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Abstract

Given a long list of anomaly detection algorithms developed in the last few decades,
how do they perform with regard to (i) varying levels of supervision, (ii) different
types of anomalies, and (7ii) noisy and corrupted data? In this work, we answer
these key questions by conducting (to our best knowledge) the most comprehen-
sive anomaly detection benchmark with 30 algorithms on 57 benchmark datasets,
named ADBench. Our extensive experiments (98,436 in total) identify meaningful
insights into the role of supervision and anomaly types, and unlock future directions
for researchers in algorithm selection and design. With ADBench, researchers
can efficiently conduct comprehensive and fair evaluations for newly proposed
methods on the datasets (including our contributed ones from natural language and
computer vision domains) against the existing baselines. To foster accessibility and
reproducibility, we fully open-source ADBench and the corresponding results.

1 Introduction

Anomaly detection (AD), which is also known as outlier detection, is a key machine learning (ML)
task with numerous applications, including anti-money laundering [94], rare disease detection [196],
social media analysis [[186 193], and intrusion detection [88]]. AD algorithms aim to identify data
instances that deviate significantly from the majority of data objects [S9}[139,1146}(160], and numerous
methods have been developed in the last few decades [3} 185} 102} {103} 129} 156172, [198]]. Among
them, the majority are designed for tabular data (i.e., no time dependency and graph structure). Thus,
we focus on the tabular AD algorithms and datasets in this work.

Although there are already some benchmark and evaluation works for tabular AD [25/138} 142} (53} [166]],
they generally have the limitations as follows: (i) primary emphasis on unsupervised methods only
without including emerging (semi-)supervised AD methods; (i7) limited analysis of the algorithm
performance concerning anomaly types (e.g., local vs. global); (iii) the lack of analysis on model
robustness (e.g., noisy labels and irrelevant features); (iv) the absence of using statistical tests for
algorithm comparison; and (v) no coverage of more complex CV and NLP datasets, which have
attracted extensive attention nowadays.

To address these limitations, we design (to our best knowledge) the most comprehensive tabular
anomaly detection benchmark called ADBench. By analyzing both research needs and deployment
requirements in the industry, we design the experiments with three major angles in anomaly detection
(see §3.3): (i) the availability of supervision (e.g., ground truth labels) by including 14 unsupervised,
7 semi-supervised, and 9 supervised methods; (ii) algorithm performance under different types of
anomalies by simulating the environments with four types of anomalies; and (iii) algorithm robustness
and stability under three settings of data corruptions. Fig. [T| provides an overview of ADBench.

Key takeaways: Through extensive experiments, we find (i) surprisingly none of the benchmarked
unsupervised algorithms is statistically better than others, emphasizing the importance of algorithm
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Figure 1: The design of the proposed ADBench is driven by research and application needs.

selection; (if) with merely 1% labeled anomalies, most semi-supervised methods can outperform the
best unsupervised method, justifying the importance of supervision; (iif) in controlled environments,
we observe that the best unsupervised methods for specific types of anomalies are even better than
semi- and fully-supervised methods, revealing the necessity of understanding data characteristics; (iv)
semi-supervised methods show potential in achieving robustness in noisy and corrupted data, possibly
due to their efficiency in using labels and feature selection. See §d|for additional results and insights.

We summarize the primary contributions of ADBench as below:

1. The most comprehensive AD benchmark. ADBench examines 30 detection algorithms’ perfor-
mance on 57 benchmark datasets (of which 47 are existing ones and we create 10).

2. Research and application-driven benchmark angles. By analyzing the needs of research and
real-world applications, we focus on three critical comparison angles: availability of supervision,
anomaly types, and algorithm robustness under noise and data corruption.

3. Insights and future directions for researchers and practitioners. With extensive results, we
show the necessity of algorithm selection, and the value of supervision and prior knowledge.

4. Fair and accessible AD evaluation. We open-source ADBench with BSD-2 License at https:
//github.com/Minqi824/ADBench, for benchmarking newly proposed methods.

