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Figure 1: Overview of CMC-Bench. We demonstrate the superiority of Cross Modality Compres-
sion over traditional codecs, and subjective and objective evaluations of compression results on
Consistency and Perception. This benchmark can motivate it to become the future codec paradigm.

ABSTRACT

Ultra-low bitrate image compression is a challenging and demanding topic. With
the development of Large Multimodal Models (LMMs), a Cross Modality Com-
pression (CMC) paradigm of Image-Text-Image has emerged. Compared with
traditional codecs, this semantic-level compression can reduce image data size
to 0.1% or even lower, which has strong potential applications. However, CMC
has certain defects in consistency with the original image and perceptual quality.
To inspire insights into such a problem, we introduce CMC-Bench, a benchmark
of the cooperative performance of Image-to-Text (I2T) and Text-to-Image (T2I)
models for image compression. This benchmark covers 18,000 and 40,000 images
respectively to verify 6 mainstream I2T and 12 T2I models, including 160,000
subjective preference scores annotated by human experts. At ultra-low bitrates, it
proves that the combination of some I2T and T2I models has surpassed the most
advanced visual signal codecs; meanwhile, it highlights where LMMs can be fur-
ther optimized toward the compression task. We encourage LMM developers to
participate in this test to promote the evolution of visual signal codec protocols.

1 INTRODUCTION

Visual signal compression aims to minimize image data, playing a crucial role in delivering high-
quality image/video services with limited network resources and storage capacity. Since the MPEG-
1 (Le Gall, 1991) standard was introduced, compression rates for visual signals have doubled (Sko-
dras et al., 2001; Wiegand et al., 2003; Sullivan et al., 2012; Bross et al., 2021) every decade. In
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recent years, traditional image codecs have achieved a 500 times compression rate while ensuring
a decent visual experience for humans. However, traditional codecs are approaching the Shannon
limit of 1,000 times Compression Rate (CR) in the upcoming next-generation protocols. Fortunately,
the rapid development of Large Multimodal Models (LMMs) has opened up possibilities for such
Ultra-low-Bitrate (ULB) compression.

Why use LMMs for compression? LMMs support the conversion between multiple modalities,
where text consumes much less space than image modalities. By cascading Image-to-Text (I2T)
and Text-to-Image (T2I) models, images can be compressed and reconstructed from semantic infor-
mation. This Cross-Modality Compression (CMC) paradigm operates at the semantic level, which
outperforms traditional codecs at the pixel level. It enables easy attainment of ULB, and even the
Extreme-low Bitrate (ELB) for CR about 10,000 times. However, at such low bitrates, CMC presents
two significant issues that cannot be overlooked. (1) Consistency: The reconstruction process heav-
ily relies on intermediate textual information. Any omission by the I2T model (encoder) or mis-
understanding by the T2I model (decoder) can result in severe distortion. Unlike minor changes in
brightness and color, this can lead to a semantic-level inversion of the entire image. (2) Perception:
Textual encoding provides a coarse representation of the image, necessitating the T2I model to add
details. Insufficient details degrade perceptual quality, while excessive ones compromise faithful-
ness to the original image. Unfortunately, as the bitrate decreases, the conflict between them (Blau
& Michaeli, 2018; 2019) becomes more pronounced. As the consistency and perception failure
cases in Figure 1, these issues jointly limit the application of CMC.

For LMMs, there is a lack of effective evaluation criteria both in terms of consistency and percep-
tual aspects. Although numerous benchmarks have recently emerged for LMMs, they are primarily
designed to assess the performance of either I2T (Image-to-Text) or T2I (Text-to-Image) models
working alone, such as captioning/visual question answering for I2T (Liu et al., 2024b; Li et al.,
2023a), or generation quality/realism for T2I (Bakr et al., 2023; Huang et al., 2023). Consequently,
we introduce the first joint benchmark called CMC-Bench, aimed at testing the collaborative capa-
bilities of I2T and T2I models. Our contributions include:

• A large-scale dataset consists of 58,000 images using the CMC paradigm. 4,000 images
among them have 160,000 expert annotations, covering both consistency and perception
issues, paving the way for information loss modeling in the I2T and T2I processes.

• A comprehensive evaluation standards, consisting of four compression modes under differ-
ent requirements, along with the two dimensions mentioned above. We validate mainstream
models (including 6 I2T and 12 T2I) to explore optimal combinations.

• A throughout comparison with traditional codecs. We compared the benchmark winner
with existing image codecs, revealing the significant advantages of the CMC image com-
pression paradigm and some remaining drawbacks. We encourage LMM developers (both
I2T and T2I) to participate in CMC-Bench to further expand the application of CMC.

2 RELATED WORKS

Cross-Modality Compression. The earliest CMC method (Li et al., 2021) emerged in 2021, achiev-
ing a compression ratio of almost 10,000 times through text modality. However, as a simple com-
bination of I2T and T2I models, their results often exhibit noticeable differences from the original
images. Subsequently, Text+Sketch (Lei et al., 2023) employed edge operators and ControlNet
(Zhang et al., 2023a) to refine CMC, but its consistency remained inferior to traditional codecs. The
most advanced CMC methods, like M-CMC and MISC (Gao et al., 2024b;a; Mao et al., 2024; Xue
et al., 2024; Li et al., 2024a;c), have surpassed advanced codecs like VVC (Bross et al., 2021) in
both consistency and perception, indicating the promising future of this paradigm. Nevertheless,
there is still room for improvement in these two aspects. All existing CMC methods are from one
specific I2T and one T2I model, and the models used are relatively outdated. Considering the rapid
development of Generative-AI, how to combine the latest models towards a better CMC becomes an
unrevealed question.

Benchmark for LMM Evaluation. Existing benchmarks are mainly designed for T2I and I2T
models. For I2T, they usually take a specific image sequence as input, compare the text output
by LMM with the ground truth, and use the relevance of the two as a performance indicator. The
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Table 1: Image compression datasets with subjective label. Keys [Ref: Reference, Dis: Distorted]
Dataset Ref Dis Ratings Score Resolution Image type Dimension
CLIC2021 585 2,730 122,107 DS 768 NSI Consistency
CLIC2022 585 2,730 57,300 DS 768 NSI Consistency
NTIRE2022 250 29,150 1,880,000 MOS 288 NSI Consistency, Perception
SCID 40 1,800 18,000 MOS 1,280 SCI Consistency
CCT 72 1,320 26,400 MOS 1,280 NSI, SCI Consistency
AGIQA-3K - 2,982 62,622 MOS 512 AIGI Perception
ImageReward - 136,892 136,892 SS 512∼1,024 AIGI Perception
CMC-Bench 1,000 58,000 160,000 MOS 512∼1,024 NSI, SCI, AIGI Consistency, Perception

annotation content includes common sense (Liu et al., 2024b; Li et al., 2023a) or specific expert
fields (Wu et al., 2024; Li et al., 2024h; Zhang et al., 2024a; Wu et al., 2023a). For T2I, the input
is a carefully designed text prompt (Bakr et al., 2023; Huang et al., 2023) (e.g. different themes,
adjectives, and spatial relationship). They use specific visual encoders to process the output image of
LMM and determine its alignment with the text as the generative performance (Saharia et al., 2022;
Cho et al., 2023). However, as the current CMC paradigm is still immature, there is no pipeline for
the joint evaluation of I2T+T2I model.

Benchmark for Image Compression. Given the significance of visual information compression,
several related competitions (Ballé et al., 2020; Gu et al., 2022) have been held in recent years.
However, these competitions often limit their scope to Natural Scene Images (NSIs). Screen Con-
tent Images (SCIs) (Ni et al., 2017; Min et al., 2017), which are prevalent on the internet, and the
emerging AI-Generated Images (AIGIs) (Li et al., 2023c; Xu et al., 2024; Zhang et al., 2023c) have
received some attention with new datasets, but no existing dataset comprehensively considers them
together. Moreover, the performance evaluation of compression algorithms can be challenging, of-
ten requiring subjective quality assessments from human viewers to train Image Quality Assessment
(IQA) (Li et al., 2023b; 2022; Zhang et al., 2024c;d; 2023f;d; Li et al., 2024f; Zhang et al., 2024b)
models, which provide objective metrics for compression algorithms. In the context of ULB image
compression, both the consistency between the distorted and reference images, as well as the inher-
ent appeal of the distorted image in human perception, need to be annotated. Existing IQA datasets
typically annotate only one aspect, while often in a coarse-grained manner through Single Stimulus
(SS) or Double Stimulus (DS) comparisons. In contrast, Mean Opinion Score (MOS) derived from
multiple subjects offers a more detailed and objective evaluation as shown in Table 1.

