
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

OFFLINE VS. ONLINE LEARNING IN MODEL-BASED RL:
LESSONS FOR DATA COLLECTION STRATEGIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Data collection is crucial for learning robust world models in model-based rein-
forcement learning. The most prevalent strategies are to actively collect trajectories
by interacting with the environment during online training or training on offline
datasets. At first glance, the nature of learning task-agnostic environment dynamics
makes world models a good candidate for effective offline training. However, the
effects of online vs. offline data on world models and thus on the resulting task
performance have not been thoroughly studied in the literature. In this work, we
investigate both paradigms in model-based settings, conducting experiments on
31 different environments. First, we showcase that online agents outperform their
offline counterparts. We identify a key challenge behind performance degradation
of offline agents: encountering Out-of-Distribution states at test time. This issue
arises because, without the self-correction mechanism in online agents, offline
datasets with limited state space coverage induce a mismatch between the agent’s
imagination and real rollouts, compromising policy training. We demonstrate
that this issue can be mitigated by allowing for additional online interactions in
a fixed or adaptive schedule, restoring the performance of online training with
limited interaction data. We also showcase that incorporating exploration data
helps mitigate the performance degradation of offline agents. Based on our insights,
we recommend adding exploration data when collecting large datasets, as current
efforts predominantly focus on expert data alone.

1 INTRODUCTION

Model-based Reinforcement Learning (MBRL) has emerged as a powerful paradigm, achieving
state-of-the-art performance in complex tasks (Hansen et al., 2024; Hafner et al., 2023) and surpassing
model-free methods (Schulman et al., 2017; Haarnoja et al., 2018) in both performance and sample
efficiency. At the core of MBRL lies training a world model (Ha & Schmidhuber, 2018; Moerland
et al., 2023; Morales, 2020) that captures the environment dynamics, which is task-agnostic and
can generalize beyond learning mere action responses (Bruce et al., 2024). This model can then
be leveraged for sampling-based planning (Hansen et al., 2024; Chua et al., 2018; Zhu et al., 2023)
or training policies in imagination, eliminating the need for direct agent-environment interactions
(Hafner et al., 2020; 2023).

The success of downstream tasks in MBRL critically depends on the accuracy of the world
model (Asadi et al., 2019; Yao et al., 2021; Wang et al., 2024; Kidambi et al., 2020), which in
turn relies heavily on the quality and diversity of training data (Mediratta et al., 2024; Suau et al.,
2023; Kumar et al., 2022). This dependency raises the question: What is the optimal strategy for data
collection to effectively train these models?

One popular strategy in robotics is to collect a large offline dataset of expert demonstrations to enable
imitation learning, which essentially aims to match the distribution of expert actions (Fu et al., 2024;
Collaboration & et al., 2023). However, collecting expert trajectories is expensive, less scalable,
and not feasible for all tasks. As an alternative, training data can be collected online; this in turn
requires an agent to interact directly with its environment during training. The actions the agent takes
to collect the data can be driven by maximizing a task-reward (Hafner et al., 2023) or an exploration
strategy by minimizing model uncertainty (Pathak et al., 2017; Sekar et al., 2020). This approach,
while potentially more adaptive, incurs the cost of generating new data during training.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

PassiveTandem Active

sample

updateupdate

Environment
sampleupdate

interact

store

Active Passive Tandem Passive+Auto interact

30%
100%

Training progress

Ep
is

od
e

sc
or

e

(Expl. bonus 0.5)
Active Passive Tandem

N
or

m
al

iz
ed

 s
co

re

Remedy - Interaction

Remedy - Exploration

Environments

N
or

m
al

iz
ed

 s
co

re

Performance degradation

Average over 31 tasks

Run - Vision

#env steps

#env steps

#interactions

Active-task

a)

b) c)

d)

e)

Average over 31 tasks

Figure 1: Investigation of the performance degradation in offline agents and potential remedies. a) Illustra-
tion of Active, Passive, and Tandem agents. The Active agent is trained using online RL and is allowed to interact
with the environment. The Passive agent is trained from the full buffer of an Active agent, without performing any
additional interactions. The Tandem agent, is also trained offline, but samples batches from the Active agent’s
replay buffer in the exact same sequence. b) We conduct experiments in 31 tasks across various domains. c) Il-
lustration of the performance degradation in Passive and Tandem agents w.r.t. the Active agent. d-e) exploration
data (d) and online interaction (e) effectively mitigate performance degradation observed in offline Passive agents.

While these two data collection paradigms (offline and online) are exhaustively studied in isolation,
world models offer the unique advantage of integrating data from both paradigms, as the world model
itself learns task-agnostic environment dynamics. Our work aims to provide a unified perspective
on training world models from offline and online data in an MBRL setting by addressing two
key questions: (1) How can we leverage offline data to train a robust world model and (2) what
combination of data collection strategies yields the best performance at the lowest cost across
different scenarios?

Previous works investigated these questions in the context of Q-learning and concluded that training
an agent fully from offline data leads to degraded performance due to Out-Of-Distribution (OOD)
queries of Q-functions (Ostrovski et al., 2021; Yue et al., 2023; 2022). While the degradation is also
widely observed in offline MBRL, the coupling of the world model and policy presents a unique
challenge in interpreting the degradation process. Current studies focus on proposing solutions on the
premise of OOD-induced performance degradation (Yu et al., 2020; Kidambi et al., 2020; Wang et al.,
2024) but lack a deep understanding of the failure process behind. Therefore, we investigate potential
explanations of the degradation process and explore the effectiveness of common data-oriented
strategies (Ostrovski et al., 2021; Yarats et al., 2022) in various tasks and domains from a unified
perspective, which can provide valuable insights for future dataset collection.

To gain these insights, we employ DreamerV3 (Hafner et al., 2023) across diverse environments
including locomotion, manipulation, and numerous other robotic tasks. As shown in Fig. 1, we
examine three scenarios: (1) an Active agent training tabula rasa, (2) a Tandem agent replaying
the learning history of the Active agent in the same temporal order but with a different random
initialization, and (3) a Passive agent with access to the Active agent’s full experience from the start,
also with a different random initialization.

Our key findings reveal that in a task-oriented setting, Tandem and Passive agents underperform
compared to the Active agent, primarily due to visiting novel states during evaluation. This OOD
tendency stems from the absence of self-correction mechanism in offline agents, causing a mismatch
between the agent’s imagination and real rollouts, which misguides policy training. We demonstrate
that using offline exploration data instead of solely task-oriented data mitigates this problem and,
surprisingly, find that expert demonstrations alone are insufficient for high performance in MBRL.
However, we showcase that performance can be recovered with minimal environment interactions.
Based on these results, we analyze an adaptive fine-tuning agent that can recover the Active agent’s
performance with just 6% of environment interactions relative to its offline dataset. As a result of our
large-scale experimental study, we suggest to everyone collecting expert demonstration data to also
collect exploration data for sufficient state-space coverage.

Our contributions are as follows:

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• Analysing the process behind performance degradation in offline model-based agents,
along with several practical considerations.

• Demonstrating the benefits of exploration data and proposing that a mixed reward function
enhances state-space coverage in data collection, preventing performance degradation in
offline training while maintaining strong task performance.

• Examining world-model loss as a metric for targeted active data collection, thereby
substantially enhancing the efficiency of offline agents with minimal additional interactions.

2 METHOD

2.1 PRELIMINARIES

Model-based Reinforcement Learning In this work, we consider environments that can be
described by a partially observable Markov Decision Process (POMDP), with high-dimensional
observations xt, which are encoded into latent representations st, state-conditioned actions at
generated by an agent and scalar rewards rt (conditional on st and at) generated by the environment.
In MBRL, our aim is to learn the latent transition dynamics by a world model T̂ (st+1 | st, at) and
find an optimal policy π(at|st) maximizing the expected discounted return with discount factor γ:

π∗ = argmax
π

E
st∼T̂ (·|st−1,at−1)

at∼π(a|st)

[∞∑
t=0

γtr(st, at)

]
. (1)

DreamerV3 We use DreamerV3 (Hafner et al., 2023), a state-of-the-art model-based RL method,
as the base architecture in all our experiments. Based on the Recurrent State-Space Model
(RSSM) (Hafner et al., 2018) summarized in Eq. (2), the world model predicts the latent state
st = (ht, zt) from the previous state and action, where ht is the deterministic and zt is the stochastic
state component. The estimated observation x̂t, reward r̂t, and continuation flag ĉt (signalling whether
the episode has ended or not) are decoded from the latent states; given by the tuple êt = (x̂t, r̂t, ĉt).
The policy has an actor-critic architecture, detailed in Eq. (3). Rt is the discounted return from state
st. For the off-policy updates of DreamerV3, environment interactions are added to a replay buffer
B = {(xt, at, rt, ct, . . .)}Nt=1, where each tuple contains the observation xt, action at, reward rt,
continuation flag ct, and optionally other variables collected from the environment.

Sequence model: ht = fϕ(ht−1, zt−1, at−1) Encoder: zt ∼ qϕ(zt | ht, xt)
Dynamics predictor: ẑt ∼ pϕ(ẑt | ht) Decoder: êt ∼ pϕ(êt | ht, zt)

(2)

Actor: at ∼ πθ(at | st) Critic: vψ(st) ≈ Epϕ,πθ

[
Rt

]
(3)

DreamerV3 minimizes the world model loss, which is a weighted loss of multiple components and is
defined in the original paper (Hafner et al., 2023), as shown in Eq. (4).