2 Related Work

2.1 Anomaly Detection Algorithms

Unsupervised Methods by Assuming Anomaly Data Distributions. Unsupervised AD methods
are proposed with different assumptions of data distribution [3]], e.g., anomalies located in low-density
regions, and their performance depends on the agreement between the input data and the algorithm
assumption(s). Many unsupervised methods have been proposed in the last few decades [3 [15/ 129,
150, [198]], which can be roughly categorized into shallow and deep (neural network) methods. The
former often carries better interpretability, while the latter handles large, high-dimensional data better.
Please see Appx. §A.T] recent book [3], and surveys [129] [150] for additional information.

Supervised Methods by Treating Anomaly Detection as Binary Classification. With the accessi-
bility of full ground truth labels (which is rare), supervised classifiers may identify known anomalies
at the risk of missing unknown anomalies. Arguably, there are no specialized supervised anomaly
detection algorithms, and people often use existing classifiers for this purpose [3 [170] such as
Random Forest [21] and neural networks [89]. One known risk of supervised methods is that ground
truth labels are not necessarily sufficient to capture all types of anomalies during annotation. These
methods are therefore limited to detecting unknown types of anomalies [3]]. Recent machine learning
books [4,154] and scikit-learn [133] may serve as good sources of supervised ML methods.

Semi-supervised Methods with Efficient Use of Labels. Semi-supervised AD algorithms can
capitalize the supervision from partial labels, while keeping the ability to detect unseen types of
anomalies. To this end, some recent studies investigate using partially labeled data for improving
detection performance and leveraging unlabeled data to facilitate representation learning. For
instance, some semi-supervised models are trained only on normal samples, and detect anomalies
that deviate from the normal representations learned in the training process [7, 8}, [188]]. In ADBench,
semi-supervision mostly refers to incomplete label learning in weak-supervision (see [206]). More
discussions on semi-supervised AD are deferred to Appx. §A.3]

2.2 Existing Datasets and Benchmarks for Tabular AD

AD Datasets in Literature. Existing benchmarks mainly evaluate a part of the datasets derived from
the ODDS Library [145], DAMI Repository [25], ADRepository [129], and Anomaly Detection
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Table 1: Comparison among ADBench and existing benchmarks, where ADBench comprehensively
includes the most datasets and algorithms, uses both benchmark and synthetic datasets, covers both
shallow and deep learning (DL) algorithms, and considers multiple comparison angles.

Benchmark | Coverage ( Data Source Algorithm Type Comparison Angle (
| #datasets #algo. | Real-world ~Synthetic | Shallow DL | Supervision Types Robustness
Ruff et al. [150] 3 9 v v v v X v X
Goldstein et al. [53] 10 19 v X v X X v X
Domingues et al. [38] 15 14 v X v X X X v
Soenen et al. [164] 16 6 v X v X X X X
Steinbuss et al. [166] 19 4 X v v X X v X
Emmott et al. [42] 19 8 v v v X X v v
Campos et al. [25] 23 12 v X v X X X X
ADBench (ours) | 57 30 | v v | v v v v v

Meta-Analysis Benchmarks [42]. In ADBench, we include almost all publicly available datasets, and
add larger datasets adapted from CV and NLP domains, for a more holistic view. See details in §3.2]

Existing Benchmarks. There are some notable works that take effort to benchmark AD methods on
tabular data, e.g., [25 38|42} [150, 166] (see Appx. [A.4). How does ADBench differ from them?

First, previous studies mainly focus on benchmarking the shallow unsupervised AD methods. Con-
sidering the rapid advancement of ensemble learning and deep learning methods, we argue that a
comprehensive benchmark should also consider them. Second, most existing works only evaluate
public benchmark datasets and/or some fully synthetic datasets; we organically incorporate both of
them to unlock deeper insights. More importantly, existing benchmarks primarily focus on direct
performance comparisons, while the settings may not be sufficiently complex to understand AD
algorithm characteristics. We strive to address the above issues in ADBench, and illustrate the main
differences between the proposed ADBench and existing AD benchmarks in Table[T]

Also, “anomaly detection” is an overloaded term; there are AD benchmarks for time-series [85, 187,
132]], graph [101], CV [6}27,1203]] and NLP [[143]], but they are different from tabular AD in nature.

