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Abstract

A wide range of approaches exists for automat-
ically solving math word problems (MWPs),
with the majority focusing on obtaining the fi-
nal correct final answer, which is not enough.
Solutions with step-by-step explanations are
valuable in many applications, especially in
education, to help students better comprehend
problem solving strategies. Recent approaches
built on large-scale, pre-trained language mod-
els, offer a possibility not only to reach a sin-
gle final answer but also to generate interme-
diate solution steps, leveraging the language
understanding and generation capabilities of
language models. However, language models
lack mathematical reasoning ability and often
cannot generate coherent steps with a clear so-
lution strategy. Thus, we study the problem of
fine-grained, step-by-step controllable solution
generation for MWPs. We explore whether we
can learn a solution strategy that informs future
steps and apply controllable generation meth-
ods to generate step-by-step not word-by-word.
We (i) train a math operation predictor to plan
the mathematical operation to apply in the next
step given history steps and (ii) use the pre-
dicted operation to prompt a language model
to generate the next step token-by-token. We
conduct numerical experiments on the GSM8K
dataset and show that our method improves the
overall MWP solving accuracy and solution
interpretability with step-by-step plans.

1 Introduction

Arithmetic math word problems (MWPs) consist of
natural language statements describing real-world
scenarios that involve numerical quantities, fol-
lowed by a question text asking for an unknown
value. Solving MWPs require parsing the textual
statements and carrying out the corresponding cal-
culations (Kumar et al., 2022). MWPs are an im-
portant educational tool that helps assess and im-
prove student knowledge in basic mathematical
concepts and skills (Walkington, 2013; Verschaffel

et al., 2020). They also represent a long-standing
interest in artificial intelligence (Al) research since
correctly solving them serves as a key benchmark
task for testing and improving the mathematical
reasoning skills of Al models (Feigenbaum and
Feldman, 1995; Bommasani et al., 2021; Cobbe
et al., 2021; Lewkowycz et al., 2022).

There is a large body of literature that focuses on
automatically solving MWP. Earlier works took a
modular approach that first analyzes unconstrained
natural language and then maps intricate text pat-
terns onto mathematical vocabulary (Sundaram
et al., 2022). As a result, this approach relies heav-
ily on hand-crafted rules to fill the gap between
natural language and symbolic mathematical vo-
cabulary (Sundaram et al., 2022). Recent works
leverage advances in natural language processing
and take a neural network-based, end-to-end ap-
proach, where a neural network encodes a numer-
ical representation of MWP (and the underlying
equation), from which a decoder generates the final
answer (Zou and Lu, 2019; Wang et al., 2017; Wu
et al., 2020; Chen et al., 2020). Unfortunately, the
vast majority of these works focus on generating
and predicting a single final answer, without pro-
viding any insights or explanations into how the
models arrive at the answer. This is because final
answer correctness has been, for the most part, the
only metric for evaluating the effectiveness of dif-
ferent MWP solving approaches. As a result, it is
often difficult, if not entirely impossible, to explain
the model’s behavior, especially when it produces a
wrong answer. The lack of interpretability of these
methods makes it challenging to analyze them and
unsafe to use them in real-world applications.

This interpretability issue has attracted increas-
ing interest in MWP solving. Recent works have
shifted to designing models that not only generate
the final answer for an MWP, but also the inter-
mediate steps. The ability to generate intermedi-
ate steps not only enables researchers to investi-



gate the behaviors of the model but also new ap-
plications. For example, in personalized educa-
tion and intelligent tutoring systems, these mod-
els have the potential to generate detailed, person-
alized solution steps as feedback to improve stu-
dent understanding of the mathematical concepts
and resolve misconceptions (Walkington, 2013;
Karpicke, 2012; Koedinger et al., 2015). The re-
cent GSM8K (Cobbe et al., 2021) dataset contains
MWPs that come with 2 to 8 intermediate steps
described in natural language, which provides us a
good resource to study step-by-step solution gener-
ation. Many works apply language models (LMs)
on this dataset and achieve high accuracy in final
answer generation, without studying the quality of
intermediate steps (Wei et al., 2022; Wang et al.,
2022; Chowdhery, Aakanksha and others, 2022;
Lewkowycz et al., 2022). These works use veri-
fiers, self-consistency decoding strategy (majority
votes), chain of thought prompting, or calculators;
we provide a detailed discussion in the Related
Work section.