L(ϕ) .
= Eqϕ

[∑T
t=1(βdynLdyn(ϕ) + βrepLrep(ϕ) + βpredLpred(ϕ))

]
. (4)

It consists of the dynamics-based loss components given by Ldyn and Lrep, defined in Eq. (S1), as
well as the loss Lpred from three prediction heads: observation reconstruction, reward estimation,
and continuity prediction.

The following three-step cycle is repeated throughout the training process of DreamerV3: (1) The
agent interacts with the environment to collect data, adding it to its replay buffer B. Meanwhile, the
latent states (ht, zt) are updated closed-loop using the current observation xt and are used to compute
the action. (2) The world model is trained on a batch of sequence data uniformly sampled from the
replay buffer using the loss function shown in Eq. (4). (3) Open-loop trajectories are generated in
imagination by the world model to train the actor and critic networks.

2.2 LEARNING AGENTS

In order to investigate the online and offline training paradigms, we design three off-policy agents, as
shown in Fig. 1, each representing a different variation of training data collection.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Active agent is the typical RL agent in online RL. It interacts with the environment and performs
training steps using the collected data by its own policy. An Active agent can adapt its world model
with its own policy rollouts, which is a self-correction mechanism, enabling the agent to learn from
its own mistakes (Ostrovski et al., 2021).

Passive agent is trained offline without any environment interactions by uniformly sampling data
from the final replay buffer BN of an Active agent. This gives the Passive agent access to the full data
of the Active agent right from the start of the training process, including high-reward trajectories.

Tandem agent is another agent trained offline, but sees the training data in the same order as the
Active agent, i.e. the training batches bt are replayed exactly as they were sampled during the training
of the Active agent (Ostrovski et al., 2021). The goal here is to introduce a more controlled offline
learning setting than the Passive agent, with the only difference from the Active agent being the
model initialization. This setup facilitates easier interpretation of the experimental results.

The offline agents, Passive and Tandem, are initialized independently of the Active agent used for
data collection with a different random seed. The pseudocode of the agents is in Appendix A.1.5.

3 EXPERIMENTS

We use DreamerV3 for all our experiments (details on hyperparameters can be found in Appendix A.1).
In total, we conducted 2000 experiments using 20 000 GPU hours. All agents are trained from scratch
using task-oriented rewards unless specified otherwise.

3.1 ENVIRONMENT SETUP

Our experiments are conducted in the Deepmind Control Suite (DMC) (Tunyasuvunakool et al.,
2020; Yarats et al., 2022), Metaworld (Yu et al., 2019), and MinAtar (Young & Tian, 2019) domains,
including a total of 31 tasks. These are representative environments for robotic locomotion, ma-
nipulation, and discrete game tasks. The environment settings mainly follow the default settings
in Hafner et al. (2023). The results for all individual experiments and detailed setups are provided
in the Appendix A.8 and Appendix A.1. Whether state or image observations are used is indicated
alongside the task name as “proprio” or “vision” respectively. We run 1 million environment steps per
task, training every second step, with results averaged across three seeds unless stated otherwise. For
the Passive and Tandem agents, we keep the same total number of environment and training steps as
the Active agent to ensure consistency and comparability; however, without collecting any interaction
data, as explained in Appendix A.1.4.

3.2 METRICS FOR ANALYSIS

World model loss The mean error of the world model for the prediction of dynamics, observation,
reward, and continuity (Sec. 2.1). It is an indicator of the total aleatoric and epistemic model
uncertainty and can serve as a simple OOD measure (Yu et al., 2020; Chen et al., 2023).

Episode score The undiscounted sum of rewards over the episode.

The metrics shown in all figures are calculated as follows, unless specified otherwise: (1) Every 5K
environment steps, we roll out the agent’s policy for a total of 4 episodes. (2) We compute the mean
episode score and the mean world model loss across the 4 episodes. Each agent is evaluated in an
on-policy manner on its own test-time trajectories. The data distributions of visited states are thus
conditioned on the policy and are different for individual agents.

3.3 TOY EXAMPLE

We first study the performance of all learning agents in a toy environment. We select the point mass
maze environment in DMC, where an actuated 2-DoF point mass has to reach the red goal position,
as shown in Fig. 2. The results show that only the Active agent successfully solves the task, while
both agents trained offline fail, showing degraded performance compared to the Active agent.

Hypothesis: Lack of self-correction causes OOD errors The policy in DreamerV3 is trained
purely in the imagination of the world model. As a result, the policy can learn to exploit inaccuracies

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

2000

1500

1000

500

0

8

10

12

14

(a) (b) (c) (d)Active Passive Tandem

Ep
is

od
e

sc
or

e

Vi
si

ta
tio

n
Fr

eq
ue

nc
y

W
or

ld
 M

od
el

 L
os

s

Active Passive
Tandem

Figure 2: Example of the degraded performance during offline training in 2D point mass maze environment.
The task is to move the yellow point mass from the top-left initial position to the red marker in the bottom-right
of the maze, which is the goal position. The episode score of each agent is shown in (a). In (b-d), we show
the point mass trajectory generated by the final model after 1M environment steps. The two heatmaps on the
trajectory represent: 1) a count-based frequency of each covered cell that is visited in the replay buffer and 2)
world model loss on each visited state. The median visitation frequency along the shown trajectory is 608.5 for
Active, 12.5 for Passive, and 9.0 for Tandem.

in the imagination. The Active agent continuously collects data from regions where the world model
could be unreliable, specifically for regions where the world model predicts a high reward and,
therefore, the policy is likely to visit. Training the world model on the collected data from these
regions helps to improve the world model in a targeted manner with respect to the current Active
agent’s policy. This not only helps to improve the policy to solve the task but also makes the world
model adapt to the agent’s policy rollouts, ensuring sufficient data coverage around its self-rollouts.
Consequently, the agent is unlikely to encounter novel states when rolling out the policy during
evaluation.

The agents trained offline lack this critical feedback loop of self-correction. Although the overall
training data distribution is the same as the Active agent, differences in sampling sequences (Passive)
and/or model initializations (Passive and Tandem) lead to distinct policies during training. To
effectively improve these policies, the training data generated from the world model’s imagination
should closely match real rollout performance. However, without self-correction and constrained
by data coverage tailored to another agent’s policy, the imagination of this limited-capability world
model fails to align with real rollouts under its own policy, leading to a persistent discrepancy between
imagination and reality in offline training. Consequently, the policy will exploit these inaccuracies
during training and be updated blindly to eventually steer the agent toward novel, unvisited areas.
During test time, visiting novel states can lead to world model prediction errors and, therefore,
suboptimal policy actions. It creates a catastrophic cycle where each compromised action leads to
further novel states and additional inaccuracies in the world model until the episode ends or the agent
accidentally re-enters into a familiar state.

We observe this behavior in the performance of the three agents as shown in Fig. 2. The Active
agent learned to adapt its world model to its own rollouts; therefore, it did not meet any novel states
when rolling out the policy for evaluation, as shown by the consistent low world model loss and
high visitation frequencies alongside its trajectory. However, this is not the case for the Passive and
Tandem agents. From the start, their policies seem to behave anomalously, guiding them towards a
suboptimal direction even in the regions familiar to the world model. Since the task-oriented dataset
has limited state-space coverage, they inevitably visit novel states, and their mistakes are catastrophic.
As a result, both the Passive and Tandem agents cannot recover and end up in OOD states until the
end of the episode, failing to solve the task.

To summarize, self-correction ensures sufficient data coverage related to the agent’s policy
rollouts, thereby 1) preventing OOD errors and 2) facilitating policy training by reducing gaps
between imaginations and real rollouts. Without self-correction, imagination gaps compromise policy

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Active Passive Tandem

Figure 3: Episode score and world model loss during evaluation rollouts of 4 selected tasks. The first two
are from DMC and the last two are from the Metaworld domain. The performance degradation of offline agents,
including Passive and Tandem, is common across domains and tasks, especially for Tandem agents.

training and push offline agents toward OOD states, where they become trapped in a catastrophic
cycle that leads to further performance degradation.

Our hypothesis is generally in line with previous research in model-free RL (Ostrovski et al.,
2021; Yue et al., 2023; Emedom-Nnamdi et al., 2023; Kumar et al., 2020b) , which attributes
performance degradation to extrapolation errors in Q-values in OOD state-action pairs during training
and evaluation. However, in the context of MBRL, the paradigm is shifted from a focus on Q-functions
to the coupling of a world model and a policy network.

3.4 VALIDATION ACROSS TASKS

The performance degradation phenomenon in offline agents is observed across various tasks and
domains, as shown in Fig. 3 and Appendix A.8.2. In tasks such as Quadruped Run - Vision and
Pick-Place - Proprio, the Passive agent initially demonstrates a faster increase in performance but has
a larger variance or even experiences performance drops as training progresses. The degraded per-
formance in Passive and Tandem agents is accompanied by a significantly larger world model loss on
evaluation episodes than the Active agent. Given that a high world model loss indicates novel states,
this observation supports our hypothesis in Sec. 3.3. The discrepancy between imagined and real
rollouts in offline agents is shown in Appendix A.4. Our detailed inspections on a timestep level in Ap-
pendix A.5.1 further validate our hypothesis of the catastrophic cycle during testing. Fig. 3 also shows
a potential advantage of Passive agents: faster convergence by having access to high reward trajec-
tories from the start of training (validated in Appendix A.7), though additional measures may be nec-
essary to ensure training stability. The results of Tandem agents also follow the findings of degraded
performance of the Tandem training regime in Ostrovski et al. (2021) and extend its validity to MBRL.