2.3 Connections with Related Fields and Other Opportunities

While ADBench focuses on the AD tasks, we note that there are some closely related problems,
including out-of-distribution (OOD) detection [182, [183]], novelty detection [116}[137], and open-set
recognition (OSR) [51}[112]]. Uniquely, AD usually does not assume the train set is anomaly-free,
while other related tasks may do. Some methods designed for these related fields, e.g., OCSVM [157],
can be used for AD as well; future benchmark can consider including: (i) OOD methods: MSP [65],
energy-based EBO [104]], and Mahalanobis distance-based MDS [92]; (ii) novelty detection methods:
OCGAN [135] and Adversarial One-Class Classifier [154]; and (ii{) OSR methods: OpenGAN [79]
and PROSER [204]. See [155]] for deeper connections and differences between AD and these fields.

We consider saliency detection (SD) [44]146] and camouflage detection (CD) [45] as good inspirations
and applications of AD tasks. Saliency detection identifies important regions in the images, where
explainable AD algorithms [[123], e.g., FCDD [106], may help the task. Camouflage detection finds
concealed objects in the background, e.g., camouflaged anomalies blurred with normal objects [110],
where camouflage-resistant AD methods [40] help detect concealed objects (that look normal but are
abnormal). Future work can explore the explainability of detected objects in AD.

3 ADBench: AD Benchmark Driven by Research and Application Needs

3.1 Preliminaries and Problem Definition

Unsupervised AD often presents a collection of n samples X = {x1, ..., 2, } € R"*%, where each
sample has d features. Given the inductive setting, the goal is to train an AD model M to output
anomaly score O := M (X) € R"™*!, where higher scores denote for more outlyingness. In the
inductive setting, we need to predict on X € R™*%, 50 to return Oyeq := M (Xieq) € R™¥L.

Supervised AD also has the (binary) ground truth labels of X, i.e., y € R"*. A supervised AD
model M is first trained on {X, y }, and then returns anomaly scores for the Oy = M (Xiest)-

Semi-supervised AD only has the partial label information y' € y . The AD model M is trained on
the entire feature space X with the partial label y', i.e., {X,y'}, and then outputs Oyeq == M (Xiegt).
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Figure 2: ADBench covers a wide range of AD algorithms. See Appx. for more details.

Remark. Irrespective of the types of underlying AD algorithms, the goal of ADBench is to understand
AD algorithms’ performance under the inductive setting. Collectively, we refer semi-supervised and
supervised AD methods as “label-informed” methods. Refer to §4.1| for specific experiment settings.

3.2 The Largest AD Benchmark with 30 Algorithms and 57 Datasets

Algorithms. Compared to the previous benchmarks, we have a larger algorithm collection with (i) the
latest unsupervised AD algorithms like DeepSVDD [151]] and ECOD [97]; (ii) SOTA semi-supervised
algorithms, including DeepSAD [152] and DevNet [131]]; (iii) latest network architectures like
ResNet [62] in computer vision (CV) and Transformer [[171] in the natural language processing (NLP)
domain—we adapt ResNet and FTTransformer models [56] for tabular AD in the proposed ADBench;
and (iv) ensemble learning methods like LightGBM [74]], XGBoost [29]], and CatBoost [138]] that
have shown effectiveness in AD tasks [170]. Fig. [2] shows the 30 algorithms (14 unsupervised,
7 semi-supervised, and 9 supervised algorithms) evaluated in ADBench, where we provide more
information about them in Appx. [B.1]

Algorithm Implementation. Most unsupervised algorithms are readily available in our early work
Python Outlier Detection (PyOD) [198]], and some supervised methods are available in scikit-learn
[133]] and corresponding libraries. Supervised ResNet and FTTransformer tailored for tabular data
have been open-sourced in their original paper [S6]. We implement the semi-supervised methods and
release them along with ADBench.

Public AD Datasets. In ADBench, we gather more than 40 benchmark datasets [25] 42| [129]
145}, for model evaluation, as shown in Appx. Table[BI] These datasets cover many application
domains, including healthcare (e.g., disease diagnosis), audio and language processing (e.g., speech
recognition), image processing (e.g., object identification), finance (e.g., financial fraud detection),
etc. For due diligence, we keep the datasets where the anomaly ratio is below 40% (Appx. Fig. [BI).