Despite LMs being capable of generating inter-
mediate steps, these works still mainly focus on
obtaining the final correct answer. They view inter-
mediate steps only as a way to provide models addi-
tional context of MWP solving to improve the cor-
rectness of final answers. As a result, these works
are prone to generate incorrect intermediate steps
despite achieving the correct final answer, which
indicates that these models are not really compe-
tent at numerical reasoning. A potential reason
is that LMs restrict these approaches to generate
intermediate steps in a word-by-word (or token-
by-token) way. As a result, these approaches can
only utilize shallow heuristics (Li et al., 2021) in
word occurrence and lack an understanding of the
overall structure of multi-step solution that solving
an MWP requires.

1.1 Contributions

In this paper, we study the problem of generat-
ing accurate and high-quality intermediate solution
steps with natural language explanation via step-
by-step planning using a large LM. We formulate
this problem as a controllable generation problem
where the LM aims to generate the correct inter-
mediate solution at each solution step, given the
MWP and previous solution steps. This problem
is particularly challenging since the generated so-
lution steps need to be accurate, i.e., each inter-

mediate step must be mathematically valid and on
the path to the correct answer. Thus, we need an
approach that is different from commonly-studied,
attribute-controlled generation approaches for topic
or sentiment control, where the attribute is more
nuanced and cannot be matched exactly (Dathathri
et al., 2020; Krause et al., 2020; Shirish Keskar
et al., 2019).

To overcome these challenges, we introduce a
step-by-step planning approach, where we plan the
strategy for the next solution step and use the plan
to guide LMs to generate the step. In particular, we
propose to use specifically formulated mathemati-
cal hints in the form of mathematical operations to
prompt the model to generate a particular interme-
diate step.

We summarize our contributions as follows.

* We explore the use of a planning approach
for step-by-step solution generation in MWPs.
To the best of our knowledge, this is the first
work that focuses on generating high-quality
intermediate solution steps via LMs.

* We first predict the mathematical operation
applied in the next solution step using a small
model and then apply a carefully-constructed
prompt to control a large LM to generate the
next solution step. Our approach can be ex-
tended to many downstream applications due
to the interpretability and high controllability
of the mathematical operation prompt.

* We verify the effectiveness of our planning-
LM approach both quantitatively and qual-
itatively on the GSM8K dataset. We show
that, with minimal additional parameters
(0.02%) introduced, our planning-LM ap-
proach yields both higher-quality intermediate
solution steps and more accurate final answers
than existing approaches. Moreover, we show
that by changing the operation prompt, we can
control our framework to generate different
solution paths that correctly solve the same
MWP.

2 Notation

We first define all of terms and components in
our approach. The MWP is defined as Q =
{¢1,92, .., qn} where ¢; represents a token, which
is either a numerical value, a mathematical operator,
or a word/sub-word, and the corresponding step-
by-step solution is defined as S = {S*,S2,...},
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the overview generation process by given the question Q).

where S denotes 7" step of the solution. For any
step S?, we have S* = {s!, s}, ...}, consisting of
a sequence of tokens. Next, we define our prompt
with two parts. The first part is the textual instruc-
tion prompt, which contains words that LMs can
understand and the second part is the mathemati-
cal operation prompt, which is a special token that
contains next step operation information. We de-
note the instruction prompt as P = {p1,pa,...},
where s; represents a word/sub-word token and the
operation prompt as O = {0}, where o is a categor-
ical token as o € {1...]|O|}. We define H; as the
solution context, i.e., the history at step S?, which
consists of the problem () and all previous steps,
{81, ..., 871}, M denotes the base pre-trained
LM and e is its corresponding token embedding
function. Finally, we define f as the prompt em-
bedding function. Both e and f can map tokens
into R¥ where K is the hidden state dimension of
the LM.

