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Abstract

Recent work by Jacot et al. (2018) has shown that training a neural network of any
kind with gradient descent is strongly related to kernel gradient descent in function
space with respect to the Neural Tangent Kernel (NTK). Empirical results in (Lee
et al., 2019) demonstrated high performance of a linearized version of training
using the so-called NTK regime. In this paper, we show that the large depth limit
of this regime is unexpectedly trivial, and we fully characterize the convergence
rate to this trivial regime.

1 Introduction

The Neural Tangent Kernel (Jacot et al., 2018), a.k.a the NTK, has been the main focus of a growing
number of works aiming to understand the inductive bias of Deep Neural Networks (DNNs). To cite
a few, Bietti and Mairal (2019); Karakida et al. (2018); Yang (2019); Arora et al. (2019); Bietti and
Bach (2021). In the so-called NTK regime (infinite width), the whole training procedure is reduced
to a linear model given by the first order Taylor expansion of the output function near its initialization
value. It was shown in Lee et al. (2019), that such simple models could surprisingly achieve high
performance. However, most experiments with NTK regime were conducted on shallow networks
and have not sufficiently covered DNNs.

NTK regime (Infinite width) for DNNs. The infinite width limit of the NTK for different architec-
tures was studied by Yang (2019), who introduced a tensor framework that allows the derivation of
recursive formulas for the NTK.

Information propagation. In parallel, information propagation in infinite width DNNs has been
studied in several works (Hayou et al., 2019; Lee et al., 2018; Schoenholz et al., 2017; Yang and
Schoenholz, 2017a; Poole et al., 2016) where the authors identify a set of hyper-parameters known as
the Edge of Chaos (EOC) and activation functions ensuring a deep propagation of the information
carried by the input. This ensures that the network output does not ‘forget’ the input information as
the depth grows. In this paper, we show that this has a direct impact on the NTK.

Contributions. There have been few attempts to understand the large depth limit of the NTK regime
Xiao et al. (2020); Huang et al. (2020); Bietti and Bach (2021); however, none of these works have
characterized the limiting NTK and more importantly the exact convergence rate of the NTK to this
limiting kernel. The closest work is Huang et al. (2020) where the authors considered a scaled version
of ResNet with ReLU and proved an upper bound on the convergence rate of order O( polylogL

L ). In
this paper, we improve this result in many ways: we prove that the convergence to the limiting NTK
happens with a rate of Θ(log (L)L−1) for different architectures and activation functions. Note that
for NTK regime, the lower bound is more important as it ensures a sub-exponential convergence rate
of the NTK to its trivial limiting kernel(e.g. constant). We also show that the large depth behaviour of
the NTK is initialization-sensitive; in particular, we prove that for FFNNs, we obtain an exponential
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convergence rate if the initialization is not on the EOC (this is a generalization of Xiao et al. (2020)),
which is not the case with ResNet.

2 Neural Networks and Neural Tangent Kernel

2.1 Setup and notations

Consider a neural network model consisting of L layers of widths (nl)1≤l≤L, n0 = d is the input
dimension, and let θ = (θl)1≤l≤L be the flattened vector of weights and bias indexed by the layer’s
index, and p be the dimension of θ. The output f of the neural network is given by some mapping
s : RnL → Ro of the last layer yL(x); o being the dimension of the output (e.g. number of classes
for a classification problem). For any input x ∈ Rd, we thus have f(x, θ) = s(yL(x)) ∈ Ro. We
denote by θt the value of θ at training time (step) t and ft(x) = f(x, θt). Let D = (xi, zi)1≤i≤N
be the dataset, and let X = (xi)1≤i≤N , Z = (zj)1≤j≤N be the sequences of inputs and outputs
respectively. We assume that there is no collinearity in the input dataset X , i.e. for all x, x′ ∈ X and
α ∈ R, x′ 6= αx. We also assume that X ⊂ E where E ⊂ Rd is a compact set.
The NTK is defined as the o× o dimensional kernel satisfying for all x, x′ ∈ Rd

KL
θt(x, x

′) = ∇θf(x, θt)∇θf(x′, θt)
T =

L∑
l=1

∇θlf(x, θt)∇θlf(x′, θt)
T ∈ Ro×o.

The NTK regime (Infinite width). For a fully connected feedforward neural network, Jacot et al.
(2018) proved that KL

θt converges pointwise to a kernel KL(depends only on L) for all t < T when
min{n1, n2, ..., nL} → ∞, where T is a constant. In this limit, for the quadratic loss, ft is given by a
simple linear model

ft(x) = f0(x) + γ(x,X )(I − e−
1
N
K̂Lt)(Z − f0(X )), (1)

where K̂L = KL(X ,X ) and γ(x,X ) = KL(x,X )(K̂L)−1. Hereafter, we refer to f∞ by the "NTK regime".
For the cross-entropy loss, Lee et al. (2019) introduced some approximations to obtain the NTK regime. These
approximations are implemented in Novak et al. (2020).

Scale invariance. f∞ is scale invariant in the sense that it does not change if we scale the kernel by some
depth dependent scalar since for any aL > 0,

γ(x,X ) = KL(x,X )(K̂L)−1 = (KL(x,X )/aL)(K̂L/aL)−1. (2)

Thus, studying the NTK regime with kernel KL is equivalent to studying the NTK regime with any scaled kernel
KL/aL. In Theorems 1 and 2, we study scaled kernels to mitigate an exploding kernel effect in the limit of
large depth, as the NTK regime solution remains unchanged.

Generalization in the NTK regime. As observed in Du et al. (2019), the convergence rate (w.r.t time) of
ft to f∞ (infinite training time) is given by the smallest eigenvalue of K̂L. If K̂L becomes singular in the large
depth limit, then the performance of NTK regime decreases and might even be trivial. Notice also that we can
write ft(x)− f0(x) =

∑N
i=1 aiK

L(xi, x) for some a1, ..., aN ∈ R, i.e. the ‘residual’ ft − f0 belongs to the
Reproducing Kernel Hilbert space of the KL.

3 Asymptotic Neural Tangent Kernel regime

In this section, we characterize the behaviour of KL as L goes to∞. We prove that KL converges to a kernel
K∞ (which is trivial) with an initialization-and-architecture-dependent convergence rate.

3.1 Deep NTK of a FeedForward Neural Network (FFNN)

Consider an FFNN of depth L, widths (nl)1≤l≤L, weights wl and bias bl. For some input x ∈ Rd, the forward
propagation using the NTK parameterization (similar to Jacot et al. (2018)) is given by

y1
i (x) =

σw√
d

d∑
j=1

w1
ijxj + σbb

1
i , yli(x) =

σw√
nl−1

nl−1∑
j=1

wlijφ(yl−1
j (x)) + σbb

l
i, l ≥ 2. (3)
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We initialize the model randomly with wlij , b
l
i

iid∼ N (0, 1), whereN (µ, σ2) denotes the normal distribution of
mean µ and variance σ2. In the limit of infinite width, the neurons (yli(.))i,l converge to Gaussian processes
(Neal, 1995; Lee et al., 2018; Matthews et al., 2018; Hayou et al., 2019; Schoenholz et al., 2017). Hereafter,
we denote by ql(x, x′) the covariance between yl1(x) and yl1(x′) (yl1 can be replaced by any yli since (yli)i are
i.i.d. See appendix 4 for a comprehensive review of the signal propagation theory). We define the correlation
cl(x, x′). For the first layer, we have q1(x, x′) = σ2

b +
σ2
w
d
x · x′. For ε ∈ (0, 1), we define the set Bε by:

FFNN : Bε = {(x, x′) ∈ Rd : c1(x, x′) ≤ 1− ε},

and we assume that there exists ε > 0, such that for all x 6= x′ ∈ X , (x, x′) ∈ Bε.

Edge of Chaos (EOC). Given an input x, we denote by ql(x) the variance of yl(x). The asymptotic behaviour
of ql(x) was studied in Lee et al. (2018), Schoenholz et al. (2017), and Hayou et al. (2019). Under general
regularity conditions, ql(x) converges to a point q(σb, σw) > 0 independent of x. The asymptotic behaviour
of the correlation cl(x, x′) between yl(x) and yl(x′) for any two inputs x and x′ is driven by the choice of
(σb, σw); Schoenholz et al. (2017) showed that if σ2

wE[φ′(
√
q(σb, σw)Z)2] < 1, where Z ∼ N (0, 1), then

cl(x, x′) converges to 1 exponentially quickly; this is called the ordered phase. If σ2
wE[φ′(

√
q(σb, σw)Z)2] > 1

then cl(x, x′) converges to c < 1, which is then referred to as the chaotic phase. The authors define the EOC
as the set of parameters (σb, σw) that satisfy σ2

wE[φ′(
√
q(σb, σw)Z)2] = 1. The EOC was studied in (Hayou

et al., 2019) where the authors showed that the correlation converges to 1 with a polynomial rate (see Section 4
in the appendix). The following proposition establishes that any initialization on the Ordered or Chaotic phase,
leads to a trivial limiting NTK as L becomes large.

Proposition 1 (NTK with Ordered/Chaotic Initialization). Let (σb, σw) be either in the ordered or in the chaotic
phase. Then, there exist λ > 0 such that for all ε ∈ (0, 1), there exists γ > 0 such that

sup
(x,x′)∈Bε

|KL(x, x′)− λ| ≤ e−γL.

The proof of Proposition 1 relies on the asymptotic analysis of the second moment of the gradient. We refer the
reader to Section 6 in the appendix for more details.
Proposition 1 show that KL becomes trivial exponentially quickly w.r.t deph. In this case, the NTK regime
yields trivial performance, i.e. no better than that of a random classifier. Empirically, we find that with depth
L = 30, the NTK training fails when the network is initialized on the Ordered phase ??????????(Section ??).
In the next theorem, we show that the NTK explodes in the limit of large depth when the network is initialized on
the EOC. Leveraging our remark on the scale invariance property of the NTK (see Eq. (2)), we show that a scaled
version of the kernel converges with a polynomial rate to the degenerate kernel, meaning that the infinite-depth
NTK regime is also trivial in this case, although the convergence is much slower. The notation g(x) = Θ(m(x))
means there exist two constants A,B > 0 such that Am(x) ≤ g(x) ≤ Bm(x).

Theorem 1 (NTK on the EOC). Let (σb, σw) be on the EOC and K̃L = KL/L. We have that

sup
x∈E
|K̃L(x, x)− K̃∞(x, x)| = Θ(L−1).

Moreover, there exists λ ∈ (0, 1) such that for all ε ∈ (0, 1)

sup
(x,x′)∈Bε

∣∣K̃L(x, x′)− K̃∞(x, x′)
∣∣ = Θ(log(L)L−1), where,

• K̃∞(x, x′) =
σ2
w‖x‖ ‖x

′‖
d

(1− (1− λ)1x 6=x′) with λ = 1/4, for φ = ReLU.
• K̃∞(x, x′) = q(1− (1− λ)1x 6=x′) where q > 0 is a constant and λ = 1/3, for φ = Tanh.

We refer the reader to Section 1 in the appendix for the proof details. Theorem 1 shows that the EOC initialization
yields a polynomial convergence rate (w.r.t L) of K̃L to K̃∞. This is important knowing that K̃∞ is trivial
and brings hardly any information on x. Indeed, the convergence rate of K̃L to K̃∞ is Θ(log(L)L−1). This
means that as L grows, the kernel K̃ with EOC is still much further from the trivial kernel K̃∞ compared to the
Ordered/Chaotic initialization. Thus, the EOC alleviates the curse of depth for NTK regime. However, as shown
in table 1, NTK regime fails for very deep networks (L = 300).

3.2 Residual Neural Networks (ResNet)

Another important feature of DNNs, which is known to be highly influential, is their architecture. For residual
networks, the next theorem shows that for any σw > 0, the NTK of a ResNet explodes (exponentially) as L
grows. However, a normalized version K̄L = KL/αL of the NTK of a ResNet will always have a polynomial
convergence rate to a limiting trivial kernel.
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Table 1: Test accuracy on CIFAR10 dataset after 100 training epochs for L ∈ {3, 30} and 160 epochs for
L = 300. V-ResNet is a ResNet with Fully Connected blocks.

NTK regime SGD Training

EOC Ordered EOC Ordered

L=3
FFNN-ReLU 48.13±0.10 48.45±0.14 55.13±0.23 54.10±0.12
FFNN-Tanh 48.32±0.15 48.10±0.10 56.13±0.34 54.10±0.23
CNN-ReLU 49.11±0.16 42.76±3.32 60.23±0.45 59.05±0.15
V-ResNet 47.82±0.73 48.01±0.20 54.40±0.24 54.28±0.33

L=30
FFNN-ReLU 48.32±0.10 — 56.10±0.41 —
FFNN-Tanh 48.40±0.12 — 57.39±0.08 —
CNN-ReLU 48.42±0.10 — 75.39±0.31 —
V-ResNet — — 57.09±0.47 58.13±0.18

L=300
FFNN-ReLU — — 30.25±3.23 —
FFNN-Tanh — — 58.25±0.43 —
CNN-ReLU — — 76.25±0.21 —
V-ResNet — — 58.87±0.44 59.25±0.10

Theorem 2 (NTK for ResNet). Consider a ResNet satisfying

yl(x) = yl−1(x) + F(wl, yl−1(x)), l ≥ 2, (4)

where F is a dense layer (Eq. (3)) with ReLU activation. Let KL
res be the corresponding NTK, and K̄L

res =

KL
res/αL (Normalized NTK) with αL = L(1 +

σ2
w
2

)L−1. Then, we have

sup
x∈E
|K̄L

res(x, x)− K̄∞res(x, x)| = Θ(L−1).

Moreover, there exists a constant λ ∈ (0, 1) such that for all ε ∈ (0, 1)

sup
x,x′∈Bε

∣∣K̄L
res(x, x

′)− K̄∞res(x, x′)
∣∣ = Θ(log(L)L−1),

where K̄∞res(x, x
′) =

σ2
w‖x‖ ‖x

′‖
d

(1− (1− λ)1x 6=x′).

The proof techniques used in Theorem 2 are similar to those used in the proof of theorem 1. Details are provided
in the appendix.