3.5 DEEP DIVE INTO PERFORMANCE DEGRADATION

3.5.1 OOD IN MBRL

Both world model and policy affect performance degradation To investigate which one, world
model or policy, plays the most important role in causing the performance degradation, we carry out
a more controlled experiment in Fig. S5, with the detailed description in Appendix A.6. By using
an identical world model in Passive or Tandem agents to their Active counterparts, we disentangle
the compounding effect from the world model and policy. The results show that deviations in both
the world model and policy from the Active agent contribute to performance degradation, with their
relative impacts depending on the specific task.

What is the difference to supervised learning? In classical supervised learning, a model is
optimized on an offline dataset, e.g., for image classification. Training on independent and identically
distributed data from different random initializations typically yields similar performance, showing
robustness to initialization. Why is this not the case in the MBRL setting, where Tandem agents per-
form worse than Active agents, despite one expecting the world model to perform equally well across
seeds given the same data? This is because offline trained agents will cause states to be visited during
policy optimization that are not collected by the Active agent, leading to OOD queries to the model.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3.5.2 WORLD MODEL LOSS IS A PESSIMISTIC INDICATOR OF PERFORMANCE DEGRADATION

The world model loss is due to prediction errors arising from both epistemic and aleatoric uncertainty.
Novel states lead to high variance predictions due to epistemic uncertainty induced by insufficient
state space coverage during training. Overlaid are errors due to partial observability and environment
stochasticity. In particular, the latter factors can lead to high model loss without significant impacts
on performance, depending on whether exact predictions are required for the task at hand. In addition,
even when the agent is in novel states, other factors, e.g. environment constraints, and the policy
producing correct actions by coincidence in hallucinations of the world model, can reduce the impact
of a poorly performing world model on agent performance. Therefore, the world model loss is a
pessimistic indicator of performance degradation.

3.5.3 EXPERT DATA ALONE EXACERBATES OOD ISSUES

Figure 4: Performance compar-
ison of Active, Passive as well
as Passive agents trained on ex-
pert, suboptimal, and mixed
data, which is implemented by
splitting the replay buffer of the
Active agent in different ways.

Expert data is commonly used in offline learning, but compared to
data collected by the Active agent, its coverage is more limited to
task-specific trajectories, typically capturing only certain ways of
solving the task. As a result, states are more likely to be OOD for the
world model, resulting in even worse task performance, as shown
in Fig. 4, where we treat the second half of the buffer as expert data.
As expected, the world model loss evaluated on test-time trajectories
is significantly larger than for other agents with suboptimal or mixed
data. For more details, see Appendix A.7.

3.5.4 CONSIDERATIONS IN PRACTICAL APPLICATIONS

In further experiments, we find that initializing the Passive agents’
weights identically to the Active agents’ does not improve task
performance. In contrast, even minor differences in the model ini-
tialization of Tandem agents compared to Active agents leads to
degraded performance, reflecting the chaotic training dynamics of
gradient-based optimization. See Appendix A.7 for more details.

4 POTENTIAL REMEDIES FROM A DATA PERSPECTIVE

Based on the previous analysis, we conclude that insufficient state coverage during training of
Passive and Tandem agents leads to worse model performance, which results in visiting OOD states
during evaluation. To address this, we propose two strategies for effective agent training with offline
datasets: training on an exploration dataset and (adaptively) incorporating self-generated data.

4.1 TRAINING ON EXPLORATION DATA

We investigate how training on exploration data affects the performance of Active, Passive and Tandem
agents. Here, we use Plan2Explore (Sekar et al., 2020), where the objective is to maximize the

Vi
si

ta
tio

n
Fr

eq
ue

nc
y2000

1500

1000

500

0

(a) (b) (d) Pure Exploration Reward(c)Pure Task Reward Mixed RewardPoint Mass Maze - Vision

Figure 5: State visitation in the Point Mass Maze task. They are calculated using the discretized states from
three different Active agents’ final replay buffers after 1M environment steps. (b) Agent in a pure task-oriented
setting. (c) Agent with pure exploration rewards based on ensemble disagreement (Sekar et al., 2020). (d) Agent
with a mixed reward: task plus exploration rewards, see Eq. (5) with wexpl = 0.5. The unvisited areas are
painted gray, and the outliers that have extremely high values are painted dark red. Here the task-oriented agent
only explores limited state space in the map and always follows certain routes towards the goal position, while
the two explorative agents visit all the regions much more equally.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Active-expl.Active-task (final) Passive-expl. Tandem-expl.

Figure 6: Performance comparison when training on pure exploration data. The dataset is generated by the
Active-expl. agent with a behavioral policy based on ensemble disagreement (Sekar et al., 2020). We additionally
show the baseline performance of a task-oriented Active agent.

Active Passive Tandem

Expl. bonus 0.0 Expl. bonus 0.1 Expl. bonus 0.5 Expl. bonus 0.9 Expl. bonus 1.0

Figure 7: Training on pure exploration data is not optimal. Performance comparison when assigning different
exploration bonuses wexpl in the reward function. The black dashed lines represent pure task-oriented policy
without any exploration bonus.

information gain of the world model. The exploration reward is calculated as ensemble disagreement,
denoted by rdisag. We investigate exploration in two modes: 1) pure exploration in a task-free setting,
i.e. agent only maximizes for rdisag, 2) a mixed reward setting, where rdisag is added as an exploration
bonus on top of the task reward:

rt
.
= wtask · rtask + wexpl · rdisag, (5)

where wtask and wexpl weights are normalized such that they sum up to 1.

For agents trained offline, exploration data in the training set can provide a larger state-space coverage,
which can counteract the missing self-correction mechanisms of an active agent. Fig. 5 demonstrates
how task-oriented data is narrower compared to exploration data. The addition of exploration data
becomes crucial in alleviating the OOD challenge during evaluation, as validated in Fig. 6, where the
training data is gathered by an Active agent based on pure exploration rewards rdisag. As a result, the
Passive agents consistently outperform the Active, and the performance of the Tandem agents matches
their Active counterparts. Furthermore, the relationship between task performance and world model
loss generally also matches the findings in Sec. 3.4. However, some cases in Appendix A.8.4 indicate
that world model loss can occasionally be less predictive of task performance. This inconsistency
arises as novel regions for the world model shrink with exploration data, leading to lower world model
losses. In addition, the pure exploration dataset contains numerous trajectories irrelevant to the task,
reducing the world model’s accuracy in task-specific states and preventing the effective learning of the
task policy. Consequently, task performance becomes increasingly dependent on the task difficulty.
For example, in two challenging tasks – Quadruped Run - Vision and Pick-Place - Proprio – their
overall performance is significantly lower than that of the task-oriented version, as shown in Fig. 6.

To this end, we investigate the mixed reward setting, where we add the exploration reward as a
bonus, as defined in Eq. (5). This approach allows a more concentrated exploration near the goal,
as shown in Fig. 5, preventing the excessive exploration of irrelevant areas that could arise from a
purely explorative dataset.

Indeed, in Fig. 7, we show that pure exploration is hardly the best option for the hard tasks like
Quadruped Run - Vision. The addition of an exploration bonus e.g. wexpl = 0.5 together with task
rewards in Quadruped Run - Vision can lead to an improved task performance compared to runs with

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Active Passive Passive+0.01 interact
Passive+0.1 interact Passive+0.5 interact Passive+Auto interact

Figure 8: Performance comparison when allowing adding additional self-generated data for Passive agents.
The Passive+Auto interact agent adds 6.5% self-generated data in Cheetah Run - Vision, 2.9% in Quadruped
Run - Vision, 9.8% in Pick-Place - Proprio, and 0.5% in Spaceinvaders. The percentage is calculated w.r.t. to the
size of the final replay buffer of Active agents.

pure task rewards, especially in Passive agents. A downside of this approach is the introduction of
the hyperparameter wexpl, the optimal value of which can depend on the specific task as shown in our
experiments in Appendix A.8.1.

4.2 ADDING ADDITIONAL SELF-GENERATED DATA

We have demonstrated the critical importance of self-correction. However, as training solely on
interaction data is expensive, and offline data is often cheaply available; we would like to explore
how one can most effectively combine fixed offline data with online interaction data. To analyze
this interplay, we first examine a strategy that uses a predetermined schedule for the Passive agent to
interact with its environment.

Specifically, for every N environment steps, the Passive agent is allowed to collect 2K-step transitions
based on its learned policy. Then the interactive data will be added to expand the replay buffer for
later sampling during world model training as usual. By choosing a different N , we can adjust the
frequency of interactive data injection. Experiments were conducted with N set to 4K, 20K, and
200K, respectively corresponding to 50%, 10%, and 1% self-generated data. The results are shown in
Fig. 8. Accordingly, merely 10% additional self-generated data can already result in a significant
improvement in the episode score as well as a notable reduction in the world model loss, recovering
the performance of its Active counterpart. In certain environments, such as the Spaceinvaders from
the MinAtar domain, the Passive agents may already solve the task and have a faster convergence
than the Active one; therefore, self-generated data provides no performance increase.

Adaptive interaction Upon examining the results with a fixed schedule, we see that interaction
ratios to restore agents’ performance vary across tasks. Therefore, we analyze an adaptive interaction
schedule based on the insights of OOD states causing degenerate performance. We calculate a ratio by
dividing the world model loss on evaluation trajectories by the loss on trajectories in the replay buffer.
This ratio measures the novelty of the trajectories visited by the current learned policy compared to
those seen during training and enables a single threshold for adding self-generated data across tasks.