3 DATASET CONSTRUCTION

3.1 GROUND TRUTH SELECTION

To provide a comprehensive and high-quality resource for various applications on the Internet, we
carefully curated 1,000 high-quality images without compression distortion as the ground truth of
CMC-Bench. Among them, NSIs are the most mainstream content, so we selected 400 images. At
the same time, considering that SCIs are more common on screens and AIGIs are increasing on the
Internet in the upcoming LMM era, we selected 300 images from each of these two categories. The
specific content is as shown in Figure 2.

NSI: A collection of 200 high-quality Professional Generated Content (PGC) released by TV sta-
tions and photographers, specifically sampled from the CLIC database (Ballé et al., 2020); and 200
User Generated Content (UGC) by average users, selected from MS-COCO (Lin et al., 2014). To
ensure image quality, we employed Q-Align (Wu et al., 2023b) to filter out low-quality UGC that
might be overexposed.

SCI: Consisting 100 computer graphics from CGIQA-6K (Zhang et al., 2023e) in animated movies;
100 game renders from CCT and CGIQA-6K (Min et al., 2017; Zhang et al., 2023e); and 100
webpages with both images and text from CCT, SCID, and Webpage Saliency datasets (Min et al.,
2017; Ni et al., 2017; Shen & Zhao, 2014). To maintain frame clarity, we also applied Q-Align (Wu
et al., 2023b) to address factors like motion blur that affect visual quality.

AIGI: Comprises 50 images each, generated by 6 latest models: DALLE3, MidJourney, PG v25,
PixArt α, SDXL, and SSD-1B (Ramesh et al., 2022; Holz, 2023; Li et al., 2024g; Chen et al.,
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Figure 2: Source data illustration of CMC-Bench from three content types.

2023a; Rombach et al., 2022b; Gupta et al., 2024). They have demonstrated exceptional preference
in previous subjective ratings (Li et al., 2024b; Liu et al., 2024a; Kou et al., 2024; Li et al., 2024d;e),
representing the pinnacle of AIGI capabilities.

3.2 COMPRESSION MODE

Drawing on previous work in CMC, we categorize CMC into four working modes, as shown in
Figure 3. Each type employs distinct configurations and is suitable for different scenarios:

Text: The I2T model converts images to text and is directly restored by the T2I model. Due to its
reliance on the text modality only, this approach achieves a CR of 10,000, ideal for ELB situations.

Pixel: Each 64 × 64 blocks from ground truth are merged and quantized into one pixel. Beyond
the Text mode, these pixels initialize the T2I process. The pixel representation is relatively compact,
offering a CR of around 5,000, suitable for less rigorous ELB but higher demands on consistency.

Image: Traditional codecs are employed to compress the image, which serves as input for the T2I
model for enhancement. Unlike the previous two, it omits the time-consuming I2T process by
leaving the text input of the T2I model empty. This approach can achieve a CR of 1,000, suitable
for ULB bandwidth but with high real-time requirements.

Full: Extending the Image mode, the T2I is guided by text content, encompassing the full pipeline
of I2T, traditional codec, and T2I. It also has a CR of approximately 1,000, suitable for the most
demanding performance scenarios.

3.3 BENCHMARK CANDIDATES

We employ 6 I2T and 12 T2I models across four compression modes. Due to the absence of text,
the I2T model is not used in the Image mode; while for T2I, among the 4 Image Reconstruction
(IR) models requiring an initial image and are not compatible with Text and Pixel modes. The
remaining 8 T2I generative models support all modes. We use one certain T2I, and validate all
possible I2T models to verify their performance separately (vice versa for T2I validation). For a fair
comparison, We fixed RealVis (Civital, 2024) to minimize the T2I process distortion, which ensures
the performance fluctuation mainly comes from the I2T. Similarly, we fix I2T as GPT-4o (OpenAI,
2023) when validating T2I models. Each I2T model produces 3,000 images, while restorative and
generative models for T2I have 2,000 and 4,000, respectively. A total of 18,000 + 40,000 = 58,000
images are generated.

I2T model: GPT-4o (OpenAI, 2023), LLAVA-1.5 (Liu et al., 2023), MPlugOwl-2 (Ye et al., 2023),
Qwen (Bai et al., 2023), ShareGPT (Chen et al., 2023b), and InstructBLIP (Dai et al., 2023). Except
for one model (Dai et al., 2023) for image captioning with default token length, we modify the
output length of others to 10∼20 words for a balance between bitrate and performance.

T2I model: Animate (Guo et al., 2024), Dreamlike (dreamlike art, 2023), PG20 (PlaygroundAI,
2023), PG25 (Li et al., 2024g), RealVis (Civital, 2024), SD15 (Rombach et al., 2022a), SDXL
(Rombach et al., 2022b), and SSD-1B (Gupta et al., 2024) as generative model; DiffBIR (Lin et al.,
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Figure 3: Illustration of 4 working modes of CMC. Text mode roughly reconstructs the semantic
information, Pixel mode slightly improves low-level consistency, Image mode provides a similar
structure towards ground truth but a different character, and Full mode has the best performance.

2024), InstructPix (Brooks et al., 2023), PASD (Yang et al., 2024), and StableSR (Wang et al.,
2023b) as IR model. A higher denoising strength indicates a more obvious modification on the
starting point. To balance the consistency and perception indicators, we set the strength of Full and
Image modes as 0.5, the Pixel mode as 0.8, and the Text mode as the default 1.

Traditional codec: For Full and Image mode, we utilize the most advanced traditional codec VVC
(Bross et al., 2021) to provide a reference image. Towards 1,000 times compression, we take its
nearest bitrate that meets the ULB requirement, where the Quantizer Parameter (QP) is 53.

3.4 HUMAN PREFERENCE ANNOTATION

Referring from previous large-scale subjective annotation (Ballé et al., 2020) methods, we do not
perform coarse-grained labeling on the entire dataset considering the limitation on annotator num-
bers. Instead, we fine-grain the annotations on 4,000 images to ensure multiple ratings for each
image. Note that, as the benchmark indicator should be adjusted on subjective data, we did not
directly select subsets from the 58,000 test images. Instead, we generated new images to prevent
prior exposure to the content being evaluated. Given the greater impact of T2I models on CMC
tasks than I2T models, we follow the T2I paradigm described in Section 3.3. The I2T model is fixed
as GPT-4o (OpenAI, 2023) and combined with 12 different T2I models, compressing 100 ground
truth into 4,000 distorted images. To ensure quality diversity, we randomly assigned strength from
0.2 to 0.9 rather than a fixed value. Each distorted image is paired with its corresponding ground
truth and shown to 20 experienced participants who provided ratings on consistency and perception
dimensions. Each image is then summarized into two overall scores from 0 to 5, combining all
participants’ feedback. For a detailed description of the experimental setup and data process, please
refer to the appendix.

4 EXPERIMENT

4.1 EVALUATION INDICATOR SETTINGS

All 6 I2T and 12 T2I LMMs are verified and tested by different parameters and fixed them towards
an optimal situation according to Section 3.3, while the internal model weight remains zero-shot to
ensure fairness in ranking.

Image-To-Text Configuration: Towards different output lengths, we applied different prompts
as the input for I2T models. The prompt follows previous CMC templates (Li et al.,
2024c), with length [5, 10, 20, 50]. For example, to describe Figure 4 in differ-
ent lengths, the input prompt format and output text from GPT-4o (OpenAI, 2023) are:

5
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Figure 4: Example ground truth.

Q(5): ‘Generate an informative paragraph in 5 words
based on the image.’
A(5): ‘Traditional attire on serene river.’

Q(10): ‘Generate an informative paragraph in 10 words
based on the image. Considering Light, Color.’
A(10): ‘Two individuals navigate a wooden boat in tradi-
tional attire, serene.’

Q(20): ‘Generate an informative paragraph in 20 words
based on the image. Considering Light, Color, Clarity.’
A(20): ‘A woman in traditional attire and a conical hat,
seated on a wooden boat, with another person rowing on water.’

Q(50): ‘Generate an informative paragraph in 50 words based on the image. Considering Light,
Color, Clarity, Dense Caption, and Region Semantic.’
A(50): ‘A woman in a purple dress sits near the front of a boat, her hand adjusting a straw hat.
Behind her, a person in a beige top and floral pants stands near the boat’s wooden oars. The setting
is a calm, expansive body of water under a cloudy sky.’

According to the appendix verification, for each model, the output length is set closest to this bitrate,
namely Q(20) for GPT-4o (OpenAI, 2023), MPlugOwl-2 (Ye et al., 2023); Q(10) for LLAVA (Liu
et al., 2023), Qwen (Bai et al., 2023), ShareGPT (Chen et al., 2023b); and the default length for
InstructBLIP (Dai et al., 2023). The temperature is zero and over-lengthed output will be cut.