Newly-added Datasets in ADBench. Since most of these datasets are relatively small, we introduce
10 more complex datasets from CV and NLP domains with more samples and richer features in
ADBench (highlighted in Appx. Table[BT). Pretrained models are applied to extract data embedding
from CV and NLP datasets to access more complex representations, which has been widely used in
AD literature [33, 115} [152]] and shown better results than using the raw features. For NLP datasets,
we use BERT [75]] pretrained on the BookCorpus and English Wikipedia to extract the embedding
of the [CLS] token. For CV datasets, we use ResNet18 [[62] pretrained on the ImageNet [35] to
extract the embedding after the last average pooling layer. Following previous works [151} [152]],
we set one of the multi-classes as normal, downsample the remaining classes to 5% of the total
instances as anomalies, and report the average results over all the respective classes. Including these
originally non-tabular datasets helps to see whether tabular AD methods can work on CV/NLP data
after necessary preprocessing. See Appx. for more details on datasets.

3.3 Benchmark Angles in ADBench

3.3.1 Angle I: Availability of Ground Truth Labels (Supervision)

Motivation. As shown in Table[I} existing benchmarks only focus on the unsupervised setting, i.e.,
none of the labeled anomalies is available. Despite, in addition to unlabeled samples, one may have
access to a limited number of labeled anomalies in real-world applications, e.g., a few anomalies
identified by domain experts or human-in-the-loop techniques like active learning [5. (7, [78, [189].
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Notably, there is a group of semi-supervised AD algorithms [[127, 128, (130, 131 [152} [168 205]] that
have not been covered by existing benchmarks.

Our design: We first benchmark existing unsupervised anomaly detection methods, and then evaluate
both semi-supervised and fully-supervised methods with varying levels of supervision following the
settings in [127, [131} 203] to provide a fair comparison. For example, labeled anomalies v; = 10%
means that 10% anomalies in the train set are known while other samples remain unlabeled. The
complete experiment results of un-, semi-, and full-supervised algorithms are presented in §4.2]

3.3.2 Angle II: Types of Anomalies

Motivation. While extensive public datasets can be used for benchmarking, they often consist of a
mixture of different types of anomalies, making it challenging to understand the pros and cons of AD
algorithms regarding specific types of anomalies [55,[166]]. In real-world applications, one may know
specific types of anomalies of interest. To better understand the impact of anomaly types, we create
synthetic datasets based on public datasets by injecting specific types of anomalies to analyze the
response of AD algorithms.

Our design: In ADBench, we create realistic synthetic datasets from benchmark datasets by injecting
specific types of anomalies. Some existing works, such as PyOD [[19§]], generate fully synthetic
anomalies by assuming their data distribution, which fails to create complex anomalies. We follow
and enrich the approach in [[L66]] to generate “realistic” synthetic data; ours supports more types of
anomaly generation. The core idea is to build a generative model (e.g., Gaussian mixture model
GMM used in [166], Sparx [191]], and ADBench) using the normal samples from a benchmark
dataset and discard its original anomalies as we do not know their types. Then, We could generate
normal samples and different types of anomalies based on their definitions by tweaking the generative
model. The generation of normal samples is the same in all settings if not noted, and we provide the
generation process of four types of anomalies below (also see our codebase for details).

Definition and Generation Process of Four Types of Common Anomalies Used in ADBench:

* Local anomalies refer to the anomalies that are deviant from their local neighborhoods [22]]. We
follow the GMM procedure [[118,[166] to generate synthetic normal samples, and then scale the

covariance matrix X = X by a scaling parameter o = 5 to generate local anomalies.
* Global anomalies are more different from the normal data [68]], generated from a uniform distri-
bution Unif (v - min (X*) , a - max (X*)), where the boundaries are defined as the min and max

of an input feature, e.g., k-th feature X¥, and o = 1.1 controls the outlyingness of anomalies.

* Dependency anomalies refer to the samples that do not follow the dependency structure which
normal data follow [[117], i.e., the input features of dependency anomalies are assumed to be
independent of each other. Vine Copula [1]] method is applied to model the dependency structure
of original data, where the probability density function of generated anomalies is set to complete
independence by removing the modeled dependency (see [117]]). We use Kernel Density Estimation
(KDE) [61]] to estimate the probability density function of features and generate normal samples.