3 Methodology

We now define our MWP solution generation task
and detail the specifics of our approach. Our task is
that given a question (), we need to generate a step-
by-step solution S = S', 52, ..., with each step
consisting of a combination of textual and mathe-
matical tokens, to reach the final answer. We for-
mulate the problem as a step-wise controllable gen-
eration task using prompts-based LM fine-tuning.
Figure 1 shows an overview of our approach, in-
cluding its two main components: First, we utilize
the MWP and the solution history to plan and pre-
dict next mathematical operation to apply in the
next step. Second, we use the predicted operation
prompt with instruction prompt to guide the next
step generation process. Our key technical chal-
lenges are (i) how to learn a solution planning strat-
egy to transition from step to step and (ii) once we
have the next operation, how to apply and design
prompts to guide the generative LM to generate the
next step to follow the plan.



3.1 Operation Prediction

Our first step is to predict the mathematical oper-
ation to be applied in the next step. To achieve
this, we concatenate the solution history H and a
crafted instruction prompt P (e.g.,“What is next
operation?”) followed by the special token “[cls]”
as input to an LM. We encode solution history to-
kens with a vocabulary embedding function eg and
instruction prompt tokens with a separate prompt
embedding function fy; 5 and 6 are the parameters
of these parts, i.e., the embedding layer in an LM.
Then, we obtain the representation of the solution
history as the final layer hidden state of the LM,
i.e., M. To predict the operation action of the next
step, we use a one-layer, fully-connected network
as the classifier, with weight w., to obtain an op-
eration score vector for each valid math operation
s € [0,1]191, where |O] is the number of operation
classes, as .
s = w’yh[cls]a

where 7 is the set of parameters for the classifier.
Since we need to use an LM for step generation,
introducing a separate LM for operation prediction
leads to a large number of parameters. Therefore,
we use the same LM for both operation planning
and solution step generation. The objective func-
tion for operation planning is the cross-entropy loss
on operators:

O]
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; >

exp s;
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where s; is the score of operation class 7. ¢; is an
indicator such that ¢; = 1 when 7 is the true label
and t; = 0 otherwise. We obtain true labels by
extracting mathematical operations from each step
of the solution in the training data, which we detail
below.

3.2 Controllable Step Generation

Once we have the predicted operation O, we ap-
pend the corresponding prompt to the instruction
prompt P to form our final prompt for the step
generation LM. Our task becomes a controllable
generation task: given history A and the prompt
[P; O] that plans the next step, our goal is to gener-
ate the next step .S token-by-token. We generate a
step S; = {s"..., s} = {s%}]_; according to

T

Then, the overall generation process for step-by-
step solution S with N steps can be written as
follows:

N
p(8) = [ [ p(Sil[Pi; Os], Hi)p(Os| Hy).

i=1

The step generation objective is given by the nega-
tive log-likelihood objective function

N

Liy = — Zlogpg,emw(si\[ﬂ‘;Oi]yﬂi)a )
i—1

where the set of parameters include previously de-
fined 3, €, v and the LM parameters 1. 3 and ) are
fine-tuned while 6 and +y are learned from scratch.
We also investigate two ways to position the prompt
in LM input: as prefix, where we place them at the
beginning, i.e., the input is given by [P; O; H| and
as infix, where we append the prompt after the
history, i.e., the input is given by [H; P; O].

3.3 Prompt Design

Our prompt consists of two parts: the instruction
prompt gives the LM general instructions on what
to generate, while the operation prompt provides
the specific guidelines for the mathematical calcu-
lation involved in the next step. For the instruction
part, we apply prompt mining to find good instruc-
tions, i.e., word tokens that are the most informa-
tive for the LM to accomplish the desired task. For
the operation prompt, we extract 20 common op-
erations from the training data, such as one step
addition [n + n|, subtraction [n — n], multiplica-
tion [n * n|, etc. Some operations can also reflect
multi-step operations, e.g., [n+n+...], [n+n—n],
or [(n 4+ n)/n]. We also use several other prompt
types without mathematical operations, such as
[ans], which means “solution found, end the whole
generation” and [statement], which means that
the next step involves no math calculation and only
textual explanations.

3.3.1 Operation prompts

We initialize the embedding of each math operation
token as the original pre-trained LM’s embedding
of the mathematical operator token instead of ini-
tializing them randomly (Liu et al., 2021c). For
example, we initialize the operations action token
[n 4+ n] with the same value as embedding of the
“+" token in the pre-trained model. For operation

p(Si|[P;; 0;], H) = H p( S;H P;;0;], Hi, { 5;}53) classes that contain multiple operations, we ini-

J=1

tialize the embedding to the mean of all operation



embeddings involved. We do this since initializ-
ing a new token with related embeddings has been
proven to be effective on speeding up the train-
ing process of LM-based models (Li and Liang,
2021; Zhong et al., 2021; Lester et al., 2021; Ham-
bardzumyan et al., 2021; Liu et al., 2021b).