Theorem 2 shows that the NTK of a ReLU ResNet explodes exponentially w.r.t L. However, the normalized
kernel K̄L

res = KL
res(x, x

′)/αL converges to a limiting kernel K̄∞res at the exact polynomial rate Θ(log(L)L−1)
for all σw > 0. This suggests that ResNet act by default as an FFNN that is initialized on the EOC. However,
K̄L
res converges to a trivial kernel, which means that, even with ResNet, the performance of the NTK regime will

decrease as we increase the depth, although it happens with a polynomial rate. Table 1 shows the performance of
the NTK regime versus standard SGD training on CIFAR10. While the NTK regime fails with L = 300 for both
Ordered/EOC initializations, it yields non-trivial performance when initialized on the EOC with L = 30, which
is not the case with an Ordered phase. With ResNet, the performance is similar for both initializations which
confirms the results of theorem 2. However, for all initializations schemes, NTK regime fails for L = 300 while
standard SGD training succeeds.

We now leverage the previous results to obtain the asymptotic behaviour of the spectrum of the kernels studied in
Theorems 1, 2 and Proposition 1, on the unit sphere Sd−1 = {x ∈ Rd : ‖x‖2 = 1}. On the sphere Sd−1, all of
these kernels (namely KL for FFNN on the Ordered/Chaotic phase, K̃L for FFNN/CNN on the EOC, and K̄L

res

for ResNets) are dot-product kernels, i.e. for any of these kernels, denoted by κL, there exists a function gL such
that κL(x, x′) = gL(x · x′) for all x, x′ ∈ Sd−1 (we refer the reader to appendix 4 for more details). This type
of kernels is known to be diagonalizable on the sphere Sd−1 and its eigenfunctions are the so-called Spherical
Harmonics of Sd−1. Many concurrent results have observed this fact Geifman et al. (2020); Cao et al. (2020);
Bietti and Bach (2021). In the next proposition, we leverage the results of Section 3 to study the aforementioned
kernels from a spectral perspective.
Proposition 2 (Spectral decomposition on Sd−1). Let κL be either, KL for an FFNN with L layers initialized
on the Ordered phase (Proposition 1), K̃L for an FFNN with L layers initialized on the EOC (Theorem 1), or
K̄L
res for a ResNet with L Fully Connected layers (Theorem 2). Then, for all L ≥ 1, there exists (µLk )k≥ such

that for all x, x′ ∈ Sd−1

κL(x, x′) =
∑
k≥0

µLk

N(d,k)∑
j=1

Yk,j(x)Yk,j(x
′).
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Figure 1: Normalized eigenvalues ofKL on the 2D sphere for an FFNN with different initializations, activations,
and depths. (Red and Green lines are identical in the upper left figure. )

(Yk,j)k≥0,j∈[1:N(d,k)] are spherical harmonics of Sd−1, and N(d, k) is the number of harmonics of order k.

Moreover, we have that 0 < µ∞0 = lim
L→∞

µL0 <∞, and for all k ≥ 1, lim
L→∞

µLk = 0.

The proof of Proposition 2 is based on a result from spectral theory analysis. The limiting eigenvalues are
obtained by a simple application of the dominated convergence theorem.

Proposition 2 shows that in the limit of large L, the kernel κL becomes close to the trivial kernel κ∞ (x, x′) 7→
µ∞0 Y0,0(x)Y0,0(x′), where Y0,0 is the constant function in the spherical harmonics class. Therefore, in the limit
of infinite depth, the RKHS of the kernel κL is reduced to the space of constant functions, confirming that the
NTK regime is trivial in this limit (recall that f∞ − f0 is in the RKHS of κL). Fig 1 illustrates this deterioration
of the spectrum as the depth increases. Notice that with EOC, the deterioration happens with a much slower rate,
which is expected from theorems 1 and 2.

4 Conclusion and Limitations

In this paper, we have shown that the infinite depth limit of the NTK regime is trivial and cannot explain the
performance of DNNs. However, this convergence is initialization dependent. These findings add to a recent line
of research which shows that the infinite width approximation of the NTK does not fully capture the training
dynamics of DNNs (Chizat and Bach, 2018; Ghorbani et al., 2019; Huang and Yau, 2020; Hanin and Nica,
2019).
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Appendix

0 Setup and notations

In the appendix, we prove more general results than those presented in the main text (we have chosen to present
partial results for the sake of simplicity). The reader will find versions of Propositions 1, 2, and Theorems 1, 2,
that include Convolutional Neural Networks.

0.1 Neural Tangent Kernel

Consider a neural network model consisting of L layers (yl)1≤l≤L, with yl : Rnl−1 → Rnl , n0 = d and let
θ = (θl)1≤l≤L be the flattened vector of weights and bias indexed by the layer’s index and p be the dimension
of θ. Recall that θl has dimension nl + 1. The output f of the neural network is given by some transformation
s : RnL → Ro of the last layer yL(x); o being the dimension of the output (e.g. number of classes for a
classification problem). For any input x ∈ Rd, we thus have f(x, θ) = s(yL(x)) ∈ Ro. As we train the model,
θ changes with time t and we denote by θt the value of θ at time t and ft(x) = f(x, θt) = (fj(x, θt), j ≤ o).
Let D = (xi, zi)1≤i≤N be the data set and let X = (xi)1≤i≤N , Z = (zj)1≤j≤N be the matrices of input and
output respectively, with dimension d×N and o×N . For any function g : Rd×o → Rk, k ≥ 1, we denote by
g(X ,Z) the matrix (g(xi, zi))1≤i≤N of dimension k ×N .

Jacot et al. (2018) studied the behaviour of the output of the neural network as a function of the training time t
when the network is trained using a gradient descent algorithm. Lee et al. (2019) built on this result to linearize
the training dynamics. We recall hereafter some of these results.

For a given θ, the empirical loss is given by L(θ) = 1
N

∑N
i=1 `(f(xi, θ), zi). The full batch GD algorithm is

given by
θ̂t+1 = θ̂t − η∇θL(θ̂t), (1)

where η > 0 is the learning rate.
Let T > 0 be the training time and Ns = T/η be the number of steps of the discrete GD (1). The continuous
time system equivalent to (1) with step ∆t = η is given by

dθt = −∇θL(θt)dt. (2)

This differs from the result by Lee et al. (2019) since we use a discretization step of ∆t = η. It is well known
that this discretization scheme leads to an error of order O(η) (see Appendix). Equation (2) can be re-written as

dθt = − 1

N
∇θf(X , θt)T∇z′`(f(X , θt),Z)dt.

where∇θf(X , θt) is a matrix of dimension oN × p and∇z′`(f(X , θt),Z) is the flattened vector of dimension
oN constructed from the concatenation of the vectors∇z′`(z′, zi)|z′=f(xi,θt), i ≤ N . As a result, the output
function ft(x) = f(x, θt) ∈ Ro satisfies the following ODE

dft(x) = − 1

N
∇θf(x, θt)∇θf(X , θt)T∇z′`(ft(X ),Z)dt. (3)

The Neural Tangent Kernel (NTK) KL
θ is defined as the o× o dimensional kernel satisfying: for all x, x′ ∈ Rd,

KL
θt(x, x

′) = ∇θf(x, θt)∇θf(x′, θt)
T ∈ Ro×o

=

L∑
l=1

∇θlf(x, θt)∇θlf(x′, θt)
T .

(4)

We also define KL
θt(X ,X ) as the oN × oN matrix defined blockwise by

KL
θt(X ,X ) =


KL
θt(x1, x1) · · · KL

θt(x1, xN )
KL
θt(x2, x1) · · · KL

θt(x2, xN )
...

. . .
...

KL
θt(xN , x1) · · · KL

θt(xN , xN )

 .

By applying (3) to the vector X , one obtains

dft(X ) = − 1

N
KL
θt(X ,X )∇z′`(ft(X ),Z)dt, (5)

meaning that for all j ≤ N

dft(xj) = − 1

N
KL
θt(xj ,X )∇z′`(ft(X ),Z)dt.
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Infinite width dynamics. In the case of an FFNN, Jacot et al. (2018) proved that, with GD, the kernel KL
θt

converges to a kernel KL which depends only on L (number of layers) for all t < T when n1, n2, ..., nL →∞,
where T is an upper bound on the training time, under the technical assumption

∫ T
0
||∇z`(ft(X ,Z))||2dt <∞

a.s. with respect to the initialization weights. The infinite width limit of the training dynamics is given by

dft(X ) = − 1

N
KL(X ,X )∇z′`(ft(X ),Z)dt, (6)

We note hereafter K̂L = KL(X ,X ). As an example, with the quadratic loss `(z′, z) = 1
2
||z′ − z||2, (6) is

equivalent to

dft(X ) = − 1

N
K̂L(ft(X )−Z)dt, (7)

which is a simple linear model that has a closed-form solution given by

ft(X ) = e−
1
N
K̂Ltf0(X ) + (I − e−

1
N
K̂Lt)Z. (8)

For general input x ∈ Rd, we have

ft(x) = f0(x) + γ(x,X )(I − e−
1
N
K̂Lt)(Z − f0(X )). (9)

where γ(x) = KL(x,X )KL(X ,X )−1.

0.2 Architectures

Let φ be the activation function. We consider the following architectures (FFNN and CNN)

• FeedForward Fully-Connected Neural Network (FFNN) Consider an FFNN of depth L, widths
(nl)1≤l≤L, weights wl and bias bl. For some input x ∈ Rd, the forward propagation using the NTK
parameterization is given by

y1
i (x) =

σw√
d

d∑
j=1

w1
ijxj + σbb

1
i

yli(x) =
σw√
nl−1

nl−1∑
j=1

wlijφ(yl−1
j (x)) + σbb

l
i, l ≥ 2.

(10)

• Convolutional Neural Network (CNN/ConvNet) Consider a 1D convolutional neural network of
depth L, denoting by [m : n] the set of integers {m,m+1, ..., n} for n ≤ m, the forward propagation
is given by

y1
i,α(x) =

σw√
v1

n0∑
j=1

∑
β∈ker1

w1
i,j,βxj,α+β + σbb

1
i

yli,α(x) =
σw√
vl

nl−1∑
j=1

∑
β∈kerl

wli,j,βφ(yl−1
j,α+β(x)) + σbb

l
i,

(11)

where i ∈ [1 : nl] is the channel number, α ∈ [0 : M − 1] is the neuron location in the channel,
nl is the number of channels in the lth layer, and M is the number of neurons in each channel,
kerl = [−k : k] is a filter with size 2k + 1 and vl = nl−1(2k + 1). Here, wl ∈ Rnl×nl−1×(2k+1).
We assume periodic boundary conditions, which results in having yli,α = yli,α+M = yli,α−M and
similarly for l = 0, xi,α+M0 = xi,α = xi,α−M0 . For the sake of simplification, we consider only the
case of 1D CNN, the generalization to a mD CNN for m ∈ N is straightforward.

1 Proof techniques

The techniques used in the proofs range from simple algebraic manipulation to tricky inequalities.

Lemmas 1, 2, 3, 4. The proofs of these lemmas are simple and follow the same inductive argument as in the
proof of the original NTK result in Jacot et al. (2018). Note that these results can also be obtained by simple
application of the Master Theorem in Yang (2020) using the framework of Tensor Programs.
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Proposition 1, Theorems 1, 2. The proof of these results follow two steps; Firstly, estimating the asymp-
totic behaviour of the NTK in the limit of large depth; secondly, controling these behaviour using upper/lower
bounds. We analyse the asymptotic behaviour of the NTK of FFNN using existing results on signal propagation
in deep FFNN. However, for CNNs, the dynamics are a bit trickier since they involve convolution operators; We
use some results from the theory of Circulant Matrices for this purpose.
It is relatively easy to control the dynamics of the NTK in the Ordered/Chaotic phase, however, the dynamics
become a bit complicated on the Edge of Chaos and technical lemmas which we call Appendix Lemmas are
introduced for this purpose.

Proposition 2. The spectral decomposition of zonal kernels on the sphere is a classical result in spectral
theory which was recently applied to Neural Tangent Kernel Geifman et al. (2020); Cao et al. (2020); ?. In
order to prove the convergence of the eigenvalues, we use Dominated Convergence Theorem, leveraging the
asymptotic results in Proposition 1 and Theorems 1, 2.

2 The infinite width limit

2.1 Forward propagation

FeedForward Neural Network. For some input x ∈ Rd, the propagation of this input through the network
is given by

y1
i (x) =

σw√
d

d∑
j=1

w1
ijxj + σbb

1
i

yli(x) =
σw√
nl−1

nl−1∑
j=1

wlijφ(yl−1
j (x)) + σbb

l
i, l ≥ 2

Where φ : R→ R is the activation function. When we take the limit nl−1 →∞ recursively over l, this implies,
using Central Limit Theorem, that yli(x) is a Gaussian variable for any input x. This gives an error of order
O(1/

√
nl−1) (standard Monte Carlo error). More generally, an approximation of the random process yli(.) by

a Gaussian process was first proposed by Neal (1995) in the single layer case and has been extended to the
multiple layer case by Lee et al. (2018) and Matthews et al. (2018). The limiting Gaussian process kernels follow
a recursive formula given by, for any inputs x, x′ ∈ Rd

κl(x, x′) = E[yli(x)yli(x
′)]

= σ2
b + σ2

wE[φ(yl−1
i (x))φ(yl−1

i (x′))]

= σ2
b + σ2

wΨφ(κl−1(x, x), κl−1(x, x′), κl−1(x′, x′)),

where Ψφ is a function that only depends on φ. This provides a simple recursive formula for the computation of
the kernel κl; see, e.g., Lee et al. (2018) for more details.

Convolutional Neural Networks. The infinite width approximation with 1D CNN yields a recursion for
the kernel. However, the infinite width here means infinite number of channels, with a Monte Carlo error of
O(1/

√
nl−1). The kernel in this case depends on the choice of the neurons in the channel and is given by

κlα,α′(x, x
′) = E[yli,α(x)yli,α′(x

′)] = σ2
b +

σ2
w

2k + 1

∑
β∈ker

E[φ(yl−1
1,α+β(x))φ(yl−1

1,α′+β(x′))]

so that

κlα,α′(x, x
′) = σ2

b +
σ2
w

2k + 1

∑
β∈ker

Fφ(κl−1
α+β,α′+β(x, x), κl−1

α+β,α′+β(x, x′), κl−1
α+β,α′+β(x′, x′)).

The convolutional kernel κlα,α′ has the ‘self-averaging’ property; i.e. it is an average over the kernels corre-
sponding to different combination of neurons in the previous layer. However, it is easy to simplify the analysis
in this case by studying the average kernel per channel defined by κ̂l = 1

N2

∑
α,α′ κ

l
α,α′ . Indeed, by summing

terms in the previous equation and using the fact that we use circular padding, we obtain

κ̂l(x, x′) = σ2
b + σ2

w
1

N2

∑
α,α′

Fφ(κl−1
α,α′(x, x), κl−1

α,α′(x, x
′), κl−1

α,α′(x
′, x′)).