We set the threshold for the OOD ratio to 1.35 (see the ablation study in Appendix A.1.6) and
inspect it every 5K environment steps over 4 evaluation episodes. If the OOD ratio exceeds this
threshold, the Passive agent collects 2K-step transitions from the environment using its learned policy,
denoted as Passive+Auto interact (refer to Appendix A.1.5 for the agent’s pseudocode). As shown in
Fig. 8, this strategy fine-tunes self-generated data injection based on task demands, achieving similar
performance with less data (5.67% across 31 tasks) compared to an agent that regularly adds 10%
self-generated data. The inspection frequency can be reduced to lower evaluation costs. For more
results, see Appendix A.8.3. A complete offline evaluation would be desirable, but is outside the
scope of this paper. We hope to inspire research in this direction.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5 RELATED WORK

Performance Degradation in Offline Model-based Agents Performance degradation of offline
agents is a known phenomenon in MBRL (He, 2023) and is mainly attributed to two factors:

1) The distribution mismatch between training data and the states visited by the learned
policy (Kidambi et al., 2020; Chen et al., 2023; Yu et al., 2020; Cang et al., 2021). These inaccuracies
in the world model within unseen regions are then exacerbated by compounding errors in multi-step
predictions (Asadi et al., 2019; Janner et al., 2019). These accumulated errors in the model-based
imagination process based on OOD queries can mislead both policy training (Wang et al., 2024) and
planningby overestimation in critics (Sims et al., 2024), ultimately resulting in a performance drop.

2) The inability of offline agents to self-correct through active data collection (He, 2023; Cang
et al., 2021; Yu et al., 2020). Prior works on offline agents (Ostrovski et al., 2021; Tang et al., 2024;
Emedom-Nnamdi et al., 2023; Lin et al., 2024) have shown that utilizing data from interactions with
the environment introduces a corrective feedback loop (Kumar et al., 2020a), allowing the agent to
learn from its own mistakes and consequently improve its task performance.

Building on existing studies, we explore phenomena across various tasks and domains in model-based
RL using DreamerV3. Additionally, we investigate the conditions (e.g. the nature and quality of the
dataset) that exacerbate distribution mismatches and model inaccuracies.

Remedies to Support Offline Training To address performance degradation in offline model-
based agents, many studies add conservatism to their algorithms. One method is to include an
uncertainty penalty in the reward function to deter the agent from exploring new states (Kidambi
et al., 2020; Yu et al., 2020; 2021; Wang et al., 2024), while another employs trust-region updates
to maintain the learned policy’s proximity to the data collection policy (Matsushima et al., 2021).
RAMBO (Rigter et al., 2022) trains an adversarial environment model that generates pessimistic
transitions for OOD state-action pairs, reducing the value function in uncertain regions. In contrast,
MAPLE (Chen et al., 2023) enables adaptive agent behavior in OOD regions during deployment,
using a context-aware policy based on meta-learning techniques.

While these methods provide insights on mitigating performance degradation in offline MBRL, few
address which type of data best facilitates offline training. In model-free RL, studies suggest adding
self-generated data (Ostrovski et al., 2021; Lee et al., 2021) and emphasize the importance of diversity
and exploration (Mediratta et al., 2024; Suau et al., 2023; Kanitscheider et al., 2021; Kim et al., 2023).
We extend these ideas to model-based RL with validation in various tasks and domains.

6 CONCLUSIONS AND DISCUSSIONS

In this work, we show that visiting novel states during evaluation is the key factor behind the
degradation of the performance of offline model-based agents through a wide range of experiments
across various domains. From a data perspective, we identify that training on partially exploratory
data collected using a mixed task-exploration reward function is effective in mitigating performance
degradation. Importantly, training offline solely on expert data exacerbates performance degradation
compared to a typical mixed dataset due to severe OOD issues. Additionally, our experiments show
that adding as little as 10% self-generated data at regular intervals can significantly enhance the
performance of Passive agents. When we allow the Passive agent to adaptively interact based on its
world-model loss as a proxy measure of OOD state visitation, we observe a significant performance
improvement while minimizing the need for additional interaction data. However, our method still
requires evaluation rollouts. An offline measure would be desirable and is left for future research.

Overall, we highlight the importance of sufficient state-space coverage in the training data to train
a robust model-based agent, which can be achieved either by an explorative offline dataset or by
enabling the agent to learn from its own mistakes. As efforts to collect large-scale real-world data
for robotics are increasing, the question arises: What is the best way to collect data to facilitate
robust agent training? As model-based RL shows strong task performance and promises efficient
fine-tuning and good transfer capabilities for new tasks, we suggest that dataset collection should
incorporate exploration data. We plan to extend our experiments to other RL methods and real-world
scenarios to identify optimal data collection strategies. We believe that our insights can help design
a data-efficient fine-tuning method for robotics foundation models. This will help develop more
resilient and adaptable agents capable of performing reliably in complex environments.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

7 REPRODUCIBILITY STATEMENT

The hyperparameters used in our experiments are detailed in Appendix A.1. We control the ran-
domness of each run—e.g., in environment initialization and model optimization—by setting fixed
random seeds in our implementation. The code and generated datasets will be made publicly available
upon acceptance of the paper. The results presented in our paper can be directly reproduced using the
provided codebase without any additional modifications.

REFERENCES

Kavosh Asadi, Dipendra Misra, Seungchan Kim, and Michel L. Littman. Combating the
compounding-error problem with a multi-step model, 2019. URL https://arxiv.org/
abs/1905.13320.

Jake Bruce, Michael D Dennis, Ashley Edwards, Jack Parker-Holder, Yuge Shi, Edward Hughes,
Matthew Lai, Aditi Mavalankar, Richie Steigerwald, Chris Apps, et al. Genie: Generative
interactive environments. In Forty-first International Conference on Machine Learning, 2024.

Catherine Cang, Aravind Rajeswaran, Pieter Abbeel, and Michael Laskin. Behavioral priors and
dynamics models: Improving performance and domain transfer in offline rl, 2021. URL https:
//arxiv.org/abs/2106.09119.

Xiong-Hui Chen, Fan-Ming Luo, Yang Yu, Qingyang Li, Zhiwei Qin, Wenjie Shang, and Jieping
Ye. Offline model-based adaptable policy learning for decision-making in out-of-support regions.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(12):15260–15274, 2023. doi:
10.1109/TPAMI.2023.3317131.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep rein-
forcement learning in a handful of trials using probabilistic dynamics models. In Ad-
vances in Neural Information Processing Systems, volume 31. Curran Associates, Inc.,
2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/
file/3de568f8597b94bda53149c7d7f5958c-Paper.pdf.

Open X-Embodiment Collaboration and et al. Open X-Embodiment: Robotic learning datasets and
RT-X models. https://arxiv.org/abs/2310.08864, 2023.

Patrick Emedom-Nnamdi, Abram L. Friesen, Bobak Shahriari, Nando de Freitas, and Matt W.
Hoffman. Knowledge transfer from teachers to learners in growing-batch reinforcement learning.
In International Conference on Learning Representations (ICLR) – Reincarnating RL Workshop,
2023.

Zipeng Fu, Tony Z. Zhao, and Chelsea Finn. Mobile aloha: Learning bimanual mobile manipulation
with low-cost whole-body teleoperation. In Conference on Robot Learning (CoRL), 2024.

Caglar Gulcehre, Sergio Gómez Colmenarejo, Ziyu Wang, Jakub Sygnowski, Thomas Paine, Konrad
Zolna, Yutian Chen, Matthew Hoffman, Razvan Pascanu, and Nando de Freitas. Regularized
behavior value estimation, 2021. URL https://arxiv.org/abs/2103.09575.

David Ha and Jürgen Schmidhuber. World models. CoRR, abs/1803.10122, 2018. URL http:
//arxiv.org/abs/1803.10122.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Proceedings of the
35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pp. 1861–1870. PMLR, 10–15 Jul 2018. URL https://proceedings.
mlr.press/v80/haarnoja18b.html.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. arXiv preprint arXiv:1811.04551,
2018.

11

https://arxiv.org/abs/1905.13320
https://arxiv.org/abs/1905.13320
https://arxiv.org/abs/2106.09119
https://arxiv.org/abs/2106.09119
https://proceedings.neurips.cc/paper_files/paper/2018/file/3de568f8597b94bda53149c7d7f5958c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/3de568f8597b94bda53149c7d7f5958c-Paper.pdf
https://arxiv.org/abs/2310.08864
https://arxiv.org/abs/2103.09575
http://arxiv.org/abs/1803.10122
http://arxiv.org/abs/1803.10122
https://proceedings.mlr.press/v80/haarnoja18b.html
https://proceedings.mlr.press/v80/haarnoja18b.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=S1lOTC4tDS.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models. arXiv preprint arXiv:2301.04104, 2023.

Nicklas Hansen, Hao Su, and Xiaolong Wang. Td-mpc2: Scalable, robust world models for continuous
control, 2024.

Haoyang He. A survey on offline model-based reinforcement learning, 2023. URL https://
arxiv.org/abs/2305.03360.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based
policy optimization. In Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/
paper/2019/file/5faf461eff3099671ad63c6f3f094f7f-Paper.pdf.