Text-To-Image Configuration: In Text mode, since there is no reference image as a starting point, the
denoising strength is undisputedly 1. In the other three modes, we adjusted different intensities with
a granularity of 0.1. For Full and Image that provide a reference image, a high denoising strength
will waste the reference information, so we verified the performance under strength from 0.2 to 0.8;
for Pixel mode, since the pixel provides less information than the compressed image, we increased
the strength and range from 0.4 to 0.99 (as strength=1 will ignore the reference). According to the
appendix verification, we set the strength of Full and Image mode to 0.5 and the Pixel mode to 0.8.

Taking the reference and distorted image pairs as input, We use TOPIQ (Chen et al., 2024),
the most advanced IQA metric in Full-Reference (FR) and No-Reference (NR) configuration
to characterize consistency and perception. The average score of 1,000 ground truth im-
ages is reported as the final performance. Combining these two issues towards 4 working
modes, the models are evaluated by 8 indicators for generative T2I, 6 indicators (exclude Im-
age mode) for I2T, and 4 indicators (exclude Pixel and Text mode) for T2I restorative mod-
els. A weighted average of 2× FR indicators and 1× NR indicators is given as the over-
all score for ranking since the TOPIQ-FR has a smaller floating range than TOPIQ-NR. Such
weight ratio can reach a balance between consistency and perception. As restorative models
only support ULB compression in Full and Image mode, but not ELB compression in Pixel
and Text mode, the overall score of the T2I model is ranked under ULB and ELB respectively.

Table 2: Correlation between objective IQA eval-
uation and subjective human preference.

Consistency σ ↑ κ ↑ Perception σ ↑ κ ↑
AHIQ 0.844 0.645 CLIPIQA 0.825 0.623
DISTS 0.795 0.599 CNNIQA 0.584 0.414
LPIPS 0.583 0.406 DBCNN 0.833 0.640
PieAPP 0.433 0.294 HyperIQA 0.730 0.534
TOPIQ 0.943 0.792 TOPIQ 0.901 0.738

In addition to TOPIQ, we also used four
cutting-edge FR-IQA (AHIQ (Lao et al., 2022),
DISTS (Ding et al., 2020), LPIPS (Zhang et al.,
2018a), PieAPP (Prashnani et al., 2018)) and
NR-IQA (CLIPIQA (Wang et al., 2023a), CN-
NIQA (Kang et al., 2014), DBCNN (Zhang
et al., 2018b), HyperIQA (Su et al., 2020))
algorithms to objectively score the distorted
images in terms of consistency and percep-
tion. The higher the Spearman (σ) and Kendall
Rank-order Correlation Coefficient (κ), the better correlation between the objective and subjective
scores. All models are trained on 80% of the distorted images in Section 3.4 and tested on the
remaining 20%. Experiments in Table 2 show that the correlation between the fine-tuned TOPIQ
(Chen et al., 2024) and the subjective score is outstanding with σ beyond 0.9 in both dimensions,
making it appropriate performance indicators reflecting human preference for compressed images.

The training of FR/NR quality indicators is conducted on an online server with 4 NVIDIA A6000
GPUs. The inference of I2T encoding and T2I decoding is based on a local NVIDIA GeForce

6
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Figure 5: A radar map illustrates the collaboration of mainstream I2T (left) and T2I (right) LMMs.
The model are tested as {6 different I2Ts + RealVis (Civital, 2024)} and {GPT-4o (OpenAI, 2023)
+ 12 different T2Is}. Only 6 T2Is with the best performance are shown in the radar map.

Table 3: Benchmark result in Full and Image modes for 8 T2I generative and 4 restorative models at
ultra-low bitrate (1,000 times compression). NSI/SCI/AIGI stands for the compressed image types.
FR and NR indicate consistency and perception scores. [Key: Best; Second Best]

Index Full-FR ↑ Full-NR ↑ Image-FR ↑ Image-NR ↑
Overall ↑

T2I Model NSI SCI AIGI NSI SCI AIGI NSI SCI AIGI NSI SCI AIGI
DiffBIR 3.052 2.785 2.877 2.778 2.380 2.517 2.899 2.804 2.873 1.847 1.644 1.674 2.647
PASD 2.796 2.621 2.741 2.339 1.932 2.367 2.652 2.583 2.675 2.056 1.818 2.141 2.494
RealVis 2.617 2.475 2.584 1.914 1.808 2.445 2.509 2.441 2.558 1.686 1.675 2.110 2.331
PG25 2.145 1.922 2.123 2.730 2.582 3.509 1.952 1.895 2.040 2.750 2.852 3.459 2.330
SSD-1B 2.515 2.407 2.554 1.905 1.878 2.516 2.386 2.355 2.512 1.758 1.783 2.309 2.305
PG20 2.435 2.245 2.376 2.200 2.072 2.893 2.263 2.174 2.301 2.011 1.992 2.683 2.299
StableSR 2.599 2.591 2.688 1.401 1.373 1.549 2.576 2.582 2.679 1.392 1.367 1.541 2.222
Dreamlike 2.570 2.421 2.509 1.760 1.659 1.958 2.413 2.376 2.482 1.446 1.471 1.645 2.194
SD15 2.607 2.379 2.444 1.787 1.652 1.877 2.464 2.333 2.436 1.538 1.497 1.644 2.190
SDXL 2.436 2.330 2.484 1.606 1.610 1.862 2.333 2.275 2.442 1.480 1.524 1.698 2.129
Animate 2.293 2.213 2.392 1.743 1.703 2.129 2.223 2.210 2.334 1.519 1.600 1.757 2.094
InstructPix 2.082 2.207 2.190 1.854 1.579 1.679 2.249 2.388 2.432 1.204 1.240 1.227 1.989

4090 GPU. This moderate arithmetic power ensures running models successfully while avoiding
overpowered arithmetic that would allow the LMM to easily outperform the traditional methods.

4.2 BENCHMARK RESULT AND DISCUSSION

Figure 5 shows the performance of 6 I2T models as encoders and 12 T2I models as decoders in
image compression. For I2T, considering the different lengths of intermediate text, we show the bit-
per-pixel (bpp) of each model together with the performance index, where ULB and ELB correspond
to 0.024 and 0.0024 bpps respectively, namely 1,000 and 10,000 times from original RGB-8 images.

For 6 indicators in I2T LMMs, while GPT-4o (OpenAI, 2023) does not perform well on Text-FR, it
significantly outperforms on Full-FR. This suggests that although its generated text carries limited
information, it has a strong orthogonal relationship with the low-level details of the image. This
semantic information effectively compensates for the information loss after image compression. In
addition, the given text facilitates the subsequent T2I model in decoding high-quality images, and its
performance across various NR indicators is also commendable. In comparison, MPlugOwl-2 (Ye
et al., 2023) and InstructBLIP (Dai et al., 2023) can effectively encode images into text, but their
results are still inferior to GPT-4o. The only viable competitor is ShareGPT (Chen et al., 2023b),
but it has a bpp of around 0.008, which is significantly larger than the other 5 models. This data
size exceeds ELB and occupies one-third of the available ULB space. Considering multiple factors,
GPT-4o remains the most suitable I2T model as the CMC encoder.

For 8 indicators in T2I LMMs, 2 restorative models (Lin et al., 2024; Yang et al., 2024) exhibit
overwhelming consistency in Full and Image modes with acceptable perception results, enabling
faithful image reconstruction close to the ground truth. However, its applicability is limited for the
other 2 modes, particularly under the strict ELB conditions. The performance of the remaining mod-
els falls into two distinct extremes, where RealVis (Civital, 2024) shows high consistency but PG25
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Table 4: Benchmark result in Pixel and Text mode for 8 T2I generative models at extremely-low
bitrate (10,000 times compression). [Key: Best; Second Best]

Index Pixel-FR ↑ Pixel-NR ↑ Text-FR ↑ Text-NR ↑
Overall ↑

T2I Model NSI SCI AIGI NSI SCI AIGI NSI SCI AIGI NSI SCI AIGI
PG25 1.789 1.641 1.779 3.542 3.425 3.939 1.798 1.634 1.762 3.646 3.628 3.944 2.386
RealVis 2.041 1.872 2.033 2.591 2.502 3.316 1.868 1.668 1.777 3.428 3.295 3.734 2.300
PG20 1.901 1.812 1.948 2.472 2.325 3.338 1.772 1.619 1.745 3.675 3.617 3.963 2.274
SSD-1B 1.990 1.864 2.019 2.265 2.271 2.984 1.852 1.661 1.787 3.409 3.285 3.760 2.239
Animate 1.828 1.743 1.902 2.306 2.159 2.875 1.750 1.615 1.712 3.485 3.296 3.717 2.163
Dreamlike 1.986 1.877 1.991 2.195 2.129 2.623 1.779 1.620 1.705 3.233 2.917 3.302 2.132
SDXL 1.923 1.824 1.980 1.830 1.879 2.255 1.822 1.633 1.762 3.358 3.224 3.708 2.118
SD15 2.000 1.856 1.951 2.165 1.948 2.314 1.760 1.609 1.654 2.683 2.364 2.498 1.988