This expression is similar in nature to that of FFNN. We will use this observation in the proofs.
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Note that our analysis only requires the approximation that, in the infinite width limit, for any two inputs x, x′,
the variables yli(x) and yli(x

′) are Gaussian with covariance κl(x, x′) for FFNN, and yli,α(x) and yli,α′(x
′) are

Gaussian with covariance κlα,α′(x, x
′) for CNN. We do not need the much stronger approximation that the

process yli(x) (yli,α(x) for CNN) is a Gaussian process.

Residual Neural Networks. The infinite width limit approximation for ResNet yields similar results with
an additional residual terms. It is straighforward to see that, in the case of a ResNet with FFNN-type layers, we
have that

κl(x, x′) = κl−1(x, x′) + σ2
b + σ2

wFφ(κl−1(x, x), κl−1(x, x′), κl−1(x′, x′)),

whereas for ResNet with CNN-type layers, we have that

κlα,α′(x, x
′) = κl−1

α,α′(x, x
′) + σ2

b

+
σ2
w

2k + 1

∑
β∈ker

Fφ(κl−1
α+β,α′+β(x, x), κl−1

α+β,α′+β(x, x′), κl−1
α+β,α′+β(x′, x′)).

2.2 Gradient Independence

In the mean-field literature of DNNs, an omnipresent approximation in prior literature is that of the gradient
independence which is similar in nature to the practice of feedback alignment (Lillicrap et al., 2016). This
approximation states that, for wide neural networks, the weights used for forward propagation are independent
from those used for back-propagation. When used for the computation of Neural Tangent Kernel, this approxi-
mation was proven to give the exact computation for standard architectures such as FFNN, CNN and ResNets
Yang (2020) (Theorem D.1).

This result has been extensively used in the literature as an approximation before being proved to yields exact
computation for the NTK, and theoretical results derived under this approximation were verified empirically; see
references below.

Gradient Covariance back-propagation. Analytical formulas for gradient covariance back-propagation
were derived using this result, in (Hayou et al., 2019; Schoenholz et al., 2017; Yang and Schoenholz, 2017b; Lee
et al., 2018; Poole et al., 2016; Xiao et al., 2018; Yang, 2019). Empirical results showed an excellent match for
FFNN in Schoenholz et al. (2017), for Resnets in Yang (2019) and for CNN in Xiao et al. (2018).

Neural Tangent Kernel. The Gradient Independence approximation was implicitly used in Jacot et al.
(2018) to derive the infinite width Neural Tangent Kernel (See Jacot et al. (2018), Appendix A.1). Authors have
found that this infinite width NTK computed with the Gradient Independence approximation yields excellent
match with empirical (exact) NTK.

We use this result in our proofs and we refer to it simply by the Gradient Independence.

3 Discussion on Assumption 1

Assumption 1. We assume that for all x, x′ ∈ X , q1
α,α′(x, x

′) is independent of α, α′.

Assumption 1 implies that, there exists some function e : (x, x′) 7→ e(x, x′) such that for all α, α′, x, x′∑
j

∑
β∈ker0

xj,α+βx
′
j,α′+β = e(x, x′)

This system has N2M2 equations and N × 2n0 ×M variables. Therefore, in the case n0 >> 1, the set
of solutions S is large. By using Assumption 1, we restrict our analysis to this case. Hereafter, for all CNN
analysis, for some function G and set E, taking the supremum sup(x,x′)∈E G(x, x′) should be interpreted as
sup(x,x′)∈E∩X2 G(x, x′).

Another justification to assumption 1 can be attributed a self-averaging property of the dynamics of the correlation
inside a CNN. We refer the reader to the proof of Appendix lemma 3 for more details.

4 Warmup: Results from the Mean-Field theory of DNNs

4.1 Notation

For FFNN layers, let ql(x) := ql(x, x) be the variance of yl1(x) (the choice of the index 1 is not important
since, in the infinite width limit, the random variables (yli(x))i∈[1:Nl] are iid). Let ql(x, x′), resp. cl1(x, x′) be
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the covariance, resp. the correlation between yl1(x) and yl1(x′). For Gradient back-propagation, let q̃l(x, x′) be

the Gradient covariance defined by q̃l(x, x′) = E
[
∂L
∂yl1

(x) ∂L
∂yl1

(x′)
]

where L is some loss function. Similarly,

let q̃l(x) be the Gradient variance at point x. We also define q̇l(x, x′) = σ2
wE[φ′(yl−1

1 (x))φ′(yl−1
1 (x′))].

For CNN layers, we use similar notation across channels. Let qlα(x) be the variance of yl1,α,(x) (the
choice of the index 1 is not important here either since, in the limit of infinite number of channels, the
random variables (yli,α(x))i∈[1:Nl] are iid). Let qlα,α′(x, x

′) the covariance between yl1,α(x) and yl1,α′(x
′),

and clα,α′(x, x
′) the corresponding correlation. We also define the pseudo-covariance q̂lα,α′(x, x

′) =

σ2
b + σ2

wE[φ(yl−1
1,α (x))φ(yl−1

1,α′(x
′))] and q̇lα,α′(x, x

′) = σ2
wE[φ(yl−1

1,α (x))φ(yl−1
1,α′(x

′))].

The Gradient covariance is defined by q̃lα,α′(x, x
′) = E

[
∂L
∂yl1,α

(x) ∂L
∂yl

1,α′
(x′)

]
.

4.1.1 Covariance propagation

Covariance propagation for FFNN. In Section 2.1, we derived the covariance kernel propagation in an
FFNN. For two inputs x, x′ ∈ Rd, we have

ql(x, x′) = σ2
b + σ2

wE[φ(yl−1
i (x))φ(yl−1

i (x′))] (12)
this can be written as

ql(x, x′) = σ2
b + σ2

wE
[
φ
(√

ql(x)Z1

)
φ
(√

ql(x′)(cl−1Z1 +
√

1− (cl−1)2Z2

)]
, Z1, Z2

iid∼ N (0, 1),

with cl−1 := cl−1(x, x′).
With ReLU, and since ReLU is positively homogeneous (i.e. φ(λx) = λφ(x) for λ ≥ 0), we have that

ql(x, x′) = σ2
b +

σ2
w

2

√
ql(x)

√
ql(x′)f(cl−1)

where f is the ReLU correlation function given by Hayou et al. (2019)

f(c) =
1

π
(c arcsin c+

√
1− c2) +

1

2
c.

Covariance propagation for CNN. The only difference with FFNN is that the independence is across
channels and not neurons. Simple calculus yields

qlα,α′(x, x
′) = E[yli,α(x)yli,α′(x

′)] = σ2
b +

σ2
w

2k + 1

∑
β∈ker

E[φ(yl−1
1,α+β(x))φ(yl−1

1,α′+β(x′))]

Observe that
qlα,α′(x, x

′) =
1

2k + 1

∑
βinker

q̂lα+β,α′+β(x, x′) (13)

With ReLU, we have

qlα,α′(x, x
′) = σ2

b +
σ2
w

2k + 1

∑
β∈ker

√
qlα+β(x)

√
qlα′+β(x′)f(cl−1

α+β,α′+β(x, x′)).

Covariance propagation for ResNet with ReLU. In the case of ResNet, only an added residual term
shows up in the recursive formula. For a ResNet with FFNN layers, the recursion reads

ql(x, x′) = ql−1(x, x′) + σ2
b +

σ2
w

2

√
ql(x)

√
ql(x′)f(cl−1) (14)

with CNN layers, we have instead

qlα,α′(x, x
′) = ql−1

α,α′(x, x
′) + σ2

b +
σ2
w

2k + 1

∑
β∈ker

√
qlα+β(x)

√
qlα′+β(x′)f(cl−1

α+β,α′+β(x, x′)) (15)

4.1.2 Gradient Covariance back-propagation

Gradient back-propagation for FFNN. The gradient back-propagation is given by

∂L
∂yli

= φ′(yli)

Nl+1∑
j=1

∂L
∂yl+1

j

W l+1
ji .

where L is some loss function. Using the Gradient Independence 2.2, we have as in Schoenholz et al. (2017)

q̃l(x) = q̃l+1(x)
Nl+1

Nl
χ(ql(x)).

where χ(ql(x)) = σ2
wE[φ(

√
ql(x)Z)2].
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Gradient Covariance back-propagation for CNN. We have that

∂L
∂W l

i,j,β

=
∑
α

∂L
∂yli,α

φ(yl−1
j,α+β)

Moreover,
∂L
∂yli,α

=

n∑
j=1

∑
β∈ker

∂L
∂yl+1

j,α−β
W l+1
i,j,βφ

′(yli,α).

Using the Gradient Independence 2.2, and taking the average over the number of channels we have that

E

[
∂L
∂yli,α

2
]

=
σ2
wE
[
φ′(
√
qlα(x)Z)2

]
2k + 1

∑
β∈ker

E

[
∂L

∂yl+1
i,α−β

2
]
.

We can get similar recursion to that of the FFNN case by summing over α and using the periodic boundary
condition, this yields ∑

α

E

[
∂L
∂yli,α

2
]

= χ(qlα(x))
∑
α

E

[
∂L
∂yl+1

i,α

2
]
.

4.1.3 Edge of Chaos (EOC)

Let x ∈ Rd be an input. The convergence of ql(x) as l increases has been studied by Schoenholz et al. (2017)
and Hayou et al. (2019). In particular, under weak regularity conditions, it is proven that ql(x) converges to
a point q(σb, σw) > 0 independent of x as l → ∞. The asymptotic behaviour of the correlations cl(x, x′)
between yl(x) and yl(x′) for any two inputs x and x′ is also driven by (σb, σw): the dynamics of cl is controlled
by a function f i.e. cl+1 = f(cl) called the correlation function. The authors define the EOC as the set of
parameters (σb, σw) such that σ2

wE[φ′(
√
q(σb, σw)Z)2] = 1 where Z ∼ N (0, 1). Similarly the Ordered,

resp. Chaotic, phase is defined by σ2
wE[φ′(

√
q(σb, σw)Z)2] < 1, resp. σ2

wE[φ′(
√
q(σb, σw)Z)2] > 1. On the

Ordered phase, the gradient will vanish as it backpropagates through the network, and the correlation cl(x, x′)
converges exponentially to 1. Hence the output function becomes constant (hence the name ’Ordered phase’).
On the Chaotic phase, the gradient explodes and the correlation converges exponentially to some limiting value
c < 1 which results in the output function being discontinuous everywhere (hence the ’Chaotic’ phase name).
On the EOC, the second moment of the gradient remains constant throughout the backpropagation and the
correlation converges to 1 at a sub-exponential rate, which allows deeper information propagation. Hereafter, f
will always refer to the correlation function.

We initialize the model with wlij , b
l
i
iid∼ N (0, 1), where N (µ, σ2) denotes the normal distribution of mean µ

and variance σ2. In the remainder of this appendix, we assume that the following conditions are satisfied

• The input data is a subset of a compact set E of Rd, and no two inputs are co-linear.

• All calculations are done in the limit of infinitely wide networks.

4.2 Some results from the information propagation theory

Results for FFNN with Tanh activation.
Fact 1. For any choice of σb, σw ∈ R+, there exist q, λ > 0 such that for all l ≥ 1, supx∈Rd |ql(x, x)− q| ≤
e−λl. (Equation (3) and conclusion right after in Schoenholz et al. (2017)).

Fact 2. On the Ordered phase, there exists γ > 0 such that supx,x′∈Rd |cl(x, x′)− 1| ≤ e−γl. (Equation (8)
in Schoenholz et al. (2017))

Fact 3. Let (σb, σw) ∈ EOC. Using the same notation as in fact 4, we have that sup(x,x′)∈Bε |1− c
l(x, x′)| =

O(l−1). (Proposition 3 in Hayou et al. (2019)).

Fact 4. Let Bε = {(x, x′) ∈ Rd : c1(x, x′) < 1 − ε}. On the chaotic phase, there exist c < 1 such that for
all ε ∈ (0, 1), there exists γ > 0 such that sup(x,x′)∈Bε |c

l(x, x′) − c| ≤ e−γl. (Equations (8) and (9) in
Schoenholz et al. (2017))

Fact 5 (Correlation function). The correlation function f is defined by f(x) =
σ2
b+σ2

wE[φ(
√
qZ1)φ(

√
q(xZ1+

√
1−x2Z2))]

q
where q is given in Fact 1 and Z1, Z2 are iid standard Gaus-

sian variables.
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Fact 6. f has a derivative of any order j ≥ 1 given by

f (j)(x) = σ2
wq

j−1E[φ(j)(Z1)φ(j)(xZ1 +
√

1− x2Z2)], ∀x ∈ [−1, 1]

As a result, we have that f (j)(1) = σ2
wq

j−1E[φ(j)(Z1)2] > 0 for all j ≥ 1.

The proof of the previous fact is straightforward following the same integration by parts technique as in the
proof of Lemma 1 in Hayou et al. (2019). The result follows by induction.
Fact 7. Let (σb, σw) ∈ EOC. We have that f ′(1) = 1 (by definition of EOC). As a result, the Taylor expansion
of f near 1 is given by

f(c) = c+ α(1− c)2 − ζ(1− c)3 +O((1− c)4).

where α, ζ > 0.

Proof. The proof is straightforward using fact 6, and integral-derivative interchanging.

Results for FFNN with ReLU activation.
Fact 8. The ordered phase for ReLU is given by Ord = {(σb, σw) ∈ (R+)2 : σw <

√
2}. Moreover, for any

(σb, σw) ∈ Ord, there exist λ such that for all l ≥ 1, supx∈Rd |ql(x, x)− q| ≤ e−λl, where q =
σ2
b

1−σ2
w/2

.

The proof is straightforward using equation (12).
Fact 9. For any (σb, σw) in the Ordered phase, there exist λ such that for all l ≥ 1, sup(x,x′)∈Rd |cl(x, x′)−
1| ≤ e−λl.

The proof of this claim follows from standard Banach Fixed point theorem in the same fashion as for Tanh in
Schoenholz et al. (2017).
Fact 10. The Chaotic phase for ReLU is given by Ch = {(σb, σw) ∈ (R+)2 : σw >

√
2}. Moreover, for any

(σb, σw) ∈ Ch, for all l ≥ 1, x ∈ Rd, ql(x, x) & (σ2
w/2)l.

The variance explodes exponentially on the Chaotic phase, which means the output of the Neural Network
can grow arbitrarily in this setting. Hereafter, when no activation function is mentioned, and when we choose
"(σb, σw) on the Ordered/Chaotic phase", it should be interpreted as "(σb, σw) on the Ordered phase" for ReLU
and "(σb, σw) on the Ordered/Chaotic phase" for Tanh.