3.3.2 Prompt mining through paraphrasing

For the instruction prompt, finding good prompts
is an art that takes time and experience (Liu et al.,
2021b). Thus, we apply prompt mining through
paraphrasing by first starting with a seed prompt
(e.g. “The next step operation is: ”’) and paraphrase
it into a set of other candidate prompts with similar
meaning (Yuan et al., 2021). Then, we tune the
model with these candidates by treating them as
hyper-parameters and select the one that performs
best on the target task. We find that anchor tokens
(e.g. “?”) are helpful and leads to good perfor-
mance, which is consistent with prior work (Liu
etal., 2021c¢).

4 Experiments

We now detail a series of experiments that we con-
ducted to validate the effectiveness of our proposed
planning-LM approach on step-by-step MWP solu-
tion generation.

4.1 Data and Prepossessing

Since our focus is on MWP solution generation
with explanation, GSMS8K (Cobbe et al., 2021) is
a good fit for our purpose. This dataset contains
8.5K high-quality and linguistically diverse MWPs,
where each MWP has 2-8 solution steps. Each step
contains arithmetic calculations involving (one or
a combination of) basic math operations (+, —, X,
), together with textual explanations. We segment
the data into 7.5K training problems and 1K test
problems the same way as (Cobbe et al., 2021). For
each MWP, we split the solution into steps accord-
ing to the period symbol “.” at the end of sentences.
We restrict ourselves to the top-20 most frequent
mathematical operations after merging some oper-
ations that have similar meaning, e.g., [n + n + nj
and [n + n 4+ n + n] are both labeled as “multi-
step addition” to avoid highly infrequent operations.
The supplementary contains a detailed list of all
operations.

4.2 Metrics and baselines

We need a variety of different metrics to understand
the effectiveness of our planning-LM approach.

Since generating meaningful steps is key, we use
the BLEU metric (Papineni et al., 2002) to evaluate
language generation quality. For intermediate steps,
we use the equation match accuracy (ACC-eq) met-
ric to evaluate whether a generated step contains a
math expression (including numbers) that matches
the ground truth. Since LMs generate math equa-
tion as strings, we decompose the equation string
into tokens and calculate the token level match rate
instead of the overall string match. We also use
the operation match accuracy (ACC-op) metric to
evaluate whether a generated step’s operation label
matches the ground truth. For the final answer, we
use the solve rate metric to evaluate whether the
model generates the final correct answer to each
MWP.

4.3 Experimental settings

We conduct two experiments to verify the effec-
tiveness of our planning-LM framework. In the
first single-step experiment, we input the question
and ground-truth solution steps to the model and
let it generate the next step and calculate the ACC-
eq and ACC-op metrics for each generated step.
Since some of the steps are too short, yielding a
high variance in BLEU scores, we concatenate all
generated steps and calculate the overall BLEU
metric between the ground truth solution and this
true history-informed solution. In the second all-
step experiment, we only provide the model with
the MWP and have it generate all solution steps.
We then calculate the solve rate metric to evalu-
ate whether the final generated answer is correct.
We choose GPT-2 (117M parameters) and GPT-2-
medium (345M) as our base models and compare
the generation results between LM fine-tuning and
planning-LM. Meanwhile, we perform another ex-
periment using the ground truth operation prompt
as input for planning-LM to generate the next step.
The result, an upper bound on the performance
of planning-LM, reflects the effectiveness of low-
level token-by-token generation in each step, while
ACC-eq and ACC-op reflect the effectiveness of
high-level mathematical operation planning across
steps.

We emphasize that we cannot compare the per-
formance of planning-LM to recent works such as
(Cobbe et al., 2021; Wang et al., 2022) since we do
not have access to models such as GPT-3 (Brown
et al., 2020), Palm (Chowdhery, Aakanksha and
others, 2022), or LaMDA (Thoppilan et al., 2022)



Table 1: Planning-LM using mathematical operation prompts outperforms fine-tuning LMs for both small and
medium-sized GPT-2. Moreover, Planning-LM with a small GPT-2 achieves performance comparable to fine-tuning
medium GPT-2, implying that our method can make a smaller model rival larger ones fine-tuned in the traditional

way.