Table 5: Benchmark result in Full and Pixel mode for 6 I2T models. [Key: Best; Second Best].
Index Full-FR ↑ Full-NR ↑ Pixel-FR ↑ Pixel-NR ↑

Overall ↑
I2T Model NSI SCI AIGI NSI SCI AIGI NSI SCI AIGI NSI SCI AIGI
GPT-4o 2.617 2.475 2.584 1.914 1.808 2.445 2.041 1.872 2.033 2.591 2.502 3.316 2.439
ShareGPT 2.607 2.479 2.577 1.925 1.870 2.446 2.032 1.872 2.042 2.543 2.556 3.259 2.432
Qwen 2.592 2.473 2.581 1.894 1.799 2.353 2.034 1.890 2.036 2.531 2.364 3.176 2.396
MPlugOwl-2 2.605 2.477 2.568 1.910 1.808 2.314 2.035 1.892 2.028 2.504 2.391 3.075 2.384
LLAVA-1.5 2.599 2.465 2.565 1.880 1.799 2.276 2.025 1.876 2.028 2.498 2.420 3.041 2.381
InstructBLIP 2.589 2.473 2.571 1.842 1.736 2.192 2.027 1.882 2.035 2.424 2.339 2.961 2.346

(Li et al., 2024g) demonstrates high perception. Given that it is feasible to enhance a compressed
low-quality image with high fidelity to the original, while correcting a completely different high-
quality image with low fidelity remains challenging, we opt to prioritize consistency by assigning it
a higher weight. Consequently, considering the strong performance and wide versatility of RealVis,
it is relatively more suitable than the CMC decoder.

To delve into the compression capability of I2T and T2I LMMs with different content on various
modes, we present the T2I leaderboard under ULB and ELB conditions in Table 3 and Table 4,
respectively, and showcase the performance of I2T models on Full and Pixel modes (Text mode
attached in appendix) in Table 5, with a discussion of content-specific analysis. A horizontal com-
parison among different modes in Tables 3 and 4 reveals that the Full mode has a clear advantage
over the Image mode in terms of consistency and perception, indicating the significance of the text
provided by the I2T model for T2I decoding. This text guidance not only enhances consistency
but provides a clear target for the T2I process, thus also boosting perception. In contrast, the Pixel
mode sacrifices perception for consistency compared to the Text mode. This is because the more
control conditions added, the less room for creative freedom the model has, leading to a decrease in
image aesthetics. However, for models that already have high perception scores (Li et al., 2024g;
PlaygroundAI, 2023) in the Text mode, the trade-off of improving overall performance is acceptable.

Among NSI, SCI, and AIGI, different LMMs excel at different content. For instance, as shown in
Table 3 and Table 4, PG25 (Li et al., 2024g), trained on internet data, performs better in AIGI tasks;
conversely, RealVis aims at image naturalness, manifesting its superior reconstruction capability in
NSI. Regardless of the model employed, we observe that NSI generally yields higher consistency
scores, while AIGI has higher perception scores. However, SCI stands out from the others, with
the compression results of the same model lagging behind in both perception and consistency. This
deficiency is relevant to certain words (Shen & Zhao, 2014) (even long paragraphs) within SCI,
making I2T models unable to re-encode them into text, while the text generation capabilities of
recent T2I models are still limited. Besides, although the performance disparities among I2T models
are not as significant as those in T2I models, Table 5 also clearly illustrates the limitation in SCI,
indicating room for further optimization.

4.3 SUBJECTIVE DATA ANALYSIS

Figure 6 presents the subjective preference for images decoded by 12 T2I models under ULB and
8 models under ELB. For ULB, the 3 restorative models (Lin et al., 2024; Yang et al., 2024;
Wang et al., 2023b) exhibit slightly higher consistency compared to generative models, where PG25
achieves the highest perception score against all others. It is worth noting that the restorative mod-
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(b) Pixel and Text modes for 8 T2I generative models

ULB ELB

PASD (1) PG25 (1)
DiffBIR (2) RealVis (2)
RealVis (3) PG20 (3)
StableSR (4) SSD-1B (4)
PG25 (5) SDXL (5)
PG20 (6) Animate (6)
SSD-1B (7) Dreamlike (7)
SDXL (8) SD15 (8)

(c) Subjective leaderboard

Figure 6: Illustration of subjective preference in terms of Mean Opinion Score.

Table 6: Complexity analysis of CMC and traditional VVC codec on 1024*1024 image. Using
LMM for compression consumes more decoding resources but remarkably saves encoding time.

Encoding/Decoding Animate Dreamlike PG20 RealVis VVC GPT-4o InstructBlip LLaVA MPlugOwl VVC
Time (s) 6.48 1.62 6.30 5.48 83.88 12.84 2.14 2.46 4.26 0.194

els are more robust. The upper and lower bounds of the scores in each dimension seldom surpass
1.0, whereas the randomness of the generative models notably deteriorates. As the bitrate further
decreases to ELB, consistency scores of all models decline, while perception scores have slight im-
provement. In summary, apart from Animate (Guo et al., 2024) specifically for cartoon styles, and
InstructPix (Brooks et al., 2023) that significantly alters images, all other models demonstrate po-
tential applications in CMC. Additionally, by averaging all scores, we find that the models ranking
based on subjective scores aligns closely with the objective ones shown in Table 3 and Table 4.
This finding validates the reasonability of our previous experiments and highlights that, compared
to perception, humans tend to focus more on consistency when viewing compressed images.

4.4 COMPARE WITH TRADITIONAL CODECS

To validate the practicality of the CMC paradigm, we select 2 outstanding combinations of I2T
and T2I models from CMC-Bench, and compare them with 3 mainstream codecs: AVC (Wiegand
et al., 2003), HEVC (Sullivan et al., 2012), and VVC (Bross et al., 2021) at I-Frame mode, and
the latest semantic codec pipeline CDC (Yang & Mandt, 2023). Given the superiority of GPT-
4o (OpenAI, 2023) as the encoder, we initially pair it with the top-ranked decoder DiffBIR (Lin
et al., 2024). Considering applications on different modes, excluding the reconstructive model,
we also assess its performance with the third-tanked decoder RealVis (Civital, 2024). These two
approaches with four bitrates correspond to Text, Pixel, Image, Full modes are shown in Figure 7.
To comprehensively compare the two paradigms across different dimensions, we add 3 Consistency
metrics: CLIPSIM (Radford et al., 2021), LPIPS (Zhang et al., 2018a), and SSIM (Wang, 2004); and
3 Perception metrics: CLIPIQA (Wang et al., 2023a), LIQE (Zhang et al., 2023b), and FID (Heusel
et al., 2017). Models ranked higher prioritize semantic information, while those lower focus on
pixel-level consistency. First, we compared the execution speeds, listed in Table 6.Here, we set the
QP of VVC to 41, in which case its performance is roughly similar to that of CMC, thus ensuring
a fair comparison. It can be seen that no matter what combination of LMMs is used, CMC is more
suitable for encoding and the conventional method is faster for decoding. Thus, CMC already has
a certain application value at present and has the potential to replace VVC in the future. After that,
we analyze it in terms of FR/NR metrics.
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Figure 7: Comparison of CMC-Bench winners against existing image codecs, evaluated by 4 con-
sistency and 4 perception metrics indicated by marked and plain background. The combination of
I2T and T2I models generally exceeds the existing codecs under the same bitrate.

Both CMC paradigms demonstrate an advance in terms of most metrics. Given that SSIM is purely
pixel-based, the performance drop due to generative compression is expected. The lead in percep-
tion is particularly notable, as it surpasses traditional codecs at extremely low bitrates. However, the
advantage in consistency is relatively smaller, achieving a reduction of around 30% in bitrate com-
pared to traditional methods at 0.02 bpp. The DiffBIR generally shows better performance, while
RealVis fits A wider range of bitrates. In summary, based on the above analyses, we believe that
CMC holds a certain advantage over traditional encoding. However, for implementing LMMs into
the next generation of visual signal codecs, further optimization is required in the following aspects:

Enhanced T2I models: Both encoders and decoders are crucial in CMC, but decoders are more
decisive. Future T2I models should possess more sophisticated control mechanisms, ensuring high-
quality generation while maintaining consistency with reference images and text.
Better adaption to SCI: the compression performance of SCI is inferior to NSI and AIGI, necessi-
tating LMMs with specialized understanding and generating mechanisms to handle SCI.
Wider bitrate range: Although leading in ULB and ELB, the margin of consistency improvement
is not as pronounced as perception. Future efforts should focus on CMC at higher bitrates, incor-
porating more control information to aid in reconstructing the original image, ultimately achieving
superiority across all bitrates and dimensions as compared to traditional codecs.