* Clustered anomalies, also known as group anomalies [93]], exhibit similar characteristics [42,[99].
We scale the mean feature vector of normal samples by o = 5, i.e., ft = afi, where « controls the
distance between anomaly clusters and the normal, and use the scaled GMM to generate anomalies.

Fig. [3| shows 2-d t-SNE [169] visualization of the four types of synthetic outliers generated from
Lymphography dataset, where they generally satisfy the expected characteristics. Local anomalies
(Fig. [3a) are well overlapped with the normal samples. Global anomalies (Fig. [3b) are more deviated
from the normal samples and on the edges of normal clusters. The other two types of anomalies are
as expected, with no clear dependency structure in Fig. [3c|and having anomaly cluster(s) in Fig. [3d]
In ADBench, we analyze the algorithm performances under all four types of anomalies above (§4.3).
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3.3.3 Angle III: Model Robustness with Noisy and Corrupted Data
Motivation. Model robustness has been an important aspect of anomaly detection and adversarial
machine learning [24] 41} 147, [76| [177]. Meanwhile, the input data likely suffers from noise and
corruption to some extent in real-world applications [42, 55,160} |124]. However, this important view
has not been well studied in existing benchmarks, and we try to understand this by evaluating AD
algorithms under three noisy and corruption settings (see results in §4.4):

* Duplicated Anomalies. In many applications, certain anomalies likely repeat multiple times in
the data for reasons such as recording errors [[83]]. The presence of duplicated anomalies is also
called the “anomaly masking” [55} 160, [100], posing challenges to many AD algorithms [25], e.g.,
the density-based KNN [[L1} [144]]. Besides, the change of anomaly frequency would also affect the
behavior of detection methods [42]]. Therefore, we simulate this setting by splitting the data into
train and test set, then duplicating the anomalies (both features and labels) up to 6 times in both
sets, and observing how AD algorithms change.

* Irrelevant Features. Tabular data may contain irrelevant features caused by measurement noise or
inconsistent measuring units [28} [55]], where these noisy dimensions could hide the characteristics
of anomaly data and thus make the detection process more difficult [128}[150]]. We add irrelevant
features up to 50% of the total input features (i.e., d in the problem definition) by generating
uniform noise features from Unif (min (X*) , max (X*)) of randomly selected k-th input feature
XX while the labels stay correct, and summarize the algorithm performance changes.

* Annotation Errors. While existing studies [131} [152] explored anomaly contamination in the
unlabeled samples, we further discuss the more generalized impact of label contamination on the
algorithm performance, where the label flips [122,202] between the normal samples and anomalies
are considered (up to 50% of total labels). Note this setting does not affect unsupervised methods as
they do not use any labels. Discussion of annotation errors is meaningful since manual annotation
or some automatic labeling techniques are always noisy while being treated as perfect.

4 Experiment Results and Analyses

We conduct 98,436 experiments (Appx. [C) to answer Q1 (§4.2): How do AD algorithms perform
with varying levels of supervision? Q2 (§4.3): How do AD algorithms respond to different types
of anomalies? Q3 (§4.4): How robust are AD algorithms with noisy and corrupted data? In each
subsection, we first present the key results and analyses (please refer to the additional points in Appx.
[D), and then propose a few open questions and future research directions.

4.1 Experiment Setting

Datasets, Train/test Data Split, and Independent Trials. As described in §3.2and Appx. Table[BI]
ADBench includes 57 existing and freshly proposed datasets, which cover different fields including
healthcare, security, and more. Although unsupervised AD algorithms are primarily designed for
the transductive setting (i.e., outputting the anomaly scores on the input data only other than making
predictions on the newcoming data), we adapt all the algorithms for the inductive setting to predict
the newcoming data, which is helpful in applications and also common in popular AD library PyOD
[198]], TODS [84]], and PyGOD [102]. Thus, we use 70% data for training and the remaining 30%
as the test set. We use stratified sampling to keep the anomaly ratio consistent. We repeat each
experiment 3 times and report the average. Detailed settings are described in Appx. [C]

Hyperparameter Settings. For all the algorithms in ADBench, we use their default hyperparameter
(HP) settings in the original paper for a fair comparison. Refer to the Appx. [C|for more information.

