
Interpretable Math Word Problem Solution Generation via Step-by-step
Planning

Anonymous ACL submission

Abstract

A wide range of approaches exists for automat-001
ically solving math word problems (MWPs),002
with the majority focusing on obtaining the fi-003
nal correct final answer, which is not enough.004
Solutions with step-by-step explanations are005
valuable in many applications, especially in006
education, to help students better comprehend007
problem solving strategies. Recent approaches008
built on large-scale, pre-trained language mod-009
els, offer a possibility not only to reach a sin-010
gle final answer but also to generate interme-011
diate solution steps, leveraging the language012
understanding and generation capabilities of013
language models. However, language models014
lack mathematical reasoning ability and often015
cannot generate coherent steps with a clear so-016
lution strategy. Thus, we study the problem of017
fine-grained, step-by-step controllable solution018
generation for MWPs. We explore whether we019
can learn a solution strategy that informs future020
steps and apply controllable generation meth-021
ods to generate step-by-step not word-by-word.022
We (i) train a math operation predictor to plan023
the mathematical operation to apply in the next024
step given history steps and (ii) use the pre-025
dicted operation to prompt a language model026
to generate the next step token-by-token. We027
conduct numerical experiments on the GSM8K028
dataset and show that our method improves the029
overall MWP solving accuracy and solution030
interpretability with step-by-step plans.031