Fact 11. For ReLU FFNN on the EOC, we have that ql(x, x) =
σ2
w
d
||x||2 for all l ≥ 1.

The proof is straightforward using equation 12 and that (σb, σw) = (0,
√

2) on the EOC.

Fact 12. The EOC of ReLU is given by the singleton {(σb, σw) = (0,
√

2)}. In this case, the correlation
function of an FFNN with ReLU is given by

f(x) =
1

π
(x arcsinx+

√
1− x2) +

1

2
x

(Proof of Proposition 1 in Hayou et al. (2019)).
Fact 13. Let (σb, σw) ∈ EOC. Using the same notation as in fact 4, we have that

sup
(x,x′)∈Bε

|1− cl(x, x′)| = O(l−2)

(Follows straightforwardly from Proposition 1 in Hayou et al. (2019)).
Fact 14. We have that

f(c) = c+ s(1− c)3/2 + b(1− c)5/2 +O((1− c)7/2 (16)

with s = 2
√

2
3π

and b =
√

2
30π

.

This result was proven in Hayou et al. (2019) (in the proof of Proposition 1) for order 3/2, the only difference is
that here we push the expansion to order 5/2.

Results for CNN with Tanh activation function.
Fact 15. For any choice of σb, σw ∈ R+, there exist q, λ > 0 such that for all l ≥ 1,
supα,α′ supx∈Rd |qlα,α′(x, x) − q| ≤ e−λl. (Equation (2.5) in Xiao et al. (2018) and variance convergence
result in Schoenholz et al. (2017)).

The behaviour of the correlation clα,α′(x, x
′) was studied in Xiao et al. (2018) only in the case x′ = x. We give

a comprehensive analysis of the asymptotic behaviour of clα,α′(x, x
′) in the next section.
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General results on the correlation function.
Fact 16. Let f be either the correlation function of Tanh or ReLU. We have that

• f(1) = 1 (Lemma 2 in Hayou et al. (2019)).

• On the ordered phase 0 < f ′(1) < 1 (By definition).

• On the Chaotic phase f ′(1) > 1 (By definition).

• On the EOC, f ′(1) = 1 (By definition).

• On the Ordered phase and the EOC, 1 is the unique fixed point of f (Hayou et al. (2019)).

• On the Chaotic phase, f has two fixed points, 1 which is unstable, and c < 1 which is a stable fixed
point Schoenholz et al. (2017).

Fact 17. Let ε ∈ (0, 1). On the Ordered/Chaotic phase, with either ReLU or Tanh, there exists α ∈ (0, 1),γ > 0
such that

sup
(x,x′)∈Bε

|f ′(cl(x, x′))− α| ≤ e−γl

Proof. This result follows from a simple first order expansion inequality. For Tanh on the Ordered phase, we
have that

sup
(x,x′)∈Bε

|f ′(cl(x, x′))− f ′(1)| ≤ ζl sup
(x,x′)∈Bε

|cl(x, x′)− 1|

where ζl = supt∈(min(x,x′∈Bε) c
l(x,x′),1) |f ′′(t)| → |f ′′(1)|. We conclude for Ordered phase with Tanh using

fact 2. The same argument can be used for Chaotic phase with Tanh using fact 4; in this case, α = f ′(c) where
c is the unique stable fixed point of the correlation function f .

On the Ordered phase with ReLU, let f̃ be the correlation function. It is easy to see that f̃ ′(c) =
σ2
w
2
f ′(c) where

f is given in fact 12. f ′(x) = 1−
√

2
π

(1− x)1/2 +O((1− x)3/2). Therefore, there exists l0, ζ > 0 such that
for l > l0,

sup
(x,x′)∈Bε

|f ′(cl(x, x′))− f ′(1)| ≤ ζ sup
(x,x′)∈Bε

|cl(x, x′)− 1|1/2

We conclude using fact 9.

Asymptotic behaviour of the correlation in FFNN.
Appendix Lemma 1 (Asymptotic behaviour of cl for ReLU). Let (σb, σw) ∈ EOC and ε ∈ (0, 1). There exist
universal constants κ, κ′, κ′′ > 0 (that do not depend on any parameter) such that

sup
(x,x′)∈Bε

∣∣∣∣cl(x, x′)− 1 +
κ

l2
− κ′ log(l)

l3

∣∣∣∣ = O(l−3)

and,

sup
(x,x′)∈Bε

∣∣∣∣f ′(cl(x, x′))− 1 +
3

l
− κ′′ log(l)

l2

∣∣∣∣ = O(l−2).

Proof. Let (x, x′) ∈ Bε and s = 2
√

2
3π

. From the preliminary results, we have that lim
l→∞

supx,x′∈Rd 1 −

cl(x, x′) = 0 (fact 13). Using fact 14, we have uniformly over Bε,

γl+1 = γl − sγ3/2
l − bγ5/2

l +O(γ
7/2
l )

where s, b > 0, this yields

γ
−1/2
l+1 = γ

−1/2
l +

s

2
+

3s2

8
γ

1/2
l + (

b

2
+

5

16
s3)γl +O(γ

3/2
l ).

Thus, letting b′ = b
2

+ 5
16
s3, as l goes to infinity

γ
−1/2
l+1 − γ

−1/2
l ∼ s

2
,

and by summing and equivalence of positive divergent series

γ
−1/2
l ∼ s

2
l.
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Moreover, since γ−1/2
l+1 = γ

−1/2
l + s

2
+ 3s2

8
γ

1/2
l + b′γl +O(γ

3/2
l ), using the same argument multiple times

and inverting the formula yields

cl(x, x′) = 1− κ

l2
+ κ′

log(l)

l3
+O(l−3)

where κ = 9π2

2
. Note that, by Appendix Lemma 5 (section ??), the O bound can be chosen in a way that it does

not depend on (x, x′), it depends only on ε; this concludes the proof for the first part of the result.
Using fact 12, we have that

f ′(x) =
1

π
arcsin(x) +

1

2

= 1−
√

2

π
(1− x)1/2 +O((1− x)3/2).

Thus, it follows that

f ′(cl(x, x′)) = 1− 3

l
+ κ′′

log(l)

l2
+O(l−2).

for some universal constant κ′′ uniformly over the set Bε, which concludes the proof.

We prove a similar result for an FFNN with Tanh activation.

Appendix Lemma 2 (Asymptotic behaviour of cl for Tanh). Let (σb, σw) ∈ EOC and ε ∈ (0, 1). We have

sup
(x,x′)∈Bε

∣∣∣∣cl(x, x′)− 1 +
κ

l
− κ(1− κ2ζ)

log(l)

l3

∣∣∣∣ = O(l−3)

where κ = 2
f ′′(1)

> 0 and ζ = f3(1)
6

> 0. Moreover, we have that

sup
(x,x′)∈Bε

∣∣∣∣f ′(cl(x, x′))− 1 +
2

l
− 2(1− κ2ζ)

log(l)

l2

∣∣∣∣ = O(l−2).

Proof. Let (x, x′) ∈ Bε and λl := 1 − cl(x, x′). Using a Taylor expansion of f near 1 (fact 7), there exist
α, ζ > 0 such that

λl+1 = λl − αλ2
l + ζλ3

l +O(λ4
l )

Here also, we use the same technique as in the previous lemma. We have that

λ−1
l+1 = λ−1

l (1− αλl + ζλ2 +O(λ3
l ))
−1 = λ−1

l (1 + αλl + (α2 − ζ)λ2
l +O(λ3

l ))

= λ−1
l + α+ (α2 − ζ)λl +O(λ2

l ).

By summing (divergent series), we have that λ−1
l ∼ αl. Therefore,

λ−1
l+1 − λ

−1
l − α = (α2 − β)α−1l−1 + o(l−1)

By summing a second time, we obtain

λ−1
l = αl + (α− βα−1) log(l) + o(log(l)),

Using the same technique once again, we obtain

λ−1
l = αl + (α− βα−1) log(l) +O(1).

This yields

λl = α−1l−1 − α−1(1− α−2β)
log(l)

l2
+O(l−2).

In a similar fashion to the previous proof, we can force the upper bound in O to be independent of x using
Appendix Lemma 5. This way, the bound depends only on ε. This concludes the first part of the proof.

For the second part, observe that f ′(x) = 1 + (x− 1)f ′′(1) +O((x− 1)2), hence

f ′(cl(x, x′)) = 1− 2

l
+ 2(1− α−2ζ)

log(l)

l2
+O(l−2)

which concludes the proof.
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4.3 Large depth behaviour of the correlation in CNNs

For CNNs, the infinite width will always mean the limit of infinite number of channels. Recall that, by definition,
q̂lα,α′(x, x

′) = σ2
b + σ2

wE[φ(yl−1
1,α (x))φ(yl−1

1,α′(x
′))] and qlα,α′(x, x

′) = E[yli,α(x)yli,α′(x
′)].

Unlike FFNN, neurons in the same channel are correlated since they share the same filters. Let x, x′ be two
inputs and α, α′ two nodes in the same channel i. Using Central Limit Theorem in the limit of large nl (number
of channels), we have

qlα,α′(x, x
′) = E[yli,α(x)yli,α′(x

′)] =
σ2
w

2k + 1

∑
β∈ker

E[φ(yl−1
1,α+β(x))φ(yl−1

1,α′+β(x′))] + σ2
b

Let clα,α′(x, x
′) be the corresponding correlation. Since qlα,α(x, x) converges exponentially to q which depends

neither on x nor on α, the mean-field correlation as in Schoenholz et al. (2017); Hayou et al. (2019) is given by

clα,α′(x, x
′) =

1

2k + 1

∑
β∈ker

f(cl−1
α+β,α′+β(x, x′))

where f(c) =
σ2
wE[φ(

√
qZ1)φ(

√
q(cZ1+

√
1−c2Z2))]+σ2

b
q

and Z1, Z2 are independent standard normal variables.
The dynamics of clα,α′ become similar to those of cl in an FFNN under assumption 1. We show this in the proof
of Appendix Lemma 3.
In Xiao et al. (2018), authors studied only the limiting behaviour of correlations clα,α′(x, x) (same input x),
however, they do not study clα,α′(x, x

′) when x 6= x′. We do this in the following Lemma, which will prove
also useful for the main results of the paper.
Appendix Lemma 3 (Asymptotic behaviour of the correlation in CNN with Tanh). We consider a CNN with Tanh
activation function. Let (σb, σw) ∈ (R+)2 and ε ∈ (0, 1). Let Bε = {(x, x′) ∈ Rd : supα,α′ c

1
α,α′(x, x

′) <
1− ε}. The following statements hold

1. If (σb, σw) are on the Ordered phase, then there exists β > 0 such that

sup
(x,x′)∈Rd

sup
α,α′
|clα,α′(x, x′)− 1| = O(e−βl)

2. If (σb, σw) are on the Chaotic phase, then for all ε > 0 there exists β > 0 and c ∈ (0, 1) such that

sup
(x,x′)∈Bε

sup
α,α′
|clα,α′(x, x′)− c| = O(e−βl)

3. Under Assumption 1, if (σb, σw) ∈ EOC, then we have

sup
(x,x′)∈Bε

sup
α,α′

∣∣∣∣clα,α′(x, x′)− 1 +
κ

l
− κ(1− κ2ζ)

log(l)

l3

∣∣∣∣ = O(l−3)

where κ = 2
f ′′(1)

> 0, ζ = f3(1)
6

> 0, and f is the correlation function given in Fact 5.

We prove statements 1 and 2 for general inputs, i.e. without using Assumption 1. The third statement requires
Assumption 1.

Proof. Let (x, x′) ∈ Rd. Without using assumption 1, we have that

clα,α′(x, x
′) =

1

2k + 1

∑
β∈ker

f(cl−1
α+β,α′+β(x, x′))

Writing this in matrix form yields

Cl =
1

2k + 1
Uf(Cl−1)

where Cl = ((clα,α+β(x, x′))α∈[0:N−1])β∈[0:N−1] is a vector in RN
2

, U is a convolution matrix and f is
applied element-wise. As an example, for k = 1, U is given by

U =



1 1 0 ... 0 1

1 1 1 0
. . . 0

0 1 1 1
. . . 0

0 0 1 1
. . . 0

. . .
. . .

. . .
. . .

1 0 . . . 0 1 1


17



For general k, U is a Circulant symmetric matrix with eigenvalues λ1 > λ2 ≥ λ3... ≥ λN2 . The largest
eigenvalue of U is given by λ1 = 2k + 1 and its equivalent eigenspace is generated by the vector e1 =
1
N

(1, 1, ..., 1) ∈ RN
2

. This yields

(1 + 2k)−lU l = e1e
T
1 +O(e−βl)

where β = log(λ1
λ2

).
This provides another justification to Assumption 1; as l grows, and assuming that Cl → e1 (which we show
in the remainder of this proof), Cl exhibits a self-averaging property since Cl ≈ 1

2k+1
UCl−1. This system

concentrates around the average value of the entries of Cl as l grows. Since the variances converge to a constant
q as l goes to infinity (fact 15), this approximation implies that the entries of Cl become almost equal as l goes
to infinity, thus making assumption 1 almost satisfied in deep layers. Let us now prove the statements.

1. Let (σb, σw) be in the Ordered phase, (x, x′) ∈ Rd and clm = minα,α′ c
l
α,α′(x, x

′). Using the
fact that f is non-decreasing, we have that clα,α′(x, x

′) ≥ 1
2k+1

∑
β∈ker c

l−1
α+β,α′+β(x, x′)) ≥ cl−1

m .
Taking the minimum again over α, α′, we have clm ≥ cl−1

m , therefore clm is non-decreasing and
converges to the unique fixed point of f which is c = 1. This proves that supα,α′ |clα,α′(x, x′)−1| →
0. Moreover, the convergence rate is exponential using the fact that (fact 16) 0 < f ′(1) < 1. To see
this, observe that

sup
α,α′
|1− clα,α′(x, x′)| ≤

(
sup

ζ∈[cl−1
m ,1]

f ′(ζ)

)
× sup
α,α′
|1− clα,α′(x, x′)|

Knowing that sup
ζ∈[cl−1

m ,1]
f ′(ζ)→ f ′(1) < 1, we conclude. Moreover, the convergence is uniform

in (x, x′) since the convergence rate depends only on f ′(1).

