensure that the model reduces the likelihood
of generating critical tokens, thus improving the overall
accuracy of the responses.

3.3. Experimental Results

Experimental Setup We used two widely recognized
math reasoning datasets: GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021). For training, we sampled
from all questions in the training set to generate the data.
For evaluation, we utilized the MATH500 subset, which
is uniformly sampled and has a distribution of difficulty
levels and subjects that matches the full MATH test set, as
demonstrated in Lightman et al. (2023). Additionally, for
both training sampling and evaluation, we adopted few-shot
prompting: 8-shot prompting for GSM8K, following Wei
et al. (2022), and 4-shot prompting for MATH500, as de-
scribed in Lewkowycz et al. (2022). For all main evaluations,
the temperature was fixed at 0.

We conducted experiments on a range of models, including
the general-purpose models Llama-3-8B-base and Llama-
3-70B-base (Dubey et al., 2024), as well as the domain-
specific model DeepSeek-math-7B-base (Shao et al., 2024).
For comparison, we evaluated multiple baseline methods us-
ing the data generated from the process described in Section
3.1. For Supervised Fine-Tuning (SFT), we fine-tuned the
model using the positive response set Dp. For preference
optimization (PO) methods, we utilized the token-level an-
notated pair-wise preference dataset D. The baselines we
compared include:

• DPO (Rafailov et al., 2024): We tested two different
starting points for training: based on the base model and
on the SFT model.

• TokenDPO (Zeng et al., 2024), which is a token-level ap-
proach that enhances Kullback-Leibler (KL) divergence
regulation by incorporating forward KL divergence con-
straints at the token level. The SFT model is used as the
starting point for training. We implemented TDPO using
the publicly available implementation.

• RPO (Liu et al., 2024; Pang et al., 2024) introduces an ex-
tra negative log-likelihood term to improve performance
on reasoning tasks. We implemented it using Hugging-
Face’s implementation and starting with the base model.

We used LoRA adapters (Hu et al., 2022) to train all the
models. We trained both positive and negative models for
1 epoch with a learning rate of 3e-4. For preference opti-
mization training, we set γ = 1.0 and trained for 3 epochs
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Figure 4. Log probabilities of chosen and rejected sequences dur-
ing training on the GSM8K dataset. Solid lines represent chosen
sequences, while dashed lines denote rejected sequences. The
figure illustrates how cDPO achieves a better separation between
chosen and rejected sequences compared to DPO and RPO.

with a learning rate of 2e-5 for all baseline methods. For our
cDPO approach, since the token-level scores range between
0 and 1 (whereas in DPO, the scores were all 1), we simply
increased the learning rate to 4e-5.

For our proposed cDPO, each problem was sampled N =
64 times, selecting the top-p = 50% of incorrect trajectories
to train the negative model q(·). During estimation, the
hyperparameter β was set to 1.0.

Learning Curves We begin by examining the impact of
cDPO on training dynamics. Figure 4 shows the log proba-
bility trends for selected and non-selected sequences over
training steps on the GSM8K dataset using the Llama-3-8B
model with DPO, RPO, and cDPO.

The proposed cDPO method successfully differentiates be-
tween chosen and rejected sequences by significantly in-
creasing the log probability of correct sequences while
sharply decreasing that of incorrect ones. In comparison,
RPO (DPO with an additional NLL term) increases the
probability of correct sequences, but its impact on reducing
incorrect response probabilities is less significant. On the
other hand, DPO notably decreases the probability of gener-
ating incorrect sequences, but also reduces the probability
of correct sequences. This suggests that cDPO strikes a
balanced approach, effectively enhancing the probability of
correct outputs while minimizing critical errors, exceeding
the performance of both DPO and RPO.

Main Results Table 3 presents the experimental results
for various methods across the GSM8K and MATH500.
Our proposed method consistently outperforms all baselines
and other methods, achieving the highest scores across both
datasets. For the GSM8K dataset, our method achieves a
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Method
GSM8K MATH500

Llama-3 DeepSeek Avg. Llama-3 DeepSeek Avg.
8B 70B math-7B 8B 70B math-7B

Baseline 56.4 80.4 64.1 67.0 18.6 43.6 34.0 32.1

+ SFT 61.2 82.1 67.1 70.1 16.8 43.4 34.2 31.5
+ DPO 59.7 87.8 66.5 71.3 17.6 40.8 34.6 31.0
+ TokenDPO 62.3 83.3 69.6 71.7 19.2 43.6 34.6 32.5

+ DPO 59.6 88.9 63.1 70.5 14.6 42.6 35.0 30.7
+ RPO 67.5 89.7 68.9 75.4 19.4 44.0 33.6 32.3
+ cDPO (Ours) 67.9* 90.8* 72.9* 77.2* 19.6* 45.0* 35.2* 33.3*

Table 3. Experimental results on GSM8K and MATH500 datasets. Our proposed method surpasses all the strong baselines at a large
margin on individual settings and average performance. * denotes the significance test where p < 0.005.

remarkable average score of 77.2, surpassing the Baseline
and notable improvements such as those incorporating SFT
and DPO. Specifically, our approach reaches the highest
scores with Llama-3 (90.8 for 70B) and DeepSeek (72.9).
These results highlight the effectiveness of our method in
leveraging the strengths of both large-scale models (Llama-
3) and task-specific models (DeepSeek).

