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Abstract

The real world is large and complex. It is filled
with many objects besides those defined by a task
and objects can move with their own interesting
dynamics. How should an agent learn to represent
state to support efficient learning and generaliza-
tion in such an environment? In this work, we
present a novel memory architecture, Perceptual
Schemata, for learning and zero-shot generaliza-
tion in environments that have many, potentially
moving objects. Perceptual Schemata represents
state using a combination of schema modules
that each learn to attend to and maintain state-
ful representations of different subspaces of a
spatio-temporal tensor describing the agent’s ob-
servations. We present empirical results that Per-
ceptual Schemata enables a state representation
that can maintain multiple objects observed in
sequence with independent dynamics while an
LSTM cannot. We additionally show that Percep-
tual Schemata can generalize more gracefully to
larger environments with more distractor objects,
while an LSTM quickly overfits to the training
tasks.

1. Introduction
How should an agent learn to represent state to enable pro-
ficiency in large, complex environments? We focus on
environments that have many, potentially moving objects
where task completion requires decision-making over po-
tentially hundreds of time-steps. For example, consider the
“Keybox” task in figure 1(b) used in our experiments in §4.
The agent begins at the left-most side of the hallway where a
colored box (blue in the bottom hallway) indicates the color
of the goal key the agent must retrieve from the other end
of the hallway. The hallway is filled with distractor objects
which may obstruct the agent’s path. We are interested in
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(a) Place X next to Y.

(b) Keybox task. (c) Ballet task.

Figure 1. Tasks used for experiments.

studying how an agent’s state representation affects (a) its
capacity for efficient learning in such environments and (b)
its capacity to generalize to larger, more complex environ-
ments. If the hallway length and number of distractors are
doubled, can the agent generalize its goal-directed behavior
in a zero-shot manner?

It is important that we develop agents that can handle large
environments with many, potentially moving objects be-
cause the real-world is such an environment. Houses are
filled with objects that have to be moved or navigated around
in order to accomplish tasks. Streets and roads are filled
with other agents moving with their own dynamics. Artifi-
cially intelligent agents will need to learn representations
for state that can handle these settings.

While the combination of deep learning and reinforcement
learning (deep RL) has shown strong performance in single-
task settings with millions of transitions (Mnih et al., 2015;
Lillicrap et al., 2015; Silver et al., 2016; Schulman et al.,
2017), it hasn’t had the same success with generalization
that deep learning has had in computer vision (He et al.,
2020; Kawaguchi et al., 2017; Yosinski et al., 2014) and nat-
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ural language processing (Ramesh et al., 2021; Devlin et al.,
2018). For example, deep RL agents are known to have a
hard time generalizing to small task-irrelevant changes to
the observation space (Cobbe et al., 2019; Kansky et al.,
2017; Witty et al., 2018; Farebrother et al., 2018). If sim-
ply adding task-irrelevant visual information is challenging,
it follows that having larger environments with more task-
irrelevant objects to navigate around or move will further
challenge a deep RL agent’s capacity to generalize.

We hypothesize that one source of this challenge is the
canonical choice for representing state: a long-short
term memory (LSTM) (Hochreiter & Schmidhuber, 1997).
LSTMs are known to have a recency bias (Ravfogel et al.,
2019), so it may be hard to maintain sequentially observed
object dynamics in state. Additionally, they have shown
poor generalization to larger sequences in sequence-to-
sequence tasks (Graves et al., 2014; Lake & Baroni, 2018)
indicating they may not generalize representations of state
to larger, more complex environments than observed during
training.

In this work, we present a novel memory architecture, Per-
ceptual Schemata, for learning and zero-shot generalization
in environments that have many, potentially moving ob-
jects. Perceptual Schemata draws inspiration from cognitive
science and represents state with a combination (or “as-
semblage” (Arbib, 1992)) of perceptual schemata modules.
A schema is a “cognitive structure presenting [an agent’s]
knowledge about some entity or situation” (APA, 2020).
A perceptual schema defines two sets of parameters–one
for determining filtering schema-relevant information from
the agent’s observation (which we model with attention
parameters) and another for maintaining a representation
of the relationship of this information to the agent (which
we model with recurrent parameters) (Minsky, 1979; Arbib,
1992). In order to learn perceptual schemata that can special-
ize on arbitrary environment fragments such as stationary
objects, moving objects, or sets of objects, each schema
learns to attend to subspaces along the feature dimension of
a spatio-temporal tensor describing the agent’s observation.
Different schemata learn to specialize on different aspects
of the environment and can be used in tandem to combine
an estimate of the environmental state with a seperate repre-
sentation of the agent’s inferred goal.