Model BLEU ACC-eq ACC-op Solve Rate
Fine-tuning GPT-2 (117M) 343 494 55.1 8.1
Planning-GPT-2 with operation classifier (117M) 354 56.7 61.6 14.1
Planning-GPT-2 with ground truth prompt (117M) 42.1 71.2 93.1 27.6
Fine-tuning GPT-2-medium (345M) 38.1 58.1 61.1 16.1
Planning-GPT-2-medium with operation classifier (345M) 39.5 61.8 65.2 20.1
Planning-GPT-2-medium with ground truth prompt (345M)  45.1 75.3 91.0 35.2

Table 2: Ablation results for different components of our approach. Most components contribute significantly.

Method Component Metric
Infix | Prefix | Prompt function | Prompt mining | Opeartion Predictor | BLEU | ACC-eq | ACC-op | Solve Rate
v v v v 354 56.7 61.6 14.1
v v v v 337 52.1 63.2 10.4
v v v 33.1 51.9 58.4 10.2
v v v 33.9 55.1 59.9 13.2
v v v 34.1 54.2 60.1 13.5

used in these works. Such a comparison would
be unfair since these models are much larger than
models we have access to: GPT-3 has 175B pa-
rameters while PaLM has 540B, which are both
more than 1000x larger than GPT-2. We also em-
phasize that the technical approaches proposed in
these works, such as using verifiers or majority
vote (Wang et al., 2022) during the decoding phase,
or designing chain-of-thought prompts (Wei et al.,
2022) follow different directions than our work:
they all generate the entire solution in one shot,
without breaking it down into steps and planning
each step. One can combine our approach with
these ones.

4.4 Quantitative Result

Table 1 lists the performance of all methods on all
metrics across the two experiments. We see that
planning-GPT-2 with our operation classifier out-
performs simply fine-tuning GPT-2: GPT-2 with
planning achieves 56.7 (+7.3) in ACC-eq, 61.6
(+6.5) in ACC-op, 14.1 (+5.0) in solve rate, and
35.4 (+1.1) in BLEU. However, there is a big gap
between these numbers and those when the ground
truth prompt is provided, which suggests planning
is highly effective but our next-step mathemati-
cal operation classifier still has considerable room
for improvement. We also observe that when the
number of parameter increases, a similar trend
holds for GPT-2-medium. We emphasize that with
the planning component, which introduces only
around 10K new parameters for the MWP solving

task, a base GPT-2 model with 117M parameters
performs similarly to a much larger base GPT-2-
medium model with 345M parameters. This obser-
vation shows that our planning approach is highly
parameter-efficient for MWP solving.

To validate the effectiveness of each component
in our planning-ML approach, we conduct an ab-
lation study on four different components: using
prefix or infix prompts, applying fixed or fine-
tuned mathematical operation prompts, instruc-
tion prompt mining, and the operation classifier.
Among different settings, we find that using infix,
fine-tuned mathematical prompts, and the operation
predictor improve performance the most. We found
that infix prompts are significantly better than pre-
fix prompts, which is different from observation
made in prior work (Li and Liang, 2021), which
may be explained by the incompatibility between
prefix prompting and step-by-step generation: pre-
fix prompts put the most important instruction at
the front of the LM input, making all generated
tokens attend to it, which leads to improved oper-
ation classification accuracy but worse generation
performance on other tokens.

4.5 Qualitative Analysis

Table 3 shows a two examples that compare the full
step-by-step solutions generated by our planning-
LM approach and fine-tuning LMs. In Examples
1 our approach successfully predicts the next oper-
ation step and outputs the correct equation, while
fine-tuning GPT-2 cannot. Meanwhile, the quality



of corresponding natural language explanation also
improved. On the other hand, in Examples 2, both
approaches do not produce equations that match the
ground truth. For our approach, the generated solu-
tion step is consistent with the prediction, but since
the predicted operation is incorrect, planning GPT-
2 winds up generating worse results. It is worth
noting that even with this potential drawback, the
benefit of our approach still outweigh the potential
negatives compared to fine-tuning GPT-2. We note
that one substantial future improvement is to use
the confidence of the operation classifier to decide
whether to use the predicted operator as prompt.