2. Let ε ∈ (0, 1). In the chaotic phase, the only difference is the limit c = c1 < 1 and the Supremum is
taken over Bε to avoid points where c1(x, x′) = 1. In the Chaotic phase (fact 16), f has two fixed
points, 1 is an unstable fixed point and c1 ∈ (0, 1) which is the unique stable fixed point. We conclude
by following the same argument.

3. Let ε ∈ (0, 1) and (σb, σw) ∈ EOC. Using the same argument of monotony as in the previous cases
and that f has 1 as unique fixed point, we have that liml→∞ supx,x′ supα,α′ |1− clα,α′(x, x′)| = 0.
From fact 7, the Taylor expansion of f near 1 is given by

f(c) = c+ α(1− c)2 − ζ(1− c)3 +O((1− c)4).

where α = f ′′(1)
2

and ζ = f(3)(1)
6

. Using fact 6, we know that f (k)(1) = σ2
wq

k−1E[φ(k)(
√
qZ)2].

Therefore, we have α > 0, and ζ < 0.
Under assumption 1, it is straightforward that for all α, α′, and l ≥ 1

clα,α′(x, x
′) = cl(x, x′)

i.e. clα,α′ are equal for all α, α′. The dynamics of cl(x, x′) are exactly the dynamics of the correlation
in an FFNN. We conclude using Appendix Lemma 2.

It is straightforward that the previous Appendix Lemma extend to ReLU activation, with slightly different
dynamics. In this case, we use Appendix Lemma 1 to conclude for the third statement.

Appendix Lemma 4 (Asymptotic behaviour of the correlation in CNN with ReLU-like activation functions).
We consider a CNN with ReLU activation. Let (σb, σw) ∈ (R+)2. Let (σb, σw) ∈ (R+)2 and ε ∈ (0, 1). The
following statements hold

1. If (σb, σw) are on the Ordered phase, then there exists β > 0 such that

sup
(x,x′)∈Rd

sup
α,α′
|clα,α′(x, x′)− 1| = O(e−βl)

2. If (σb, σw) are on the Chaotic phase, then there exists β > 0 and c ∈ (0, 1) such that

sup
(x,x′)∈Bε

sup
α,α′
|clα,α′(x, x′)− c| = O(e−βl)
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3. Under Assumption 1, if (σb, σw) ∈ EOC, then

sup
(x,x′)∈Bε

sup
α,α′

∣∣∣∣cl(x, x′)− 1 +
κ

l2
− κ′ log(l)

l3

∣∣∣∣ = O(l−3)

where κ, κ′ > 0 are universal constants.

Proof. The proof is similar to the case of Tanh in Appendix Lemma 3. The only difference is that we use
Appendix Lemma 1 to conclude for the third statement.

5 A technical tool for the derivation of uniform bounds

Results in Theorem 1 and 2 and Proposition 1 involve a supremum over the set Bε. To obtain such results, we
need a ’uniform’ Taylor analysis of the correlation cl(x, x′) (see the next section) where uniformity is over
(x, x′) ∈ Bε. It turns out that such result is trivial when the correlation follows a dynamical system that is
controlled by a non-decreasing function. We clarify this in the next lemma.
Appendix Lemma 5 (Uniform Bounds). Let A ⊂ R be a compact set and g a non-decreasing function on A.
Define the sequence ζl by ζl = g(ζl−1) and ζ0 ∈ A. Assume that there exist αl, βl that do not depend on ζl,
with βl = o(αl), such that for all ζ0 ∈ A,

ζl = αl +Oζ0(βl)

where Oζ0 means that the O bound depends on ζ0. Then, we have that

sup
ζ0∈A

|ζl − αl| = O(βl)

i.e. we can choose the bound O to be independent of ζ0.

Proof. Let ζ0,m = minA and ζ0,M = maxA. Let (ζm,l) and (ζM,l) be the corresponding sequences. Since
g is non-decreasing, we have that for all ζ0 ∈ A, ζm,l ≤ ζl ≤ ζM,l. Moreover, by assumption, there exists
M1,M2 > 0 such that

|ζm,l − αl| ≤M1|βl|
and

|ζM,l − αl| ≤M2|βl|
therefore,

|ζl − αl| ≤ max(|ζm,l − αl|, |ζM,l − αl|) ≤ max(M1,M2)|βl|
which concludes the proof.

Note that Appendix Lemma 5 can be easily extended to Taylor expansions with ‘o’ instead of ‘O’. We will use
this result in the proofs, by refereeing to Appendix Lemma 5.

6 Proofs of Section 3: Large Depth Behaviour of Neural Tangent Kernel

6.1 Proofs of the results of Section 3.1

In this section, we provide proofs for the results of Section 3.1 in the paper.

Recall that Lemma 1 in the paper is a generalization of Theorem 1 in Jacot et al. (2018) and is reminded here.
The proof is simple and follows similar induction techniques as in Jacot et al. (2018).
Lemma 1 (Generalization of Th. 1 in Jacot et al. (2018)). Consider an FFNN of the form (3). Then, as
n1, n2, ..., nL−1 →∞, we have for all x, x′ ∈ Rd, i, i′ ≤ nL, KL

ii′(x, x
′) = δii′K

L(x, x′), where KL(x, x′)
is given by the recursive formula

KL(x, x′) = q̇L(x, x′)KL−1(x, x′) + qL(x, x′),

where ql(x, x′) = σ2
b + σ2

wE[φ(yl−1
1 (x))φ(yl−1

1 (x′))] and q̇l(x, x′) = σ2
wE[φ′(yl−1

1 (x))φ′(yl−1
1 (x′))].

Proof. The proof for general σw is similar to when σw = 1 (Jacot et al. (2018)) which is a proof by induction.

For l ≥ 2 and i ∈ [1 : nl]

∂θ1:ly
l+1
i (x) =

σw√
nl

nl∑
j=1

wl+1
ij φ′(ylj(x))∂θ1:ly

l
j(x).
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Therefore,

(∂θ1:ly
l+1
i (x))(∂θ1:ly

l+1
i (x′))t =

σ2
w

nl

nl∑
j,j′

wl+1
ij wl+1

ij′ φ
′(ylj(x))φ′(ylj′(x

′))∂θ1:ly
l
j(x)(∂θ1:ly

l
j′(x

′))t

Using the induction hypothesis, namely that as n0, n1, ..., nl−1 →∞, for all j, j′ ≤ nl and all x, x′

∂θ1:ly
l
j(x)(∂θ1:ly

l
j′(x

′))t → Kl(x, x′)1j=j′

we then obtain for all nl, as n0, n1, ..., nl−1 →∞

σ2
w

nl

nl∑
j,j′

wl+1
ij wl+1

ij′ φ
′(ylj(x))φ′(ylj′(x

′))∂θ1:ly
l
j(x)(∂θ1:ly

l
j′(x

′))t → σ2
w

nl

nl∑
j

(wl+1
ij )2φ′(ylj(x))φ′(ylj(x

′))Kl(x, x′)

and letting nl go to infinity, the law of large numbers, implies that

σ2
w

nl

nl∑
j

(wl+1
ij )2φ′(ylj(x))φ′(ylj(x

′))Kl(x, x′)→ q̇l+1(x, x′)Kl(x, x′).

Moreover, we have that

(∂wl+1y
l+1
i (x))(∂wl+1y

l+1
i (x′))t + (∂bl+1y

l+1
i (x))(∂bl+1y

l+1
i (x′))t =

σ2
w

nl

∑
j

φ(ylj(x))φ(ylj(x
′)) + σ2

b

→
nl→∞

σ2
wE[φ(yli(x))φ(yli(x

′))] + σ2
b = ql+1(x, x′).

which ends the proof.

We now provide the recursive formula satisfied by the NTK of a CNN, namely Lemma 2 of the paper.
Lemma 2 (Infinite width dynamics of the NTK of a CNN). Consider a CNN of the form (??), then we have that
for all x, x′ ∈ Rd, i, i′ ≤ n1 and α, α′ ∈ [0 : M − 1]

K1
(i,α),(i′,α′)(x, x

′) = δii′
( σ2

w

n0(2k + 1)
[x, x′]α,α′ + σ2

b

)
For l ≥ 2, as n1, n2, ..., nl−1 → ∞ recursively, we have for all i, i′ ≤ nl, α, α′ ∈ [0 : M − 1],
Kl

(i,α),(i′,α′)(x, x
′) = δii′K

l
α,α′(x, x

′), where Kl
α,α′ is given by the recursive formula

Kl
α,α′ =

1

2k + 1

∑
β∈kerl

Ψl−1
α+β,α′+β

where Ψl−1
α,α′ = q̇lα,α′K

l−1
α,α′ + q̂lα,α′ , and q̂lα,α, q̇

l
α,α′ are defined in Lemma 1, with yl−1

1,α (x), yl−1
1,α′(x

′) in place
of yl−1

1 (x), yl−1
1 (x′).

Proof. Let x, x′ be two inputs. We have that

y1
i,α(x) =

σw√
v1

n0∑
j=1

∑
β∈ker1

w1
i,j,βxj,α+β + σbb

1
i

yli,α(x) =
σw√
vl

nl−1∑
j=1

∑
β∈kerl

wli,j,βφ(yl−1
j,α+β(x)) + σbb

l
i

therefore

K1
(i,α),(i′,α′)(x, x

′) =
∑
r

∑
j

∑
β

∂y1
i,α(x)

∂w1
r,j,β

∂y1
i′,α′(x)

∂w1
r,j,β

+
∂y1

i,α(x)

∂b1r

∂y1
i′,α′(x)

∂b1r

= δii′

 σ2
w

n0(2k + 1)

∑
j

∑
β

xj,α+βxj,α′+β + σ2
b
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Assume the result is true for l − 1, let us prove it for l. Let θ1:l−1 be model weights and bias in the layers 1 to

l − 1. Let ∂θ1:l−1y
l
i,α(x) =

∂yli,α(x)

∂θ1:l−1
. We have that

∂θ1:l−1y
l
i,α(x) =

σw√
nl−1(2k + 1)

∑
j

∑
β

wli,j,βφ
′(yl−1

j,α+β)∂θ1:l−1y
l−1
i,α+β(x)

this yields

∂θ1:l−1y
l
i,α(x)∂θ1:l−1y

l
i′,α′(x)T =

σ2
w

nl−1(2k + 1)

∑
j,j′

∑
β,β′

wli,j,βw
l
i′,j′,β′φ

′(yl−1
j,α+β)φ′(yl−1

j′,α′+β)∂θ1:l−1y
l−1
j,α+β(x)∂θ1:l−1y

l−1
j′,α′+β(x)T

as n1, n2, ..., nl−2 →∞ and using the induction hypothesis, we have

∂θ1:l−1y
l
i,α(x)∂θ1:l−1y

l
i′,α′(x)T →

σ2
w

nl−1(2k + 1)

∑
j

∑
β,β′

wli,j,βw
l
i′,j,β′φ

′(yl−1
j,α+β)φ′(yl−1

j,α′+β)Kl−1
(j,α+β),(j,α′+β)(x, x

′)

note that Kl−1
(j,α+β),(j,α′+β)(x, x

′) = Kl−1
(1,α+β),(1,α′+β)(x, x

′) for all j since the variables are iid across the
channel index j.

Now letting nl−1 →∞, we have that

∂θ1:l−1y
l
i,α(x)∂θ1:l−1y

l
i′,α′(x)T →

δii′
( 1

(2k + 1)

∑
β,β′

q̇lα+β,α′+βK
l−1
(1,α+β),(1,α′+β)(x, x

′)
)

We conclude using the fact that

∂θly
l
i,α(x)∂θly

l
i′,α′(x)T → δii′(

σ2
w

2k + 1

∑
β

E[φ(yl−1
α+β(x))φ(yl−1

α′+β(x′))] + σ2
b )

To alleviate notations, we use hereafter the notation KL for both the NTK of FFNN and CNN. For FFNN, it
represents the recursive kernel KL given by lemma 1, whereas for CNN, it represents the recursive kernel KL

α,α′

for any α, α′, which means all results that follow are true for any α, α′.
The following proposition establishes that any initialization on the Ordered or Chaotic phase, leads to a trivial
limiting NTK as the number of layers L becomes large.

Proposition 1 (Limiting Neural Tangent Kernel with Ordered/Chaotic Initialization). Let (σb, σw) be either in
the ordered or in the chaotic phase. Then, there exist λ > 0 such that for all ε ∈ (0, 1), there exists γ > 0 such
that

sup
(x,x′)∈Bε

|KL(x, x′)− λ| ≤ e−γL.

We will use the next lemma in the proof of proposition 1.

Appendix Lemma 6. Let (al) be a sequence of non-negative real numbers such that ∀l ≥ 0, al+1 ≤ αal +
ke−βl, where α ∈ (0, 1) and k, β > 0. Then there exists γ > 0 such that ∀l ≥ 0, al ≤ e−γl.

Proof. Using the inequality on al, we can easily see that

al ≤ a0α
l + k

l−1∑
j=0

αje−β(l−j)

≤ a0α
l + k

l

2
e−βl/2 + k

l

2
αl/2

where we divided the sum into two parts separated by index l/2 and upper-bounded each part. The existence of
γ is straightforward.
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Now we prove Proposition 1

Proof. We prove the result for FFNN first. Let x, x′ be two inputs. From lemma 1, we have that

Kl(x, x′) = Kl−1(x, x′)q̇l(x, x′) + ql(x, x′)

where q1(x, x′) = σ2
b +

σ2
w
d
xTx′ and ql(x, x′) = σ2

b + σ2
wEf∼N (0,ql−1)[φ(f(x))φ(f(x′))] and q̇l(x, x′) =

σ2
wEf∼N (0,ql−1)[φ

′(f(x))φ′(f(x′))]. From facts 1, 2, 4, 9, 17, in the ordered/chaotic phase, there exist
k, β, η, l0 > 0 and α ∈ (0, 1) such that for all l ≥ l0 we have

sup
(x,x′)∈Bε

|ql(x, x′)− k| ≤ e−βl

and
sup

(x,x′)∈Bε
|q̇l(x, x′)− α| ≤ e−ηl.

Therefore, there exists M > 0 such that for any l ≥ l0 and x, x′ ∈ Rd

Kl(x, x′) ≤M.

Letting rl = sup(x,x′)∈Bε |K
l(x, x′)− k

1−α |, we have

rl ≤ αrl−1 +Me−ηl + e−βl

We conclude using Appendix Lemma 6.

Under Assumption 1, the proof is similar for CNN, using Appendix Lemmas 3 and 4.

Now, we show that the Initialization on the EOC improves the convergence rate of the NTK wrt L. We first
prove two preliminary lemmas that will be useful for the proof of the next proposition. Hereafter, the notation
g(x) = Θ(m(x)) means there exist two constants A,B > 0 such that Am(x) ≤ g(x) ≤ Bm(x).