Similarly, on the MATH500 dataset, our method attains
an average score of 33.3, marking an improvement over
the baseline (32.1) and other enhanced methods such as
SFT and RPO. Notably, our approach yields the highest
individual score with Llama-3 (45.0 for 70B) and performs
robustly across all model configurations.

Since models exhibit sensitivity to prompt formatting when
evaluated with temperature 0 on MATH500, we further
perform additional analyses by sampling each question 10
times under varying temperatures and report Pass@1 in the
Table 5. As shown, cDPO consistently outperforms the
corresponding base models across all temperature settings
and exhibits stable, robust performance.

To further verify the effectiveness of our method on stronger
models, we conduct experiments using Qwen-2.5-7B and
Qwen-2.5-32B on both GSM8K and MATH500. The results
are presented in Table 6. As shown, cDPO consistently im-
proves performance across both datasets and model scales.

The consistent performance improvements observed across
various settings underscore the superiority of our method
compared to existing techniques. The significance tests,
which were conducted to verify the statistical reliability
of these results, confirm the competitive advantage of our
proposed approach.

4. Related Work
Contrastive Estimation Notable works have refined con-
trastive estimation techniques (Gutmann & Hyvärinen,

2010; Bose et al., 2018; He et al., 2020; Denize et al., 2023).
Specifically, our work is closely related to contrastive de-
coding (CD), an application of contrastive estimation in
downstream tasks. CD (Li et al., 2023) involves contrast-
ing token distribution likelihoods between expert and am-
ateur models during decoding. As described by O’Brien
& Lewis (2023), this technique avoids high-probability but
low-quality tokens, ensuring text fluency and coherence.

Subsequent research has emphasized CD’s potential to im-
prove factuality (Zhang et al., 2023; Yang et al., 2024),
knowledge editing (Bi et al., 2024), safety (Zhao et al.,
2024), and reasoning (O’Brien & Lewis, 2023; Shi et al.,
2024; Yuan et al., 2024; Yang et al., 2025). Notably, O’Brien
& Lewis (2023) showed that CD enhances reasoning tasks
and mitigates typical errors. Shi et al. (2024) demonstrated
that unchosen experts in Mixture-of-Experts models could
be applied for CD, thereby improving model reasoning ca-
pacities. Different from those works that focus on the infer-
ence of contrastive decoding, our research primarily uses
contrastive estimation to identify “critical tokens” that sig-
nificantly affect the correctness of the reasoning process.

Reinforcement Learning Among various alignment al-
gorithms (Christiano et al., 2017; Schulman et al., 2017;
Ziegler et al., 2019; Ouyang et al., 2022; Bai et al., 2022),
DPO (Rafailov et al., 2024) is one of the most representa-
tive algorithms. DPO uses the LLM itself as a secret reward
model and conducts preference optimization on a preference
pair of positive and negative examples. Since then, various
contributions have been made to further advance the DPO
development of LLM alignment (Pal et al., 2024; Amini
et al., 2024; Azar et al., 2024).

A line of research aims to improve the performance of DPO
in reasoning tasks (Liu et al., 2024; Pang et al., 2024; Pal
et al., 2024; Feng et al., 2024). Furthermore, Lai et al. (2024)
leverage human or GPT-4 validation to pinpoint incorrect
reasoning steps; Guo et al. (2023); Yoon et al. (2024) utilize
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external LLMs to refine responses, deriving token-level
preferences from pre- and post-revision comparisons. In
contrast, our study seeks to establish an automatic process
supervision strategy devoid of human annotation and easy
to scale. Specifically, we harness contrastive estimation to
identify critical tokens, providing token-level signals for
preference optimization that significantly enhance LLM
reasoning capabilities.

5. Conclusion
Our work contributes a significant framework for under-
standing and enhancing mathematical reasoning in LLMs
through critical token analysis. By defining and identifying
critical tokens, we provide valuable insights into token-level
discrepancies that disrupt logical reasoning. Our approach,
cDPO, successfully integrates this analysis into DPO, im-
proving model performance on mathematical tasks by im-
proving the model’s differentiation between positive and
negative examples. Experimental results from GSM8K and
MATH500 benchmarks have shown that our method outper-
forms existing DPO baselines, underscoring the potential
of critical token interventions in enhancing model accuracy.
Our research opens new doors for further exploration of
token-level influences in complex reasoning tasks, which
could lead to more refined and effective LLMs.

Future work should explore the integration of cDPO with
other reasoning frameworks and extend its application to
diverse logical reasoning domains, contributing towards the
broader aim of developing more robust and reliable LLMs.