Surprisingly, in Example 2, we observe that plan-
ning GPT-2 generates a valid alternative solution
strategy, even though the predicted mathematical
operation differs from the ground truth. Therefore,
we conduct a follow-up experiment by giving the
model a hand-crafted plan via operation prompts
and checking whether it can generate an alternative
correct solution strategy. Table 4 shows the results.
Feeding plans I and Il enables the model to generate
the correct final answer among the four strategies
we used; the generated solutions follow the oper-
ation steps given, which indicates that the model
has some reasoning ability and is able to extract
some meaningful patterns from the data. Plan III
results in a flawed solution and Plan IV failed since
we do not have an operation class that matches the
step. For plan III, the first step, [n +n+...], is not
seen often enough in the training data. For plan IV,
(n +n) X nis not seen in the training data either.
However, we note that in this case, using the closest
operation, [n+n X n], results in a solution that gets
very close to the correct final answer. These results
suggest that a better representation of the operation
prompt is crucial for future work since our current
approach is limited to a finite number of predefined
operations; a prompt operation generator rather
than classifier could be a better choice for a wide
variety of mathematical operations. We also note
that this flexibility gives our planning-LM approach
potential to be useful in real-world applications.
For example, these solution plan controls may en-
courage students to experience different strategies
and be more creative.

5 Related work

MWP solver A large body of recently proposed
MWP solvers parses an MWP into its underlying
equation, which has been a very active research

Table 3: Demonstrations of the step-by-step generated
solutions comparing planning-LM and fine-tuning LM.
Green and red highlight the correct and incorrect equa-
tion in the generated intermediate steps, respectively.

1.Question: Marie ordered one chicken meal that cost $12,
5 packs of milk that cost $3 each, 4 apples that cost $1.50
each, and some pizza boxes. Marie paid a total of $50.
How many pizza boxes did Marie order if each box costs
$8.50?
Previous Steps: Five packs of milk cost $3 x 5 = 15.
Four apples cost $1.50 = $6.

" Ground Truth: The total cost of the chicken meal, milk, -
and apples is $12 + $15 + $6 = $33.
Fine-tuning: Some boxes of

$8.50-$15-$6=9$2 .
Planning with predicted step [n+n+. . .]:
So Marie spent a total of $15+$12+$6= $33.

pizza  cost

2.Question: Eliza’s rate per hour for the first 40 hours she
works each week is $10. She also receives an overtime pay
of 1.2 times her regular hourly rate. If Eliza worked for 45
hours this week, how much are her earnings for this week?
Previous Steps: None

Ground Truth: Eliza is entitled to 4540=>5 hours overtime
pay.

Fine-tuning: She is paid 5 * $10 = $50 for the first 40
hours.

Planning with predicted step [n*n]:

Eliza makes $10/hour * 40 hours = $400 per week .

area with a plethora of related work. These works
differ mainly in the technical approaches which
broadly fall in three categories. First, some works
explore MWP solving via reinforcement learning,
which rewards the model with the correct answer
generated (Huang et al., 2018; Wang et al., 2018b).
RL methods generally requires a sizable dataset
and can be unstable to train, which may not be suit-
able for most MWP datasets that are only of modest
sizes. Second, some works exploit the combination
of symbolic- and neural-network-based approaches,
e.g., by combining a pre-defined symbolic patterns
such as solution templates (Wang et al., 2019) and
symbolic tree structures of equations (Xie and Sun,
2019; Li et al., 2020; Qin et al., 2020; Wang et al.,
2018a; Wu et al., 2020; Zhang et al., 2021). These
methods can be significantly constrained by these
patterns and it may be challenging to generalize
them to other MWPs whose solutions are not ex-
pressed by these patterns. Lastly, some works build
on LLMs via special fine-tuning and inference tech-
niques. Specifically, (Cobbe et al., 2021) fine-tunes
an LLM on a collection of MWPs with interme-
diate steps. (Lewkowycz et al., 2022) simply fine-
tunes an LL.M by a large collection of math-specific
dataset; the fine-tuned model generates the solution



Table 4: Qualitative examples of using our planning-LM
to plan for four different but all valid solution strategies
to achieve the same correct result for a given MWP.