1 Introduction032

Arithmetic math word problems (MWPs) consist of033

natural language statements describing real-world034

scenarios that involve numerical quantities, fol-035

lowed by a question text asking for an unknown036

value. Solving MWPs require parsing the textual037

statements and carrying out the corresponding cal-038

culations (Kumar et al., 2022). MWPs are an im-039

portant educational tool that helps assess and im-040

prove student knowledge in basic mathematical041

concepts and skills (Walkington, 2013; Verschaffel042

et al., 2020). They also represent a long-standing 043

interest in artificial intelligence (AI) research since 044

correctly solving them serves as a key benchmark 045

task for testing and improving the mathematical 046

reasoning skills of AI models (Feigenbaum and 047

Feldman, 1995; Bommasani et al., 2021; Cobbe 048

et al., 2021; Lewkowycz et al., 2022). 049

There is a large body of literature that focuses on 050

automatically solving MWP. Earlier works took a 051

modular approach that first analyzes unconstrained 052

natural language and then maps intricate text pat- 053

terns onto mathematical vocabulary (Sundaram 054

et al., 2022). As a result, this approach relies heav- 055

ily on hand-crafted rules to fill the gap between 056

natural language and symbolic mathematical vo- 057

cabulary (Sundaram et al., 2022). Recent works 058

leverage advances in natural language processing 059

and take a neural network-based, end-to-end ap- 060

proach, where a neural network encodes a numer- 061

ical representation of MWP (and the underlying 062

equation), from which a decoder generates the final 063

answer (Zou and Lu, 2019; Wang et al., 2017; Wu 064

et al., 2020; Chen et al., 2020). Unfortunately, the 065

vast majority of these works focus on generating 066

and predicting a single final answer, without pro- 067

viding any insights or explanations into how the 068

models arrive at the answer. This is because final 069

answer correctness has been, for the most part, the 070

only metric for evaluating the effectiveness of dif- 071

ferent MWP solving approaches. As a result, it is 072

often difficult, if not entirely impossible, to explain 073

the model’s behavior, especially when it produces a 074

wrong answer. The lack of interpretability of these 075

methods makes it challenging to analyze them and 076

unsafe to use them in real-world applications. 077

This interpretability issue has attracted increas- 078

ing interest in MWP solving. Recent works have 079

shifted to designing models that not only generate 080

the final answer for an MWP, but also the inter- 081

mediate steps. The ability to generate intermedi- 082

ate steps not only enables researchers to investi- 083

1

gate the behaviors of the model but also new ap-084

plications. For example, in personalized educa-085

tion and intelligent tutoring systems, these mod-086

els have the potential to generate detailed, person-087

alized solution steps as feedback to improve stu-088

dent understanding of the mathematical concepts089

and resolve misconceptions (Walkington, 2013;090

Karpicke, 2012; Koedinger et al., 2015). The re-091

cent GSM8K (Cobbe et al., 2021) dataset contains092

MWPs that come with 2 to 8 intermediate steps093

described in natural language, which provides us a094

good resource to study step-by-step solution gener-095

ation. Many works apply language models (LMs)096

on this dataset and achieve high accuracy in final097

answer generation, without studying the quality of098

intermediate steps (Wei et al., 2022; Wang et al.,099

2022; Chowdhery, Aakanksha and others, 2022;100

Lewkowycz et al., 2022). These works use veri-101

fiers, self-consistency decoding strategy (majority102

votes), chain of thought prompting, or calculators;103

we provide a detailed discussion in the Related104

Work section.105

Despite LMs being capable of generating inter-106

mediate steps, these works still mainly focus on107

obtaining the final correct answer. They view inter-108

mediate steps only as a way to provide models addi-109

tional context of MWP solving to improve the cor-110

rectness of final answers. As a result, these works111

are prone to generate incorrect intermediate steps112

despite achieving the correct final answer, which113

indicates that these models are not really compe-114

tent at numerical reasoning. A potential reason115

is that LMs restrict these approaches to generate116

intermediate steps in a word-by-word (or token-117

by-token) way. As a result, these approaches can118

only utilize shallow heuristics (Li et al., 2021) in119

word occurrence and lack an understanding of the120

overall structure of multi-step solution that solving121

an MWP requires.122

1.1 Contributions123

In this paper, we study the problem of generat-124

ing accurate and high-quality intermediate solution125

steps with natural language explanation via step-126

by-step planning using a large LM. We formulate127

this problem as a controllable generation problem128

where the LM aims to generate the correct inter-129

mediate solution at each solution step, given the130

MWP and previous solution steps. This problem131

is particularly challenging since the generated so-132

lution steps need to be accurate, i.e., each inter-133

mediate step must be mathematically valid and on 134

the path to the correct answer. Thus, we need an 135

approach that is different from commonly-studied, 136

attribute-controlled generation approaches for topic 137

or sentiment control, where the attribute is more 138

nuanced and cannot be matched exactly (Dathathri 139

et al., 2020; Krause et al., 2020; Shirish Keskar 140

et al., 2019). 141

To overcome these challenges, we introduce a 142

step-by-step planning approach, where we plan the 143

strategy for the next solution step and use the plan 144

to guide LMs to generate the step. In particular, we 145

propose to use specifically formulated mathemati- 146

cal hints in the form of mathematical operations to 147

prompt the model to generate a particular interme- 148

diate step. 149

We summarize our contributions as follows. 150

• We explore the use of a planning approach 151

for step-by-step solution generation in MWPs. 152

To the best of our knowledge, this is the first 153

work that focuses on generating high-quality 154

intermediate solution steps via LMs. 155

• We first predict the mathematical operation 156

applied in the next solution step using a small 157

model and then apply a carefully-constructed 158

prompt to control a large LM to generate the 159

next solution step. Our approach can be ex- 160

tended to many downstream applications due 161

to the interpretability and high controllability 162

of the mathematical operation prompt. 163

• We verify the effectiveness of our planning- 164

LM approach both quantitatively and qual- 165

itatively on the GSM8K dataset. We show 166

that, with minimal additional parameters 167

(0.02%) introduced, our planning-LM ap- 168

proach yields both higher-quality intermediate 169

solution steps and more accurate final answers 170

than existing approaches. Moreover, we show 171

that by changing the operation prompt, we can 172

control our framework to generate different 173

solution paths that correctly solve the same 174

MWP. 175

2 Notation 176

We first define all of terms and components in 177

our approach. The MWP is defined as Q = 178

{q1, q2, . . . , qn} where qi represents a token, which 179

is either a numerical value, a mathematical operator, 180

or a word/sub-word, and the corresponding step- 181

by-step solution is defined as S = {S1, S2, . . .}, 182

2

Figure 1: An overview of our step-by-step MWP solution generation approach. Planning-LM first predicts the next
step operation hint (a-1) and controls the next step generate via the predicted operation hint (a-2). Figure (b) shows
the overview generation process by given the question Q.