We study Perceptual Schemata in simple, diagnostic grid-
world experiments that test a memory architecture’s capac-
ity to learn and generalize when environments are either
large, messy and filled with objects, or when they have
multiple objects moving with independent dynamics in se-
quence. We present empirical results showing that Percep-
tual Schemata can disentangle and maintain in state multiple
objects with independent dynamics while an LSTM cannot.
We additionally show that Perceptual Schemata can gen-

eralize more gracefully to larger environments with more
distractor objects, while an LSTM quickly overfits.

2. Background
We are concerned with partially observable environments
where an agent experiences visual observations xt ∈ X =
RHimage×Wimage×C at time-step t. The agent selects an action
at ∈ A using a policy π(at|st), where st ∈ S is the agent
state representation that describes its summary of its current
situation in the environment or aleatoric state (Lu et al.,
2021). We focus on how to best learn this state representa-
tion.

2.1. Prior methods for representing state.

Representing state with a window of observations. Re-
searchers have used a variety of methods to learn state-
representations. One simple but scalable method is to use
a window of the past N observations (Mnih et al., 2015;
Lillicrap et al., 2015; Parisotto et al., 2020) with a func-
tion that processes them in a feedforward manner. Some
researchers choose to leverage external memory so that an
agent can incorporate arbitrary observations in the past into
its state (Pritzel et al., 2017; Blundell et al., 2016).

Representing state with a memory architecture. In this
work, we focus on the setting where an agent learns an
iterative function of state based on a distinct initial state
representation s0 ∈ S and the consequently experienced
observations and actions (Lu et al., 2021). This setting
commonly manifests with three main functions: one, f , for
learning features zt ∈ Z of observations xt; another, g,
for using the previous state representation st−1, previous
action at−1 and current observation features to compute a
representation of state st ∈ S; and a third, the policy π from
above:

f : X → Z (1)
g : S ×A×Z → S (2)
π : S → A (3)

This flavor of deep RL is potentially the most popu-
lar and has been quite successful in mastering environ-
ments (Sorokin et al., 2015; Mirowski et al., 2017; Hessel
et al., 2018; Jaderberg et al., 2017; Wang et al., 2017; Sal-
lab et al., 2017; Heess et al., 2015; Schulman et al., 2017;
Vinyals et al., 2019). Coupled with the strong success of
neural networks for learning and transfer in computer vi-
sion settings (Krizhevsky et al., 2012; Yosinski et al., 2014;
Kawaguchi et al., 2017; He et al., 2020), we posit that this
is an indication that neural networks combined with rein-
forcement learning can already learn a suitable function f
with good observation features.

A large body of work has found that deep RL agents of-
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ten fail to generalize their policy π to minor variations of
the environment (Cobbe et al., 2019; Kansky et al., 2017;
Witty et al., 2018; Farebrother et al., 2018). We posit that
one source of this challenge is that we still have progress
to make in learning a g that maps observation features to
a high-level state representation. In particular we argue
that part of the problem is the canonical architecture for
learning g—a large, unstructured Long Short-Term Mem-
ory (LSTM) (Hochreiter & Schmidhuber, 1997; Shi et al.,
2015)— which is known exhibit poor systematic generaliza-
tion (Lake & Baroni, 2018).

Most similar to Perceptual Schemata are “Recurrent Inde-
pendent Mechanisms” (RIMS) (Goyal et al., 2020b) and
“Schema / object-file factorization” (SCOFF) (Goyal et al.,
2020a). All of these memory architectures learn multiple
smaller LSTMs which specialize on aspects of the envi-
ronment. However, RIMS and SCOFF utilize transformer-
style attention (Vaswani et al., 2017) to capture an object
as a vector in the spatial grid of a Convolutional Neural
Network’s output tensor. We opt for a more flexible at-
tention mechanism which can capture environment frag-
ments across the spatial grid. SCOFF extends RIMs by
decoupling “object-recognition” attention parameters from
object-dynamics recurrence parameters—we leave such an
extension of our architecture as future work. Additionally,
they focus their experiments on showing zero-shot general-
ization for supervised learning tasks. We focus on zero-shot
generalization in a reinforcement learning context where
an agent must generalize its policy to larger environments
that require action-prediction sequences two, three, and four
times longer than observed in training.