5 CONCLUSION

We construct CMC-Bench, a benchmark for assessing the collaborative functioning of I2T and T2I
models in image compression. Anticipating the bitrate requirements for codecs in the next decade,
we proposed four collaboration modes among LMMs, along with two indicators of consistency
and perception. By employing 6 mainstream I2T and 12 T2I models, we collected 58,000 dis-
torted images through CMC with 160,000 human subjective annotations to train objective metrics
for comprehensive evaluation. Our assessment demonstrates that even without dedicated training for
compression tasks, combinations of several advanced I2T and T2I models have already surpassed
traditional codecs in multiple aspects. However, there is still a long way to go before LMMs can
directly become the future codecs paradigm. We sincerely hope that CMC-Bench will inspire future
LMMs to perform better compression towards the evolution of visual signal codecs.
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ETHIC STATEMENT

The research conducted in the paper conforms, in every respect, with the ICLR Code of Ethics.
The data collection, processing, and analysis all comply with the declaration of Helsinki. Official
ethical certificates and stamps of approval were obtained before the experiment. Each user provides
informed consent for their data to be used in experiments. as shown in Figure A1.

Figure A1: Data Collection Agreement.

REPRODUCIBILITY STATEMENT

We have provided implementation details in Sections 4.1 and the Appendix. We will also release all
the code. The benchmark is a long-term project, which will be updated every month by the CMC-
Bench author team. We look forward to testing the 308 effectiveness of more advanced LMMs
on CMC tasks in the future. All users are free to use R-Bench-related resources, except subject’s
personal preferences will be protected. If anyone wants to extend the benchmark, including but not
limited to I2T+T2I pipeline, only T2I/I2T models, and different data content beyond NSI/SCI/AIGI
can contact us and their contributions will be reviewed.
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Eric Lei, Yiğit Berkay Uslu, Hamed Hassani, and Shirin Saeedi Bidokhti. Text + sketch: Image
compression at ultra low rates, 2023.

Anqi Li, Yuxi Liu, Huihui Bai, Feng Li, Runmin Cong, Meng Wang, and Yao Zhao. Once-for-all:
Controllable generative image compression with dynamic granularity adaption, 2024a.

Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yixiao Ge, and Ying Shan. Seed-bench: Bench-
marking multimodal llms with generative comprehension, 2023a.

Chunyi Li, Zicheng Zhang, Wei Sun, Xiongkuo Min, and Guangtao Zhai. A full-reference qual-
ity assessment metric for cartoon images. In IEEE 24th International Workshop on Multimedia
Signal Processing, 2022.

Chunyi Li, May Lim, Abdelhak Bentaleb, and Roger Zimmermann. A real-time blind quality-of-
experience assessment metric for http adaptive streaming. In IEEE International Conference on
Multimedia and Expo, 2023b.

Chunyi Li, Zicheng Zhang, Haoning Wu, Wei Sun, Xiongkuo Min, Xiaohong Liu, Guangtao Zhai,
and Weisi Lin. Agiqa-3k: An open database for ai-generated image quality assessment. IEEE
Transactions on Circuits and Systems for Video Technology, 2023c.

Chunyi Li, Tengchuan Kou, Yixuan Gao, Yuqin Cao, Wei Sun, Zicheng Zhang, Yingjie Zhou,
Zhichao Zhang, Weixia Zhang, Haoning Wu, Xiaohong Liu, Xiongkuo Min, and Guangtao Zhai.
Aigiqa-20k: A large database for ai-generated image quality assessment, 2024b.

Chunyi Li, Guo Lu, Donghui Feng, Haoning Wu, Zicheng Zhang, Xiaohong Liu, Guangtao Zhai,
Weisi Lin, and Wenjun Zhang. Misc: Ultra-low bitrate image semantic compression driven by
large multimodal model, 2024c.

Chunyi Li, Haoning Wu, Hongkun Hao, Zicheng Zhang, Tengchaun Kou, Chaofeng Chen, Lei Bai,
Xiaohong Liu, Weisi Lin, and Guangtao Zhai. G-refine: A general quality refiner for text-to-
image generation, 2024d.

Chunyi Li, Haoning Wu, Zicheng Zhang, Hongkun Hao, Kaiwei Zhang, Lei Bai, Xiaohong Liu,
Xiongkuo Min, Weisi Lin, and Guangtao Zhai. Q-refine: A perceptual quality refiner for ai-
generated image, 2024e.

Chunyi Li, Zicheng Zhang, Haoning Wu, Kaiwei Zhang, Lei Bai, Xiaohong Liu, Guangtao Zhai,
and Weisi Lin. Paps-ovqa: Projection-aware patch sampling for omnidirectional video quality
assessment. In IEEE Int. Sym. Circuits and Systems, 2024f.

Daiqing Li, Aleks Kamko, Ehsan Akhgari, Ali Sabet, Linmiao Xu, and Suhail Doshi. Playground
v2.5: Three insights towards enhancing aesthetic quality in text-to-image generation, 2024g.

Jiguo Li, Chuanmin Jia, Xinfeng Zhang, Siwei Ma, and Wen Gao. Cross modal compression:
Towards human-comprehensible semantic compression. In Proceedings of the 29th ACM inter-
national conference on multimedia, pp. 4230–4238, 2021.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Yixuan Li, Xuelin Liu, Xiaoyang Wang, Shiqi Wang, and Weisi Lin. Fakebench: Uncover the
achilles’ heels of fake images with large multimodal models, 2024h.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pp. 740–755. Springer, 2014.

Xinqi Lin, Jingwen He, Ziyan Chen, Zhaoyang Lyu, Bo Dai, Fanghua Yu, Wanli Ouyang, Yu Qiao,
and Chao Dong. Diffbir: Towards blind image restoration with generative diffusion prior, 2024.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023.

Xiaohong Liu, Xiongkuo Min, Guangtao Zhai, Chunyi Li, Tengchuan Kou, Wei Sun, Haoning Wu,
Yixuan Gao, Yuqin Cao, Zicheng Zhang, Xiele Wu, Radu Timofte, et al. NTIRE 2024 quality
assessment of AI-generated content challenge. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) Workshops, 2024a.

Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan,
Jiaqi Wang, Conghui He, Ziwei Liu, Kai Chen, and Dahua Lin. Mmbench: Is your multi-modal
model an all-around player?, 2024b.

Qi Mao, Tinghan Yang, Yinuo Zhang, Zijian Wang, Meng Wang, Shiqi Wang, Libiao Jin, and Siwei
Ma. Extreme image compression using fine-tuned vqgans. In 2024 Data Compression Conference
(DCC), pp. 203–212, 2024. doi: 10.1109/DCC58796.2024.00028.

Fabian Mentzer, George D Toderici, Michael Tschannen, and Eirikur Agustsson. High-fidelity gen-
erative image compression. Advances in Neural Information Processing Systems, 33:11913–
11924, 2020.

Xiongkuo Min, Kede Ma, Ke Gu, Guangtao Zhai, Zhou Wang, and Weisi Lin. Unified blind quality
assessment of compressed natural, graphic, and screen content images. IEEE Transactions on
Image Processing, 26(11):5462–5474, 2017.

Zhangkai Ni, Lin Ma, Huanqiang Zeng, Jing Chen, Canhui Cai, and Kai-Kuang Ma. Esim: Edge
similarity for screen content image quality assessment. IEEE Transactions on Image Processing,
26(10):4818–4831, 2017.

OpenAI. Gpt-4 technical report, 2023.

PlaygroundAI. playground-v2-1024px-aesthetic. https://playground.com, 2023.

Ekta Prashnani, Hong Cai, Yasamin Mostofi, and Pradeep Sen. Pieapp: Perceptual image-error
assessment through pairwise preference. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1808–1817, 2018.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022a.

Robin Rombach, Andreas Blattmann, and Björn Ommer. Text-guided synthesis of artistic images
with retrieval-augmented diffusion models, 2022b.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in neural informa-
tion processing systems, 35:36479–36494, 2022.

14

https://playground.com


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Chengyao Shen and Qi Zhao. Webpage saliency. In Computer Vision–ECCV 2014: 13th European
Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part VII 13, pp. 33–46.
Springer, 2014.

Athanassios N. Skodras, Charilaos A. Christopoulos, and Touradj Ebrahimi. The jpeg 2000 still
image compression standard. IEEE Signal Process. Mag., 18:36–58, 2001.