Question: Two trains leave San Rafael at the same time.
They begin traveling westward, both traveling for 80 miles.
The next day, they travel northwards, covering 150 miles.
What’s the distance covered totally in the two days? Ans:
460

PlanI: [n+n] -> [nxn] -> [Ans]
Result: The total distance covered in the two days is 80 +

150 = 230 miles. The total distance covered in the two
days is 230 * 2 =460. Answer is 460.

PlanII: [n*n] > [n*n] > [n+n] -> [Ans]
Result: The first train covers 80 * 2 = 160 miles. On the
second day, the trains covered 2 trains * 150 miles/train
=300 miles. Total distance covered is 160 + 300 =460
miles. Answer is 460.

PlanIll: [n+n+...] ->n+n ->[Ans]

Result: The total distance covered in the two days is 80
+ 80 + 150 =310 miles. The total distance covered in

one day is 310 + 150 =460 miles. Answer is 460.
PlanIV: [n+n*n] -> [Ans]

Result: The total distance covered by trains in the two
daysis 150 + 80 * 2 =310 miles. Answer is 310.

via chain-of-thought prompting (Wei et al., 2022).
Our work is most similar to the those in the last
category with key differences: first, our work fo-
cuses on the accuracy of each solution step whereas
those above focus on only the accuracy of the final
answer. Second, our work proposes a novel hier-
archical planning method for fine-tuning whereas
those above simply fine-tunes the model with the
ordinary language modeling techniques that lack
planning and reasoning.

Controllable text generation Given the rise of
LLMs, controllable generation methods that guide
these large models to generate desirable content
and avoid potential pitfalls such as bias (Bender
etal., 2021) has been a recent research trend. These
controllable generation methods generally fall into
two categories. Works in the first category mod-
ifies the token distribution at each time step to
achieve controllable generation via gradient-based
methods (Dathathri et al., 2020), external classifier-
based methods (Krause et al., 2020; Liu et al.,
2021a), or resampling (Clark et al., 2020; Bhat-
tacharyya et al., 2021; Bakhtin et al., 2021). Works
in the second category fine-tunes the LLM via
either language modeling (Shirish Keskar et al.,
2019) or reinforcement learning (Khalifa et al.,
2021). These works focus on controllable genera-

tion for natural language and study nuanced control
attributes such as topic and sentiment that can only
be matched implicitly. In contrast, our work fo-
cuses differently on both natural and mathematical
language, which involves control attributes, e.g.,
math operation hints in the form of equations that
need to be matched exactly. Therefore, our work
studies a different problem and proposes a novel
methodology different from those above.

6 Conclusion and Future work

This paper addresses the problem of performing
fine-grained, step-by-step controllable solution gen-
eration for math word problems. We proposed
an approach that combines planning and language
models that can generate interpretable solution
steps. Our approach leverages pre-trained language
models in two ways: at each step, plan the math-
ematical operation to be applied, followed by us-
ing these plans as prompts to control the token-by-
token generation of each step. We demonstrated
that with a minimal amount of additional param-
eters introduced, our approach significantly im-
proves MWP solving performance over simply fine-
tuning language models. We showed that due to
the interpretability and high controllability of oper-
ation prompts, we can use our approach to generate
solutions with alternative strategies by giving it
different solution plans.

Although we have shown that our approach of-
fers some significant improvements over existing
methods, we believe that there are many possible
ways to take this work even further. First, the ver-
ifier and self-consistency tools are proven to im-
prove the model’s generation results effectively.
One can combine these tools with our approach to
further enhance the quality of the generated solu-
tions. Second, we can use a generator instead of
a classifier to generate a more flexible set of oper-
ation prompts, making them more representative
and meaningful. Third, to eliminate the drawback
where inaccurately generated operation prompts
would mislead the next step, we can apply a verifier
to evaluate the reliability of the generated opera-
tion prompts. When the reliability is low, we ditch
the operation prompt to prevent it from guiding
the model into an incorrect path. Fourth, we could
further explore generation via planning by supply-
ing the model with not just operation prompts, but
number and entity prompts as well, which are both
key elements in math word problems.
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A Hyper-parameters

We use a learning rate of Se-5, a batch size of 8, and
10 epochs for all training processes. We set “what is
the next operation?” as our instruction prompt and
apply calculators to avoid calculation errors and
greedy decoding during token generation. Model
training is carried out on an NVIDIA RTX 3090
GPU.