3. Perceptual Schemata
How can an agent discover perceptual schemata? We opine
that the power and beauty of deep RL is its ability to find
solutions unimagined by the thoughtful and clever AI re-
searcher. With that in mind, we develop the inductive biases
for discovering perceptual schemata such that they offer a
neural network maximum flexibility to decompose its repre-
sentation of the environment as is most useful for the given
task.

Choice of f and π. As is common in vision settings, we
use a convolutional neural network (CNN) as our function
f for obtaining visual features Zt = CNN(xt) where Zt ∈
RHz×Wz×Dz . For π, we choose another standard choice—
a multilayer perceptron (MLP) that outputs a categorical
distribution over actions. We now focus our attention on a
suitable choice of g.

Figure 2. Architecture. To avoid clutter, we do not show message
passing between schemata.

3.1. Choice of g for representing state

Learning spatio-temporal features. We first observe that
Zt is impoverished in that it doesn’t capture features that
describe local spatial dynamics. We can obtain a repre-
sentation that captures this by employing a convolutional
LSTM (Shi et al., 2015): Zdyn

t = ConvLSTM(Zt, Z
dyn
t−1).

With this, we have a tensor Zdyn
t ∈ RHz×Wz×Dz describ-

ing the expression of features Zdyn
t,h,w and their temporal

dynamics over a spatial grid of size Hz ×Wz .

Prior work has show that in simple environments, a neural
network can learn to associate high-level objects with in-
dividual features Zdyn

t,h,w,j (Kipf et al., 2019). However, in
more complex environments, it may be suboptimal to use
a single feature to describe a single object. An architec-
ture may instead learn a distributed representation where
different objects share features (Greff et al., 2020). If Zdyn

t

captures information about task-relevant fragments of the
environment — objects, sets of objects, etc. — but uses
distributed representations, then what is represented by a
particular vector Zdyn

t,h,w is ambiguous (Greff et al., 2020).
In this work, we argue that we can improve zero-shot gener-
alization if schemata can learn to disambiguate their envi-
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ronment fragment’s contribution to the feature dimensions
the fragment is represented over. We hypothesize that this
will enable them to be recognized and integrated into “state”
in novel ecological situations.

Learning to attend to environment fragments using fea-
ture subspaces. In this work we choose to learn n schemata
with a collection of LSTMs, {LSTMθi}ni=1. Our key insight
is that we can enable schemata to leverage disentangled rep-
resentations of environment fragments by having them learn
to attend to feature subspaces. We achieve this by having
schema i obtain its input v(i)t using a mask m(i)

t over fea-
tures Zdyn

t . Practically, we found it useful to project the
features before and after masking using shared parameters
as in (Hu et al., 2018; Andreas et al., 2016). This forces
each schema to use a shared representation for representing
their attention input (Greff et al., 2020). Schema i uses its
state from the previous time-step h(i)t−1 to query for its input
as follows:

m
(i)
t = σ(Wm

i h
(i)
t−1) (4)

v
(i)
t = conv2

(
conv1(Z

dyn
t )�m(i)

t

)
(5)

where m(i)
t ∈ RDm , v(i)t ∈ RHz×Wz×Dm , σ is a sigmoid

function, and conv is a convolutional layer. By using a
subspace of Zdyn

t expressed over the Hz ×Wz grid, this
allows schemata to capture either coarse or granular decom-
positions of the environment: i.e. objects, sets of objects,
etc. Additionally, using feature subspaces allows schemata
to overlap as needed across spatial dimensions, temporal
dimensions, or feature dimensions. Importantly, this al-
lows for the task-signal (i.e. reward signal) to drive how
perception is decomposed.

Learning Perceptual Schemata. We now arrive at our
update rule. Before each feature update, each schema
gathers information from other schemata with a round of
message-passing using transformer-style attention (Vaswani
et al., 2017). This allows the schemata to coordinate
and share information1. Using independent parameters,
each schema treats its previous hidden-state and action
as a query qt =

[
h
(i)
t−1, at−1

]
W q
i ∈ R1×Dm . We create

matrix from all previous hidden-state Ht−1 =
[
h
(i)
t−1

]
i

to obtain keys and values Kt = Ht−1W
k
i ∈ Rn×Dm ,

Vt = Ht−1W
v
i ∈ Rn×Dm . The full update for schema

1We note that employing message-passing might have a sim-
ilar utility to having a posterior likelihood model in a dynamics
Bayesian network where each factor is conditioned on all factors
in the previous time-step.

i is

h
message,(i)
t−1 = softmax

(
qtK

>
t√

Dm

)
Vt (6)

h
(i)
t = LSTMθi([v

(i)
t , h

message,(i)
t−1 , h

(i)
t−1, at−1])

(7)

We summarize the parameters for schema i below:

Wm
i : subspace parameters
θi : update parameters

(W q
i ,W

k
i ,W

v
i ) : messaging passing parameters

As a simple first step, we represent state as the concatenation
of all schemata-states:

st = [h
(1)
t , . . . , h

(n)
t ], (8)

and use this to compute reinforcement learning quantities
such as the value-function V (st) and policy π(at|st). We
present a full schematic of our architecture in figure 2.