Shaolin Su, Qingsen Yan, Yu Zhu, Cheng Zhang, Xin Ge, Jinqiu Sun, and Yanning Zhang. Blindly
assess image quality in the wild guided by a self-adaptive hyper network. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3667–3676, 2020.

Gary J. Sullivan, Jens-Rainer Ohm, Woojin Han, and Thomas Wiegand. Overview of the high
efficiency video coding (hevc) standard. IEEE Transactions on Circuits and Systems for Video
Technology, 22:1649–1668, 2012.

Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.
Autoregressive model beats diffusion: Llama for scalable image generation. arXiv preprint
arXiv:2406.06525, 2024.

I. T. Union. Methodology for the subjective assessment of the quality of television pictures. ITU-R
Recommendation BT. 500-11, 2002.

Jianyi Wang, Kelvin CK Chan, and Chen Change Loy. Exploring clip for assessing the look and
feel of images. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp.
2555–2563, 2023a.

Jianyi Wang, Zongsheng Yue, Shangchen Zhou, Kelvin C. K. Chan, and Chen Change Loy. Exploit-
ing diffusion prior for real-world image super-resolution, 2023b.

Zhou Wang. Image quality assessment: from error visibility to structural similarity. IEEE transac-
tions on image processing, 13(4):600–612, 2004.

Thomas Wiegand, Gary J. Sullivan, Gisle Bjøntegaard, and Ajay Luthra. Overview of the h.264/avc
video coding standard. IEEE Trans. Circuits Syst. Video Technol., 13:560–576, 2003.

Haoning Wu, Zicheng Zhang, Erli Zhang, Chaofeng Chen, Liang Liao, Annan Wang, Kaixin Xu,
Chunyi Li, Jingwen Hou, Guangtao Zhai, et al. Q-instruct: Improving low-level visual abilities
for multi-modality foundation models, 2023a.

Haoning Wu, Zicheng Zhang, Weixia Zhang, Chaofeng Chen, Liang Liao, Chunyi Li, Yixuan Gao,
Annan Wang, Erli Zhang, Wenxiu Sun, et al. Q-align: Teaching lmms for visual scoring via
discrete text-defined levels, 2023b.

Haoning Wu, Zicheng Zhang, Erli Zhang, Chaofeng Chen, Liang Liao, Annan Wang, Chunyi Li,
Wenxiu Sun, Qiong Yan, Guangtao Zhai, and Weisi Lin. Q-bench: A benchmark for general-
purpose foundation models on low-level vision, 2024.

Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation.
Advances in Neural Information Processing Systems, 36, 2024.

Naifu Xue, Qi Mao, Zijian Wang, Yuan Zhang, and Siwei Ma. Unifying generation and compression:
Ultra-low bitrate image coding via multi-stage transformer, 2024.

Ruihan Yang and Stephan Mandt. Lossy image compression with conditional diffusion models.
In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in
Neural Information Processing Systems, volume 36, pp. 64971–64995. Curran Associates, Inc.,
2023.

Tao Yang, Rongyuan Wu, Peiran Ren, Xuansong Xie, and Lei Zhang. Pixel-aware stable diffusion
for realistic image super-resolution and personalized stylization, 2024.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye, Ming Yan, Yiyang Zhou, Junyang Wang, Anwen
Hu, Pengcheng Shi, Yaya Shi, Chaoya Jiang, Chenliang Li, Yuanhong Xu, Hehong Chen, Junfeng
Tian, Qian Qi, Ji Zhang, and Fei Huang. mplug-owl: Modularization empowers large language
models with multimodality, 2023.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In IEEE International Conference on Computer Vision (ICCV), 2023a.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 586–595, 2018a.

Weixia Zhang, Kede Ma, Jia Yan, Dexiang Deng, and Zhou Wang. Blind image quality assessment
using a deep bilinear convolutional neural network. IEEE Transactions on Circuits and Systems
for Video Technology, 30(1):36–47, 2018b.

Weixia Zhang, Guangtao Zhai, Ying Wei, Xiaokang Yang, and Kede Ma. Blind image quality
assessment via vision-language correspondence: A multitask learning perspective. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14071–14081,
2023b.

Zicheng Zhang, Chunyi Li, Wei Sun, Xiaohong Liu, Xiongkuo Min, and Guangtao Zhai. A per-
ceptual quality assessment exploration for aigc images. In IEEE International Conference on
Multimedia and Expo Workshops (ICMEW), pp. 440–445, 2023c.

Zicheng Zhang, Wei Sun, Houning Wu, Yingjie Zhou, Chunyi Li, Xiongkuo Min, Guangtao Zhai,
and Weisi Lin. Gms-3dqa: Projection-based grid mini-patch sampling for 3d model quality as-
sessment, 2023d.

Zicheng Zhang, Wei Sun, Yingjie Zhou, Jun Jia, Zhichao Zhang, Jing Liu, Xiongkuo Min, and
Guangtao Zhai. Subjective and objective quality assessment for in-the-wild computer graphics
images. ACM Transactions on Multimedia Computing, Communications and Applications, 20(4):
1–22, 2023e.

Zicheng Zhang, Wei Sun, Yingjie Zhou, Haoning Wu, Chunyi Li, Xiongkuo Min, Xiaohong Liu,
Guangtao Zhai, and Weisi Lin. Advancing zero-shot digital human quality assessment through
text-prompted evaluation, 2023f.

Zicheng Zhang, Haoning Wu, Chunyi Li, Yingjie Zhou, Wei Sun, Xiongkuo Min, Zijian Chen,
Xiaohong Liu, Weisi Lin, and Guangtao Zhai. A-bench: Are lmms masters at evaluating ai-
generated images?, 2024a.

Zicheng Zhang, Haoning Wu, Yingjie Zhou, Chunyi Li, Wei Sun, Chaofeng Chen, Xiongkuo Min,
Xiaohong Liu, Weisi Lin, and Guangtao Zhai. Lmm-pcqa: Assisting point cloud quality assess-
ment with lmm, 2024b.

Zicheng Zhang, Yingjie Zhou, Chunyi Li, Kang Fu, Wei Sun, Xiaohong Liu, Xiongkuo Min, and
Guangtao Zhai. A reduced-reference quality assessment metric for textured mesh digital humans.
In IEEE Int. Conf. Acoust., Speech, and Signal Processing, 2024c.

Zicheng Zhang, Yingjie Zhou, Long Teng, Wei Sun, Chunyi Li, Xiongkuo Min, Xiao-Ping Zhang,
and Guangtao Zhai. Quality-of-experience evaluation for digital twins in 6g network environ-
ments. IEEE Transactions on Broadcasting, 2024d.

A APPENDIX

In this section, we briefly describe the content of the checklist requirements. Considering that our
experiments tried a variety of parameter configurations, the conclusions under different configura-
tions are also stated here, including specific ablation data.
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A.1 LIMITATIONS AND SOCIAL IMPACT

Limitation 1: Although we have considered most of the mainstream I2T and T2I models in CMC-
Bench (till March 2024), the number of models is still insufficient to fully characterize the perfor-
mance of all current LMMs on CMC. Taking the open-source T2 model as an example, more than
20,000 models have been released on huggingface (till May 2024). Although we cannot run all
models, the capabilities of some relatively unpopular or more advanced LMMs in the future need to
be further updated on CMC-Bench.

Limitation 2: CMC-Bench is currently designed for the performance verification of image com-
pression, not video compression. Considering that the temporal information of videos is relatively
complex, the current LMMs are only applicable to image compression, which makes it difficult to
ensure consistency with the reference when generating videos. However, as LMMs gradually apply
to video compression in the future, CMC-Bench will also be evaluated at the video level.

Social Impact: Through the CMC paradigm, the size of the image can be compressed by 1,000
times, and even 10,000 times in extreme cases. This will effectively promote image communication
between a large number of terminals under limited bandwidth, thereby realizing multi-device collab-
oration in the Internet of Things and semantic communication. Considering that traditional codecs
have encountered bottlenecks after three decades of development and the compression rate is grad-
ually approaching the Shannon limit, we believe that LMM will effectively achieve semantic-level
compression and thus become the future evolution direction of visual information codec protocol.

From an industry perspective, CMC is ready for the following two real-world scenarios. (1) Commu-
nication: In severe scenarios, channel resources are extremely limited, such as deep sea and space;
or there are too many devices, that is, hundreds of devices in IoT share a local area network. At
this time, traditional compression methods cannot adapt to such a low bit rate and can only com-
municate images through CMC; (2) Storage: According to statistics from mainstream social media,
10% of visual information contributes to 99% of views, and most images are ‘junk data’. For these
images that are rarely clicked but not suitable for deletion, their storage will consume considerable
resources. Therefore, they can be compressed in CMC format and decompressed when needed. With
the advancement of LMM, models with lower complexity have emerged in recent years. We believe
CMC can move from these two applications without latency requirements to real-time scenarios.

