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ABSTRACT

Distributional shift is one of the major obstacles when transferring machine learning
prediction systems from the lab to the real world. To tackle this problem, we assume
that variation across training domains is representative of the variation we might
encounter at test time, but also that shifts at test time may be more extreme in
magnitude. In particular, we show that reducing differences in risk across training
domains can reduce a model’s sensitivity to a wide range of extreme distributional
shifts, including the challenging setting where the input contains both causal and
anti-causal elements. We motivate this approach, Risk Extrapolation (REx), as a
form of robust optimization over a perturbation set of extrapolated domains (MM-
REx), and propose a penalty on the variance of training risks (V-REx) as a simpler
variant. We prove that variants of REx can recover the causal mechanisms of the
targets, while also providing some robustness to changes in the input distribution
(“covariate shift”). By appropriately trading-off robustness to causally induced
distributional shifts and covariate shift, REx is able to outperform alternative
methods such as Invariant Risk Minimization in situations where these types of
shift co-occur.

1 INTRODUCTION

While neural networks often exhibit super-human generalization on the training distribution, they
can be extremely sensitive to distributional shift, presenting a major roadblock for their practical
application (Su et al., 2019; Engstrom et al., 2017; Recht et al., 2019; Hendrycks & Dietterich, 2019).
This sensitivity is often caused by relying on “spurious” features unrelated to the core concept we
are trying to learn (Geirhos et al., 2018). For instance, Beery et al. (2018) give the example of an
image recognition model failing to correctly classify cows on the beach, since it has learned to make
predictions based on the features of the background (e.g. a grassy field) instead of just the animal.

In this work, we consider out-of-distribution (OOD) generalization, also known as domain gener-
alization, where a model must generalize appropriately to a new test domain for which it has neither
labeled nor unlabeled training data. Following common practice (Ben-Tal et al., 2009), we formulate
this as optimizing the worst-case performance over a perturbation set of possible test domains, F :

ROOD
F (θ) = max

e∈F
Re(θ) (1)

Since generalizing to arbitrary test domains is impossible, the choice of perturbation set encodes our
assumptions about which test domains might be encountered. Instead of making such assumptions a
priori, we assume access to data from multiple training domains, which can inform our choice of
perturbation set. A classic approach for this setting is group distributionally robust optimization
(DRO) (Sagawa et al., 2019), where F contains all mixtures of the training distributions. This is
mathematically equivalent to considering convex combinations of the training risks.

However, we aim for a more ambitious form of OOD generalization, over a larger perturbation set.
Our method minimax Risk Extrapolation (MM-REx) is an extension of DRO where F instead
contains affine combinations of training risks, see Figure 1. Under specific circumstances, MM-REx
can be thought of as DRO over a set of extrapolated domains1, allowing us to carry over machinery

1We define “extrapolation” to mean “outside the convex hull”, see Appendix B for more.
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Figure 1: Left: Robust optimization optimizes worst-case performance over the convex hull of
training distributions. Right: By extrapolating risks, REx encourages robustness to larger shifts. Here
e1, e2, and e3 represent training distributions, and
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P 2(X,Y ) represent some particular
directions of variation in the affine space of quasiprobability distributions over (X,Y ).

developed for DRO, such as the O(1/
√
T ) convergence rate proven by Sagawa et al. (2019). But

MM-REx also unlocks fundamental new generalization capabilities unavailable to DRO.

In particular, focusing on supervised learning, we show that Risk Extrapolation can uncover invariant
relationships between inputs X and targets Y . Intuitively, an invariant relationship is a statistical
relationship which is maintained across all domains inF . Returning to the cow-on-the-beach example,
the relationship between the animal and the label is expected to be invariant, while the relationship
between the background and the label is not. A model which bases its predictions on such an invariant
relationship is said to perform invariant prediction.2

Many domain generalization methods assume P (Y |X) is an invariant relationship, limiting distri-
butional shift to changes in P (X), which are known as covariate shift (David et al., 2010). This
assumption can easily be violated, however. For instance, when Y causes X , a more sensible assump-
tion is that P (X|Y ) is fixed, with P (Y ) varying across domains (Schölkopf et al., 2012; Lipton et al.,
2018). In general, invariant prediction may involve an aspect of causal discovery. Depending on the
perturbation set, however, other, more predictive, invariant relationships may also exist (Koyama &
Yamaguchi, 2020).