B Optimization

Although our entire approach can be trained to-
gether in an end-to-end way, we found that opti-
mizing the operation prediction model and fine-
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tuning the LM/prompts for step generation asyn-
chronously leads to better performance. Our in-
tuition is that the operation predictor is a high-
level decision-making policy for the entire solu-
tion while the LM generation process is a low-level
(token-by-token) decision-making process for the
current step. Optimizing these two modules simul-
taneously may cause inconsistency since the opera-
tion predictor may make a decision based on LM
parameters that also need to be updated. Therefore,
we first optimize the parameters of the generation
LM and prompts with the step generation task loss,
using ground truth operation labels, which we ex-
tract from the mathematical part of each step in the
training data. Then, we iterate between freezing
both the LM M and the prompt function f while
tuning the operation predictor and switching the
two. In this way, we can guarantee the whole model
to converge in a stable process (Wang et al., 2020).

C List of all hand-crafted operations
classes

Details in table 5

D Examples of control generation

Table 6 shows the generated step apply different op-
eration prompts on same input. This table demon-
strates the generated results from applying differ-
ent operation prompts with the same input to the
model. We observe that when the operation prompt
is logical and aligned with solving the question, the
generated result follows the guidance given by the
operation prompt. In contrast, when the operation
prompt does not make sense, the generated result
will not obey its directions. Details in table 5
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Table 5: Appendix C: list of all hand-crafted operations classes

no. shortcut description no. shortcut deccription

1 [n+n] one-step addition 12 [n-n*n] multiplication then subtraction

2 [n-n] one-step subtraction 11 [n*(n/n)] multiplication by a fraction

3 [n*n] one-step multiplication 13 [(n/n)-(n/n)] fraction subtraction

4 [n/n] one step division 14 [(n/n)+(n/n)] fraction addition

5 [n+n+...] multi step addition 11 [(n/n)*(n/n)] fraction multiplication

6 [n-n-...]  multi-step subtraction 16  [mixed] other combination

7 [n*n*...] multi-step multiplication 17 [ans] solution found, end the whole generation
8 [n+n*n] multiplication then addition | 18  [statement] involve no math calculation and only textual explanation
9 [n+n-n] addition then subtraction 19 [assign] assign a value to a paramter

10  [n+n/n] division then addition 20 [define] define a parameter

Table 6: Appendix D: Generated step apply different operation prompts on same input.

Input: Maggie spent a quarter of her money, while Riza spent one-third of her money.
They each had $60. How much money do the two of them have left?

no. | action generated step

1 [n+n] Riza and Maggie had $60 + $60 = $120

2 | [n-n] Riza had $60 - $60 = $0 left after spending some money on Maggie.
3 [n*n] Riza spent $60 x 0.33 = $20

4 [n/n] Maggie had $60/4 = $15 left.

5 [n+n+. . .] Riza spent $60 + $60 + $60 = $180.

6 [n-n-...] Riza had $60 - $60 - $30 = -$30

7 [n*n*...] Riza spent $60 x 1/3 = $60.

8 [n+n*n] Maggie had $60 + $60*0.25 = $56 left after spending a quarter of her money.
9 [n+n-n] Maggie had $60 - $60 = $0 left after spending a quarter of her money.
10 | [n+n/n] Riza had $60 + $60/3 = $80 left.

11 | [n-n*n] Riza had $60 - $30 = $30 left after spending a quarter of her money.
12 | [n*(n/n)] Riza spent $60 x 1/3 = $20.

13 | [(n/n)-(n/n)] | Riza and Maggie had $60/4 - $60/3 = $5 left.

14 | [(n/n)+(n/n)] | Riza and Maggie total had $60/4 + $60/3 = $35 left.

11 | [(n/n)*(n/n)] | Riza had $60 * 1/3 = $20 left.

16 | [mixed] Riza had $60/4 - $60/3 = $15 left.

17 | [ans] The answer is $60

18 | [statement] Riza had $60 in total.

19 | [assign] Riza had x=$60.

20 | [define] Let x be the money Riza had

12