Evaluation Metrics and Statistical Tests. We evaluate different AD methods by two widely used
metrics: AUCROC (Area Under Receiver Operating Characteristic Curve) and AUCPR (Area Under
Precision-Recall Curve) Valu Besides, the critical difference diagram (CD diagram) [34,[70] based
on the Wilcoxon-Holm method is used for comparing groups of AD methods statistically (p < 0.05).

4.2 Overall Model Performance on Datasets with Varying Degrees of Supervision

As introduced in §3.3.1] we first present the results of unsupervised methods on 57 datasets in Fig. [da]
and then compare label-informed semi- and fully-supervised methods under varying degrees of
supervision, i.e., different label ratios of ~y; (from 1% to 100% full labeled anomalies) in Fig. @

'We present the results based on AUCROC and observe similar results for AUCPR; See Appx. @for all.
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None of the unsupervised methods is statistically better than the others, as shown in the critical
difference diagram of Fig. fa](where most algorithms are horizontally connected without statistical
significance). We also note that some DL-based unsupervised methods like DeepSVDD and DAGMM
are surprisingly worse than shallow methods. Without the guidance of label information, DL-based
unsupervised algorithms are harder to train (due to more hyperparameters) and more difficult to tune
hyperparameters, leading to unsatisfactory performance.

Semi-supervised methods outperform supervised methods when limited label information is
available. For v; < 5%, i.e., only less than 5% labeled anomalies are available during training,
the detection performance of semi-supervised methods (median AUCROC= 75.56% for v, = 1%
and AUCROC= 80.95% for ; = 5%) are generally better than that of fully-supervised algorithms
(median AUCROC= 60.84% for v, = 1% and AUCROC= 72.69% for v; = 5%). For most semi-
supervised methods, merely 1% labeled anomalies are sufficient to surpass the best unsupervised
method (shown as the dashed line in Fig. @) while most supervised methods need 10% labeled
anomalies to achieve so. We also show the improvement of algorithm performances about the
increasing +;, and notice that with a large number of labeled anomalies, both semi-supervised and
supervised methods have comparable performance. Putting these together, we verify the assumed
advantage of semi-supervised methods in leveraging limited label information more efficiently.

Latest network architectures like Transformer and emerging ensemble methods yield compet-
itive performance in AD. Fig. db| shows FTTransformer and ensemble methods like XGB(oost)
and CatB(oost) provide satisfying detection performance among all the label-informed algorithms,
even these methods are not specifically proposed for the anomaly detection tasks. For v = 1%,
the AUCROC of FTTransformer and the median AUCROC of ensemble methods are 74.68% and
76.47%, respectively, outperforming the median AUCROC of all label-informed methods 72.91%.
The great performance of tree-based ensembles (in tabular AD) is consistent with the findings in
literature [20} 58, [170]], which may be credited to their capacity to handle imbalanced AD datasets
via aggregation. Future research may focus on understanding the cause and other merits of ensemble
trees in tabular AD, e.g., better model efficiency.



Runtime Analysis. We present the train and inference time in Fig. [4d|and Appx. Fig. Runtime
analysis finds that HBOS, COPOD, ECOD, and NB are the fastest as they treat each feature inde-
pendently. In contrast, more complex representation learning methods like XGBOD, ResNet, and
FTTansformer are computationally heavy. This should be factored in for algorithm selection.

Future Direction 1: Unsupervised Algorithm Evaluation, Selection, and Design. For unsupervised
AD, the results suggest that future algorithms should be evaluated on large testbeds like ADBench for
statistical tests (such as via critical difference diagrams). Meanwhile, the no-free-lunch theorem [[175]]
suggests there is no universal winner for all tasks, and more focus should be spent on understanding
the suitability of each AD algorithm. Notably, algorithm selection and hyperparameter optimization
are important in unsupervised AD, but limited works [[13} 109,194,199, 200] have studied them. We
may consider self-supervision [140} 158,161} 1179] and transfer learning [33]] to improve tabular AD
as well. Thus, we call for attention to large-scale evaluation, task-driven algorithm selection, and data
augmentation/transfer for unsupervised AD.