A.2 SUBJECTIVE ANNOTATION SETTINGS

Compliant with the ITU-R BT.500-13 (Union, 2002) standard, we invited 20 viewers (11 male, 9
female) in this subjective experiment with normal lighting levels. Images are presented on the iMac
display together with the ground truth in random order on the screen, with a resolution of up to
4096 × 2304. Both ground truth and distorted images are accessible for subjective. Considering
the consistency between the reference and distorted image, and the perceptual quality of the only
distorted image, subjects were asked to give two scores within the range of [0, 5], where each one-
point interval stands for poor, bad, fair, good, or excellent quality. The user interface is shown in
Figure A2.

Each user, in accordance with the Helsinki Declaration, provides informed consent for their data to
be used in experiments. To prevent NSFW content, we implement three preventive measures: (1)
Conduct a thorough manual screening of the ground truth; (2) Utilize the SD safety checker (Rom-
bach et al., 2022a) during decoding; (3) Incorporate an ‘offensive’ flag in the annotation process,
allowing viewers to report NSFW content if encountered. The data confirms that the ground truth is
safe, with approximately 0.2% of distorted images receiving reports, which is generally acceptable.

In case of visual fatigue, we split the database into g ∈ [0, 10] groups including M = 400 images
each, while limiting the experiment time to an hour. After collecting every viewer’s quality rat-
ings, we compute the Spearman Rank-order Correlation Coefficient (SRoCC) between them and the
global average and remove the outliers with SRoCC lower than 0.6. Then we normalize the average
score s for between each session to avoid inter-session scoring differences as:

sij(g) = rij(g)−
1

M

g·M−1∑
i=0

rij + 2.5, (1)
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Figure A2: Subjective annotation interface presenting with the distorted (left) and reference (right)
image. Each viewer is asked to provide (1) a Consistency score between two images from 0 to 5; (2)
a Perception score of the distorted image; (3) an NSFW flag when they feel offended.

0 1 2 3 4 5
Subjective MOS Value

0

100

200

300

400

Fr
eq

ue
nc

y

Perception
Consistency

Figure A3: Mean Opinion Score distribution of the Consistency and the Perception dimension.

where (i, j) represent the index of the image and viewer and r stands for raw score. We observed a
fairly even distribution of subjective scores on both dimensions and bar graphs for each score range
are provided in the appendix. Then subjective scores are converted to Z-scores zij by:

zij =
sij − µj

σj
, (2)

where µj = 1
N

∑N−1
i=0 sij , σj =

√
1

N−1

∑N−1
i=0 (sij − µi)2 and N = 10 is the number of subjects,

which is finally reported as MOS, namely golden user annotations. The distribution of Consistency
and the Perception MOS is shown in Figure A3, which proves that extremely low and high scores are
rare, and most scores are between 1 and 4. The Perception score is concentrated in the medium-low
area, while the Consistency dimension tends to be moderately high.

A.3 EXPERIMENTAL PLATFORM

For 4,000 labeled image pairs, we trained five FR and five NR quality indicators for 50 epochs using
Adam optimizer on a local NVIDIA GeForce RTX 4090. Among which 80/20 for training/testing.
We take MSE loss with a learning rate at 2 × 10−5. The TOPIQ-FR and TOPIQ-NR are set as
objective indicators for Consistency/Perception. Noted these 4,000 training data images are not
included in the source data for objective evaluation for a fair comparison.
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Figure A4: Setting I2T model with different output lengths for CMC task in Full mode, evaluated
by 4 consistency and 4 perception metrics indicated by marked and plain background. A moderate
output length can realize a satisfying performance while saving bitrate.

The LMMs are validated on a server with four NVIDIA RTX A6000, using I2T in different output
lengths, and T2I in different strengths, combining through Text/Pixel/Image/Full modes.

A.4 IMAGE-TO-TEXT MODEL CONFIGURATION

Towards different output lengths, we applied different prompts as the input for I2T models.

To explore how much information the above four output lengths can represent. We use different
I2T models, and combine them with the most effective T2I model (RealVis (Civital, 2024)) under
the above four output lengths, and use four Consistency and four Perception indicators for analysis,
as shown in Figure A4, where the four datapoints of each curve represent four output lengths. The
experimental results show that most I2T models can dynamically adjust the output length, except
that InstructBLIP for image annotation cannot input prompt, and ShareGPT is not sensitive to the
specified output length. Overall, when inputting Q(5), the reconstruction effect is relatively poor
because of the short output; when inputting Q(50), the overly long paragraph from the I2T model
cannot be understood by the T2I model, so the performance is not significantly improved while
wasting bitrate. By observing the trend of all curves, we find that when the bpp of the text is
between 0.002-0.003, the balance between performance and bitrate can be achieved. Therefore, for
each model, we choose the output length closest to this bitrate, that is, Q(20) for GPT-4o (OpenAI,
2023), MPlugOwl-2 (Ye et al., 2023); Q(10) for LLAVA (Liu et al., 2023), Qwen (Bai et al., 2023),
ShareGPT (Chen et al., 2023b); and the default length for InstructBLIP (Dai et al., 2023).

A.5 TEXT-TO-IMAGE MODEL CONFIGURATION

The verification of Full/Image/Pixel results are shown in Figure A5/A6/A7 respectively, using same
4 Consistency and 4 Perception indicators. In general, as the strength increases, the Consistency
index increases first and then decreases, while the Perception index continues to rise. This is because
the greater the strength, the more details the T2I model adds to the image, thereby improving the
Perception score. However, for Consistency, the added details at low strength can indeed make up
for the unclear areas in the reference image, thereby performing restoration; but when the strength
increases, the added details are inconsistent with the original image, and instead bring negative
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Figure A5: Setting T2I model with different strength for CMC task in Full mode, evaluated by 4
consistency and 4 perception metrics indicated by marked and plain background. A strength of 0.5
can reach a balance between consistency and perception.
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Figure A6: Setting T2I model with different strength for CMC task in Image mode, evaluated by 4
consistency and 4 perception metrics indicated by marked and plain background. A strength of 0.5
can reach a balance between consistency and perception.

optimization to the reference image. Thus, a good strength requires a trade-off between Consistency
and Perception. Taking both dimensions into consideration, we set the strength of Full and Image
mode to 0.5 and the Pixel mode to 0.8.
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Figure A7: Setting T2I model with different strength for CMC task in Pixel mode, evaluated by 4
consistency and 4 perception metrics indicated by marked and plain background. A strength of 0.8
can reach a balance between consistency and perception.

Table A1: Changing reference image as different VVC QP level in Full mode before CMC decoding,
evaluated by 4 consistency and 4 perception metrics indicated by marked and plain background.

Reference Image CLIPSIM ↑ CLIPIQA ↑ LPIPS ↓ LIQE ↑ SSIM ↑ FID ↓ TOPIQ-FR ↑ TOPIQ-NR ↑

Extreme
(Full mode)

Original 0.825 0.181 0.523 1.221 0.677 300.8 2.546 1.217
CMC 0.890 0.670 0.435 3.530 0.571 255.8 2.964 2.553
Improve 7.88% 270% 20.2% 189% -15.6% 17.5% 16.4% 109%

QP51
Original 0.874 0.185 0.445 1.454 0.722 286.7 2.886 1.294
CMC 0.919 0.696 0.383 3.749 0.586 255.2 3.202 2.810
Improve 5.15% 276% 16.1% 157% -18.8% 12.3% 10.9% 117%

QP48
Original 0.912 0.214 0.372 1.905 0.764 281.1 3.241 1.403
CMC 0.931 0.704 0.350 3.884 0.603 254.2 3.342 2.981
Improve 2.08% 228% 6.29% 103% -21.0% 10.5% 3.12% 112%

QP45
Original 0.938 0.262 0.302 2.461 0.805 270.9 3.550 1.542
CMC 0.939 0.711 0.327 3.999 0.611 254.0 3.431 3.052
Improve 0.11% 171% -7.65% 62.4% -24.1% 6.67% -3.35% 97.9%

A.6 APPLICABILITY ON DIFFERENT REFERENCE IMAGE

In the main text, the VVC provides the reference image with QP=53. In Table A1 we further use
VVC with QP=51,48,45 as the reference image for T2I model denoising to perform CMC. At higher
bitrates, CMC still has an overwhelming advantage over VVC in the Perception metric. Except for
SSIM, CMC achieves comprehensive optimization of all other indicators compared to traditional
codecs, but the optimization range gradually decreases with the increase of bitrate. Moreover, once
the QP is lower than 45, it will fall behind in the Consistency indicators. In summary, compared
with traditional codecs, CMC can achieve an overall improvement in Perception and Consistency at
low bitrates. However, when bpp increases to 0.1 or above, the improvement in Perception comes
at the cost of Consistency. This indicates that ideal performance at higher bitrates is an important
factor when using LMMs for image compression.
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Figure A8: A radar map illustrates the collaboration of mainstream I2T (left) and T2I (right) LMMs.
The model are tested as {4 different I2Ts + RealVis} and {GPT-4o + 5 different T2Is}.
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Figure A9: User subjective preference between CMC and three advance codecs, where CMC is
satisfying in both consistency and perception level.