where Si denotes ith step of the solution. For any183

step Si, we have Si = {si1, si2, . . .}, consisting of184

a sequence of tokens. Next, we define our prompt185

with two parts. The first part is the textual instruc-186

tion prompt, which contains words that LMs can187

understand and the second part is the mathemati-188

cal operation prompt, which is a special token that189

contains next step operation information. We de-190

note the instruction prompt as P = {p1, p2, . . .},191

where si represents a word/sub-word token and the192

operation prompt as O = {o}, where o is a categor-193

ical token as o ∈ {1 . . . |O|}. We define Hi as the194

solution context, i.e., the history at step Si, which195

consists of the problem Q and all previous steps,196

{S1, . . . , Si−1}. M denotes the base pre-trained197

LM and e is its corresponding token embedding198

function. Finally, we define f as the prompt em-199

bedding function. Both e and f can map tokens200

into RK where K is the hidden state dimension of201

the LM.202

3 Methodology 203

We now define our MWP solution generation task 204

and detail the specifics of our approach. Our task is 205

that given a question Q, we need to generate a step- 206

by-step solution S = S1, S2, . . ., with each step 207

consisting of a combination of textual and mathe- 208

matical tokens, to reach the final answer. We for- 209

mulate the problem as a step-wise controllable gen- 210

eration task using prompts-based LM fine-tuning. 211

Figure 1 shows an overview of our approach, in- 212

cluding its two main components: First, we utilize 213

the MWP and the solution history to plan and pre- 214

dict next mathematical operation to apply in the 215

next step. Second, we use the predicted operation 216

prompt with instruction prompt to guide the next 217

step generation process. Our key technical chal- 218

lenges are (i) how to learn a solution planning strat- 219

egy to transition from step to step and (ii) once we 220

have the next operation, how to apply and design 221

prompts to guide the generative LM to generate the 222

next step to follow the plan. 223

3

3.1 Operation Prediction224

Our first step is to predict the mathematical oper-225

ation to be applied in the next step. To achieve226

this, we concatenate the solution history H and a227

crafted instruction prompt P (e.g.,“What is next228

operation?”) followed by the special token “[cls]”229

as input to an LM. We encode solution history to-230

kens with a vocabulary embedding function eβ and231

instruction prompt tokens with a separate prompt232

embedding function fθ; β and θ are the parameters233

of these parts, i.e., the embedding layer in an LM.234

Then, we obtain the representation of the solution235

history as the final layer hidden state of the LM,236

i.e., M. To predict the operation action of the next237

step, we use a one-layer, fully-connected network238

as the classifier, with weight wγ , to obtain an op-239

eration score vector for each valid math operation240

s ∈ [0, 1]|O|, where |O| is the number of operation241

classes, as242

s = wγ ḣ[cls],243

where γ is the set of parameters for the classifier.244

Since we need to use an LM for step generation,245

introducing a separate LM for operation prediction246

leads to a large number of parameters. Therefore,247

we use the same LM for both operation planning248

and solution step generation. The objective func-249

tion for operation planning is the cross-entropy loss250

on operators:251

LCE = −
|O|∑
i

ti log(
exp si∑|O|
j exp sj

),252

where si is the score of operation class i. ti is an253

indicator such that ti = 1 when i is the true label254

and ti = 0 otherwise. We obtain true labels by255

extracting mathematical operations from each step256

of the solution in the training data, which we detail257

below.258

3.2 Controllable Step Generation259

Once we have the predicted operation O, we ap-260

pend the corresponding prompt to the instruction261

prompt P to form our final prompt for the step262

generation LM. Our task becomes a controllable263

generation task: given history H and the prompt264

[P ;O] that plans the next step, our goal is to gener-265

ate the next step S token-by-token. We generate a266

step Si = {si, ..., siT } = {sij}Tj=1 according to267

p(Si|[Pi;Oi], Hi) =

T∏
j=1

p(sij |[Pi;Oi], Hi, {sij}
j−1
j=1).268

Then, the overall generation process for step-by- 269

step solution S with N steps can be written as 270

follows: 271

p(S) =
N∏
i=1

p(Si|[Pi;Oi], Hi)p(Oi|Hi). 272

The step generation objective is given by the nega- 273

tive log-likelihood objective function 274

LLM = −
N∑
i=1

log pβ,θ,γ,ψ(Si|[Pi;Oi], Hi), (1) 275

where the set of parameters include previously de- 276

fined β, θ, γ and the LM parameters ψ. β and ψ are 277

fine-tuned while θ and γ are learned from scratch. 278

We also investigate two ways to position the prompt 279

in LM input: as prefix, where we place them at the 280

beginning, i.e., the input is given by [P ;O;H] and 281

as infix, where we append the prompt after the 282

history, i.e., the input is given by [H;P ;O]. 283

3.3 Prompt Design 284

Our prompt consists of two parts: the instruction 285

prompt gives the LM general instructions on what 286

to generate, while the operation prompt provides 287

the specific guidelines for the mathematical calcu- 288

lation involved in the next step. For the instruction 289

part, we apply prompt mining to find good instruc- 290

tions, i.e., word tokens that are the most informa- 291

tive for the LM to accomplish the desired task. For 292

the operation prompt, we extract 20 common op- 293

erations from the training data, such as one step 294

addition [n + n], subtraction [n − n], multiplica- 295

tion [n ∗ n], etc. Some operations can also reflect 296

multi-step operations, e.g., [n+n+ ...], [n+n−n], 297

or [(n+ n)/n]. We also use several other prompt 298

types without mathematical operations, such as 299

[ans], which means “solution found, end the whole 300

generation” and [statement], which means that 301

the next step involves no math calculation and only 302

textual explanations. 303

3.3.1 Operation prompts 304

We initialize the embedding of each math operation 305

token as the original pre-trained LM’s embedding 306

of the mathematical operator token instead of ini- 307

tializing them randomly (Liu et al., 2021c). For 308

example, we initialize the operations action token 309

[n + n] with the same value as embedding of the 310

“+" token in the pre-trained model. For operation 311

classes that contain multiple operations, we ini- 312

tialize the embedding to the mean of all operation 313

4

embeddings involved. We do this since initializ-314

ing a new token with related embeddings has been315

proven to be effective on speeding up the train-316

ing process of LM-based models (Li and Liang,317

2021; Zhong et al., 2021; Lester et al., 2021; Ham-318

bardzumyan et al., 2021; Liu et al., 2021b).319

3.3.2 Prompt mining through paraphrasing320

For the instruction prompt, finding good prompts321

is an art that takes time and experience (Liu et al.,322

2021b). Thus, we apply prompt mining through323

paraphrasing by first starting with a seed prompt324

(e.g. “The next step operation is: ”) and paraphrase325

it into a set of other candidate prompts with similar326

meaning (Yuan et al., 2021). Then, we tune the327

model with these candidates by treating them as328

hyper-parameters and select the one that performs329

best on the target task. We find that anchor tokens330

(e.g. “?”) are helpful and leads to good perfor-331

mance, which is consistent with prior work (Liu332

et al., 2021c).333

4 Experiments334

We now detail a series of experiments that we con-335

ducted to validate the effectiveness of our proposed336

planning-LM approach on step-by-step MWP solu-337

tion generation.338

4.1 Data and Prepossessing339

Since our focus is on MWP solution generation340

with explanation, GSM8K (Cobbe et al., 2021) is341

a good fit for our purpose. This dataset contains342

8.5K high-quality and linguistically diverse MWPs,343

where each MWP has 2-8 solution steps. Each step344

contains arithmetic calculations involving (one or345

a combination of) basic math operations (+, −, ×,346

÷), together with textual explanations. We segment347

the data into 7.5K training problems and 1K test348

problems the same way as (Cobbe et al., 2021). For349

each MWP, we split the solution into steps accord-350

ing to the period symbol “.” at the end of sentences.351

We restrict ourselves to the top-20 most frequent352

mathematical operations after merging some oper-353

ations that have similar meaning, e.g., [n+ n+ n]354

and [n + n + n + n] are both labeled as “multi-355

step addition” to avoid highly infrequent operations.356

The supplementary contains a detailed list of all357

operations.358

4.2 Metrics and baselines359

We need a variety of different metrics to understand360

the effectiveness of our planning-LM approach.361

Since generating meaningful steps is key, we use 362

the BLEU metric (Papineni et al., 2002) to evaluate 363

language generation quality. For intermediate steps, 364

we use the equation match accuracy (ACC-eq) met- 365

ric to evaluate whether a generated step contains a 366

math expression (including numbers) that matches 367

the ground truth. Since LMs generate math equa- 368

tion as strings, we decompose the equation string 369

into tokens and calculate the token level match rate 370

instead of the overall string match. We also use 371

the operation match accuracy (ACC-op) metric to 372

evaluate whether a generated step’s operation label 373

matches the ground truth. For the final answer, we 374

use the solve rate metric to evaluate whether the 375

model generates the final correct answer to each 376

MWP. 377

4.3 Experimental settings 378

We conduct two experiments to verify the effec- 379

tiveness of our planning-LM framework. In the 380

first single-step experiment, we input the question 381

and ground-truth solution steps to the model and 382

let it generate the next step and calculate the ACC- 383

eq and ACC-op metrics for each generated step. 384

Since some of the steps are too short, yielding a 385

high variance in BLEU scores, we concatenate all 386

generated steps and calculate the overall BLEU 387

metric between the ground truth solution and this 388

true history-informed solution. In the second all- 389

step experiment, we only provide the model with 390

the MWP and have it generate all solution steps. 391

We then calculate the solve rate metric to evalu- 392

ate whether the final generated answer is correct. 393

We choose GPT-2 (117M parameters) and GPT-2- 394

medium (345M) as our base models and compare 395

the generation results between LM fine-tuning and 396

planning-LM. Meanwhile, we perform another ex- 397

periment using the ground truth operation prompt 398

as input for planning-LM to generate the next step. 399

The result, an upper bound on the performance 400

of planning-LM, reflects the effectiveness of low- 401

level token-by-token generation in each step, while 402

ACC-eq and ACC-op reflect the effectiveness of 403

high-level mathematical operation planning across 404

steps. 405

We emphasize that we cannot compare the per- 406

formance of planning-LM to recent works such as 407

(Cobbe et al., 2021; Wang et al., 2022) since we do 408

not have access to models such as GPT-3 (Brown 409

et al., 2020), Palm (Chowdhery, Aakanksha and 410

others, 2022), or LaMDA (Thoppilan et al., 2022) 411

5

Table 1: Planning-LM using mathematical operation prompts outperforms fine-tuning LMs for both small and
medium-sized GPT-2. Moreover, Planning-LM with a small GPT-2 achieves performance comparable to fine-tuning
medium GPT-2, implying that our method can make a smaller model rival larger ones fine-tuned in the traditional
way.

Model BLEU ACC-eq ACC-op Solve Rate

Fine-tuning GPT-2 (117M) 34.3 49.4 55.1 8.1
Planning-GPT-2 with operation classifier (117M) 35.4 56.7 61.6 14.1
Planning-GPT-2 with ground truth prompt (117M) 42.1 71.2 93.1 27.6

Fine-tuning GPT-2-medium (345M) 38.1 58.1 61.1 16.1
Planning-GPT-2-medium with operation classifier (345M) 39.5 61.8 65.2 20.1
Planning-GPT-2-medium with ground truth prompt (345M) 45.1 75.3 91.0 35.2

Table 2: Ablation results for different components of our approach. Most components contribute significantly.

Method Component Metric
Infix Prefix Prompt function Prompt mining Opeartion Predictor BLEU ACC-eq ACC-op Solve Rate