4. Experiments
In this section, we study the following questions:

1. Can Perceptual Schemata disentangle and maintain
multiple objects with distinct dynamics in state?

2. Is Perceptual Schemata robust to an increasing number
of distractor objects?

3. Can Perceptual Schemata generalize goal-oriented be-
haviors to longer horizons than trained on?

4. Does Perceptual Schemata maintain its generalization
capacity as the number of distractor objects increases?

Disentangling multiple objects with distinct dynam-
ics. We study this question with the “ballet” grid-
world (Lampinen et al., 2021) in Figure 1(c). The agent
is a white square in the middle of the grid. Each other
object corresponds to a “ballet-dancer” which moves in a
distinct pattern for 16 time-steps. Afterwards, there is a
pause of 48 time-steps and another ballet-dancer “dances”.
Once all ballet-dancers have gone, the agent is given a lan-
guage instruction—e.g., “go to the spinning ballet-dancer”—
and it must go to the correct ballet-dancer. The agent gets
a reward of 1 if chooses the correct dancer, and 0 other-
wise. All shapes and colors are randomized making the
dynamics the only feature that indicates the task-object.
For recurrent memories, this task tests a memory’s ability
to maintain separate, independent dynamics in an agent’s
state-representation. A poorly performing agent will obtain
chance performance, which corresponds to 1/m, where m
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is the number of ballet-dancer’s in the environment. We
use this to test whether a memory architecture can disentan-
gle multiple distinct dynamics and maintain them in a state
representation.

Figure 3. Performance on the Ballet task (5 runs).

We present results in figure 3. We compare Perceptual
Schemata against an LSTM with the same number of pa-
rameters and a two-layer RNN, where the first layer is a
Convolutional LSTM and the second layer is an LSTM. We
treat this experiment as an ablation because without our
attention and structure within state, we are equivalent to a
2-layer RNN that uses a Convolutional LSTM and LSTM.
Interestingly, we find that with only 2 ballet-dancers (fig-
ure 3, left), neither baseline goes above chance performance.
While both baselines can certainly learn to model the dy-
namics, they seem less capable of retaining this information
in memory, even when required so by the task.

This result should elicit pause for deep RL researchers and
practitioners since LSTMs are a standard choice when learn-
ing a state-representation. This lack of “long-term” recall
is a known problem in the community and has led to a rise
in interest in alternative methods for representing state with
better recall capacities, such as transformers (Parisotto et al.,
2020). Fortunately, we show that at least this aspect of the
recall challenge can be easily mitigated with our inductive
bias for attending to subspaces of spatio-temporal features.

Robustness to distractors. We study this question with
a simple task of “Place X next to Y ” in the BabyAI grid-
world (Chevalier-Boisvert et al., 2019) Figure 1(a). The
agent is a red triangle. Other objects can be squares, boxes
or circles and they can take on 7 colors. The agent receives
a partial, egocentric observation of the environment ( Fig-
ure 1(a), right) and is given a synthetic language instruction.
The agent gets a reward of 1 if chooses the correct dancer,
and 0 otherwise. This task should not be challenging. How-
ever, as the number of distractors increases, the likelihood
a distractor is either (a) confounding with the task objects
or (b) blocks/confuses the agent also increases. We study
how agent performance on this task deteriorates for {5, 7, 9}
distractor objects. As the number of objects increases, the
number of environment configurations of objects increases
(at least for the level of sparsity we study) inducing different

available dynamics for the agent.

Figure 4. Performance Place X next to Y .

We present results in figure 4. On the left we present re-
sults for the hardest setting: 9 distractors. On the right,
we present the maximum success rate (and corresponding
standard error) achieved by each method for each distrac-
tor setting. We compare our method to an LSTM paired
with gated-attention (Chaplot et al., 2018) which has proven
effective for navigating to objects described in language
instructions. We note that both memories get about the
same performance when there are 5 distractors. However,
an LSTM with gated-attention degrades signifcantly in per-
formance for 7 and 9 distractors. We conjecture that our
Perceptual Schemata can better focus on task-objects and
handle the various “situations” the agent faces as a result
of different distractor configurations (e.g. being blocked by
objects, or having to navigate around objects).