A.7 FURTHER EXPERIMENTAL ANALYSIS

A.7.1 T2I STRUCTURE

The CMC-Bench mainly discussed the diffusion structure for T2I models instead of Auto-Regressive
(AR). This is not because the AR performance metrics are insufficient, but because generating pixels
one by one leads to a higher complexity. We acknowledge that the AR model is more controllable
and may sometimes achieve better performance than the Diffusion model, but it requires a massive
amount of parameters for the T2I model and longer decoding times. Work Sun et al. (2024) shows
AR generating a 384*384 image takes more than 6 seconds, which is enough time to generate several
1024 resolution images with a Diffusion model whose size is less than 1B. Considering the real-time
nature of visual communication, we believe that the Diffusion model is more suitable for CMC.

Among the Diffusion architectures, their performance requires a case-by-case discussion, including
the Restoration, SDXL, and SD architectures. The leaderboard in Figure A3 shows that on the ULB,
the order is Restoration > SD > SDXL, because Restoration fine-tunes based on the original image,
SD uses the original image as the starting point to draw, and SDXL, compared to SD, has more
freedom to make changes, which can lead to excessive modifications. On the ELB, the order is
SDXL > SD, because without a reference image, Restoration is directly unavailable. Compared to
SDXL’s aggressive strategy, which becomes an advantage, it can produce more details.

A.7.2 MODE ADVANCED I2T AND T2I MODELS

We considered some more advanced T2I models, including two I2T (Gemini, InternLM-
XComposer2) and two T2I (Clandestine, SUPIR). Their performance is shown in Figure A8. It can
be seen that these models have not yet shaken the leading position of GPT4-o as I2T and DiffBIR
as T2I. We welcome more I2T/T2I developers to participate in the test.

A.7.3 THE CONSISTENCY-PERCEPTION TRADE-OFF
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The consistency and perception have always been a dilemma in the image compression task. For
low-bitrate image compression (< 0.1 bpp) Blau & Michaeli (2018), the compression algorithm
provides a rough encoding of the original image, necessitating the decoder to add details. Inad-
equate detail leads to poor perceptual quality, while excessive detail results in inconsistency with
the original image. As bitrates decrease further to ultra-low levels (< 0.024 bpp) Blau & Michaeli
(2019), the conflict between these two objectives becomes even more intensified.

Therefore, ensuring both consistency and perceptual quality at such low bitrates remains a challenge.
When using LMM for compression, adding how many details, is the decisive factor for such a trade-
off. Thus, we believe the CMC-Bench enables LMM developers with comprehensive metrics that
cater to both objectives.

A.7.4 USER STUDY

To verify the practicality of CMC in real-life scenarios, we conduct a subjective user study beyond
the objective indicators, to analyze the human preference for the compressed image. We established
an environment with standard lighting, displaying the ground truth centrally, and two compressed
images on a monitor with a × 2,304 resolution. Viewers are required to select preferences between
two images compressed by different algorithms, at both consistency and perception levels. The
experiment involved 5 graduate students (2 males and 3 females) as subjects. CMC, using the Full
mode of GPT-4o+DiffBIR, is compared with four state-of-art compression metrics, namely CHENG
Cheng et al. (2020), CDC Yang & Mandt (2023), HiFiC Mentzer et al. (2020), and PICS Lei et al.
(2023). Same bitrate is set for all those metrics for a fair comparison. The validation results il-
lustrated in Figure A9 demonstrate the superior performance of MISC across all evaluated criteria.
Notably, CMC performs comparably to the PICS for consistency, and HiFiC for perception. Further-
more, compared to NSIs, AIGIs compressed by MISC were more preferred by human evaluators.

A.8 EXAMPLE RESULT VISUALIZATION

The CMC result visualization is shown from Figure A11 to A16, all result use GPT-
4o (OpenAI, 2023) as encoder, and Animate(Guo et al., 2024)/ Dreamlike(dreamlike art,
2023)/PG20(PlaygroundAI, 2023)/PG25(Li et al., 2024g)/RealVis(Civital, 2024) as decoder (from
left to right). Four working modes Full/Image/Pixel/Text are all included (from top to bottom).
For different modes, the compression results from LMMs show that as the bitrate decreases, the
decoded image is more different from the ground truth. Among them, the Full mode can obtain
results generally similar to the ground truth; the Image mode will lose some semantic details while
introducing artifacts; the Pixel mode loses more details but ensures the consistency of the over-
all composition; and the result generated by Text is significantly different from the ground truth.
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Figure A10: Added PSNR result, color
legends same as Figure 7.

For the performance of the CMC on different contents,
Figure A11/A12 reveals it performs most satisfactorily
on AIGIs; Figure A13/A14 indicates it can also obtain
results consistent with ground truth on NSIs, but it is easy
to lose details such as human faces and vehicle signs;
Figure A15/A16 implies it is the least ideal on SCIs, as
it misunderstands the relationship between characters in
the movie or games, and cannot draw formed letters on
webpages. In conclusion, CMC is a promising visual sig-
nal compression method, but to become a universal codec
standard in the future, the robustness to all content types
needs to be improved.

A.9 DATA STATEMENT

The CMC-Bench dataset is released under the CC BY 4.0 license. This includes all ground truth,
distorted images, subjective annotations, and the weight of the Consistency/Perception evaluation
model. All LMM developers can test their performance through our public scripts, and all image
compression researchers can obtain the public I2T+T2I LMM pipeline. We believe these resources
can inspire the next generation of visual signal codec protocols.
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Figure A11: Visualization of an AIGI (Human) on the left after CMC. Row: Full/Image/Pixel/Text
mode. Column: Animate(Guo et al., 2024)/ Dreamlike(dreamlike art, 2023)/PG20(PlaygroundAI,
2023)/PG25(Li et al., 2024g)/RealVis(Civital, 2024) as decoder.

Figure A12: Visualization of an AIGI (Object) on the left after CMC. Row: Full/Image/Pixel/Text
mode. Column: Animate(Guo et al., 2024)/ Dreamlike(dreamlike art, 2023)/PG20(PlaygroundAI,
2023)/PG25(Li et al., 2024g)/RealVis(Civital, 2024) as decoder.
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Figure A13: Visualization of an NSI (PGC) on the left after CMC. Row: Full/Image/Pixel/Text
mode. Column: Animate(Guo et al., 2024)/ Dreamlike(dreamlike art, 2023)/PG20(PlaygroundAI,
2023)/PG25(Li et al., 2024g)/RealVis(Civital, 2024) as decoder.

Figure A14: Visualization of an NGI (UGC) on the left after CMC. Row: Full/Image/Pixel/Text
mode. Column: Animate(Guo et al., 2024)/ Dreamlike(dreamlike art, 2023)/PG20(PlaygroundAI,
2023)/PG25(Li et al., 2024g)/RealVis(Civital, 2024) as decoder.
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Figure A15: Visualization of an SCI (Movie) on the left after CMC. Row: Full/Image/Pixel/Text
mode. Column: Animate(Guo et al., 2024)/ Dreamlike(dreamlike art, 2023)/PG20(PlaygroundAI,
2023)/PG25(Li et al., 2024g)/RealVis(Civital, 2024) as decoder.

Figure A16: Visualization of an SCI (Webpage) on the left after CMC. Row: Full/Image/Pixel/Text
mode. Column: Animate(Guo et al., 2024)/ Dreamlike(dreamlike art, 2023)/PG20(PlaygroundAI,
2023)/PG25(Li et al., 2024g)/RealVis(Civital, 2024) as decoder.
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Original VVC CMC

Figure A17: Success and failure cases for CMC. Left is the original image, the middle is compressed
by VVC, right is compressed by CMC (GPT-4o+RealVis). NSI/SCI/AIGI cases are shown from up
to bottom. The bitrate is fixed at about 0.024bpps. We found CMC is more successful than the
advanced VVC, in the upper NSI and bottom AIGI; however, for the middle SCI, both of them
cannot draw the words on the website, but at least CMC is not blurry. Zoom in for details.
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