Ingmar Kanitscheider, Joost Huizinga, David Farhi, William Hebgen Guss, Brandon Houghton, Raul
Sampedro, Peter Zhokhov, Bowen Baker, Adrien Ecoffet, Jie Tang, Oleg Klimov, and Jeff Clune.
Multi-task curriculum learning in a complex, visual, hard-exploration domain: Minecraft, 2021.
URL https://arxiv.org/abs/2106.14876.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel:
Model-based offline reinforcement learning. In Advances in Neural Information Pro-
cessing Systems, volume 33, pp. 21810–21823. Curran Associates, Inc., 2020. URL
https://proceedings.neurips.cc/paper_files/paper/2020/file/
f7efa4f864ae9b88d43527f4b14f750f-Paper.pdf.

Hyun Kim, Injun Park, Ingook Jang, Seonghyun Kim, Samyeul Noh, and Joonmyon Cho. Exploring
generalization and adaptability of offline reinforcement learning for robot manipulation. In 2023
23rd International Conference on Control, Automation and Systems (ICCAS), pp. 1542–1547,
2023. doi: 10.23919/ICCAS59377.2023.10316902.

Aviral Kumar, Abhishek Gupta, and Sergey Levine. Discor: Corrective feedback
in reinforcement learning via distribution correction. In Advances in Neural Infor-
mation Processing Systems, volume 33, pp. 18560–18572. Curran Associates, Inc.,
2020a. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/d7f426ccbc6db7e235c57958c21c5dfa-Paper.pdf.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. In 34th Conference on Neural Information Processing Systems (NeurIPS
2020), Vancouver, Canada, 2020b.

Aviral Kumar, Rishabh Agarwal, Xinyang Geng, George Tucker, and Sergey Levine. Offline q-
learning on diverse multi-task data both scales and generalizes. In The Eleventh International
Conference on Learning Representations, 2022.

Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin. Offline-to-online
reinforcement learning via balanced replay and pessimistic q-ensemble. In 5th Annual Conference
on Robot Learning, 2021. URL https://openreview.net/forum?id=AlJXhEI6J5W.

Zhixuan Lin, Pierluca D’Oro, Evgenii Nikishin, and Aaron Courville. The curse of diversity in
ensemble-based exploration. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=M3QXCOTTk4.

Tatsuya Matsushima, Hiroki Furuta, Yutaka Matsuo, Ofir Nachum, and Shixiang Gu. Deployment-
efficient reinforcement learning via model-based offline optimization. In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
3hGNqpI4WS.

Ishita Mediratta, Qingfei You, Minqi Jiang, and Roberta Raileanu. The generalization gap in offline
reinforcement learning. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=3w6xuXDOdY.

12

https://openreview.net/forum?id=S1lOTC4tDS
https://arxiv.org/abs/2305.03360
https://arxiv.org/abs/2305.03360
https://proceedings.neurips.cc/paper_files/paper/2019/file/5faf461eff3099671ad63c6f3f094f7f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/5faf461eff3099671ad63c6f3f094f7f-Paper.pdf
https://arxiv.org/abs/2106.14876
https://proceedings.neurips.cc/paper_files/paper/2020/file/f7efa4f864ae9b88d43527f4b14f750f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/f7efa4f864ae9b88d43527f4b14f750f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/d7f426ccbc6db7e235c57958c21c5dfa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/d7f426ccbc6db7e235c57958c21c5dfa-Paper.pdf
https://openreview.net/forum?id=AlJXhEI6J5W
https://openreview.net/forum?id=M3QXCOTTk4
https://openreview.net/forum?id=3hGNqpI4WS
https://openreview.net/forum?id=3hGNqpI4WS
https://openreview.net/forum?id=3w6xuXDOdY

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Thomas M. Moerland, Joost Broekens, Aske Plaat, and Catholijn M. Jonker. Model-based Reinforce-
ment Learning: A Survey. Now Foundations and Trends, 2023.

Miguel Morales. Grokking Deep Reinforcement Learning. Manning, 2020.

Georg Ostrovski, Pablo Samuel Castro, and Will Dabney. The difficulty of passive learning in deep
reinforcement learning. Advances in Neural Information Processing Systems, 34:23283–23295,
2021.

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In Proceedings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learning Research, pp. 2778–2787. PMLR,
06–11 Aug 2017. URL https://proceedings.mlr.press/v70/pathak17a.html.

Marc Rigter, Bruno Lacerda, and Nick Hawes. Rambo-rl: Robust adversarial model-
based offline reinforcement learning. In Advances in Neural Information Process-
ing Systems, volume 35, pp. 16082–16097. Curran Associates, Inc., 2022. URL
https://proceedings.neurips.cc/paper_files/paper/2022/file/
6691c5e4a199b72dffd9c90acb63bcd6-Paper-Conference.pdf.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner, and Deepak Pathak.
Planning to explore via self-supervised world models. In International conference on machine
learning, pp. 8583–8592. PMLR, 2020.

Anya Sims, Cong Lu, and Yee Whye Teh. The edge-of-reach problem in offline model-based
reinforcement learning. CoRR, abs/2402.12527, 2024. doi: 10.48550/ARXIV.2402.12527. URL
https://doi.org/10.48550/arXiv.2402.12527.

Miguel Suau, Matthijs T. J. Spaan, and Frans A. Oliehoek. Bad habits: Policy confounding and
out-of-trajectory generalization in rl. CoRR, 2023. URL https://doi.org/10.48550/
arXiv.2306.02419.

Yunhao Tang, Daniel Zhaohan Guo, Zeyu Zheng, Daniele Calandriello, Yuan Cao, Eugene Tarassov,
Rémi Munos, Bernardo Ávila Pires, Michal Valko, Yong Cheng, and Will Dabney. Understanding
the performance gap between online and offline alignment algorithms, 2024. URL https:
//arxiv.org/abs/2405.08448.

Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel, Tom
Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm_control: Software and tasks for
continuous control. Software Impacts, 6:100022, 2020. ISSN 2665-9638. doi: https://doi.
org/10.1016/j.simpa.2020.100022. URL https://www.sciencedirect.com/science/
article/pii/S2665963820300099.

Xiyao Wang, Ruijie Zheng, Yanchao Sun, Ruonan Jia, Wichayaporn Wongkamjan, Huazhe Xu,
and Furong Huang. Coplanner: Plan to roll out conservatively but to explore optimistically for
model-based rl. In International Conference on Learning Representations, 2024.

Yao Yao, Li Xiao, Zhicheng An, Wanpeng Zhang, and Dijun Luo. Sample efficient reinforcement
learning via model-ensemble exploration and exploitation. In 2021 IEEE International Conference
on Robotics and Automation (ICRA), pp. 4202–4208, 2021. doi: 10.1109/ICRA48506.2021.
9561842.

Denis Yarats, David Brandfonbrener, Hao Liu, Michael Laskin, Pieter Abbeel, Alessandro Lazaric,
and Lerrel Pinto. Don’t change the algorithm, change the data: Exploratory data for offline
reinforcement learning, 2022. URL https://arxiv.org/abs/2201.13425.

Kenny Young and Tian Tian. Minatar: An atari-inspired testbed for thorough and reproducible
reinforcement learning experiments. arXiv preprint arXiv:1903.03176, 2019.

13

https://proceedings.mlr.press/v70/pathak17a.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/6691c5e4a199b72dffd9c90acb63bcd6-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/6691c5e4a199b72dffd9c90acb63bcd6-Paper-Conference.pdf
https://arxiv.org/abs/1707.06347
https://doi.org/10.48550/arXiv.2402.12527
https://doi.org/10.48550/arXiv.2306.02419
https://doi.org/10.48550/arXiv.2306.02419
https://arxiv.org/abs/2405.08448
https://arxiv.org/abs/2405.08448
https://www.sciencedirect.com/science/article/pii/S2665963820300099
https://www.sciencedirect.com/science/article/pii/S2665963820300099
https://arxiv.org/abs/2201.13425

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on Robot Learning (CoRL), 2019. URL https://arxiv.org/abs/1910.
10897.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea
Finn, and Tengyu Ma. Mopo: Model-based offline policy optimization. In Advances
in Neural Information Processing Systems, volume 33, pp. 14129–14142. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/
2020/file/a322852ce0df73e204b7e67cbbef0d0a-Paper.pdf.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea
Finn. Combo: Conservative offline model-based policy optimization. In Advances in Neu-
ral Information Processing Systems, volume 34, pp. 28954–28967. Curran Associates, Inc.,
2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/f29a179746902e331572c483c45e5086-Paper.pdf.

Yang Yue, Bingyi Kang, Xiao Ma, Zhongwen Xu, Gao Huang, and Shuicheng YAN. Boosting
offline reinforcement learning via data rebalancing. In 3rd Offline RL Workshop: Offline RL as a

”Launchpad”, 2022. URL https://openreview.net/forum?id=vOC01fqW2T.

Yang Yue, Rui Lu, Bingyi Kang, Shiji Song, and Gao Huang. Understanding, predicting and better
resolving q-value divergence in offline-RL. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=71P7ugOGCV.

Jinhua Zhu, Yue Wang, Lijun Wu, Tao Qin, Wengang Zhou, Tie-Yan Liu, and Houqiang Li. Making
better decision by directly planning in continuous control. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
r8Mu7idxyF.

A APPENDIX

A.1 IMPLEMENTATION DETAILS

A.1.1 RUNTIME OVERVIEW

Our experiments comprised approximately 2000 runs, totaling 20000 GPU hours. Each run took
between 8 and 15 hours, depending on the specific task. All experiments were conducted using
NVIDIA RTX 4090 or A100 GPUs.