Generalizing to larger environments.

For this experiment, we create the multi-level “keybox” en-
vironment depicted in figure 1(b). The first level begins with
an agent in a room that has a box, a key of the same color,
and 2 distractor objects (either a ball of any color or keys
of other colors). The agent’s task is to bring the key of the
same color to the box. Each time the agent succeeds, it is
teleported into a larger hallway and gets a reward of n/nmax
where nmax is the maximum level the agent can complete.
We set nmax = 10. Hallways are divided into units of length
≈ l + 1 where l is the height of the hallway. In level n, the
agent is in a hallway of length ≈ n(l + 1) with 2n distrac-
tors. We call each successive room a “level”. The agent has
50n time-steps to complete a level and may fail by timing
out. Assuming the agent has completed up to level ndone,
once it fails, the agent restarts to level n ∈ [1, ndone]. The
box is always on the leftmost side of the hallway and the
key is always on the rightmost side. The agent maximizes
reward by achieving levels with increasingly long hallways.
Thus, this task is a test of memory as it requires the agent
learn to remember the color of the box for increasingly long
time-horizons. The distractors pose an additional challenge
of either obstructing or blocking paths. They have to be
incorporated into the state-representation so they can be
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(a) Performance on easier version of Keybox task

(b) Performance on harder version of Keybox task where hallways are longer and there’s a higher density of distractors.

Figure 5. Performance on Keybox task.

used to predict actions, but they can’t overwrite the goal
information obtained from the box. We note that the agent’s
memory isn’t erased with each hallway unless it fails. We
set the unit length l = 3, resulting in a maximum hallway
length ≈ 40.

We present results in the top-panel of figure 5(a). On the
top-left, we present train results. An LSTM was able to
get the highest level slightly more quickly than Perceptual
Schemata. On the next 3 panels, we see evaluation of both ar-
chitectures over the course of training for levels {20, 30, 40}.
We see that an LSTM quickly overfits to shorter levels. Its
performance never gets above 50% for level 20 or above
20% for level 30. We see that Perceptual Schemata is able
to continue to improve on held-out evaluation levels, reach
≈ 80% for level 20, ≈ 50% for level 30, and ≈ 25% for
level 40.

Why might Perceptual Schemata achieve such a perfor-
mance gap? Our structured state and attention allow it
to separately store fragments of the environment like the
box color. We saw in the Ballet-dancer task that Perceptual
Schemata can retain task-relevant features in state even af-
ter observing other features. This may help it successfully
incorporate distractor information into state to react appro-
priately while mitigating the loss of the other important task

information such as the box color.

Maintaining distractor robustness when generalizing to
larger environments. In this experiment we study the de-
gree to which Perceptual Schemata maintains its general-
ization performance when we increase the unit-length of
the hallway to l = 5 and increase the number of distractors
per unit to n = 4. This leads to longer hallways with more
distractors. We hypothesize this makes the task harder to
learn. Some evidence of this is that we saw very slow learn-
ing unless we used a stricter learning curriculum where the
agent always starts an episode on level 1 (as opposed to a
randomly completed level). This leads the agent to obtain
more training data with easier tasks.

We present results in the bottom panel of figure 5. While the
maximum level is 10, neither agent achieves beyond level
7, which corresponds to a hallway of length ≈ 42 which
is roughly the same as the maximum length of 40 in the
easier setting. Despite reaching the same hallway length,
we see that an LSTM has considerably worse generaliza-
tion, achieving less than 20% success rate for any of these
settings. We find that the distractor robustness observed for
training in the Place X next to Y task was able to transfer
towards generalization robustness for this task. Perceptual
Schemata is able to achieve about 80% on level 20 and 45%
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on level 30.

5. Conclusion
We have presented Perceptual Schemata, a novel recurrent
neural network architecture for learning to decompose an
agents perception as useful for the task at hand. We present
empirical results showing that it can disentangle multiple
objects with distinct dynamics and maintain them seper-
ately in memory for later recollection. Perhaps our most
striking result is that the capacity for robustness to distrac-
tors observed for Place X next to Y during training was
able to transfer over as a capacity for robustness to dis-
tractors during generalization to larger environments.
We find these to be compelling initial findings indicating
that memory architectures for modelling fragments of the
environment—that Perceptual Schemata—are interesting
tools to do research on when trying to learn state representa-
tions for efficient learning and generalization.
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