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Abstract. In this work, we introduce a fast and accurate method
for unsupervised 3D medical image registration. This work is built on
top of a recent algorithm self-supervised anatomical embedding (SAM),
which is capable of computing dense anatomical/semantic correspon-
dences between two images at the pixel level. Our method is named
SAM-enhanced registration (SAME), which breaks down image regis-
tration into three steps: affine transformation, coarse deformation, and
deep deformable registration. Using SAM embeddings, we enhance these
steps by finding more coherent correspondences, and providing features
and a loss function with better semantic guidance. We collect a multi-
phase chest computed tomography dataset with 35 annotated organs for
each patient and conduct inter-subject registration for quantitative eval-
uation. Results show that SAME outperforms widely-used traditional
registration techniques (Elastix FFD, ANTs SyN) and learning based
VoxelMorph method by at least 4.7% and 2.7% in Dice scores for two
separate tasks of within-contrast-phase and across-contrast-phase reg-
istration, respectively. SAME achieves the comparable performance to
the best traditional registration method, DEEDS (from our evaluation),
while being orders of magnitude faster (from 45 s to 1.2 s).

Keywords: Deformable registration · Affine registration ·
Unsupervised · Self-supervised anatomical embedding · Deep learning

1 Introduction

Deformable image registration is a fundamental task in medical image analy-
sis [16]. Traditional registration methods solve an optimization problem and iter-
atively minimize a preset similarity measure to align a pair of images. Recently,
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learning-based deformable registration, using deep networks, have been investi-
gated [2,10,12,13,19]. Compared with their conventional counterparts, learning-
based methods can incorporate more flexible losses, integrate other computing
modules and are much faster in inference. VoxelMorph was a representative
work [2] that learns a parameterized registration function using a convolutional
neural network (CNN). Many recent methods focus on designing more sophisti-
cated networks using pyramid [13] or cascaded structures [10,19], or connecting
registration to pipelines that include synthesis and segmentation [12]. Ideally,
registration should focus on aligning semantically similar/coherent voxels, e.g.,
the same anatomical locations. This semantic information can come in the form
of extra manual annotations (e.g. organ masks) [2], but requiring prohibitive
labor costs from professionals. Existing unsupervised methods instead optimize
similarity measures describing local intensities as a proxy of the semantic infor-
mation, such as the mean squared error (MSE) or normalized cross correlation
(NCC). However, these are less reliable in settings with large deformations, com-
plex anatomical differences, or cross-modality/cross-phase imagery.

In this paper, we exploit incorporating a novel form of semantic information
in registration. Self-supervised anatomical embedding (SAM) is a recent work
as a means to produce pixel-wise embeddings in radiological images by encoding
anatomical semantic information [18]. It requires no annotations in training.
SAM can match corresponding points between two images, which is exactly the
fundamental goal of image registration. The most simple and straightforward
way to register two images with SAM is to extract SAM embeddings from both
fixed and moving images, match each moving pixel to the closest fixed pixel
in SAM space, and calculate the corresponding coordinate offsets to generate
a deformation field. However, this approach is highly inefficient, as there are
millions of pixels in a typical 3D computed tomography (CT) scan. Besides,
SAM would not incorporate spatial smoothness constraints [2], which is useful
when the correspondences predicted by SAM contain noises.

We propose SAM-enhanced registration (SAME) to address these issues.
SAME is comprised of three consecutive steps. (1) SAM-affine, which uses cor-
respondence points generated from SAM on a sparse grid to compute the affine
transformation matrix. Affine registration [11] has been widely used either alone
or as an initialization of deformable methods [2,9]. (2) SAM-coarse, which
uses a coarse correspondence grid to directly produce a coarse-level deformation
field. These first two steps are efficient, require no additional training, and can
provide a good initialization for the final step. (3) Lastly, SAM-VoxelMorph
enhances the deep learning-based VoxelMorph registration method [2], using
SAM-based correlation features [4] and a newly formulated SAM similarity loss.
SAME is evaluated on a multi-phase chest CT dataset for inter-subject regis-
tration with 35 thoracic organs annotated. Quantitative experimental results
show that SAM-affine significantly outperforms traditional optimization-based
affine registration in both accuracy and speed. The complete SAME consistently
outperforms traditional approaches [1,15] and VoxelMorph [2] in both within-
contrast-phase and across-contrast-phase tasks by average Dice scores of 4.7%
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and 2.7%, respectively. SAME matches DEEDS [9], as the state-of-the-art in CT
registration [17], while being orders of magnitude faster (1.2 sec vs. 45 sec).