Appendix Lemma 7. Let A,B,Λ ⊂ R+ be three compact sets, and (al), (bl), (λl) be three sequences of
non-negative real numbers such that for all (a0, b0, λ0) ∈ A×B × Λ

al = al−1λl + bl, λl = 1− α

l
+O(l−1−β), bl = q(b0) + o(l−1),

where α ∈ N∗ independent of a0, b0, λ0, q(b0) ≥ 0 is a limit that depends on b0, and β ∈ (0, 1).
Assume the ‘O’ and ‘o’ depend only on A,B,Λ ⊂ R. Then, we have

sup
(a0,b0,λ0)∈A×B×Λ

∣∣∣∣all − q

1 + α

∣∣∣∣ = O(l−β).

Proof. Let A,B,Λ ⊂ R be three compact sets and (a0, b0, λ0) ∈ A×B × Λ. It is easy to see that there exists
a constant G > 0 independent of a0, b0, λ0 such that |al| ≤ G × l + |a0| for all l ≥ 0. Letting rl = al

l
, we

have that for l ≥ 2

rl = rl−1(1− 1

l
)(1− α

l
+O(l−1−β)) +

q

l
+ o(l−2)

= rl−1(1− 1 + α

l
) +

q

l
+O(l−1−β).

where O bound depends only on A,B,Λ. Letting xl = rl − q
1+α

, there exists M > 0 that depends only on
A,B,Λ, and l0 > 0 that depends only on α such that for all l ≥ l0

xl−1(1− 1 + α

l
)− M

l1+β
≤ xl ≤ xl−1(1− 1 + α

l
) +

M

l1+β
.

Let us deal with the right hand inequality first. By induction, we have that

xl ≤ xl0−1

l∏
k=l0

(1− 1 + α

k
) +M

l∑
k=l0

l∏
j=k+1

(1− 1 + α

j
)

1

k1+β
.

By taking the logarithm of the first term in the right hand side and using the fact that
∑l
k=l0

1
k

= log(l) +O(1),
we have

l∏
k=l0

(1− 1 + α

k
) = Θ(l−1−α).
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where the bound Θ does not depend on l0. For the second part, observe that

l∏
j=k+1

(1− 1 + α

j
) =

(l − α− 1)!

l!

k!

(k − α− 1)!

and
k!

(k − α− 1)!

1

k1+β
∼k→∞ kα−β .

Since α ≥ 1 (α ∈ N∗), then the serie with term kα−β is divergent and we have that

l∑
k=l0

k!

(k − α− 1)!

1

k2
∼

l∑
k=1

kα−β

∼
∫ l

1

tα−βdt

∼ 1

α− β + 1
lα−β+1.

Therefore, it follows that
l∑

k=l0

l∏
j=k+1

(1− 1 + α

j
)

1

k1+β
=

(l − α− 1)!

l!

l∑
k=l0

k!

(k − α− 1)!

1

k1+β

∼ 1

α
l−β .

This proves that

xl ≤
M

α
l−β + o(l−β).

where the ‘o’ bound depends only on A,B,Λ. Using the same approach for the left-hand inequality, we prove
that

xl ≥ −
M

α
l−β + o(l−β).

This concludes the proof.

The next lemma is a different version of the previous lemma which will be useful for other applications.

Appendix Lemma 8. Let A,B,Λ ⊂ R+ be three compact sets, and (al), (bl), (λl) be three sequences of
non-negative real numbers such that for all (a0, b0, λ0) ∈ A×B × Λ

al = al−1λl + bl, bl = q(b0) +O(l−1),

λl = 1− α

l
+ κ

log(l)

l2
+O(l−2),

where α ∈ N∗, κ 6= 0 both do not depend on a0, b0,Λ0, q(bo) ∈ R+ is a limit that depends on b0.
Assume the ‘O’ and ‘o’ depend only on A,B,Λ ⊂ R. Then, we have

sup
(a0,b0,λ0)∈A×B×Λ

∣∣∣∣all − q

1 + α

∣∣∣∣ = Θ(log(l)l−1)

Proof. Let A,B,Λ ⊂ R be three compact sets and (a0, b0, λ0) ∈ A×B×Λ. Similar to the proof of Appendix
Lemma 7, there exists a constant G > 0 independent of a0, b0, λ0 such that |al| ≤ G× l + |a0| for all l ≥ 0,
therefore (al/l) is bounded. Let rl = al

l
. We have

rl = rl−1(1− 1

l
)(1− α

l
+ κ

log(l)

l2
+O(l−1−β)) +

q

l
+O(l−2)

= rl−1(1− 1 + α

l
) + rl−1κ

log(l)

l2
+
q

l
+O(l−2).

Let xl = rl− q
1+α

. It is clear that λl = 1−α/l+O(l−3/2). Therefore, using appendix lemma 7 with β = 1/2,
we have rl → q

1+α
uniformly over a0, b0, λ0. Thus, assuming κ > 0 (for κ < 0, the analysis is the same), there

exists κ1, κ2,M, l0 > 0 that depend only on A,B,Λ such that for all l ≥ l0

xl−1(1− 1 + α

l
) + κ1

log(l)

l2
− M

l2
≤ xl ≤ xl−1(1− 1 + α

l
) + κ2

log(l)

l2
+
M

l2
.
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It follows that

xl ≤ xl0
l∏

k=l0

(1− 1 + α

k
) +

l∑
k=l0

l∏
j=k+1

(1− 1 + α

j
)
κ2 log(k) +M

k2

and

xl ≥ xl0
l∏

k=l0

(1− 1 + α

k
) +

l∑
k=l0

l∏
j=k+1

(1− 1 + α

j
)
κ1 log(k)−M

k2
.

Recall that we have
l∏

k=l0

(1− 1 + α

k
) = Θ(l−1−α)

and
l∏

j=k+1

(1− 1 + α

j
) =

(l − α− 1)!

l!

k!

(k − α− 1)!

so that
k!

(k − α− 1)!

κ1 log(k)−M
k2

∼k→∞ log(k)kα−1.

Therefore, we obtain

l∑
k=l0

k!

(k − α− 1)!

κ1 log(k)−M
k2

∼
l∑

k=1

log(k)kα−1

∼
∫ l

1

log(t)tα−1dt

∼ C1l
α log(l),

where C1 > 0 is a constant. Similarly, there exists a constant C2 > 0 such that

l∑
k=1

k!

(k − α− 1)!

κ2 log(k) +M

k2
∼ C2l

α log(l).

Moreover, having that (l−α−1)!
l!

∼ l−1−α yields

xl ≤ C′l−1 log(l) + o(l−1 log(l))

where C′ and ‘o’ depend only on A,B,Λ. Using the same analysis, we get

xl ≥ C′′l−1 log(l) + o(l−1 log(l))

where C′′ and ‘o’ depend only on A,B,Λ, which concludes the proof.

Theorem 1 (Neural Tangent Kernel on the Edge of Chaos). Let φ be ReLU or Tanh, (σb, σw) ∈ EOC and
K̃L = KL/L. We have that

sup
x∈E
|K̃L(x, x)− K̃∞(x, x)| = O(L−1)

Moreover, there exists a constant λ ∈ (0, 1) such that for all ε ∈ (0, 1)

sup
(x,x′)∈Bε

∣∣K̃L(x, x′)− K̃∞(x, x′)
∣∣ = Θ(log(L)L−1).

where
• if φ is ReLU-like, then K̃∞(x, x′) =

σ2
w‖x‖ ‖x

′‖
d

(1− (1− λ)1x 6=x′).
• if φ is Tanh, then K̃∞(x, x′) = q(1− (1− λ)1x 6=x′) where q > 0 is a constant.

Proof. We start by proving the results for an FFNN architecture, the proof machinery remains the same for
CNN under assumption:cnn.
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Case 1: FFNN. Let ε ∈ (0, 1), E ⊂ Rd, (σb, σw) ∈ EOC, and x, x′ ∈ Rd. Recall that cl(x, x′) =
ql(x,x′)√

ql(x,x)ql(x′,x′)
. Let γl := 1− cl(x, x′) and f be the correlation function defined by the recursive equation

cl+1 = f(cl) (See appendix 4). By definition, we have that q̇l(x, x) = f ′(cl−1(x, x′)). Let us first prove the
result for ReLU.

• φ =ReLU: From fact 11 in the appendix, we know that, when choosing the hyper-parameters (σw, σb)
on the EOC for ReLU, the variance ql(x, x) is constant w.r.t l and is given by ql(x, x) = q1(x, x) =
σ2
w
d
||x||2. Moreover, from fact 16, we have that q̇l(x, x) = 1. Therefore

Kl(x, x) = Kl−1(x, x) +
σ2
w

d
||x||2 = l

σ2
w

d
||x||2 = lK̃∞(x, x)

which concludes the proof for KL(x, x). Note that the results is ’exact’ for ReLU, which means the
upper bound O(L−1) is valid but not optimal in this case. However, we will see that this bound is
optimal for Tanh.

From Appendix Lemma 1, we have that

sup
(x,x′)∈Bε

∣∣∣∣cl(x, x′)− 1 +
κ

l2
− κ′ log(l)

l3

∣∣∣∣ = O(l−3)

and

sup
(x,x′)∈Bε

∣∣∣∣f ′(cl(x, x′))− 1 +
3

l
− κ′′ log(l)

l2

∣∣∣∣ = O(l−2).

Using Appendix Lemma 8 with al = Kl+1(x, x′), bl = ql+1(x, x′), λl = f ′(cl(x, x′)), we conclude
that

sup
(x,x′)∈Bε

∣∣∣∣Kl+1(x, x′)

l
− 1

4

σ2
w

d
‖x‖‖x′‖

∣∣∣∣ = Θ(log(l)l−1)

Using the compactness of Bε, we conclude that

sup
(x,x′)∈Bε

∣∣∣∣Kl(x, x′)

l
− 1

4

σ2
w

d
‖x‖‖x′‖

∣∣∣∣ = Θ(log(l)l−1)

• φ = Tanh: The proof in the case of Tanh is slightly different from that of ReLU. We use different
technical lemmas to conclude.

From Appendix Lemma 2, we have that

sup
(x,x′)∈Bε

∣∣∣∣cl(x, x′)− 1 +
κ

l
− κ(1− κ2ζ)

log(l)

l3

∣∣∣∣ = O(l−3)

where κ = 2
f ′′(1)

> 0 and ζ = f3(1)
6

> 0. Moreover, we have that

sup
(x,x′)∈Bε

∣∣∣∣f ′(cl(x, x′))− 1 +
2

l
− 2(1− κ2ζ)

log(l)

l2

∣∣∣∣ = O(l−2).

We conclude in the same way as in the case of ReLU using Appendix Lemma 8. The only difference
is that, in this case, the limit of the sequence bl = ql+1(x, x′) is the limiting variance q (from facts 3,
1) does not depend on (x, x′).

Case 2: CNN. Under Assumption 1, the NTK of a CNN is the same as that of an FFNN. Therefore, the
results on the NTK of FFNN are all valid to the NTK of CNN Kl

α,α′ for any α, α′.

6.2 Proofs of the results of Section 3.2 on ResNets

In this section, we provide proofs for lemmas 3 and 4 together with Theorem ?? and proposition ?? on ResNets.

Lemma 3 in the paper gives the recursive formula for the mean-field NTK of a ResNet with Fully Connected
blocks.

25



Lemma 3 (NTK of a ResNet with Fully Connected layers in the infinite width limit). Let x, x′ be two inputs
and Kres,1 be the exact NTK for the Residual Network with 1 layer. Then, we have

• For the first layer (without residual connections), we have for all x, x′ ∈ Rd

Kres,1
ii′ (x, x′) = δii′

(
σ2
b +

σ2
w

d
x · x′

)
,

where x · x′ is the inner product in Rd.

• For l ≥ 2, as n1, n2, ..., nL−1 →∞, we have for all i, i′ ∈ [1 : nl],Kres,l
ii′ (x, x′) = δii′K

l
res(x, x

′),
where Kl

res(x, x
′) is given by the recursive formula have for all x, x′ ∈ Rd and l ≥ 2, as

n1, n2, ..., nl →∞ recursively, we have

Kl
res(x, x

′) = Kl−1
res (x, x′)(q̇l(x, x′) + 1) + q̂l(x, x′).

Proof. The first result is the same as in the FFNN case since we assume there is no residual connections between
the first layer and the input. We prove the second result by induction.

• Let x, x′ ∈ Rd. We have

K1
res(x, x

′) =
∑
j

∂y1
1(x)

∂w1
1j

∂y1
1(x)

∂w1
1j

+
∂y1

1(x)

∂b11

∂y1
1(x)

∂b11
=
σ2
w

d
x · x′ + σ2

b .

• The proof is similar to the FeedForward network NTK. For l ≥ 2 and i ∈ [1 : nl]

∂θ1:ly
l+1
i (x) = ∂θ1:ly

l
i(x) +

σw√
nl

nl∑
j=1

wl+1
ij φ′(ylj(x))∂θ1:ly

l
j(x).

Therefore, we obtain

(∂θ1:ly
l+1
i (x))(∂θ1:ly

l+1
i (x′))t = (∂θ1:ly

l
i(x))(∂θ1:ly

l
i(x
′))t

+
σ2
w

nl

nl∑
j,j′

wl+1
ij wl+1

ij′ φ
′(ylj(x))φ′(ylj′(x

′))∂θ1:ly
l
j(x)(∂θ1:ly

l
j′(x

′))t + I

where

I =
σw√
nl

nl∑
j=1

wl+1
ij (φ′(ylj(x))∂θ1:ly

l
i(x)(∂θ1:ly

l
j(x
′))t + φ′(ylj(x

′))∂θ1:ly
l
j(x)(∂θ1:ly

l
i(x
′))t).

Using the induction hypothesis, as n0, n1, ..., nl−1 →∞, we have that

(∂θ1:ly
l+1
i (x))(∂θ1:ly

l+1
i (x′))t +

σ2
w

nl

nl∑
j,j′

wl+1
ij wl+1

ij′ φ
′(ylj(x))φ′(ylj′(x

′))∂θ1:ly
l
j(x)(∂θ1:ly

l
j′(x

′))t + I

→ Kl
res(x, x

′) +
σ2
w

nl

nl∑
j

(wl+1
ij )2φ′(ylj(x))φ′(ylj(x

′))Kl
res(x, x

′) + I ′,

where I ′ =
σ2
w
nl
wl+1
ii (φ′(yli(x)) + φ′(yli(x

′)))Kl
res(x, x

′).