A.1.2 MODEL HYPERPARAMETERS

For all experiments, we use the same model size S, defined in Hafner et al. (2023). Each agent, which
consists of a world model, an actor network, and a critic network, has a total of 18M optimizable
variables. We follow the default values in Hafner et al. (2023) for the training hyperparameters e.g.
learning rate and batch size for each component of the agent as well as other hyperparameters. For
more details about DreamerV3, please refer to Hafner et al. (2023).

A.1.3 ENVIRONMENT HYPERPARAMETERS

We list the environment hyperparameters in Tab. S1. The implementation of the task Point Mass
Maze is based on Yarats et al. (2022).

A.1.4 ENVIRONMENT STEPS IN OFFLINE AGENTS

Tracking performance metrics relative to environment steps during online training is standard practice
in the RL community. This methodology is also applied in the analysis of the offline Tandem agent
in Ostrovski et al. (2021), which closely mirrors the behavior of its Active counterpart.

However, the Passive agent—by definition—does not interact with the environment and thus cannot
influence environment steps. This poses a challenge for directly comparing its performance with that

14

https://arxiv.org/abs/1910.10897
https://arxiv.org/abs/1910.10897
https://proceedings.neurips.cc/paper_files/paper/2020/file/a322852ce0df73e204b7e67cbbef0d0a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/a322852ce0df73e204b7e67cbbef0d0a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/f29a179746902e331572c483c45e5086-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/f29a179746902e331572c483c45e5086-Paper.pdf
https://openreview.net/forum?id=vOC01fqW2T
https://openreview.net/forum?id=71P7ugOGCV
https://openreview.net/forum?id=r8Mu7idxyF
https://openreview.net/forum?id=r8Mu7idxyF

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table S1: Environment hyperparameters for each domain

Hyperparameter DMC Metaworld MinAtar
Image Size [64,64] [64,64] [32,32]

Action Repeat 2 2 1
Episode Truncate - - 2500
Parallel Env Num 4 4 4

of the Active and Tandem agents. To ensure comparability across training procedures, we allow the
Passive agent to interact with the environment during training in the same manner as an online agent,
but without adding the resulting interaction data into its replay buffer. This setup enables the Passive
agent to remain trained solely on an offline dataset while allowing performance comparisons based
on environment steps, with only minimal code changes required.

A.1.5 PSEUDOCODE OF METHODS

We add the pseudocode of the Active, Passive, and Tandem agents (in Alg. 1) as well as the second
remedy (in Alg. 2) for better clarity.

Algorithm 1 Learning agents (key difference is highlighted in its representative colors).

Active Agent
1: Initialize: Replay buffer B

= a few random episodes.
2: World model M + Policy π

by seed SA.
3: for each step i do
4: Sample Di

A ∼ B
5: Update M using Di

A
6: Train π in the imagina-

tion of M
7: Execute π in the env to

expand B
8: Return: Final BA, π

Passive Agent
1: Initialize: Replay buffer B

= previous final BA.
2: World model M + Policy π

by seed SP .
3: for each step i do
4: Sample Di

P ∼ B
5: Update M using Di

P
6: Train π in the imagina-

tion of M
-
-

7: Return: Final B, π

Tandem Agent
1: Initialize: Replay buffer B

= previous final BA.
2: World model M + Policy π

by seed ST .
3: for each step i do
4: Copy Di

T =Di
A

5: Update M using Di
T

6: Train π in the imagina-
tion of M
-
-

7: Return: Final B, π

Algorithm 2 Passive agents adding additional self-generated data (key difference is highlighted in its
representative colors)

Passive Agent
1: Initialize: Replay buffer B

= previous final BA.
2: World model M + Policy π

by seed SP .
3: for each step i do
4: Sample Di ∼ B
5: Update M using Di

6: Train π in the imagina-
tion of M
-
-
-
-

7: Return: Final B, π

Fixed Schedule
1: Initialize: Replay buffer B

= previous final BA.
2: World model M + Policy π

by seed SP .
3: for each step i do
4: Sample Di ∼ B
5: Update M using Di

6: Train π in the imagina-
tion of M

7: if i%N == 0 then
// N = 4K, 20K, 200K

8: Execute π in the env to
expand B by 2K step data

9: Return: Final B, π

Adaptive Schedule
1: Initialize: Replay buffer B

= previous final BA.
2: World model M + Policy π

by seed SP .
3: for each step i do
4: Sample Di ∼ B
5: Update M using Di

6: Train π in the imagina-
tion of M

7: if i%2K == 0 and
ood_ratioi > thres. then

8: Execute π in the env to
expand B by 2K step data

9: Return: Final B, π

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Passive+Auto interact 1.65
Passive+Auto interact 2.0Passive+Auto interact 1.35

Passive+Auto interact 1.2

Figure S1: Ablation studies on threshold value for adaptive Passive agents. We test four threshold values:
2.0, 1.65, 1.35, and 1.2 in three tasks. The last column shows a normalized mean across tasks. The number of
added steps in the third row is shown as a percentage of the original replay buffer size.

A.1.6 ABLATION STUDIES

We test different threshold values used in adaptive Passive agents for autonomously adding self-
generated interaction data. In Fig. S14, we observe that the majority OOD ratio in Active agents
reaches below 2.0 during training. Therefore, we begin with an upper bound threshold value of 2.0
and test four values: 2.0, 1.65, 1.35, and 1.2. It is important to note that this upper bound serves
solely as a reference point for initiating the ablation studies and does not imply any dependence
of the OOD_ratio on the performance of the Active agent. In Fig. S1, we show that although a
lower threshold value (e.g. 1.2) could bring more self-generated data (about 10% average) to the
replay buffer, the improvement in performance is not significant compared to other higher values.
However, a high threshold value (e.g. 2.0 or 1.65) makes the training process less stable, as shown
in the relatively low normalized mean score and an increasing tendency of OOD ratio from step
800K, compared to lower threshold values. But generally, the sensitivity of this threshold value to
performance is low. One can set a low threshold value if the training budget allows. In the main
experiments, we choose a middle threshold value of 1.35, which balances the number of added
interaction data and stable performance.

A.2 SUPPLEMENTARY OF DREAMERV3

The computation of each component in the world model loss:

Lpred(ϕ)
.
= − ln pϕ(xt | zt, ht)− ln pϕ(rt | zt, ht)− ln pϕ(ct | zt, ht)

Ldyn(ϕ)
.
= max

(
1,KL

[
sg(qϕ(zt | ht, xt))

∥∥ pϕ(ẑt | ht)
])

Lrep(ϕ)
.
= max

(
1,KL

[
qϕ(zt | ht, xt)

∥∥ sg(pϕ(ẑt | ht))
]) (S1)

A.3 ADDITIONAL METRICS

Policy input reconstruction loss We train an autoencoder functioning as an OOD detector for
the policy inputs. The autoencoder is optimized to minimize the negative log-likelihood (Eq. S2) to
reconstruct the policy input. Novel policy inputs, that may compromise the quality of output actions,
can be detected using the Mean Squared Error (MSE) reconstruction loss. A higher MSE indicates
that the input is likely novel or anomalous, suggesting the input differs significantly from the training

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

G
ro

un
dt

ru
th

Es
tim

at
io

n
Er

ro
r

Active Passive Tandem

Figure S2: Value function estimation of each agent. The value function V (s) is calculated on the initial state
of each agent’s trajectory, which should reflect the actual discounted rewards accumulated across the entire
trajectory. The ground truth value is computed using Monte Carlo estimation from one sample trajectory. The
error is computed by subtracting the ground truth value from the estimated value.

distribution and could lead to an unreliable policy action.

Lrecon(ϕ)
.
= − ln pϕ(zt, ht | encoder(zt, ht)) (S2)

Value function The expected discounted return—the cumulative sum of future rewards, as shown
in Eq. (1).

The additional metrics are calculated as follows unless specified otherwise: (1) Every 5K environment
steps, we roll out the agent’s policy for a total of 4 episodes. (2) We compute the policy input
reconstruction loss across the 4 episodes. For the value function, we calculate it at the initial state of
each episode trajectory and then average these values across the 4 episodes.

A.4 DISCREPANCY BETWEEN IMAGINATION AND REAL ROLLOUTS

As outlined in Sec. 2.1, the agent’s policy utilizes an actor-critic framework, with the critic predicting
the value function V (s) for each given state. Since the critic is trained in the imagination of the world
model and will subsequently be used to train the actor, it is essential that its value estimates accurately
reflect the agent’s real rollout conditions. If the actual rollout performs poorly, a correctly low-value
estimate from the critic can guide the actor’s updates in a direction that improves performance.
However, in Fig. S2, we show that both Passive and Tandem agents consistently wrongly predict
their value functions, assigning high values even when their actual trajectories yield low rewards.
Throughout training, the value function estimation error for these offline agents remains significantly
higher than that of the Active agent, showing consistent statistical differences across time scales. This
finding highlights that, without the self-correction mechanism, offline agents exhibit a substantial
discrepancy between imagined and real rollouts, evident in the differences between estimated and
ground truth value functions. This misalignment can lead to suboptimal actor updates, ultimately
resulting in unstable or degraded performance.