2 Method

In this section, we present the details of the proposed SAME for deformable
registration and describe how SAM is integrated in each of the three steps.

2.1 Self-supervised Anatomical Embedding (SAM)

SAM is recently proposed by [18], as a novel pixel-level contrastive learning
framework with a coarse-to-fine network and a hard-and-diverse negative sam-
pling strategy. In an unsupervised manner, it predicts a global and a local
embedding vector with semantic meanings per pixel in a CT volume—the same
anatomical location in different images expressing similar embeddings. SAM is
readily used to find correspondences between images, providing a means to solve
the registration problem from a new perspective. Let Xf ,Xm ∈ R

D×H×W be
the fixed and moving images to be registered . For each image, we extract the
global and local SAM embedding volumes and concatenate them in the channel
dimension, resulting in Sf , Sm ∈ R

C×D×H×W (C is the concatenated channel
dimension). Given a point pf = (x, y, z) in Xf , we take its embedding vector
Sf (:, z, y, x) and convolve it with Sm to get a similarity heatmap volume. The
point with the highest similarity score becomes the matched point in the moving
image. Results show that matching for a single point only consumes 0.2 sec on
a common chest CT scan [18].

2.2 SAM-Affine and SAM-Coarse

Matched SAM correspondences can be directly employed to estimate an affine
transformation matrix [2,9,11]. First, we select a set of points on Xf for match-
ing. Intuitively, evenly distributed points on the image may lead to a better
estimation. Therefore, we use the points on a regular grid on Xf , see Fig. 1. It
would be more precise to run point matching on every pixel (instead of a coarse
grid) and directly generate a fine deformation field, but that would consume
0.5h for a CT with 200 slices. To balance accuracy and speed, we use a grid with
stride 8. Since SAM is only designed for points inside the body, we segment the
body mask of Xf using intensity thresholding and morphological post process-
ing, and then remove grid points outside the mask. When doing point matching,
we downsample Sm with spatial stride of 4 to reduce computation. After the cor-
responding points in Xm are located, we need to filter out low-quality matches.
We examine their similarity scores and discard those lower than a threshold θ.
After that, we can get k matched points in Xf ,Xm, which can be represented
by 3 × k matrices: Pf and Pm, respectively. We pad them with 1s to create
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Fig. 1. SAM-enhanced registration (SAME) framework. The moving image is warped
by three consecutive steps: SAM-affine, SAM-coarse, SAM-VoxelMorph, gradually
approaching the fixed image. Variables X, S, and P denote the image, SAM embed-
ding, and point coordinates, respectively. Subscripts m, f stand for moving or fixed,
respectively. Superscripts a, c and v indicate the variable is generated after each of the
three steps (affine, coarse deform, or VoxelMorph).

homogeneous versions of the matched points coordinates, P̃f , P̃m ∈ R
4×k, and

estimate the affine matrix Â ∈ R
4×4 by a simple least squares fitting:

Â = arg min
A

‖AP̃m − P̃f‖2F . (1)