The first method for invariant prediction to be compatible with modern deep learning problems
and techniques is Invariant Risk Minimization (IRM) (Arjovsky et al., 2019), making it a natural
point of comparison. Our work focuses on explaining how REx addresses OOD generalization, and
highlighting differences (especially advantages) compared with IRM and other domain generalization
methods, see Table 1. Broadly speaking, REx optimizes for robustness to the forms of distributional
shift that have been observed to have the largest impact on performance in training domains. This can
prove a significant advantage over the more focused (but also limited) robustness that IRM targets.
For instance, unlike IRM, REx can also encourage robustness to covariate shift (see Section 3).

And indeed, our experiments show that REx significantly outperforms IRM in settings that in-
volve covariate shift and require invariant prediction, including modified versions of CMNIST
and simulated robotics tasks from the Deepmind control suite. On the other hand, because REx
does not distinguish between underfitting and inherent noise, IRM has an advantage in settings
where some domains are intrinsically harder than others. We perform several other sets of ex-
periments in order to better understand and compare REx and IRM. Our contributions include:

1) MM-REx, a novel domain generalization problem formulation suitable for invariant prediction.

2) Demonstrating that REx solves invariant prediction tasks where IRM fails due to covariate shift.

3) Proving that equality of risks can be a sufficient criteria for discovering causal structure.

2Note this is different from learning an invariant representation (Ganin et al., 2016); see Section 2.2.
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Method Invariant Prediction Cov. Shift Robustness Suitable for Deep Learning

DRO 7 3 3

(C-)ADA 7 3 3

ICP 3 7 7

IRM 3 7 3

REx 3 3 3

Table 1: A comparison of approaches for OOD generalization.

2 BACKGROUND & RELATED WORK

We consider multi-source domain generalization, where our goal is to find parameters θ that perform
well on unseen domains, given a set of m training domains, E = {e1, .., em}, sometimes also called
environments. We assume the loss function, ` is fixed, and domains only differ in terms of their data
distribution Pe(X,Y ) and dataset De. The risk function for a given domain/distribution e is:

Re(θ)
.
= E(x,y)∼Pe(X,Y )`(fθ(x), y) (2)

We refer to members of the set {Re|e ∈ E} as the training risks or simply risks. Changes in
Pe(X,Y ) can be categorized as either changes in P (X) (covariate shift), changes in P (Y |X)
(concept shift), or a combination. The standard approach to learning problems is Empirical Risk
Minimization (ERM), which minimizes the average loss across all the training examples from all
the domains:

RERM(θ)
.
= E(x,y)∼∪e∈EDe

`(fθ(x), y) =
∑
e

1

|De|
E(x,y)∼De

`(fθ(x), y) (3)

2.1 ROBUST OPTIMIZATION

An approach more taylored to OOD generalization is robust optimization (Ben-Tal et al., 2009),
which aims to optimize a model’s worst-case performance over some perturbation set of possible
data distributions, F (see Eqn. 1). When only a single training domain is available, it is common to
assume that P (Y |X) is fixed3, and let F be all distributions within some f -divergence ball of the
training P (X) (Hu et al., 2016; Bagnell, 2005). As another example, adversarial robustness can be
seen as instead using a Wasserstein ball as a perturbation set (Sinha et al., 2017).

In multi-source domain generalization, test distributions are often assumed to be mixtures (i.e.
convex combinations) of the training distributions; this is equivalent to setting F .

= E :

RRI(θ)
.
= max

Σeλe=1
λe≥0

m∑
e=1

λeRe(θ) = max
e∈E
Re(θ) . (4)

We call this objective Risk Interpolation (RI), or (group) Domain Robust Optimization (DRO),
following Sagawa et al. (2019). While single-source methods classically assume that the probability
of each data-point can vary independently (Hu et al., 2016), DRO yields a much lower dimensional
perturbation set, with at most one direction of variation per domain, regardless of the dimensionality
of X and Y . It can also provide robustness to any form of shift in P (X,Y ) which occurs across
training domains, whereas single-source methods typically assume only P (X) can change. Minimax
REx is an extension of this approach to affine combinations of training risks.