A.5 PER-STEP ANALYSIS OF PERFORMANCE DEGRADATION

A.5.1 IMPACT OF NOVEL STATES DURING EVALUATION

Novel states disrupt world model output and therefore agent performance during evaluation.
After the agent enters into novel states, the world model will output inaccurate estimations and latent
embeddings. Since the policy network relies on these inaccurate latent states as input, this can start
the catastrophic cycle where each compromised action leads to further novel states and additional
inaccuracies until the episode ends or the agent accidentally re-enters into a familiar state. In Fig. S3,
we provide for two test times trajectories the reward, world model loss, and policy reconstruction loss
across two tasks. A low task reward is typically accompanied by a high world model loss. A high

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

(a) (b)

W
or

ld
 m

od
el

 lo
ss

W
or

ld
 m

od
el

 lo
ss

W
or

ld
 m

od
el

 lo
ss

W
or

ld
 m

od
el

 lo
ss

W
or

ld
 m

od
el

 lo
ss

W
or

ld
 m

od
el

 lo
ss

W
or

ld
 m

od
el

 lo
ss

W
or

ld
 m

od
el

 lo
ss

W
or

ld
 m

od
el

 lo
ss

W
or

ld
 m

od
el

 lo
ss

W
or

ld
 m

od
el

 lo
ss

W
or

ld
 m

od
el

 lo
ss

R
ew

ar
d

R
ew

ar
d

R
ew

ar
d

R
ew

ar
d

R
ew

ar
d

R
ew

ar
d

R
ew

ar
d

R
ew

ar
d

R
ew

ar
d

R
ew

ar
d

R
ew

ar
d

R
ew

ar
d

Po
lic

y
re

co
n.

 lo
ss

Po
lic

y
re

co
n.

 lo
ss

Po
lic

y
re

co
n.

 lo
ss

Po
lic

y
re

co
n.

 lo
ss

Po
lic

y
re

co
n.

 lo
ss

Po
lic

y
re

co
n.

 lo
ss

Po
lic

y
re

co
n.

 lo
ss

Po
lic

y
re

co
n.

 lo
ss

Po
lic

y
re

co
n.

 lo
ss

Po
lic

y
re

co
n.

 lo
ss

Po
lic

y
re

co
n.

 lo
ss

Po
lic

y
re

co
n.

 lo
ss

Po
lic

y
re

co
n.

 lo
ss

Po
lic

y
re

co
n.

 lo
ss

Po
lic

y
re

co
n.

 lo
ss

Po
lic

y
re

co
n.

 lo
ss

Po
lic

y
re

co
n.

 lo
ss

Po
lic

y
re

co
n.

 lo
ss

Po
lic

y
re

co
n.

 lo
ss

Po
lic

y
re

co
n.

 lo
ss

Wall hitting Bad gait

Turnover
Active Passive Tandem Active Passive Tandem

Oscillating

Figure S3: Stepwise analysis within a single test episode of the Point Mass Maze - Vision and Cheetah
Run - Vision tasks from DMC. The plots show the progression of reward, world model loss, and policy input
reconstruction loss at each step as the agent executes actions given by its own policy. Timesteps, where agents
exhibit abnormal behavior, are highlighted with yellow and grey regions. Each episode consists of 500 steps,
with the environments initialized identically across agents. The agents are the fully trained version after 1M
environment steps.

Groundtruth Decoded

Figure S4: World model misinterprets the novel states. In the decoded image (step 324 in Fig. S3) from the
world model of the Tandem agent in task Point Mass Maze - Vision, the ball appears at the goal position while in
the ground truth observation, it is actually in a novel region to the world model.

world model loss typically indicates a high policy input reconstruction loss, meaning the policy is
unfamiliar with such inputs, leading to compromised actions. For task (a) Point Mass Maze - Vision,
the agent never returns to a familiar region once it hits a wall. Similarly, in the task (b) Cheetah Run
- Vision, the Passive and Tandem agents turning over also reaches such OOD states; however, the
Passive agent can recover from the OOD state - the task setting and the environment dynamics allow
to recover more easily, temporarily ending the catastrophic cycle. This is evident from the intervals
of successful actions between failure periods in the Passive agents.

World model can sometimes hallucinate and mislead policy in novel states. We observe unex-
pected instances where the policy input reconstruction loss remains low even when the world model
loss is high, as seen between timestep 300 and 400 in the Tandem agent of the Point Mass Maze -
Vision task in Fig. S3. With closer examination in Fig. S4, the decoded image by the world model
shows the agent has already reached the target position while, in fact, it is still far away from the
target. It indicates that the world model hallucinates in the novel states and produces an incorrect
mapping of the latent state during that period. In this case, the latent state is no longer novel to
the policy, which makes the policy input reconstruction loss ineffective in detecting performance
degradation and misleads the policy to output inadequate actions.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Active Tandem Tandem_sameWM
Passive Passive_sameWM(frozen)

Figure S5: Performance comparison when keeping an equivalent world model in Passive or Tandem agents
to the one of the Active agent throughout training. Despite utilizing the same world model during training,
performance degradation still occurs, albeit to varying degrees.

A.6 BOTH WORLD MODEL AND POLICY AFFECT PERFORMANCE DEGRADATION

To investigate which one, world model or policy, plays the most important role in causing the
performance degradation, we carry out a more controlled experiment in Fig. S5. In this setup, the
Tandem agent’s world model is synchronized with that of the Active agent, replicating its neural
network weights precisely at each training step. This variant, referred to as Tandem_sameWM in
Fig. S5, differs from the Active agent only in the initialization of the policy network. For Passive
agents, we initialize with the final world model from their Active counterpart, then freeze the world
model for the remainder of training. This variant is named Passive_sameWM(frozen) in Fig. S5.
After isolating the effect of different world models on performance degradation, we observe that the
degradation still persists even when using an identical world model to the Active agent. However, the
extent of degradation varies across tasks. In tasks such as Hopper Hop - Proprio, the performance
degradation of the Tandem_sameWM agent is minimal, while it remains significant in others like
Quadruped - Proprio. A similar trend is observed with the Passive_sameWM(frozen) agents. These
findings suggest that deviations in both the world model and policy from the Active agent contribute
to performance degradation, with their relative impacts depending on the specific task. In the
Passive_sameWM(frozen) agent for the Quadruped - Proprio task, we observe an interesting case
where performance degradation is even more severe than in the original Passive agent. This result
further highlights that, without the self-correction mechanism, relying on a well-trained world model
alone is insufficient for achieving good task performance in a different agent.

A.7 DETAILED RESULTS OF CONSIDERATIONS IN PRACTICAL APPLICATIONS

Advantage of training agents offline Although the performance degradation caused by the OOD
issue is prominent in Passive agents, they show potential for faster convergence and more efficient
training, as seen in tasks like Quadruped Run - Vision and Pick-Place - Proprio in Fig. 3. This is
because Passive agents have access to high-quality trajectories from the beginning, while Active
agents must wait until later in training to encounter those trajectories. We validate this hypothesis in
Fig. S8, where Passive agents trained on suboptimal data generally perform worse than those trained
on mixed data. It indicates that mixing expert trajectories into suboptimal data helps the performance,
which matches the case between the Active (suboptimal data) vs. Passive (mixed data) agent in the
early training stage. Therefore, addressing the OOD issue in Passive agents is crucial, as solving
it could unlock the potential for highly efficient agent training. However, we do not observe such
advantages in Tandem agents.

Different model initialization In this section, we answer the question whether the model initializa-
tion affects the performance degradation. In particular, if we initialize the world model and policy
network of a Passive agent using the same seed as the Active one, will the performance differ from
the independently initialized Passive agent? In Fig. S6, we show that no significant difference in the
task performance can be observed with initialization seeds among Passive agents. We also investigate
the sensitivity of task performance to the initialization of weights in model networks of Tandem
agents. By mixing weights of the identically initialized networks as the Active and those of an

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Active Passive-diff TandemPassive-same

Figure S6: Model initialization matters not in Passive agents. Performance comparison when initializing the
world model and policy network of Passive agents with the same and different seed w.r.t. the Active agents.

Active Passive Passive-expert Passive-suboptimal Passive-mixed

Figure S8: Performance comparison when training Passive agents on different halves of the replay buffer
from the Active. We split the replay buffer (red bucket) at the 500K environment steps, as shown in the
schematic illustration on the Point Mass Maze - Vision. The first half (purple bucket) represents the suboptimal
data, while the second half (yellow bucket) mainly contains high-reward expert data. Therefore, Passive-expert,
Passive-suboptimal, and Passive-mixed have a halved replay buffer compared to the normal Passive agent. The
replay buffer of the mixed agent (turquoise bucket) is uniformly sampled from the whole replay buffer.

independent initialization with different ratios α, it allows us to observe whether a tiny difference in
the initialization will cause a big difference in task performance.

w
.
= (1− α) · wActive + α · wTandem (S3)

Tandem-weightsdiff 0.01
Tandem-weightsdiff 0.001
Tandem-weightsdiff 0.0001

Active

Figure S7: Performance comparison
of the world model and policy net-
work of Tandem agents initialized
with mixed weights. Results shown
for different α values (indicated in run
name) as defined in Eq. (S3). Results
for one seed.

In Fig. S7, we observe that even a small deviation from the
weights of the Active agent eventually causes a large difference
in task performance when training on the identical sequence of
training batches each training step.