✓ ✓ ✓ ✓ 35.4 56.7 61.6 14.1
✓ ✓ ✓ ✓ 33.7 52.1 63.2 10.4

✓ ✓ ✓ 33.1 51.9 58.4 10.2

✓ ✓ ✓ 33.9 55.1 59.9 13.2

✓ ✓ ✓ 34.1 54.2 60.1 13.5

used in these works. Such a comparison would412

be unfair since these models are much larger than413

models we have access to: GPT-3 has 175B pa-414

rameters while PaLM has 540B, which are both415

more than 1000× larger than GPT-2. We also em-416

phasize that the technical approaches proposed in417

these works, such as using verifiers or majority418

vote (Wang et al., 2022) during the decoding phase,419

or designing chain-of-thought prompts (Wei et al.,420

2022) follow different directions than our work:421

they all generate the entire solution in one shot,422

without breaking it down into steps and planning423

each step. One can combine our approach with424

these ones.425

4.4 Quantitative Result426

Table 1 lists the performance of all methods on all427

metrics across the two experiments. We see that428

planning-GPT-2 with our operation classifier out-429

performs simply fine-tuning GPT-2: GPT-2 with430

planning achieves 56.7 (+7.3) in ACC-eq, 61.6431

(+6.5) in ACC-op, 14.1 (+5.0) in solve rate, and432

35.4 (+1.1) in BLEU. However, there is a big gap433

between these numbers and those when the ground434

truth prompt is provided, which suggests planning435

is highly effective but our next-step mathemati-436

cal operation classifier still has considerable room437

for improvement. We also observe that when the438

number of parameter increases, a similar trend439

holds for GPT-2-medium. We emphasize that with440

the planning component, which introduces only441

around 10K new parameters for the MWP solving442

task, a base GPT-2 model with 117M parameters 443

performs similarly to a much larger base GPT-2- 444

medium model with 345M parameters. This obser- 445

vation shows that our planning approach is highly 446

parameter-efficient for MWP solving. 447

To validate the effectiveness of each component 448

in our planning-ML approach, we conduct an ab- 449

lation study on four different components: using 450

prefix or infix prompts, applying fixed or fine- 451

tuned mathematical operation prompts, instruc- 452

tion prompt mining, and the operation classifier. 453

Among different settings, we find that using infix, 454

fine-tuned mathematical prompts, and the operation 455

predictor improve performance the most. We found 456

that infix prompts are significantly better than pre- 457

fix prompts, which is different from observation 458

made in prior work (Li and Liang, 2021), which 459

may be explained by the incompatibility between 460

prefix prompting and step-by-step generation: pre- 461

fix prompts put the most important instruction at 462

the front of the LM input, making all generated 463

tokens attend to it, which leads to improved oper- 464

ation classification accuracy but worse generation 465

performance on other tokens. 466

4.5 Qualitative Analysis 467

Table 3 shows a two examples that compare the full 468

step-by-step solutions generated by our planning- 469

LM approach and fine-tuning LMs. In Examples 470

1 our approach successfully predicts the next oper- 471

ation step and outputs the correct equation, while 472

fine-tuning GPT-2 cannot. Meanwhile, the quality 473

6

of corresponding natural language explanation also474

improved. On the other hand, in Examples 2, both475

approaches do not produce equations that match the476

ground truth. For our approach, the generated solu-477

tion step is consistent with the prediction, but since478

the predicted operation is incorrect, planning GPT-479

2 winds up generating worse results. It is worth480

noting that even with this potential drawback, the481

benefit of our approach still outweigh the potential482

negatives compared to fine-tuning GPT-2. We note483

that one substantial future improvement is to use484

the confidence of the operation classifier to decide485

whether to use the predicted operator as prompt.486

Surprisingly, in Example 2, we observe that plan-487

ning GPT-2 generates a valid alternative solution488

strategy, even though the predicted mathematical489

operation differs from the ground truth. Therefore,490

we conduct a follow-up experiment by giving the491

model a hand-crafted plan via operation prompts492

and checking whether it can generate an alternative493

correct solution strategy. Table 4 shows the results.494

Feeding plans I and II enables the model to generate495

the correct final answer among the four strategies496

we used; the generated solutions follow the oper-497

ation steps given, which indicates that the model498

has some reasoning ability and is able to extract499

some meaningful patterns from the data. Plan III500

results in a flawed solution and Plan IV failed since501

we do not have an operation class that matches the502

step. For plan III, the first step, [n+n+ . . .], is not503

seen often enough in the training data. For plan IV,504

(n+ n)× n is not seen in the training data either.505

However, we note that in this case, using the closest506

operation, [n+n×n], results in a solution that gets507

very close to the correct final answer. These results508

suggest that a better representation of the operation509

prompt is crucial for future work since our current510

approach is limited to a finite number of predefined511

operations; a prompt operation generator rather512

than classifier could be a better choice for a wide513

variety of mathematical operations. We also note514

that this flexibility gives our planning-LM approach515

potential to be useful in real-world applications.516

For example, these solution plan controls may en-517

courage students to experience different strategies518

and be more creative.519

5 Related work520

MWP solver A large body of recently proposed521

MWP solvers parses an MWP into its underlying522

equation, which has been a very active research523

Table 3: Demonstrations of the step-by-step generated
solutions comparing planning-LM and fine-tuning LM.
Green and red highlight the correct and incorrect equa-
tion in the generated intermediate steps, respectively.

1.Question: Marie ordered one chicken meal that cost $12,
5 packs of milk that cost $3 each, 4 apples that cost $1.50
each, and some pizza boxes. Marie paid a total of $50.
How many pizza boxes did Marie order if each box costs
$8.50?
Previous Steps: Five packs of milk cost $3 × 5 = 15.
Four apples cost $1.50 = $6.
Ground Truth: The total cost of the chicken meal, milk,
and apples is $12 + $15 + $6 = $33.
Fine-tuning: Some boxes of pizza cost
$8.50 - $15 - $6 = $2 .

Planning with predicted step [n+n+. . .]:
So Marie spent a total of $15 + $12 + $6 = $33 .

2.Question: Eliza’s rate per hour for the first 40 hours she
works each week is $10. She also receives an overtime pay
of 1.2 times her regular hourly rate. If Eliza worked for 45
hours this week, how much are her earnings for this week?
Previous Steps: None
Ground Truth: Eliza is entitled to 45-40=5 hours overtime
pay.
Fine-tuning: She is paid 5 ∗ $10 = $50 for the first 40
hours.
Planning with predicted step [n*n]:
Eliza makes $10/hour * 40 hours = $400 per week .

area with a plethora of related work. These works 524

differ mainly in the technical approaches which 525

broadly fall in three categories. First, some works 526

explore MWP solving via reinforcement learning, 527

which rewards the model with the correct answer 528

generated (Huang et al., 2018; Wang et al., 2018b). 529

RL methods generally requires a sizable dataset 530

and can be unstable to train, which may not be suit- 531

able for most MWP datasets that are only of modest 532

sizes. Second, some works exploit the combination 533

of symbolic- and neural-network-based approaches, 534

e.g., by combining a pre-defined symbolic patterns 535

such as solution templates (Wang et al., 2019) and 536

symbolic tree structures of equations (Xie and Sun, 537

2019; Li et al., 2020; Qin et al., 2020; Wang et al., 538

2018a; Wu et al., 2020; Zhang et al., 2021). These 539

methods can be significantly constrained by these 540

patterns and it may be challenging to generalize 541

them to other MWPs whose solutions are not ex- 542

pressed by these patterns. Lastly, some works build 543

on LLMs via special fine-tuning and inference tech- 544

niques. Specifically, (Cobbe et al., 2021) fine-tunes 545

an LLM on a collection of MWPs with interme- 546

diate steps. (Lewkowycz et al., 2022) simply fine- 547

tunes an LLM by a large collection of math-specific 548

dataset; the fine-tuned model generates the solution 549

7

Table 4: Qualitative examples of using our planning-LM
to plan for four different but all valid solution strategies
to achieve the same correct result for a given MWP.