Next, we transform Xm with Â to obtain Xa
m and extract new SAM embed-

dings Sa
m from it. Then, points in Pf are matched again on Xa

m to get Pa
m. Pa

m

and Pf actually represent a mapping from Xa
m to Xf on k sparse points. We can

compute their difference Δ = Pf − Pa
m, and map each point in Δ back to the

original coordinates of the image to get τ c ∈ R
3×D×H×W . Note, there are only k

deformation in Δ that are not necessarily uniformly spaced. Thus values in τ c are
filled in using linear interpolation. This gives us the final coarsely estimated defor-
mation map, which is applied to warp (Xa

m, Sa
m) to (Xc

m, Sc
m) . Although coarsely

estimated (on only k points), τc can effectively reduce the difference between the
moving and the fixed images. Compared to a global affine alignment, this pro-
vides local warps that can serve as a better initialization for a final learning-based
deformable registration step. One question is that whether we could omit SAM-
affine and compute τ c directly. We observed that before affine registration, the
two images may have significant offsets, so τ c is potentially large in magnitude,
which will magnify the noises in the matched points. Thus, we first perform affine
registration to reduce the magnitude of deformations.
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2.3 SAM-VoxelMorph

The objective of the final step is to predict a fine deformation map τ ∈
R

3×D×H×W , which is a spatial transformation function that can warp the moving
image to best match the fixed one. Following the framework of VoxelMorph [2],
we learn a function Φ : (Xf ,Xc

m) → τ with a CNN . The original VoxelMorph
uses pure pixel intensity-based features and similarity losses. We improve them
by leveraging the semantic information contained in SAM embeddings using
SAM correlation features and a SAM loss (see Fig. 1).

The loss function in VoxelMorph and follow-up works includes two parts,
an image similarity loss and a smoothness loss. We use the local normalized
cross-correlation (NCC) loss [2] for the former, while the latter is defined as

Lsmooth(τ) =
1

|Ω|
∑

u∈Ω

||∇τu||2, (2)

where Ω is the set of all pixels within the body mask. However, the NCC loss
only compares local image intensities, which may not be robust under CT con-
trast injection, pathological changes, and large or complex deformations in the
two images. On the other hand, the SAM embeddings can uncover semantic
similarities between two pixels. Thus, we add a proposed SAM loss:

LSAM (Sf , Sv
m) =

1
|Ω|

∑

u∈Ω

〈Sf (u), Sv
m(u)〉, (3)

where the superscript v indicates the feature map has been warped by τ predicted
by SAM-VoxelMorph. The final loss is

L = LNCC(Xf ,Xv
m) + λLSAM (Sf , Sv

m) + γLsmooth(τ). (4)

While the SAM loss is an effective means to more semantically align images,
the features extracted in standard VoxelMorph still lack semantic information,
which may be needed to better guide predictions. The correlation feature was
originally proposed in FlowNet [4] to manage this problem for optical flow. It
was also used in [7] for registration. Briefly, it computes the similarity of pixel u
on Xf and pixel u + d on Xm, where d is a small displacement. This similarity
is computed for each pixel and for n possible displacement values to generate
an n-channel feature map, which is then concatenated to the original feature
map at some point in the network. When using SAM, the semantic similarity of
two pixels can be simply computed as the inner product of two SAM vectors,
F (u) = 〈Sf (u), Sc

m(u + d)〉. We empirically find that using 27 displacement
values d ∈ {−2, 0, 2}3 yields good results. Injecting the SAM correlation features
provides improved cues to the network when predicting deformations, thus brings
further boosts in accuracy.
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Table 1. Comparison of different registration methods. We show the average Dice
score (%) of two tasks: CE-to-CE and CE-to-NC registration. VM: VoxelMorph. Best
and second best performance is shown in bold and gray box, respectively.

Methods CE-to-CE CE-to-NC Inference
time (s)

std of |Jφ|

Elastix-affine [11] 28.44 27.96 3.38 -

MIND-affine [8] 28.24 27.91 7.86 -

SAM-affine (SA) 33.80 33.77 0.48 -

SAM-coarse (SC) 44.67 43.68 0.78 -

SA + SC 46.76 45.67 1.05 0.40

SA + VM [2] 48.79 47.35 0.78 0.38

SA + SAM-VM 51.99 49.90 0.84 0.36

SA + SC + VM 54.12 50.64 1.13 0.68

SA + SC + SAM-VM (ours) 54.42 50.96 1.16 0.66

SyN [1] 49.75 47.95 74.34 -

FFD [15] 49.36 48.22 93.51 0.51

DEEDS [9] 52.72 51.15 45.35 0.40

*Paired t-tests show SAME significantly outperforms all other methods (p < 10−4), except

for DEEDS in the CE-to-NC setting. SAM-VM significantly outperforms VM (p < 10−7).