2.2 INVARIANCE AND CAUSALITY

An invariant predictor, Φ, is a function of X with the property that Pe(Y |Φ) is equal ∀e ∈ E . In
other words, the relationship between such a Φ and Y is invariant to the choice of domain. Invariant
relationships between X and Y are those that can be written as P̂Φ(Y |X = x)

.
= P (Y |Φ(x)) with

3This assumption is often called “covariate shift”, but we assume covariate/concept shift can co-occur.
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Algorithm 1 Variance Risk Extrapolation (V-REx)
Require: D1, ..., Dm: training sets from different domains
Require: α, β: learning rate and penalty term hyperparameters

1: randomly initialize model parameters θ
2: while not done do
3: for all Di do
4: Estimate risk R̂i(θ) using a minibatch of K examples from Di

5: end for
6: Update θ ← θ − α∇θ

(∑
i R̂i(θ) + βV ari(R̂i(θ)

)
7: end while

Φ an invariant predictor (although REx does not use such an explicit decomposition). Koyama &
Yamaguchi (2020) prove that a maximal invariant predictor, that is, one that maximizes mutual
information with the targets, Φ∗

.
= argmaxΦI(Φ, Y ), solves the robust optimization problem (Eqn. 1)

under fairly general assumptions; when Φ∗ is unique, we call the features it ignores spurious.

The result of Koyama & Yamaguchi (2020) provides a theoretical reason for favoring invariant
prediction over the common approach of learning invariant representations (Pan et al., 2010),
which make Pe(Φ) or Pe(Φ|Y ) equal ∀e ∈ E . Popular methods here include Adversarial domain
adaptation (ADA) (Ganin et al., 2016) and conditional ADA (C-ADA) (Long et al., 2018). Unlike
invariant predictors, invariant representations can easily fail to generalize OOD: ADA forces the
predictor to have the same marginal predictions P̂ (Y ), which is a mistake when P (Y ) in fact changes
across domains (Zhao et al., 2019); C-ADA suffers from more subtle issues (Arjovsky et al., 2019).

Causal relationships are a paradigmatic example of invariant relationships. In a Structural Causal
Model (SCM), the mechanism for a variable describes how it’s value is computed based on the values
of its causes, which can be thought of as its parents in a Pytorch (Paszke et al., 2019) computational
graph.4 Works that take a causal approach to domain generalization often assume that the mechanism
for Y is fixed, while X may be subject to different interventions in different domains (Bühlmann,
2018a). We call resulting changes in P (X,Y ) interventional shift. Interventional shift can involve
both covariate shift and/or concept shift. In their seminal work on Invariant Causal Prediction
(ICP), Peters et al. (2016) leverage this invariance to learn which elements of X cause Y . ICP and
its nonlinear extension (Heinze-Deml et al., 2018) use statistical tests to detect whether the residuals
of a linear model are equal across domains. Our work differs from ICP in that:

1. Our method is model agnostic and scales to deep networks.
2. Our goal is OOD generalization, not causal inference. These are not identical: invariant

prediction can sometimes make use of non-causal relationships, but when deciding which
interventions to perform, a truly causal model is called for.

3. Our learning principle only requires invariance of risks, not residuals. Nonetheless, we
prove that this can ensure invariant causal prediction.

A more similar method to REx is Invariant Risk Minimization (IRM) (Arjovsky et al., 2019),
which shares properties (1) and (2) of the list above. Like REx, IRM also uses a weaker form of
invariance than ICP; namely, they insist that the optimal linear classifier must match across domains.5
Still, REx differs significantly from IRM. While IRM specifically aims for invariant prediction, REx
seeks robustness to whatever forms of distributional shift are present. Thus, REx is more directly
focused on the problem of OOD generalization, and can provide robustness to a wider variety of
distributional shifts, inluding covariate shift. Also, unlike REx, IRM seeks to match E(Y |Φ(X))
across domains, not the full P (Y |Φ(X)). This, combined with IRM’s indifference to covariate shift,
make it more effective in cases where different domains or examples are inherently more noisy.

2.3 FAIRNESS

Equalizing risk across different groups (e.g. male vs. female) has been proposed as a definition of
fairness (Donini et al., 2018), generalizing the equal opportunity definition of fairness (Hardt et al.,

4See Appendix for a more in-depth technical overview of SCMs.
5In practice, IRMv1 replaces this bilevel optimization problem with a gradient penalty on classifier weights.
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2016). Williamson & Menon (2019) propose using the variance or absolute difference of risks to
measure deviation from this notion of fairness; these correspond to our V-REx and (in the case of
only two domains) MM-REx. However, in the context of fairness, equalizing the risk of training
groups is the goal. Our work goes beyond this by showing that it can serve as a method for OOD
generalization.