Question: Two trains leave San Rafael at the same time.
They begin traveling westward, both traveling for 80 miles.
The next day, they travel northwards, covering 150 miles.
What’s the distance covered totally in the two days? Ans:
460
Plan I: [n+ n] -> [n ∗ n] -> [Ans]

Result: The total distance covered in the two days is 80 +
150 = 230 miles. The total distance covered in the two
days is 230 * 2 = 460. Answer is 460.
Plan II: [n ∗ n] -> [n ∗ n] -> [n+ n] -> [Ans]

Result: The first train covers 80 * 2 = 160 miles. On the
second day, the trains covered 2 trains * 150 miles/train
= 300 miles. Total distance covered is 160 + 300 = 460
miles. Answer is 460.
Plan III: [n+ n+ . . .] -> n+ n -> [Ans]

Result: The total distance covered in the two days is 80
+ 80 + 150 = 310 miles. The total distance covered in

one day is 310 + 150 = 460 miles. Answer is 460.
Plan IV: [n+ n ∗ n] -> [Ans]

Result: The total distance covered by trains in the two
days is 150 + 80 * 2 = 310 miles. Answer is 310.

via chain-of-thought prompting (Wei et al., 2022).550

Our work is most similar to the those in the last551

category with key differences: first, our work fo-552

cuses on the accuracy of each solution step whereas553

those above focus on only the accuracy of the final554

answer. Second, our work proposes a novel hier-555

archical planning method for fine-tuning whereas556

those above simply fine-tunes the model with the557

ordinary language modeling techniques that lack558

planning and reasoning.559

Controllable text generation Given the rise of560

LLMs, controllable generation methods that guide561

these large models to generate desirable content562

and avoid potential pitfalls such as bias (Bender563

et al., 2021) has been a recent research trend. These564

controllable generation methods generally fall into565

two categories. Works in the first category mod-566

ifies the token distribution at each time step to567

achieve controllable generation via gradient-based568

methods (Dathathri et al., 2020), external classifier-569

based methods (Krause et al., 2020; Liu et al.,570

2021a), or resampling (Clark et al., 2020; Bhat-571

tacharyya et al., 2021; Bakhtin et al., 2021). Works572

in the second category fine-tunes the LLM via573

either language modeling (Shirish Keskar et al.,574

2019) or reinforcement learning (Khalifa et al.,575

2021). These works focus on controllable genera-576

tion for natural language and study nuanced control 577

attributes such as topic and sentiment that can only 578

be matched implicitly. In contrast, our work fo- 579

cuses differently on both natural and mathematical 580

language, which involves control attributes, e.g., 581

math operation hints in the form of equations that 582

need to be matched exactly. Therefore, our work 583

studies a different problem and proposes a novel 584

methodology different from those above. 585

6 Conclusion and Future work 586

This paper addresses the problem of performing 587

fine-grained, step-by-step controllable solution gen- 588

eration for math word problems. We proposed 589

an approach that combines planning and language 590

models that can generate interpretable solution 591

steps. Our approach leverages pre-trained language 592

models in two ways: at each step, plan the math- 593

ematical operation to be applied, followed by us- 594

ing these plans as prompts to control the token-by- 595

token generation of each step. We demonstrated 596

that with a minimal amount of additional param- 597

eters introduced, our approach significantly im- 598

proves MWP solving performance over simply fine- 599

tuning language models. We showed that due to 600

the interpretability and high controllability of oper- 601

ation prompts, we can use our approach to generate 602

solutions with alternative strategies by giving it 603

different solution plans. 604

Although we have shown that our approach of- 605

fers some significant improvements over existing 606

methods, we believe that there are many possible 607

ways to take this work even further. First, the ver- 608

ifier and self-consistency tools are proven to im- 609

prove the model’s generation results effectively. 610

One can combine these tools with our approach to 611

further enhance the quality of the generated solu- 612

tions. Second, we can use a generator instead of 613

a classifier to generate a more flexible set of oper- 614

ation prompts, making them more representative 615

and meaningful. Third, to eliminate the drawback 616

where inaccurately generated operation prompts 617

would mislead the next step, we can apply a verifier 618

to evaluate the reliability of the generated opera- 619

tion prompts. When the reliability is low, we ditch 620

the operation prompt to prevent it from guiding 621

the model into an incorrect path. Fourth, we could 622

further explore generation via planning by supply- 623

ing the model with not just operation prompts, but 624

number and entity prompts as well, which are both 625

key elements in math word problems. 626

8

References627

Anton Bakhtin, Yuntian Deng, Sam Gross, Myle Ott,628
Marc’Aurelio Ranzato, and Arthur Szlam. 2021.629
Residual energy-based models for text. J. Mach.630
Learn. Res., 22(40):1–41.631

Emily M. Bender, Timnit Gebru, Angelina McMillan-632
Major, and Shmargaret Shmitchell. 2021. On the633
dangers of stochastic parrots: Can language models634
be too big? In Proc. ACM Conf. Fairness Account-635
ability Transparency, page 610–623.636

Sumanta Bhattacharyya, Amirmohammad Rooshenas,637
Subhajit Naskar, Simeng Sun, Mohit Iyyer, and An-638
drew McCallum. 2021. Energy-based reranking:639
Improving neural machine translation using energy-640
based models. In Proc. Annu. Meeting Assoc. Com-641
put. Linguistics and Int. Joint Conf. Natural Lang.642
Process., pages 4528–4537.643

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ644
Altman, Simran Arora, Sydney von Arx, Michael S.645
Bernstein, Jeannette Bohg, Antoine Bosselut, Emma646
Brunskill, Erik Brynjolfsson, Shyamal Buch, Dallas647
Card, Rodrigo Castellon, Niladri Chatterji, Annie648
Chen, Kathleen Creel, Jared Quincy Davis, Dora649
Demszky, Chris Donahue, Moussa Doumbouya,650
Esin Durmus, Stefano Ermon, John Etchemendy,651
Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor652
Gale, Lauren Gillespie, Karan Goel, Noah Goodman,653
Shelby Grossman, Neel Guha, Tatsunori Hashimoto,654
Peter Henderson, John Hewitt, Daniel E. Ho, Jenny655
Hong, Kyle Hsu, Jing Huang, Thomas Icard, Saahil656
Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth657
Karamcheti, Geoff Keeling, Fereshte Khani, Omar658
Khattab, Pang Wei Koh, Mark Krass, Ranjay Kr-659
ishna, Rohith Kuditipudi, Ananya Kumar, Faisal Lad-660
hak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle661
Levent, Xiang Lisa Li, Xuechen Li, Tengyu Ma,662
Ali Malik, Christopher D. Manning, Suvir Mirchan-663
dani, Eric Mitchell, Zanele Munyikwa, Suraj Nair,664
Avanika Narayan, Deepak Narayanan, Ben Newman,665
Allen Nie, Juan Carlos Niebles, Hamed Nilforoshan,666
Julian Nyarko, Giray Ogut, Laurel Orr, Isabel Pa-667
padimitriou, Joon Sung Park, Chris Piech, Eva Porte-668
lance, Christopher Potts, Aditi Raghunathan, Rob669
Reich, Hongyu Ren, Frieda Rong, Yusuf Roohani,670
Camilo Ruiz, Jack Ryan, Christopher Ré, Dorsa671
Sadigh, Shiori Sagawa, Keshav Santhanam, Andy672
Shih, Krishnan Srinivasan, Alex Tamkin, Rohan673
Taori, Armin W. Thomas, Florian Tramèr, Rose E.674
Wang, William Wang, Bohan Wu, Jiajun Wu, Yuhuai675
Wu, Sang Michael Xie, Michihiro Yasunaga, Jiaxuan676
You, Matei Zaharia, Michael Zhang, Tianyi Zhang,677
Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn678
Zhou, and Percy Liang. 2021. On the opportunities679
and risks of foundation models.680