Future Direction 2: Semi-supervised Learning. By observing the success of using limited labels in
AD, we would call for more attention to semi-supervised AD methods which can leverage both the
guidance from labels efficiently and the exploration of the unlabeled data. Regarding backbones, the
latest network architectures like Transformer and ensembling show their superiority in AD tasks.

4.3 Algorithm Performance under Different Types of Anomalies

Under four types of anomalies introduced in §3.3.2)), we show the performances of unsupervised
methods in Fig.[5] and then compare both semi- and fully-supervised methods in Fig. 6]
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Figure 5: Avg. rank (lower the better) of unsupervised methods on different types of anomalies.
Groups of algorithms not significantly different are connected horizontally in the CD diagrams. The
unsupervised methods perform well when their assumptions conform to the underlying anomaly type.

Performance of unsupervised algorithms highly depends on the alignment of its assumptions
and the underlying anomaly type. As expected, local anomaly factor (LOF) is statistically better
than other unsupervised methods for the local anomalies (Fig. [3_2_1]), and KNN, which uses k-th (global)
nearest neighbor’s distance as anomaly scores, is the statistically best detector for global anomalies
(Fig.[5b). Again, there is no algorithm performing well on all types of anomalies; LOF achieves
the best AUCROC on local anomalies (Fig. [5a)) and the second best AUCROC rank on dependency
anomalies (Fig.[5c)), but performs poorly on clustered anomalies (Fig.[5d). Practitioners should select
algorithms based on the characteristics of the underlying task, and consider the algorithm which may
cover more high-interest anomaly types [93]].

The “power” of prior knowledge on anomaly types may overweigh the usage of partial labels.
For the local, global, and dependency anomalies, most label-informed methods perform worse than
the best unsupervised methods of each type (corresponding to LOF, KNN, and KNN). For example,
the detection performance of XGBOD for the local anomalies is inferior to the best unsupervised
method LOF when ~y; < 50%, while other methods perform worse than LOF in all cases (See Fig. [@)
Why could not label-informed algorithms beat unsupervised methods in this setting? We believe that
partially labeled anomalies cannot well capture all characteristics of specific types of anomalies, and
learning such decision boundaries is challenging. For instance, different local anomalies often exhibit
various behaviors, as shown in Fig. which may be easier to identify by a generic definition of
“locality" in unsupervised methods other than specific labels. Thus, incomplete label information may
bias the learning process of these label-informed methods, which explains their relatively inferior
performances compared to the best unsupervised methods. This conclusion is further verified by
the results of clustered anomalies (See Fig. [6d), where label-informed (especially semi-supervised)
methods outperform the best unsupervised method OCSVM, as few labeled anomalies can already
represent similar behaviors in the clustered anomalies (Fig. [3d).

Future Direction 3: Leveraging Anomaly Types as Valuable Prior Knowledge. The above results
emphasize the importance of knowing anomaly types in achieving high detection performance even
without labels, and call for attention to designing anomaly-type-aware detection algorithms. In an
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Figure 6: Semi- (left of each subfigure) and supervised (right) algorithms’ performance on different
types of anomalies with varying levels of labeled anomalies. Surprisingly, these label-informed
algorithms are inferior to the best unsupervised method except for the clustered anomalies.

ideal world, one may combine multiple AD algorithms based on the composition of anomaly types,
via frameworks like dynamic model selection and combination [197]]. To our knowledge, the latest
advancement in this end provides an equivalence criterion for measuring to what degree two
anomaly detection algorithms detect the same kind of anomalies. Furthermore, future research may
also consider designing semi-supervised AD methods capable of detecting different types of unknown
anomalies while effectively improving performance by the partially available labeled data. Another
interesting direction is to train an offline AD model using synthetically generated anomalies and then
adapt it for online prediction on real-world datasets with likely similar anomaly types. Unsupervised
domain adaption and transfer learning for AD may serve as useful references.