3 RISK EXTRAPOLATION

Before discussing algorithms for REx and theoretical results, we first expand on our high-level
explanations of what REx does, what kind of OOD generalization it promotes, and how. The principle
of Risk Extrapolation (REx) has two aims:

1. Reducing training risks
2. Increasing similarity of training risks

In general, these goals can be at odds with each other; decreasing the risk in the domain with the
lowest risk also decreases the overall similarity of training risks. Thus methods for REx typically
seeks to increase risk on the best performing domains. From a geometric point of view, encouraging
equality of risks flattens the “risk plane” (the affine span of the training risks, considered as a function
of the data distribution, see Figure 1). While this can result in higher training risks, it also means that
the risk changes less if the distributional shifts between training domains are magnified at test time.
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Figure 2: Training accuracies (left) and risks (right) on colored MNIST domains with varying
P (Y = 0|color = red) after 500 epochs. Dots represent training risks, lines represent test risks.
Increasing the V-REx penalty (i.e. β) leads to a flatter “risk plane” and more consistent performance
across domains, as the model learns to ignore color in favor of shape-based invariant prediction.

Figure 2 illustrates how flattening the risk plane can promote OOD generalization on real data, using
the Colored MNIST (CMNIST) task as an example (Arjovsky et al., 2019). In the CMNIST training
domains, the color of a digit is more predictive of the label than the shape is. But because the
correlation between color and label is not invariant, predictors that use the color feature achieve
different risk on different domains. By enforcing equality of risks, REx prevents the model from
using the color feature enabling successful generalization to the test domain where the correlation
between color and label is reversed.

Probabilities vs. Risks. Figure 3 depicts how the extrapolated risks considered in MM-REx can
be translated into a corresponding change in P (X,Y ). Training distributions can be thought of as
points in an affine space with a dimension for every possible value of (X,Y ); see Appendix C.1 for
an example. Because the risk is linear w.r.t. P (x, y), a convex combination of risks from different
domains is equivalent to the risk on a domain given by the mixture of their distributions. The same
holds for the affine combinations used in MM-REx, with the caveat that the negative coefficients may
lead to negative probabilities, making the resulting P (X,Y ) a quasiprobability distribution, i.e. a
signed measure with intregral 1. We explore the theoretical implications of this in Section E

Covariate Shift. When only P (X) differs across domains, as in Figure 3, then Φ(x) = x is
an invariant predictor, and thus learning an invariant predictor is not expected to improve OOD
generalization (compared with ERM). Instead, what is needed is robustness to covariate shift, which
REx, but not IRM, can provide.6 Robustness to covariate shift can improve OOD generalization by

6Arjovsky et al. (2019) recognize this limitation of IRM in what they call the “realizable” case.
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Figure 3: Extrapolation can yield a distribution with negative P (x) for some x. Left: P (x) for
domains e1 and e2. Right: Point-wise interpolation/extrapolation of P e1(x) and P e2(x).

ensuring that low-capacity models spend sufficient capacity on low-density regions of the input space,
as we demonstrate in Appendix C.2. But even for high capacity models, P (X) can have a significant
influence on what is learned; for instance Sagawa et al. (2019) show that DRO can significantly
improves the performance on rare groups in their with a model that achieves 100% training accuracy
in their Waterbirds dataset. Pursuing robustness to covariate shift also comes with drawbacks for
REx, however: REx does not distinguish between underfitting and inherent noise in the data, and
so can force the model to make equally bad predictions everywhere, even if some examples are less
noisy than others.

3.1 METHODS OF RISK EXTRAPOLATION

We now formally describe the Minimax REx (MM-REx) and Variance-REx (V-REx) techniques
for risk extrapolation. Minimax-REx performs robust learning over a perturbation set of affine
combinations of training risks with bounded coefficients:

RMM-REx(θ)
.
= max

Σeλe=1
λe≥λmin

m∑
e=1

λeRe(θ) = (1−mλmin) max
e
Re(θ) + λmin

m∑
e=1

Re(θ) , (5)

where m is the number of domains, and the hyperparameter λmin controls how much we extrapolate.
For negative values of λmin, MM-REx places negative weights on the risk of all but the worst-case
domain, and as λmin → −∞, this criterion enforces strict equality between training risks; λmin = 0
recovers risk interpolation (RI). Thus, like RI, MM-REx aims to be robust in the direction of variations
in P (X,Y ) between test domains. However, negative coefficients allow us to extrapolate to more
extreme variations. Geometrically, larger values of λmin expand the perturbation set farther away
from the convex hull of the training risks, encouraging a flatter “risk-plane” (see Figure 2).

While MM-REx makes the relationship to RI/RO clear, we found using the variance of risks as a
regularizer (V-REx) simpler, stabler, and more effective:

RV-REx(θ)
.
= β Var({R1(θ), ...,Rm(θ)}) +

m∑
e=1

Re(θ) (6)

Here β ∈ [0,∞) controls the balance between reducing average risk and enforcing equality of risks,
with β = 0 recovering ERM, and β →∞ leading V-REx to focus entirely on making the risks equal.
See Appendix for the relationship between V-REx and MM-REx and their gradient vector fields.