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie681
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind682
Neelakantan, Pranav Shyam, Girish Sastry, Amanda683
Askell, Sandhini Agarwal, Ariel Herbert-Voss,684
Gretchen Krueger, Tom Henighan, Rewon Child,685
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,686

Clemens Winter, Christopher Hesse, Mark Chen, Eric 687
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, 688
Jack Clark, Christopher Berner, Sam McCandlish, 689
Alec Radford, Ilya Sutskever, and Dario Amodei. 690
2020. Language models are few-shot learners. CoRR, 691
abs/2005.14165. 692

Xinyun Chen, Chen Liang, Adams Wei Yu, Denny Zhou, 693
Dawn Song, and Quoc V. Le. 2020. Neural symbolic 694
reader: Scalable integration of distributed and sym- 695
bolic representations for reading comprehension. In 696
International Conference on Learning Representa- 697
tions. 698

Chowdhery, Aakanksha and others. 2022. Palm: Scal- 699
ing language modeling with pathways. arXiv preprint 700
https://arxiv.org/abs/2204.02311. 701

Kevin Clark, Minh-Thang Luong, Quoc Le, and Christo- 702
pher D. Manning. 2020. Pre-training transformers as 703
energy-based cloze models. In Proc. Conf. Empirical 704
Methods Natural Lang. Process., pages 285–294. 705

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 706
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 707
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 708
Nakano, Christopher Hesse, and John Schulman. 709
2021. Training verifiers to solve math word prob- 710
lems. arXiv preprint arXiv:2110.14168. 711

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane 712
Hung, Eric Frank, Piero Molino, Jason Yosinski, and 713
Rosanne Liu. 2020. Plug and play language models: 714
A simple approach to controlled text generation. In 715
Proc. Int. Conf. Learn. Representations. 716

Edward A Feigenbaum and Julian Feldman, editors. 717
1995. Computers and Thought. MIT Press, London, 718
England. 719

Karen Hambardzumyan, Hrant Khachatrian, and 720
Jonathan May. 2021. WARP: word-level adversarial 721
reprogramming. CoRR, abs/2101.00121. 722

Danqing Huang, Jing Liu, Chin-Yew Lin, and Jian Yin. 723
2018. Neural math word problem solver with rein- 724
forcement learning. In Proc. ACL, pages 213–223. 725

Jeffery D. Karpicke. 2012. Retrieval-based learning: 726
Active retrieval promotes meaningful learning. Cur- 727
rent Directions Psychol. Sci., 21(3):157–163. 728

Muhammad Khalifa, Hady Elsahar, and Marc Dymet- 729
man. 2021. A distributional approach to controlled 730
text generation. In Proc. Int. Conf. Learn. Represen- 731
tations. 732

Kenneth R. Koedinger, Jihee Kim, Julianna Zhuxin Jia, 733
Elizabeth A. McLaughlin, and Norman L. Bier. 2015. 734
Learning is not a spectator sport: Doing is better than 735
watching for learning from a mooc. In Proc. Conf. 736
Learn. Scale, pages 111–120. 737

Ben Krause, Akhilesh Deepak Gotmare, Bryan McCann, 738
Nitish Shirish Keskar, Shafiq Joty, Richard Socher, 739
and Nazneen Fatema Rajani. 2020. GeDi: Generative 740

9

https://doi.org/10.48550/ARXIV.2108.07258
https://doi.org/10.48550/ARXIV.2108.07258
https://doi.org/10.48550/ARXIV.2108.07258
http://arxiv.org/abs/2005.14165
https://openreview.net/forum?id=ryxjnREFwH
https://openreview.net/forum?id=ryxjnREFwH
https://openreview.net/forum?id=ryxjnREFwH
https://openreview.net/forum?id=ryxjnREFwH
https://openreview.net/forum?id=ryxjnREFwH
https://doi.org/10.48550/ARXIV.2204.02311
https://doi.org/10.48550/ARXIV.2204.02311
https://doi.org/10.48550/ARXIV.2204.02311
https://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2101.00121
http://arxiv.org/abs/2101.00121
http://arxiv.org/abs/2101.00121

Discriminator Guided Sequence Generation. arXiv741
e-prints.742

Vivek Kumar, Rishabh Maheshwary, and Vikram Pudi.743
2022. Practice makes a solver perfect: Data augmen-744
tation for math word problem solvers. In Proceedings745
of the 2022 Conference of the North American Chap-746
ter of the Association for Computational Linguistics:747
Human Language Technologies, pages 4194–4206,748
Seattle, United States. Association for Computational749
Linguistics.750

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.751
The power of scale for parameter-efficient prompt752
tuning. CoRR, abs/2104.08691.753

Aitor Lewkowycz, Anders Andreassen, David Dohan,754
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,755
Ambrose Slone, Cem Anil, Imanol Schlag, Theo756
Gutman-Solo, Yuhuai Wu, Behnam Neyshabur, Guy757
Gur-Ari, and Vedant Misra. 2022. Solving quantita-758
tive reasoning problems with language models.759

Shucheng Li, Lingfei Wu, Shiwei Feng, Fangli Xu,760
Fengyuan Xu, and Sheng Zhong. 2020. Graph-to-761
tree neural networks for learning structured input-762
output translation with applications to semantic pars-763
ing and math word problem. In Proc. EMNLP, pages764
2841–2852.765

Xiang Lisa Li and Percy Liang. 2021. Prefix-766
tuning: Optimizing continuous prompts for gener-767
ation. CoRR, abs/2101.00190.768

Zhongli Li, Wenxuan Zhang, Chao Yan, Qingyu Zhou,769
Chao Li, Hongzhi Liu, and Yunbo Cao. 2021. Seek-770
ing patterns, not just memorizing procedures: Con-771
trastive learning for solving math word problems.772
CoRR, abs/2110.08464.773