**The average surface distance (ASD) in CE-to-CE: FFD 4.6mm, SA+VM 4.1mm, DEEDS

4.0mm, SA+SAM-VM 3.9mm, SA + SC + SAM-VM 3.8mm.

3 Experiments

Dataset and Task. To evaluate SAME, we collected a chest CT dataset con-
taining 94 subjects, each with a contrast-enhanced (CE) and a non-contrast (NC)
scan. We randomly split the patients to 74, 10, and 10 for training, validation,
and testing. Each image has manually labeled masks of 35 organs (including lung,
heart, airway, esophagus, aorta, bones, muscles, arteries and veins) [5]. For the
validation and test sets, we construct 90 image pairs for inter-subject registra-
tion and calculate an atlas-based segmentation accuracy on the 35 organs. Per-
formances of two tasks are evaluated: intra-phase registration (CE-to-CE) and
cross-phase registration (CE-to-NC). Every image is resampled to an isotropic
resolution of 2mm and cropped to 208 × 144 × 192 by clipping black borders.
The image intensity is normalized to (−1, 1) using a window of (−800, 400) HU.

Implementation Details. Our method was developed using PyTorch 1.5. It
was run on a Ubuntu server with 12 CPU cores of 3.60GHz. It requires one
NVIDIA Quadro RTX 6000 GPU to train and test. We trained a SAM model
using the training set of the chest CT dataset. Its structure is identical with
the one in [18], which outputs a 128D global embedding and a 128D local one
for each pixel. This model is fixed and applied in all three steps of SAME. In
SAM-affine and SAM-coarse, the similarity threshold θ is set to 0.7 to select high-
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confidence matches. In SAM-VoxelMorph, we use a 3D progressive holistically-
nested network (P-HNN) [6] as the backbone and concatenate the correlation
feature before the third convolutional block. We also tried 3D U-Net [3] but
observed no significant accuracy gains. The loss weights in Eq. 4 are empirically
set to λ = 1, γ = 0.5. We train SAM-VoxelMorph using the Adam optimizer
with a learning rate of 0.001 for 10 epochs. Each training batch contains 2 image
pairs with random contrast phases (CE or NC). We evaluate the registration
results using average Dice score over 35 organ masks. The organ masks are not
used during training.

Table 2. Ablation study for different settings on incorporating SAM to VoxelMorph
(VM). The average Dice score (%) is reported. All methods are initialized by SAM-
affine without SAM-coarse.

Methods SAM loss SAM correlation feature CE-to-CE CE-to-NC

VM [2] × × 48.79 47.35

� × 50.43 48.24

SAM-VM × � 51.37 48.99

� � 51.99 49.90

Quantitative Results. From Table 1 we can see that SAM-affine outperforms
the traditional affine registration method in Elastix [11] by 5–6%, meanwhile
being 6 times faster. It is also better than affine registration with the MIND [8]
robust descriptor. This is because SAM can match corresponding anatomical
locations between two images accurately and efficiently. Compared with other
methods that iteratively optimizes the affine parameters, SAM-affine directly
calculates affine matrix by least squared fitting. SAM-coarse surpasses SAM-
affine by 10% since it allows for locally deformable warping with more degrees
of freedom. Cascading these two steps further boosts the accuracy. VoxelMorph
pre-aligned by SAM-affine outperforms SAM-affine + SAM-coarse moderately
since the latter can only perform a coarse deformable transformation. However,
note that the former is a learning-based dense registration method, while the
latter does not require any extra training. It only utilizes the matching result
of a pretrained SAM model on grid points. The 2% small gap demonstrates the
capability of our proposed SAM-coarse.