As nl →∞, we have that I ′ → 0. Using the law of large numbers, as nl →∞

σ2
w

nl

nl∑
j

(wl+1
ij )2φ′(ylj(x))φ′(ylj(x

′))Kl
res(x, x

′)→ q̇l+1(x, x′)Kl
res(x, x

′).

Moreover, we have that

(∂wl+1y
l+1
i (x))(∂wl+1y

l+1
i (x′))t + (∂bl+1y

l+1
i (x))(∂bl+1y

l+1
i (x′))t =

σ2
w

nl

∑
j

φ(ylj(x))φ(ylj(x
′)) + σ2

b

→
nl→∞

σ2
wE[φ(yli(x))φ(yli(x

′))] + σ2
b = ql+1(x, x′).
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Now we proof the recursive formula for ResNets with Convolutional layers.

Lemma 4 (NTK of a ResNet with Convolutional layers in the infinite width limit). Let Kres,1 be the exact
NTK for the ResNet with 1 layer. Then
• For the first layer (without residual connections), we have for all x, x′ ∈ Rd

Kres,1
(i,α),(i′,α′)(x, x

′) = δii′
( σ2

w

n0(2k + 1)
[x, x′]α,α′ + σ2

b

)
• For l ≥ 2, as n1, n2, ..., nl−1 → ∞ recursively, we have for all i, i′ ∈ [1 : nl], α, α′ ∈ [0 : M − 1],
Kres,l

(i,α),(i′,α′)(x, x
′) = δii′K

res,l
α,α′ (x, x

′), where Kres,l
α,α′ is given by the recursive formula for all x, x′ ∈ Rd,

using the same notations as in lemma 2,

Kres,l
α,α′ = Kres,l−1

α,α′ +
1

2k + 1

∑
β

Ψl−1
α+β,α′+β .

where Ψl
α,α′ = q̇lα,α′K

res,l
α,α′ + q̂lα,α′ .

Proof. Let x, x′ be two inputs. We have that

K1
(i,α),(i′,α′)(x, x

′) =
∑
j

∑
β

∂y1
i,α(x)

∂w1
i,j,β

∂y1
i′,α′(x)

∂w1
i′,j,β

+
∂y1

i,α(x)

∂b1j

∂y1
i′,α′(x)

∂b1j


= δii′

 σ2
w

n0(2k + 1)

∑
j

∑
β

xj,α+βxj,α′+β + σ2
b

 .

Assume the result is true for l − 1, let us prove it for l. Let θ1:l−1 be model weights and bias in the layers 1 to

l − 1. Let ∂θ1:l−1y
l
i,α(x) =

∂yli,α(x)

∂θ1:l−1
. We have that

∂θ1:l−1y
l
i,α(x) = ∂θ1:l−1y

l−1
i,α (x) +

σw√
nl−1(2k + 1)

∑
j

∑
β

wli,j,βφ
′(yl−1

j,α+β)∂θ1:l−1y
l−1
i,α+β(x)

this yields

∂θ1:l−1y
l
i,α(x)∂θ1:l−1y

l
i′,α′(x)T = ∂θ1:l−1y

l−1
i,α (x)∂θ1:l−1y

l−1
i′,α′(x)T+

σ2
w

nl−1(2k + 1)

∑
j,j′

∑
β,β′

wli,j,βw
l
i′,j′,β′φ

′(yl−1
j,α+β)φ′(yl−1

j′,α′+β)∂θ1:l−1y
l−1
j,α+β(x)∂θ1:l−1y

l−1
j′,α′+β(x)T + I,

where

I =
σw√

nl−1(2k + 1)

∑
j,β

wli,j,βφ
′(yl−1

j,α+β)(∂θ1:l−1y
l−1
i,α (x)∂θ1:l−1y

l−1
i,α+β(x)T+∂θ1:l−1y

l−1
i,α+β(x)∂θ1:l−1y

l−1
i,α (x)T ).

As n1, n2, ..., nl−2 →∞ and using the induction hypothesis, we have

∂θ1:l−1y
l
i,α(x)∂θ1:l−1y

l
i′,α′(x)T → δii′K

l−1
α,α′(x, x

′)+

σ2
w

nl−1(2k + 1)

∑
j

∑
β,β′

wli,j,βw
l
i′,j,β′φ

′(yl−1
j,α+β)φ′(yl−1

j,α′+β)Kl−1
(j,α+β),(j,α′+β)(x, x

′).

Note that Kl−1
(j,α+β),(j,α′+β)(x, x

′) = Kl−1
(1,α+β),(1,α′+β)(x, x

′) for all j since the variables are iid across the
channel index j. Now letting nl−1 →∞, we have that

∂θ1:l−1y
l
i,α(x)∂θ1:l−1y

l
i′,α′(x)T →

δii′K
l−1
α,α′(x, x

′) + δii′
( 1

(2k + 1)

∑
β,β′

f ′(cl−1
α+β,α′+β(x, x′))Kl−1

(1,α+β),(1,α′+β)(x, x
′)
)
,

where f ′(cl−1
α+β,α′+β(x, x′)) = σ2

wE[φ′(yl−1
j,α+β)φ′(yl−1

j,α′+β)].
We conclude using the fact that

∂θly
l
i,α(x)∂θly

l
i′,α′(x)T → δii′(

σ2
w

2k + 1

∑
β

E[φ(yl−1
α+β(x))φ(yl−1

α′+β(x′))] + σ2
b ).
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Before moving to the main theorem on ResNets, We first prove a Lemma on the asymptotic behaviour of cl for
ResNet.

Appendix Lemma 9 (Asymptotic expansion of cl for ResNet). Let ε ∈ (0, 1) and σw > 0. We have for FFNN

sup
(x,x′)∈Bε

∣∣∣∣cl(x, x′)− 1 +
κσw
l2
− κ′σw

log(l)

l3

∣∣∣∣ = O(l−3)

where κσw , κ
′
σw > 0 are two constants that depend on σw.

Moreover, we have that

sup
(x,x′)∈Bε

∣∣∣∣∣f ′(cl(x, x′))− 1 +
3(1 + 2

σ2
w

)

l
− κ′′σW

log(l)

l2

∣∣∣∣∣ = O(l−2).

where f is the ReLU correlation function given in fact 12 and κ′′σW > 0 is a constant that depends on σw.
Moreover, this result holds also for CNNs where the supremum should be replaced by sup(x,x′)∈Bε supα,α′ .

Proof. We first prove the result for ResNet with fully connected layers, then we generalize it to convolutional
layers. Let ε ∈ (0, 1).

• Let x 6= x′ ∈ Rd, and cl := cl(x, x′). It is straightforward that the variance terms follow the recursive
form

ql(x, x) = ql−1(x, x) + σ2
w/2q

l−1(x, x) = (1 + σ2
w/2)l−1q1(x, x)

Leveraging this observation, we have that

cl+1 =
1

1 + α
cl +

α

1 + α
f(cl),

where f is the ReLU correlation function given in fact 12 and α =
σ2
w
2

. Recall that

f(c) =
1

π
c arcsin(c) +

1

π

√
1− c2 +

1

2
c.

As in the proof of Appendix Lemma 1, let γl = 1− cl, therefore, using Taylor expansion of f near 1
given in fact 14 yields

γl+1 = γl −
αs

1 + α
γ

3/2
l − αb

1 + α
γ

5/2
l +O(γ

7/5
l ).

This form is exactly the same as in the proof of Appendix Lemma 1 with s′ = αs
1+α

and b′ = αb
1+α

.
Thus, following the same analysis we conclude.

For the second result, observe that the derivation is the same as in Appendix Lemma 1.

• Under Assumption 1, results of FFNN hold for CNN.

The next theorem shows that no matter what the choice of σw > 0, the normalized NTK of a ResNet will always
have a subexponential convergence rate to a limiting K̄∞res.
Theorem 2 (NTK for ResNet). Consider a ResNet satisfying

yl(x) = yl−1(x) + F(wl, yl−1(x)), l ≥ 2, (17)

where F is either a convolutional or dense layer with ReLU activation. Let KL
res be the corresponding NTK

and K̄L
res = KL

res/αL (Normalized NTK) with αL = L(1 +
σ2
w
2

)L−1. If the layers are convolutional assume
Assumption 1 holds. Then, we have

sup
x∈E
|K̄L

res(x, x)− K̄∞res(x, x)| = Θ(L−1)

Moreover, there exists a constant λ ∈ (0, 1) such that for all ε ∈ (0, 1)

sup
x,x′∈Bε

∣∣K̄L
res(x, x

′)− K̄∞res(x, x′)
∣∣ = Θ(L−1 log(L)),

where K̄∞res(x, x
′) =

σ2
w‖x‖ ‖x

′‖
d

(1− (1− λ)1x 6=x′).

Proof. We start by proving the result for a ResNet architecture with fully-connected layers. As in the previous
proofs, the result easily extends to a ResNet with convolutional layers under assumption:cnn.
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Case 1: ResNet with fully-connected layers. Let ε ∈ (0, 1), E ⊂ Rd, and x, x′ ∈ Rd. We first prove
the result for the diagonal terms KL

res(x, x), we deal afterwards with off-diagonal terms KL
res(x, x

′).

• Diagonal terms: from fact 12, we have that q̇l(x, x) =
σ2
w
2
f(1) =

σ2
w
2

. Moreover, it is easy to see
that the variance terms for a ResNet follow the recursive formula ql(x, x) = ql−1(x, x) + σ2

w/2×
ql−1(x, x), hence

ql(x, x) = (1 + σ2
w/2)l−1 σ

2
w

d
‖x‖2 (18)

Recall that the recursive formula of NTK of a ResNet with fully-connected layers is given by (Appendix
Lemma 3)

Kl
res(x, x

′) = Kl−1
res (x, x′)(q̇l(x, x′) + 1) + ql(x, x′)

Hence, for the diagonal terms we obtain

Kl
res(x, x) = Kl−1

res (x, x)

(
σ2
w

2
+ 1

)
+ ql(x, x)

Letting K̂l
res = Kl

res/
(

1 +
σ2
w
l

)l−1

yields

K̂l
res(x, x) = K̂l−1

res (x, x) +
σ2
w

d
‖x‖2

Therefore, K̄l
res(x, x) =

K̂1
res(x,x)

l
+ (1− 1/l)

σ2
w
d
‖x‖2, the conclusion is straightforward since E

is compact and K̂1
res(x, x) is continuous which implies that it is uniformly bounded on E.

• Off-diagonal terms: the argument is similar to that of Theorem 1 with few key differences. From
Appendix Lemma 9 we have that

sup
(x,x′)∈Bε

∣∣∣∣cl(x, x′)− 1 +
κσw
l2
− κ′σw

log(l)

l3

∣∣∣∣ = O(l−3)

where κσw , κ
′
σw > 0. Moreover, we have that

sup
(x,x′)∈Bε

∣∣∣∣∣f ′(cl(x, x′))− 1 +
3(1 + 2

σ2
w

)

l
− κ′′σw

log(l)

l2

∣∣∣∣∣ = O(l−2).

Let α =
σ2
w
2

. We also have q̇l+1(x, x′) = αf ′(cl(x, x′)) where f is the ReLU correlation function
given in fact 12. It follows that for all (x, x′) ∈ Bε

1 + q̇l+1(x, x′) = (1 + α)(1− 3l−1 + ζ
log(l)

l2
+O(l−3))

for some constant ζ 6= 0 that does not depend on x, x′. The bound O does not depend on x, x′ either.

Now let al =
Kl+1
res (x,x′)
(1+α)l

. Using the recursive formula of the NTK, we obtain

al = λlal−1 + bl

where λl = 1 − 3l−1 + ζ log(l)

l2
+ O(l−3), bl =

σ2
w
d

√
‖x‖‖x′‖f(cl(x, x′)) = q(x, x′) + O(l−2)

with q(x, x′) =
σ2
w
d

√
‖x‖‖x′‖ and where we used the fact that cl(x, x′) = 1 +O(l−2) (Appendix

Lemma 1) and the formula for ResNet variance terms given by equation (18). Observe that all bounds
O are independent from the inputs (x, x′). Therefore, using Appendix Lemma 8, we have

sup
x,x′∈Bε

∣∣KL+1
res (x, x′)/L(1 + α)L − K̄∞res(x, x′)

∣∣ = Θ(L−1 log(L)),

which can also be written as

sup
x,x′∈Bε

∣∣KL
res(x, x

′)/(L− 1)(1 + α)L−1 − K̄∞res(x, x′)
∣∣ = Θ(L−1 log(L)),

We conclude by observing that KL
res(x, x

′)/(L − 1)(1 + α)L−1 = KL
res(x, x

′)/L(1 + α)L−1 +
O(L−1) where O can be chosen to depend only on ε.
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Case 2: ResNet with Convolutional layers. Under Assumption 1, the dynamics of the correlation and
NTK are exactly the same for FFNN, hence all results on FFNN apply to CNN.

6.2.1 Beyond ResNet: Scaled ResNet

The term αL in the residual NTK might cause numerical stability issues for NTK training, and the triviality of
the limiting kernel yields a trivial NTK regime solution (recall that ft − f0 belongs to the RKHS of the NTK;
see section 2). It turns out that we can improve the performance of NTK training of ResNets with a simple
scaling of the ResNet blocks.

Theorem 3 (Scaled ResNet). Consider a ResNet satisfying

yl(x) = yl−1(x) +
1√
l
F(wl, yl−1(x)), l ≥ 2, (19)

where F is either a convolutional or dense layer ((3) and (??)) with ReLU activation. Then the results of
Theorem 2 apply with αL = L1+σ2

w/2 and the convergence rate Θ(log(L)−1).

Theorem 3 shows that scaling the residual blocks by 1/
√
l has two important effects on the NTK: first, it

stabilizes the NTK which only grows as L1+
σ2w
2 instead of L(1 +

σ2
w
2

)L−1; second, it drastically slows down
the convergence rate to the limiting (trivial) K̄∞res. Both properties are highly desirable for NTK training. The
second property in particular means that with the scaling, we can ‘NTK train’ deeper ResNets compared to
the non-scaled ResNet. A more aggressive scaling was studied in Huang et al. (2020), where authors scale the
blocks with 1/L instead of our scaling 1/

√
l, and show that it also stabilizes the NTK of ResNet. This is the

main topic of the next chapter. We particularly show that a suitable scaling ensures that the limiting NTK is
universal, i.e. we can approximate any continuous function on some compact set K with a function from the
Reproducing Kernel Hilbert Space of the limiting NTK. This is a desirable property since the second term in the
solution of the NTK regime lives in the RKHS of the NTK.