Alisa Liu, Maarten Sap, Ximing Lu, Swabha774
Swayamdipta, Chandra Bhagavatula, Noah A. Smith,775
and Yejin Choi. 2021a. DExperts: Decoding-time776
controlled text generation with experts and anti-777
experts. In Proc. Annu. Meeting Assoc. Comput. Lin-778
guistics and Int. Joint Conf. Natural Lang. Process.,779
pages 6691–6706.780

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,781
Hiroaki Hayashi, and Graham Neubig. 2021b. Pre-782
train, prompt, and predict: A systematic survey of783
prompting methods in natural language processing.784
CoRR, abs/2107.13586.785

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,786
Yujie Qian, Zhilin Yang, and Jie Tang. 2021c. GPT787
understands, too. CoRR, abs/2103.10385.788

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-789
Jing Zhu. 2002. Bleu: A method for automatic evalu-790
ation of machine translation. In Proceedings of the791
40th Annual Meeting on Association for Computa-792
tional Linguistics, ACL ’02, page 311–318, USA.793
Association for Computational Linguistics.794

Jinghui Qin, Lihui Lin, Xiaodan Liang, Rumin Zhang, 795
and Liang Lin. 2020. Semantically-aligned universal 796
tree-structured solver for math word problems. In 797
Proc. EMNLP, pages 3780–3789. 798

Nitish Shirish Keskar, Bryan McCann, Lav R. Varshney, 799
Caiming Xiong, and Richard Socher. 2019. CTRL: 800
A Conditional Transformer Language Model for Con- 801
trollable Generation. arXiv e-prints. 802

Sowmya S. Sundaram, Sairam Gurajada, Marco 803
Fisichella, Deepak P, and Savitha Sam Abraham. 804
2022. Why are NLP models fumbling at elemen- 805
tary math? A survey of deep learning based word 806
problem solvers. CoRR, abs/2205.15683. 807

Romal Thoppilan, Daniel De Freitas, Jamie Hall, 808
Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze 809
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, 810
YaGuang Li, Hongrae Lee, Huaixiu Steven Zheng, 811
Amin Ghafouri, Marcelo Menegali, Yanping Huang, 812
Maxim Krikun, Dmitry Lepikhin, James Qin, Dehao 813
Chen, Yuanzhong Xu, Zhifeng Chen, Adam Roberts, 814
Maarten Bosma, Yanqi Zhou, Chung-Ching Chang, 815
Igor Krivokon, Will Rusch, Marc Pickett, Kathleen S. 816
Meier-Hellstern, Meredith Ringel Morris, Tulsee 817
Doshi, Renelito Delos Santos, Toju Duke, Johnny So- 818
raker, Ben Zevenbergen, Vinodkumar Prabhakaran, 819
Mark Diaz, Ben Hutchinson, Kristen Olson, Ale- 820
jandra Molina, Erin Hoffman-John, Josh Lee, Lora 821
Aroyo, Ravi Rajakumar, Alena Butryna, Matthew 822
Lamm, Viktoriya Kuzmina, Joe Fenton, Aaron Co- 823
hen, Rachel Bernstein, Ray Kurzweil, Blaise Aguera- 824
Arcas, Claire Cui, Marian Croak, Ed H. Chi, and 825
Quoc Le. 2022. Lamda: Language models for dialog 826
applications. CoRR, abs/2201.08239. 827

Lieven Verschaffel, Stanislaw Schukajlow, Jon Star, and 828
Wim Van Dooren. 2020. Word problems in mathe- 829
matics education: a survey. ZDM, 52(1):1–16. 830

Candace A. Walkington. 2013. Using adaptive learn- 831
ing technologies to personalize instruction to student 832
interests: The impact of relevant contexts on perfor- 833
mance and learning outcomes. J. Educ. Psychol., 834
105(4):932–945. 835

Jianhong Wang, Yuan Zhang, Tae-Kyun Kim, and Yun- 836
jie Gu. 2020. Modelling hierarchical structure be- 837
tween dialogue policy and natural language genera- 838
tor with option framework for task-oriented dialogue 839
system. CoRR, abs/2006.06814. 840

Lei Wang, Yan Wang, Deng Cai, Dongxiang Zhang, 841
and Xiaojiang Liu. 2018a. Translating a math word 842
problem to a expression tree. In Proc. EMNLP, pages 843
1064–1069. 844

Lei Wang, Dongxiang Zhang, Lianli Gao, Jingkuan 845
Song, Long Guo, and Heng Tao Shen. 2018b. Math- 846
dqn: Solving arithmetic word problems via deep re- 847
inforcement learning. In Proc. AAAI, pages 5545– 848
5552. 849

10

https://doi.org/10.18653/v1/2022.naacl-main.310
https://doi.org/10.18653/v1/2022.naacl-main.310
https://doi.org/10.18653/v1/2022.naacl-main.310
http://arxiv.org/abs/2104.08691
http://arxiv.org/abs/2104.08691
http://arxiv.org/abs/2104.08691
https://doi.org/10.48550/ARXIV.2206.14858
https://doi.org/10.48550/ARXIV.2206.14858
https://doi.org/10.48550/ARXIV.2206.14858
http://arxiv.org/abs/2101.00190
http://arxiv.org/abs/2101.00190
http://arxiv.org/abs/2101.00190
http://arxiv.org/abs/2101.00190
http://arxiv.org/abs/2101.00190
http://arxiv.org/abs/2110.08464
http://arxiv.org/abs/2110.08464
http://arxiv.org/abs/2110.08464
http://arxiv.org/abs/2110.08464
http://arxiv.org/abs/2110.08464
http://arxiv.org/abs/2107.13586
http://arxiv.org/abs/2107.13586
http://arxiv.org/abs/2107.13586
http://arxiv.org/abs/2107.13586
http://arxiv.org/abs/2107.13586
http://arxiv.org/abs/2103.10385
http://arxiv.org/abs/2103.10385
http://arxiv.org/abs/2103.10385
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.48550/arXiv.2205.15683
https://doi.org/10.48550/arXiv.2205.15683
https://doi.org/10.48550/arXiv.2205.15683
https://doi.org/10.48550/arXiv.2205.15683
https://doi.org/10.48550/arXiv.2205.15683
http://arxiv.org/abs/2201.08239
http://arxiv.org/abs/2201.08239
http://arxiv.org/abs/2201.08239
http://arxiv.org/abs/2006.06814
http://arxiv.org/abs/2006.06814
http://arxiv.org/abs/2006.06814
http://arxiv.org/abs/2006.06814
http://arxiv.org/abs/2006.06814
http://arxiv.org/abs/2006.06814
http://arxiv.org/abs/2006.06814

Lei Wang, Dongxiang Zhang, Jipeng Zhang, Xing Xu,850
Lianli Gao, Bing Tian Dai, and Heng Tao Shen. 2019.851
Template-based math word problem solvers with re-852
cursive neural networks. In Proc. AAAI, volume 33,853
pages 7144–7151.854

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,855
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and856
Denny Zhou. 2022. Self-consistency improves chain857
of thought reasoning in language models.858

Yan Wang, Xiaojiang Liu, and Shuming Shi. 2017.859
Deep neural solver for math word problems. In Proc.860
EMNLP, pages 845–854.861