SAM-affine + SAM-coarse can provide a good initialization to the learning-
based VM in the third step, allowing it to better perform. From the 4 rows in the
middle block of Table 1, we also observe consistent improvement by replacing the
original VoxelMorph [2] with SAM-VM. The SAM embeddings contain more
semantic information than the raw pixel intensities, which is incorporated to
SAM-VM by the SAM-based correlation feature and SAM loss. An ablation
study of SAM-VM is shown in Table 2, where the best result is achieved when
both the correlation feature and SAM loss are used. On one hand, explicitly
inputting the correlation feature calculated by SAM provides extra guidance for
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determining the deformation fields . On the other hand, the SAM loss provides
a more semantically informed supervisory signal.

In the bottom block of Table 1, we evaluate several widely-used non-rigid
registration methods including FFD [15], SyN [1], and DEEDS [9]. FFD was
implemented using Elastix [10], where parameters matched the best perform-
ing FFD method in EMPIRE10 Challenge [14]. The only modification was an
extra bending energy term with weight 0.01 to regularize the smoothness. For
SyN (implemented in ANTS) and DEEDS (implemented by the original author),
parameters were set according to those used in [17]. For affine transform, the

Fig. 2. Comparison of registration methods on all organ groups. Eso: esophagus.

Fig. 3. Visualization of registration results from different methods. From left to right is
(a) the moving image, (b) warped moving image of ANTs, (c) DEEDS, (d) SAM-affine
+ VoxelMorph, (e) SAME, and (f) the fixed image.
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default implementation in each package was used. The proposed SAME (com-
bination of three steps) achieves markedly better results than SyN and FFD.
Compared with the best traditional method (DEEDS), it performs better in the
within-phase setting and comparably in the cross-phase setting, meanwhile is
38 times faster. Cross-phase registration is more difficult because the brightness
and appearance of contrast-enhanced and non-contrast CTs can be very differ-
ent (see Xm and Xf in Fig. 1), and DEEDS has explicitly designed the modality
independent features in its registration. SAME takes a different approach that
uses the modality invariant SAM embeddings to align images.

We have computed the standard deviation of Jacobian determinants to mea-
sure the smoothness of the deformation field. In Table 1, it is observed that
SAME achieves the best Dice with a certain degree of sacrifice in smoothness.
This is mainly because SAME cascades two deformable methods, SAM-coarse
(SC) and SAM-VM. The smoothness of SAM-VM alone is slightly better than
the original VM (0.36 vs. 0.38), but SC itself brings more non-smoothness (0.40).
SC generates a deformation field by directly differentiating two sets of coordi-
nates without any constraint. This approach gives SC more flexibility to model
large deformation but may also produce less smoothed results. We will study on
adding constraints to improve the smoothness of SC in the future. On the other
hand, if SC is not used, SA + SAM-VM can also achieve competing accuracy
(52.0% Dice score) with good smoothness (0.36), where the overall performance
is still comparable to DEEDS (52.7%, 0.40) while significantly better than FFD
(49.4%, 0.51), and SA+VM (50.8%, 0.38).

Organ-specific results are shown in Fig. 2. For the sake of conciseness, we
divide the 35 organs in our dataset into 9 groups and calculate the median and
inter-quartile range of Dice score within each group. The affine in Fig. 2 is from
Elastix [11], whereas the VoxelMorph refers to SAM-affine + VM [2] in Table 1.
The results of SAME surpass DEEDS on 8 out of 9 groups except heart in the
within-phase condition. In the cross-phase setting, SAME outperforms DEEDS
on the artery, bone, airway and lung organs. In other organs, like esophagus and
muscle, SAME shows results with smaller variance and comparable median per-
formance with DEEDS. Organ groups such as artery, esophagus, vein, and muscle
display lower Dice scores for all methods because they are typically small and
can be confused with surrounding tissues. Qualitative examples are illustrated
in Fig. 3. Manual organ masks of the fixed images are overlaid to show whether
the warped moving images align well with the fixed image. Arrows pointed to
regions where SAME works better than other methods.

4 Conclusion

In this paper, we propose SAME, a fast and accurate framework for unsuper-
vised medical image registration. We expect SAM-affine and SAM-coarse to be
promising alternatives of traditional optimization-based methods for registration
initialization. The SAM correlation feature and SAM loss may also be combined
with other learning-based algorithms [12,19] for further accuracy improvement.
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