Now let us prove the Scaled Resnet result. Before that, we prove the following Lemma

Appendix Lemma 10. Consider a Residual Neural Network with the following forward propagation equations

yl(x) = yl−1(x) +
1√
l
F(wl, yl−1(x)), l ≥ 2. (20)

where F is either a convolutional or dense layer (equations 3 and ??) with ReLU activation. Then there exists
ζ,∇ > 0 such that for all ε ∈ (0, 1)

sup
(x,x′)∈Bε

∣∣∣∣1− cl(x, x′)− ζ

log(l)2
+

∇
log(l)3

∣∣∣∣ = o(
1

log(l)3
)

where the bound ‘o’ depends only on ε.
For CNN, under Assumption 1, the result holds and the supremum is taken also over α, α′, i.e.

sup
(x,x′)∈Bε

sup
α,α′

∣∣∣∣1− clα,α′(x, x′)− ζ

log(l)2
+

∇
log(l)3

∣∣∣∣ = o(
1

log(l)3
)

Proof. We first start with the dense layer case. Let ε ∈ (0, 1) and (x, x′) ∈ Bε be two inputs and denote by
cl := cl(x, x′). Following the same machinery as in the proof of Appendix Lemma 9, we have that

cl =
1

1 + αl
cl−1 +

αl
1 + αl

f(cl−1)

where αl =
σ2
w

2l
. Using fact 12, it is straightforward that f ′ ≥ 0, hence f is non-decreasing. Therefore,

cl ≥ cl−1 and cl converges to a fixed point c. Let us prove that c = 1. By contradiction, suppose c < 1 so that
f(c)− c > 0 (f has a unique fixed point which is 1). This yields

cl − c = cl−1 − c+
f(c)− c

l
+O(

cl − c
l

) +O(l−2)

by summing, this leads to cl − c ∼ (f(c) − c) log(l) which is absurd since f(c) 6= c ( f has only 1 as a
fixed point). We conclude that c = 1. Using the non-decreasing nature of f , it is easy to conclude that the
convergence is uniform over Bε.
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Now let us find the asymptotic expansion of 1− cl. Recall the Taylor expansion of f near 1 given in fact 14

f(c) =
x→1−

c+ s(1− c)3/2 + b(1− c)5/2 +O((1− c)7/2) (21)

where s = 2
√

2
3π

and b =
√

2
30π

. Letting γl = 1− cl, we obtain

γl = γl−1 − sδlγ3/2
l−1 − bδlγ

5/2
l−1 +O(δlγ

7/5
l−1).

which yields

γ
−1/2
l = γ

−1/2
l−1 +

s

2
δl +

3

8
s2δ2

l γ
1/2
l−1 +

b

2
δlγl−1 +O(δlγ

3/2
l−1). (22)

therefore, we have that

γ
−1/2
l ∼ sσ2

w

4
log(l)

and 1− cl ∼ ζ
log(l)2

where ζ = 16/s2σ4
w.

we can further expand the asymptotic approximation to have

1− cl =
ζ

log(l)2
− ∇

log(l)3
+ o(

1

log(l)3
)

where∇ > 0. the ‘o’ holds uniformly for (x, x′) ∈ Bε as in the proof of Appendix Lemma 1.

This result holds for a ResNet with CNN layers under Assumption 1 since the dynamics are the same in this case.

Proof of Theorem 3.

Proof. We use the same techniques as in the non scaled case. Let us prove the result for fully connected layers,
the proof for convolutional layers follows the same analysis. Let ε ∈ (0, 1) and x, x′ ∈ Bε be two inputs. We
first prove the result for the diagonal term KL

res(x, x) then KL
res(x, x

′).

• We have that q̇l(x, x) =
σ2
w

2l
f(1) =

σ2
w

2l
. Moreover, we have ql(x, x) = ql−1(x, x) + σ2

w/2l ×
ql−1(x, x) = [

∏l
k=1(1 + σ2

w/2k)]
σ2
w
d
‖x‖2. Recall that

Kl
res(x, x) = Kl−1

res (x, x)(1 +
σ2
w

2l
) + ql(x, x)

letting k′l =
Klres(x,x)∏l

k=1
(1+σ2

w/2k)
,we have that

k′l = k′l−1 +
σ2
w

d
‖x‖

using the fact that
∏l
k=1(1 + σ2

w/2k) = Θ(lσ
2
w/2), we conclude for Kl

res(x, x).

• Recall that
Kl
res(x, x

′) = Kl−1
res (x, x′)(q̇l(x, x′) + 1) + ql(x, x′)

Let cl := cl(x, x′). From Appendix Lemma 10 we have that

1− cl =
ζ

log(l)2
− ∇

log(l)3
+ o(

1

log(l)3
)

ζ = 16
s2σ4

w
and∇ > 0. Using the Taylor expansion of f ′ as in Appendix Lemma 1, it follows that

f ′(cl(x, x′)) = 1− 6

σ2
w

log(l)−1 + ζ′ log(l)−2 +O(log(l)−3)

where ζ′ = ∇√
2πζ

. We obtain

1 + q̇l(x, x′) = 1 +
σ2
w

2l
− 3l−1 log(l)−1 + ζ′′l−1 log(l)−2 +O(l−1 log(l)−3)
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where ζ′′ =
σ2
w
2
ζ′. Letting al =

Kl+1
res (x,x′)∏l

k=1
(1+σ2

w/2k)
, we obtain

al = λlal−1 + bl

where λl = 1−l−1−3l−1 log(l)−1 +O(l−1 log(l)−2), bl =
√
q1(x, x)

√
q1(x′, x′)f(cl(x, x′)) =

q(x, x′) + O(log(l)−2) with q =
√
q1(x, x)

√
q1(x′, x′) and where we used the fact that

cl = 1 +O(log(l)−2) (Appendix Lemma 10).

Now we proceed in the same way as in the proof of Appendix Lemma 8. Let xl = al
l
− q, then there

exists M1,M2 > 0 such that

xl−1(1− 1

l
)−M1l

−1 log(l)−1 ≤ xl ≤ xl−1(1− 1

l
)−M2l

−1 log(l)−1

therefore, there exists l0 independent of (x, x′) such that for all l ≥ l0

xl ≤ xl0
l∏

k=l0

(1− 1

k
)−M2

l∑
k=l0

l∏
j=k+1

(1− 1

j
)k−1 log(k)−1

and

xl ≥ xl0
l∏

k=l0

(1− 1

k
)−M1

l∑
k=l0

l∏
j=k+1

(1− 1

j
)k−1 log(k)−1

after simplification, we have that

l∑
k=l0

l∏
j=k+1

(1− 1

j
)k−1 log(k)−1 = Θ

(
1

l

∫ l 1

log(t)
dt

)
= Θ(log(l)−1)

where we have used the asymptotic approximation of the Logarithmic Intergal function Li(x) =∫ t 1
log(t)

∼x→∞ x
log(x)

we conclude that αL = L×
∏l
k=1(1 + σ2

w/2k) ∼ L1+
σ2w
2 and the convergence rate of the NTK is

now Θ(log(L)−1) which is better than Θ(L−1). The convergence is uniform over the set Bε.

In the limit of large L, the matrix NTK of the scaled resnet has the following form

ÂK
l

res = qU + log(L)−1Θ(ML)

where U is the matrix of ones, and ML has all elements but the diagonal equal to 1 and the diagonal
terms are O(L−1 log(L)) → 0. Therefore, ML is inversible for large L which makes K̂l

res also
inversible. Moreover, observe that the convergence rate for scaled resnet is log(L)−1 which means
that for the same depth L, the NTK remains far more expressive for scaled resnet compared to standard
resnet, this is particularly important for the generalization.

Table 2: Test accuracy on CIFAR100 for
ResNet.

Epoch 10 Epoch 160

ResNet32 standard 54.18±1.21 72.49±0.18
scaled 53.89±2.32 74.07±0.22

ResNet50 standard 51.09±1.73 73.63±1.51
scaled 55.39±1.52 75.02±0.44

ResNet104 standard 47.02±3.23 74.77±0.29
scaled 56.38±2.54 76.14±0.98

Does Scaled ResNet outperforms ResNet with SGD? We train
standard ResNet with depths 32, 50, and 104 on CIFAR100 with
SGD. We use a decaying learning rate schedule; we start with
0.1 and divide by 10 after ne/2 epochs, where ne is the total
number of epochs; we scale again, by 10, after ne/4 epochs. We
use a batch size of 128, and we train the model with 160 epochs.
Theorem 3 shows that the NTK of Scaled ResNet is more stable
compared to the NTK of standard ResNet. Although this result is
limited to NTK training, we investigate the impact of scaling on
SGD training. Table 2 displays test accuracy for standard ResNet
and scaled ResNet after 10 and 160 epochs; Scaled ResNet out-
performs ResNet and converges faster. However, it is not clear
whether this is linked to the NTK, or caused by something else. We leave this for future work.

32



6.3 Spectral decomposition of the limiting NTK

6.3.1 Review on Spherical Harmonics

We start by giving a brief review of the theory of Spherical Harmonics MacRobert (1967). Let Sd−1 be the unit
sphere in Rd defined by Sd−1 = {x ∈ Rd : ‖x‖2 = 1}. For some k ≥ 1, there exists a set (Yk,j)1≤j≤N(d,k)

of Spherical Harmonics of degree k with N(d, k) = 2k+d−2
k

(
k+d−3
d−2

)
.

The set of functions (Yk,j)k≥1,j∈[1:N(d,k)] form an orthonormal basis with respect to the uniform measure on
the unit sphere Sd−1.

For some function g, the Hecke-Funk formula is given by∫
Sd−1

g(〈x,w〉)Yk,j(w)dνd−1(w) =
Ωd−1

Ωd
Yk,j(x)

∫ 1

−1

g(t)P dk (t)(1− t2)(d−3)/2dt

where νd−1 is the uniform measure on the unit sphere Sd−1, Ωd is the volume of the unit sphere Sd−1, and P dk
is the multi-dimensional Legendre polynomials given explicitly by Rodrigues’ formula

P dk (t) =
(
− 1

2

)k Γ( d−1
2

)

Γ(k + d−1
2

)
(1− t2)

3−d
2
( d
dt

)k
(1− t2)k+ d−3

2

(P dk )k≥0 form an orthogonal basis of L2([−1, 1], (1− t2)
d−3
2 dt), i.e.

〈P dk , P dk′〉
L2([−1,1],(1−t2)

d−3
2 dt)

= δk,k′

where δij is the Kronecker symbol. Moreover, we have

‖P dk ‖2
L2([−1,1],(1−t2)

d−3
2 dt)

=
(k + d− 3)!

(d− 3)(k − d+ 3)!

Using the Heck-Funk formula, we can easily conclude that any dot product kernel on the unit sphere Sd−1, i.e.
and kernel of the form κ(x, x′) = g(〈x, x′〉) can be decomposed on the Spherical Harmonics basis. Indeed, for
any x, x′ ∈ Sd−1, the decomposition on the spherical harmonics basis yields

κ(x, x′) =
∑
k≥0

N(d,k)∑
j=1

[∫
Sd−1

g(〈w, x′〉)Yk,j(w)dνd−1(w)

]
Yk,j(x)

Using the Hecke-Funk formula yields

κ(x, x′) =
∑
k≥0

N(d,k)∑
j=1

[
Ωd−1

Ωd

∫ 1

−1

g(t)P dk (t)(1− t2)(d−3)/2dt

]
Yk,j(x)Yk,j(x

′)

we conclude that

κ(x, x′) =
∑
k≥0

µk

N(d,k)∑
j=1

Yk,j(x)Yk,j(x
′)

where µk =
Ωd−1

Ωd

∫ 1

−1
g(t)P dk (t)(1− t2)(d−3)/2dt.

We use these result in the proof of the next theorem.
Proposition 2 (Spectral decomposition). Let κL be either, the NTK (KL) for an FFNN with L layers initialized
on the Ordered phase, The Average NTK (AKL) for an FFNN with L layers initialized on the EOC, or the
Normalized NTK (K̄L

res) for a ResNet with L layers (Fully Connected). Then, for all L ≥ 1, there exists (µLk )k≥
such that for all x, x′ ∈ Sd−1

κL(x, x′) =
∑
k≥0

µLk

N(d,k)∑
j=1

Yk,j(x)Yk,j(x
′).

(Yk,j)k≥0,j∈[1:N(d,k)] are spherical harmonics of Sd−1, and N(d, k) is the number of harmonics of order k.

Moreover, we have that 0 < µ∞0 = lim
L→∞

µL0 <∞, and for all k ≥ 1, lim
L→∞

µLk = 0.

Proof. From the recursive formulas of the NTK for FFNN, CNN and ResNet architectures, it is straightforward
that on the unit sphere Sd−1, the kernel κL is zonal in the sense that it depends only on the scalar product, more
precisely, for all L ≥ 1, there exists a function gL such that for all x, x′ ∈ Sd−1

κL(x, x′) = gL(〈x, x′〉)
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using the previous results on Spherical Harmonics, we have that for all x, x′ ∈ Sd−1

κL(x, x′) =
∑
k≥0

µLk

N(d,k)∑
j=1

Yk,j(x)Yk,j(x
′)

where µLk =
Ωd−1

Ωd

∫ 1

−1
gL(t)P dk (t)(1− t2)(d−3)/2dt.

For k = 0, we have that for all L ≥ 1, µL0 =
Ωd−1

Ωd

∫ 1

−1
gL(t)(1 − t2)(d−3)/2dt. By a simple

dominated convergence argument, we have that limL→∞ µ
L
0 = qλ

Ωd−1

Ωd

∫ 1

−1
(1 − t2)(d−3)/2dt > 0,

where q, λ are given in Theorems 1, 2 and Proposition 1 (where we take q = 1 for the Or-
dered/Chaotic phase initialization in Proposition 1). Using the same argument, we have that for
k ≥ 1, limL→∞ µ

L
k = qλ

Ωd−1

Ωd

∫ 1

−1
P dk (t)(1− t2)(d−3)/2dt = qλ

Ωd−1

Ωd
〈P d0 , P dk 〉

L2([−1,1],(1−t2)
d−3
2 dt)

= 0.

7 Further experimental results

• Results for L between 30 and 300: In our experiments, we observed degeneracy of the NTK regime when
L ∼ 300 (hence our choice of L = 300 in the paper). The Figure included here shows the percentage drop in
performance of the NTK regime for a 100x100 FFNN with ReLU on MNIST for the Ordered phase/EOC Init.

Figure 2: Deterioration of NTK regime
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