4.4 Algorithm Robustness under Noisy and Corrupted Data

In this section, we investigate the algorithm robustness (i.e., Aperformance; see absolute performance
plot in Appx. [D9) of different AD algorithms under noisy and data corruption described in §3.3.3]
The default ; is set to 100% since we only care about the relative change of model performance.
Fig.[/|demonstrates the results.
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Figure 7: Algorithm performance change under noisy and corrupted data (i.e., duplicated anomalies
for (a)-(c), irrelevant features for (d)-(f), and annotation errors for (g) and (h)). X-axis denotes either
the duplicated times or the noise ratio. Y-axis denotes the % of performance change (AAUCROC),
and its range remains consistent across different algorithms. The results reveal unsupervised methods’
susceptibility to duplicated anomalies and the usage of label information in defending irrelevant
features. Un-, semi-, and fully-supervised methods are denoted as unsup, semi, and sup, respectively.

Unsupervised methods are more susceptible to duplicated anomalies. As shown in Fig.
almost all unsupervised methods are severely impacted by duplicated anomalies. Their AUCROC



deteriorates proportionally with the increase in duplication. When anomalies are duplicated by 6
times, the median AAUCROC of unsupervised methods is —16.43%, compared to that of semi-
supervised methods —0.05% (Fig. and supervised methods 0.13% (Fig. . One explanation
is that unsupervised methods often assume the underlying data is imbalanced with only a smaller
percentage of anomalies—they rely on this assumption to detect anomalies. With more duplicated
anomalies, the underlying data becomes more balanced, and the minority assumption of anomalies is
violated, causing the degradation of unsupervised methods. Differently, more balanced datasets do
not affect the performance of semi- and fully-supervised methods remarkably, with the help of labels.

Irrelevant features cause little impact on supervised methods due to feature selection. Com-
pared to the unsupervised and most semi-supervised methods, the training process of supervised
methods is fully guided by the data labels (y), therefore performing robustly to the irrelevant features
(i.e., corrupted X) due to the direct (or indirect) feature selection process. For instance, ensemble
trees like XGBoost can filter irrelevant features. As shown in Fig.[7fl even the worst performing
supervised algorithm (say ResNet) in this setting yields < 5% degradation when 50% of the input
features are corrupted by the uniform noises, while the un- and semi-supervised methods could
face up to 10% degradation. Besides, the robust performances of supervised methods (and some
semi-supervised methods like DevNet) indicate that the label information can be beneficial for feature
selection. Also, Fig.[7f|shows that minor irrelevant features (e.g., 1%) help supervised methods as
regularization to generalize better.

Both semi- and fully-supervised methods show great resilience to minor annotation errors.
Although the detection performance of these methods is significantly downgraded when the annotation
errors are severe (as shown in Fig.[7gland [7h), their degradation with regard to minor annotation errors
is acceptable. The median AAUCROC of semi- and fully-supervised methods for 5% annotation
errors is —1.52% and —1.91%, respectively. That being said, label-informed methods are still
acceptable in practice as the annotation error should be relatively small [95} [181]].

Future Direction 4: Noise-resilient AD Algorithms. Our results indicate there is an improvement
space for robust unsupervised AD algorithms. One immediate remedy is to incorporate unsupervised
feature selection [30} 125/ [126] to combat irrelevant features. Moreover, label information could serve
as effective guidance for model training against data noise, and it helps semi- and fully-supervised
methods to be more robust. Given the difficulty of acquiring full labels, we suggest using semi-
supervised methods as the backbone for designing more robust AD algorithms. Also, recent works on
leveraging multiple sets of noisy labels collectively for learning AD models are also relevant [201]].

5 Conclusions and Future Work

In this paper, we introduce ADBench, the most comprehensive tabular anomaly detection benchmark
with 30 algorithms and 57 benchmark datasets. Based on the analyses of multiple comparison angles,
we unlock insights into the role of supervision, the importance of prior knowledge of anomaly types,
and the principles of designing robust detection algorithms. On top of them, we summarize a few
promising future research directions for anomaly detection, along with the fully released benchmark
suite for evaluating new algorithms.

ADBench can extend to understand the algorithm performance with (i) mixed types of anomalies; (if)
different levels of (intrinsic) anomaly ratio; and (iii) more data modalities. Also, future benchmarks
can consider the latest algorithms [28}, 199, 161], and curate datasets from emerging fields like drug
discovery [69], molecule optimization [49} [50], interpretability and explainability [[123} [180]], and
bias and fairness [32, 167,123,159, 165, (190].
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