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten862
Bosma, Ed H. Chi, Quoc Le, and Denny Zhou. 2022.863
Chain of thought prompting elicits reasoning in large864
language models. CoRR, abs/2201.11903.865

Qinzhuo Wu, Qi Zhang, Jinlan Fu, and Xuanjing Huang.866
2020. A knowledge-aware sequence-to-tree network867
for math word problem solving. In Proc. EMNLP,868
pages 7137–7146.869

Zhipeng Xie and Shichao Sun. 2019. A goal-driven870
tree-structured neural model for math word problems.871
In Proc. IJCAI.872

Weizhe Yuan, Graham Neubig, and Pengfei Liu. 2021.873
Bartscore: Evaluating generated text as text genera-874
tion. CoRR, abs/2106.11520.875

Qiyuan Zhang, Lei Wang, Sicheng Yu, Shuohang Wang,876
Yang Wang, Jing Jiang, and Ee-Peng Lim. 2021.877
NOAHQA: Numerical reasoning with interpretable878
graph question answering dataset. In Findings of the879
Association for Computational Linguistics: EMNLP880
2021, pages 4147–4161, Punta Cana, Dominican Re-881
public. Association for Computational Linguistics.882

Zexuan Zhong, Dan Friedman, and Danqi Chen. 2021.883
Factual probing is [MASK]: learning vs. learning to884
recall. CoRR, abs/2104.05240.885

Yanyan Zou and Wei Lu. 2019. Text2math: End-to-end886
parsing text into math expressions.887

A Hyper-parameters888

We use a learning rate of 5e-5, a batch size of 8, and889

10 epochs for all training processes. We set “what is890

the next operation?” as our instruction prompt and891

apply calculators to avoid calculation errors and892

greedy decoding during token generation. Model893

training is carried out on an NVIDIA RTX 3090894

GPU.895

B Optimization896

Although our entire approach can be trained to-897

gether in an end-to-end way, we found that opti-898

mizing the operation prediction model and fine-899

tuning the LM/prompts for step generation asyn- 900

chronously leads to better performance. Our in- 901

tuition is that the operation predictor is a high- 902

level decision-making policy for the entire solu- 903

tion while the LM generation process is a low-level 904

(token-by-token) decision-making process for the 905

current step. Optimizing these two modules simul- 906

taneously may cause inconsistency since the opera- 907

tion predictor may make a decision based on LM 908

parameters that also need to be updated. Therefore, 909

we first optimize the parameters of the generation 910

LM and prompts with the step generation task loss, 911

using ground truth operation labels, which we ex- 912

tract from the mathematical part of each step in the 913

training data. Then, we iterate between freezing 914

both the LM M and the prompt function f while 915

tuning the operation predictor and switching the 916

two. In this way, we can guarantee the whole model 917

to converge in a stable process (Wang et al., 2020). 918

C List of all hand-crafted operations 919

classes 920

Details in table 5 921

D Examples of control generation 922

Table 6 shows the generated step apply different op- 923

eration prompts on same input. This table demon- 924

strates the generated results from applying differ- 925

ent operation prompts with the same input to the 926

model. We observe that when the operation prompt 927

is logical and aligned with solving the question, the 928

generated result follows the guidance given by the 929

operation prompt. In contrast, when the operation 930

prompt does not make sense, the generated result 931

will not obey its directions. Details in table 5 932

11

https://doi.org/10.48550/ARXIV.2203.11171
https://doi.org/10.48550/ARXIV.2203.11171
https://doi.org/10.48550/ARXIV.2203.11171
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2106.11520
http://arxiv.org/abs/2106.11520
http://arxiv.org/abs/2106.11520
https://doi.org/10.18653/v1/2021.findings-emnlp.350
https://doi.org/10.18653/v1/2021.findings-emnlp.350
https://doi.org/10.18653/v1/2021.findings-emnlp.350
http://arxiv.org/abs/2104.05240
http://arxiv.org/abs/2104.05240
http://arxiv.org/abs/2104.05240
https://doi.org/10.48550/ARXIV.1910.06571
https://doi.org/10.48550/ARXIV.1910.06571
https://doi.org/10.48550/ARXIV.1910.06571

Table 5: Appendix C: list of all hand-crafted operations classes

no. shortcut description no. shortcut deccription
1 [n+n] one-step addition 12 [n-n*n] multiplication then subtraction
2 [n-n] one-step subtraction 11 [n*(n/n)] multiplication by a fraction
3 [n*n] one-step multiplication 13 [(n/n)-(n/n)] fraction subtraction
4 [n/n] one step division 14 [(n/n)+(n/n)] fraction addition
5 [n+n+. . .] multi step addition 11 [(n/n)*(n/n)] fraction multiplication
6 [n-n-. . .] multi-step subtraction 16 [mixed] other combination
7 [n*n*. . .] multi-step multiplication 17 [ans] solution found, end the whole generation
8 [n+n*n] multiplication then addition 18 [statement] involve no math calculation and only textual explanation
9 [n+n-n] addition then subtraction 19 [assign] assign a value to a paramter
10 [n+n/n] division then addition 20 [define] define a parameter

Table 6: Appendix D: Generated step apply different operation prompts on same input.

Input: Maggie spent a quarter of her money, while Riza spent one-third of her money.
They each had $60. How much money do the two of them have left?
no. action generated step
1 [n+n] Riza and Maggie had $60 + $60 = $120 ✔

2 [n-n] Riza had $60 - $60 = $0 left after spending some money on Maggie. ✔

3 [n*n] Riza spent $60 x 0.33 = $20 ✔

4 [n/n] Maggie had $60/4 = $15 left. ✔

5 [n+n+. . .] Riza spent $60 + $60 + $60 = $180. ✔

6 [n-n-. . .] Riza had $60 - $60 - $30 = -$30 ✔

7 [n*n*. . .] Riza spent $60 x 1/3 = $60.
8 [n+n*n] Maggie had $60 + $60*0.25 = $56 left after spending a quarter of her money. ✔

9 [n+n-n] Maggie had $60 - $60 = $0 left after spending a quarter of her money.
10 [n+n/n] Riza had $60 + $60/3 = $80 left. ✔

11 [n-n*n] Riza had $60 - $30 = $30 left after spending a quarter of her money.
12 [n*(n/n)] Riza spent $60 x 1/3 = $20. ✔

13 [(n/n)-(n/n)] Riza and Maggie had $60/4 - $60/3 = $5 left. ✔

14 [(n/n)+(n/n)] Riza and Maggie total had $60/4 + $60/3 = $35 left. ✔

11 [(n/n)*(n/n)] Riza had $60 * 1/3 = $20 left.
16 [mixed] Riza had $60/4 - $60/3 = $15 left.
17 [ans] The answer is $60 ✔

18 [statement] Riza had $60 in total. ✔

19 [assign] Riza had x=$60. ✔

20 [define] Let x be the money Riza had ✔

12