Impact Statement
In our research, we focus exclusively on developing models
for solving mathematical problems, which inherently mini-
mizes common ethical concerns typically associated with
AI applications in broader domains. The primary function
of our models is to enhance computational accuracy and
efficiency in mathematical tasks, ensuring that any potential
bias, privacy issues, or harmful outputs are effectively non-
existent. Since our dataset consists solely of mathematical
questions, it does not involve personal, sensitive, or contro-
versial information that could lead to ethical dilemmas.
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A. Contrastive Estimation: Theoretical and Empirical Analysis
A.1. Distribution Analysis of Contrastive Estimation

We demonstrate that contrastive estimation does not fundamentally alter the nature of the trajectory distribution. According
to (Guo et al., 2023; Lambert et al., 2024), the trajectory distribution can be modeled as Gaussian distributions based on
correctness. Consequently, we define the probability density functions for the correct and incorrect distributions, denoted as
P p and Pn respectively, as follows:

P p(x) =
1√
2πσ

exp

(
−
(x− µp)

2

2σ2

)
, (2)

Pn(x) =
1√
2πσ

exp

(
− (x− µn)

2

2σ2

)
, (3)

where the means satisfy µp > µn, and both distributions share the same standard deviation σ, facilitating a straightforward
comparison between them.

Therefore, according to Eq. 1, the probability density function P ce of the CE distribution can be calculated as follows:

log(P ce(x)) = (1 + β) log(P p(x)) − β log(Pn(x))− log(Z1), (4)

where Z1 is the partition function.

Substituting the definitions of P p(x) and Pn(x), we obtain:

log(P ce(x)) = log

(
1√
2πσ

)
−

(1 + β)(x− µp)
2 − β(x− µn)

2

2σ2
− log(Z1). (5)

Thus, the CE distribution P ce is:

P ce(x) =
1

Z1

(
1√
2πσ

exp

(
−
(1 + β)(x− µp)

2 − β(x− µn)
2

2σ2

))
. (6)

The term (1 + β)(x− µp)
2 − β(x− µn)

2 can be expressed as:

(1 + β)(x− µp)
2 − β(x− µn)

2 = (x− µce)2 + Z3, (7)

where µce = µp + β(µp − µn), and Z3 is a constant independent of x.

Substituting this result into (6) gives:

P ce(x) =
1

Z1

(
1√
2πσ

exp

(
− (x− µce)2

2σ2

)
exp

(
− Z3

2σ2

))
, (8)

where Z1 = exp
(
− Z3

2σ2

)
. Finally, the CE distribution can be written as:

P ce(x) =
1√
2πσ

exp

(
− (x− µce)2

2σ2

)
. (9)

Hence, P ce(x) is also a Gaussian distribution with mean µce = µp + β(µp − µn) and variance σ2. Here, contrast factor β
controls the extent to which the distribution shifts away from the negative mean µn towards the positive mean µp
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A.2. Effect of the Contrast Factor β

To better understand the influence of the scaling factor β in contrastive estimation, we conduct an ablation study using the
LLaMA-3-8B model on the GSM8K. The results are shown in Table 4.

Table 4. Ablation study on the contrast factor β on GSM8K using LLaMA-3-8B.

β 0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5

cDPO (%) 66.5 69.2 67.9 67.2 69.5 70.7 68.4 66.8 68.9

As discussed in Appendix A.1, the scaling factor β shifts the mean of the modified distribution P ce away from the negative
mean µn toward the positive mean µp, following µce = µp + β(µp − µn). The ablation results show that setting β in the
range of 1.5 to 1.75 leads to better performance, indicating that P ce aligns more closely with the optimal distribution when
the contrast is moderately emphasized.

B. Futhrer Experiments
B.1. Pass@1 accuracy on MATH500

Table 5. Pass@1 accuracy on MATH500. Each result is averaged over 10 samplings per question.

Temperature 0 0.25 0.5 0.75 1.0 1.25 1.5

LLaMA-3-8B 18.6 16.4 15.3 13.0 9.5 3.3 1.2
+ cDPO 19.6 20.3 20.1 19.6 18.7 19.7 18.3
DeepSeek-Math-7B 34.0 31.8 30.5 26.2 21.1 11.3 3.0
+ cDPO 35.2 34.5 34.5 34.5 33.9 32.9 32.8
Qwen-2.5-7B 49.2 46.9 45.1 41.4 34.0 20.1 2.8
+ cDPO 54.0 54.2 53.6 52.8 52.9 53.4 51.9

B.2. Accuracy of Qwen-2.5 models

Table 6. Accuracy of Qwen-2.5 models on GSM8K and MATH500.

Model GSM8K MATH500

Qwen-2.5-7B 85.5 49.2
+ cDPO 87.5 54.0
Qwen-2.5-32B 93.0 58.8
+ cDPO 93.5 64.8
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