World model overfitting on expert dataset Another popular
practice to facilitate training a capable agent is to train the agent
on an expert dataset (Kumar et al., 2022). However, in Fig. S8,
we find that training on expert data leads to an even worse per-
formance degradation in Passive agents. It is also indicated by
the high world model loss with a growing tendency. However,
according to the performance of Passive-mixed agents, mix-
ing expert data with suboptimal trajectories can help mitigate
this issue. The expert dataset primarily consists of monotonic
task-solving trajectories, which implies extremely limited state-
space coverage. Incorporating suboptimal data expands this
coverage during training and reduces the OOD issue during policy rollouts in evaluation. This
highlights the importance of broad state-space coverage during training and the need to include

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Active Passive Tandem

Expl. bonus 0.0 Expl. bonus 0.1 Expl. bonus 0.5 Expl. bonus 0.9 Expl. bonus 1.0

Figure S9: Different task has different optimal exploration bonus values. Performance comparison when
assigning different exploration bonuses wexpl in the reward function. The black dashed lines represent pure
task-oriented policy without any exploration bonus.

exploration-equivalent data to ensure a capable agent. This finding matches results from previous
research (Gulcehre et al., 2021; Mediratta et al., 2024; Suau et al., 2023).

World model overfitting on low-dimensional inputs In the Basketball - Proprio and Pick-Place -
Proprio tasks, the performance of the Passive agent declines as the world model loss increases in
the second half of the training process. A similar issue is observed in proprioceptive versions of
DMC tasks in Appendix A.8.2. It indicates that the world model begins to overfit on the fixed data
distribution in the replay buffer, given that the Passive agent is not allowed to add its own interaction
data and cannot change the data distribution progressively in the same way as the Active agent. This
tendency is pronounced in the proprioceptive version because of a lower input dimension for the
world model than image-based observation, more prone to overfitting.

A.8 COMPLETE RESULTS

A.8.1 RESULTS OF AGENTS WITH DIFFERENT EXPLORATION BONUS

In Fig. S9, we show all three analyzed tasks with comparison among different exploration bonus
values. The optimal exploration bonus wexpl is 0.5 for task Quadruped Run - Vision, 0.9 for tasks
Point Mass Maze - Vision and Pick-Place - Proprio.

A.8.2 RESULTS OF TASK-ORIENTED AGENTS

In Fig. S10 and Fig. S11, we show the complete results in 31 tasks corresponding to the discussion
in Sec. 3.4 and Sec. 3.5. The Passive agent initialized using the same seed for the world model
and policy network as the Active agent is marked with a suffix “-same”, while the different model
initialization is marked with “-diff”.

A.8.3 RESULTS OF ADDING SELF-GENERATED DATA

In Fig. S12, Fig. S13, and Fig. S14, we show the complete results in 31 tasks, where we allow the
Passive agents utilize the self-generated data from environmental interaction, corresponding to the
discussion in Sec. 4.2. In Tab. S2, we show how many self-generated data is added to the replay buffer
by Passive+Auto interact agents. The percentage is calculated using the number of additionally added

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

steps divided by the total number of steps in the original replay buffer. In Fig. S15, we also show that
our adaptive agent Passive+Auto interact can converge fast and require minimal interaction data to
recover the performance.

Table S2: Percentage of added self-generated data by Passive+Auto interact agents

Task Percentage (%) Task Percentage (%)
cheetah_run-proprio 10.44% walker_walk-proprio 18.27%
cheetah_run-vision 6.53% walker_walk-vision 7.87%
cup_catch-proprio 0.67% assembly-proprio 8.04%
cup_catch-vision 9.47% basketball-proprio 7.16%
finger_turn_hard-proprio 2.53% button-press-proprio 4.04%
finger_turn_hard-vision 3.47% lever-pull-proprio 1.20%
hopper_hop-proprio 4.31% peg-insert-side-proprio 2.31%
hopper_hop-vision 4.00% pick-place-proprio 9.82%
humanoid_walk-proprio 17.78% soccer-proprio 14.93%
humanoid_walk-vision 3.60% window-open-proprio 1.47%
point_mass_maze-proprio 0.00% asterix-vision 2.68%
point_mass_maze-vision 4.62% breakout-vision 1.86%
quadruped_run-proprio 2.53% freeway-vision 0.00%
quadruped_run-vision 2.93% seaquest-vision 0.07%
reacher_hard-proprio 2.27% spaceinvaders-vision 0.47%
reacher_hard-vision 20.31% Average 5.67%

A.8.4 RESULTS OF EXPLORATIVE AGENTS

In Fig. S16 and Fig. S17, we show the complete results in 31 tasks using agents with pure exploration
rewards, corresponding to the discussion in Sec. 4.1. The Passive agent initialized using the same
seed for the world model and policy network as the Active agent is marked with a suffix “-same”,
while the different model initialization is marked with “-diff”.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Environment steps Environment steps Environment steps Environment steps Environment steps Environment steps

Environment steps Environment steps Environment steps Environment steps Environment steps Environment steps

Environment steps Environment steps Environment steps Environment steps Environment steps Environment steps
Active Passive-diff TandemPassive-same

Figure S10: Episode score of 31 tasks. The first 18 tasks are from DMC, the subsequent 8 tasks are from
Metaworld, and the last 5 are from the MinAtar domain. We also output a normalized mean score across tasks.
The Passive-same is Passive agents initialized identically as the Active agents while Passive-diff is independently
initialized.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Environment steps Environment steps Environment steps Environment steps Environment steps Environment steps

Environment steps Environment steps Environment steps Environment steps Environment steps Environment steps

Environment steps Environment steps Environment steps Environment steps Environment steps Environment steps
Active Passive-diff TandemPassive-same

Figure S11: World model loss of 31 tasks. In the last subplot, we show an additional normalized mean result
across tasks.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Environment steps Environment steps Environment steps Environment steps Environment steps Environment steps

Environment steps Environment steps Environment steps Environment steps Environment steps Environment steps

Environment steps Environment steps Environment steps Environment steps Environment steps Environment steps
Active Passive Passive+0.01 interact
Passive+0.1 interact Passive+0.5 interact Passive+Auto interact

Figure S12: Episode score of 31 tasks. In the last subplot, we show an additional normalized mean result across
tasks.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Environment steps Environment steps Environment steps Environment steps Environment steps Environment steps

Environment steps Environment steps Environment steps Environment steps Environment steps Environment steps

Environment steps Environment steps Environment steps Environment steps Environment steps Environment steps
Active Passive Passive+0.01 interact
Passive+0.1 interact Passive+0.5 interact Passive+Auto interact

Figure S13: World model loss of 31 tasks. In the last subplot, we show an additional normalized mean result
across tasks.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Environment steps Environment steps Environment steps Environment steps Environment steps Environment steps

Environment steps Environment steps Environment steps Environment steps Environment steps Environment steps

Environment steps Environment steps Environment steps Environment steps Environment steps Environment steps
Active Passive Passive+0.01 interact
Passive+0.1 interact Passive+0.5 interact Passive+Auto interact

Figure S14: OOD ratio of 31 tasks. In the last subplot, we show an additional mean result across tasks.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

30%
100%

Training progress

N
or

m
al

iz
ed

 s
co

re

Interactions

Average over 31 tasks

Active
Passive
Passive+0.01 interact
Passive+0.1 interact
Passive+0.5 interact
Passive+Auto interact

Figure S15: Performance comparison between different Passive agents allowed environment interaction.
The y-axis is the average normalized episode score across 31 tasks. The x-axis shows how many self-generated
interaction data are added to the replay buffer. Generally, an agent with markers closest to the top left corner is
the best, having the fastest convergence speed and highest score, and requires minimal self-generated interaction
data.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Environment steps Environment steps Environment steps Environment steps Environment steps Environment steps

Environment steps Environment steps Environment steps Environment steps Environment steps Environment steps

Environment steps Environment steps Environment steps Environment steps Environment steps Environment steps
Active-task (final) Active-expl. Passive-expl.-diffPassive-expl.-same Tandem-expl.

Figure S16: Episode score of 31 tasks using agents with pure exploration rewards. We also show the final
performance of a task-oriented Active agent as the baseline in black dashed horizontal lines. In the last subplot,
we show an additional normalized mean result across tasks.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Environment steps Environment steps Environment steps Environment steps Environment steps Environment steps

Environment steps Environment steps Environment steps Environment steps Environment steps Environment steps

Environment steps Environment steps Environment steps Environment steps Environment steps Environment steps
Active-expl. Passive-expl.-diffPassive-expl.-same Tandem-expl.

Figure S17: World model loss of 31 tasks using agents with pure exploration rewards. In the last subplot,
we show an additional normalized mean result across tasks.

30

	Introduction
	Method
	Preliminaries
	Learning Agents

	Experiments
	Environment Setup
	Metrics for Analysis
	Toy Example
	Validation across Tasks
	Deep Dive into Performance Degradation
	OOD in MBRL
	World model loss is a pessimistic indicator of performance degradation
	Expert data alone exacerbates OOD issues
	Considerations in Practical Applications

	Potential Remedies from a Data Perspective
	Training on Exploration Data
	Adding Additional Self-generated Data

	Related Work
	Conclusions and Discussions
	Reproducibility Statement
	Appendix
	Implementation Details
	Runtime Overview
	Model Hyperparameters
	Environment Hyperparameters
	Environment Steps in Offline Agents
	Pseudocode of methods
	Ablation Studies

	Supplementary of DreamerV3
	Additional Metrics
	Discrepancy between Imagination and Real Rollouts
	Per-step Analysis of Performance Degradation
	Impact of Novel States during Evaluation

	Both world model and policy affect performance degradation
	Detailed Results of Considerations in Practical Applications
	Complete Results
	Results of Agents with Different Exploration Bonus
	Results of Task-oriented Agents
	Results of Adding Self-generated Data
	Results of Explorative Agents