4 EXPERIMENTS

We evaluate REx and compare with IRM on a range of tasks requiring OOD generalization. REx
provides generalization benefits and outperforms IRM on a wide range of tasks, including: i) variants
of the Colored MNIST (CMNIST) dataset (Arjovsky et al., 2019) with covariate shift, ii) continuous
control tasks with partial observability and spurious features, iii) domain generalization tasks from
the DomainBed suite (Gulrajani & Lopez-Paz, 2020). On the other hand, when the inherent noise in
Y varies across environments, IRM succeeds and REx performs poorly.

4.1 COLORED MNIST

Arjovsky et al. (2019) construct a binary classification problem (with 0-4 and 5-9 each collapsed into
a single class) based on the MNIST dataset, using color as a spurious feature. Specifically, digits
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Figure 4: REx outperforms IRM on Colored MNIST variants that include covariate shift. The
x-axis indexes increasing amount of shift between training distributions, with p = 0 corresponding to
disjoint supports. Left: class imbalance, Center: shape imbalance, Right: color imbalance.

are either colored red or green, and there is a strong correlation between color and label, which is
reversed at test time. The goal is to learn the causal “digit shape” feature and ignore the anti-causal
“digit color” feature. The learner has access to three domains:

1. A training domain where green digits have a 80% chance of belonging to class 1 (digits 5-9).
2. A training domain where green digits have a 90% chance of belonging to class 1.
3. A test domain where green digits have a 10% chance of belonging to class 1.

Method train acc test acc

V-REx (ours) 71.5± 1.0 68.7± 0.9
IRM 70.8± 0.9 66.9± 2.5
MM-REx (ours) 72.4± 1.8 66.1± 1.5
RI 88.9± 0.3 22.3± 4.6
ERM 87.4± 0.2 17.1± 0.6

Grayscale oracle 73.5± 0.2 73.0± 0.4
Optimum 75 75
Chance 50 50

Table 2: Accuracy (percent) on Colored
MNIST. REx and IRM learn to ignore the
spurious color feature. Strikethrough results
achieved via tuning on the test set.

We use the exact same hyperparameters as Arjovsky
et al. (2019), only replacing the IRMv1 penalty with
MM-REx or V-REx penalty.7 These methods all achieve
similar performance, see Table 2.

CMNIST with covariate shift To test our hypothesis
that REx should outperform IRM under covariate shift,
we construct 3 variants of the CMNIST dataset. Each
variant represents a different way of inducing covariate
shift to ensure differences across methods are consis-
tent. These experiments combine covariate shift with
interventional shift, since P (Green|Y = 1) still differs
across training domains as in the original CMNIST.

1. Class imbalance: varying p = P (shape(x) ∈ {0, 1, 2, 3, 4}); as in Wu et al. (2020).
2. Digit imbalance: varying p = P (shape(x) ∈ {1, 2} ∪ {6, 7}); digits 0 and 5 are removed.
3. Color imbalance: We use 2 versions of each color, for 4 total channels: R1, R2, G1, G2.

We vary p = P (R1|Red) = P (G1|Green).

While (1) also induces change in P (Y ), (2) and (3) induce only covariate shift in the causal shape and
anti-causal color features (respectively). We compare across several levels of imbalance, p ∈ [0, 0.5],
using the same hyperparameters from Arjovsky et al. (2019), and plot the mean and standard error
over 3 trials.

V-REx significantly outperforms IRM in every case, see Figure 4. In order to verify that these results
are not due to bad hyperparameters for IRM, we perform a random search that samples 340 unique
hyperparameter combinations for each value of p, and compare the the number of times each method
achieves better than chance-level (50% accuracy). Again, V-REx outperforms IRM; in particular,
for small values of p, IRM never achieves better than random chance performance, while REx does
better than random in 4.4%/23.7%/2.0% of trials, respectively, in the class/digit/color imbalance
scenarios for p = 0.1/0.1/0.2. This indicates that REx can achieve good OOD generalization in
settings involving both covariate and interventional shift, whereas IRM struggles to.

4.2 TOY STRUCTURAL EQUATION MODELS (SEMS)
REx’s sensitivity to covariate shift can also be a weakness when reallocating capacity towards domains
with higher risk does not help the model reduce their risk, e.g. due to irreducible noise. We illustrate

7When there are only 2 domains, MM-REx is equivalent to a penalty on the Mean Absolute Error (MAE),
see Appendix F.2.2.
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Algorithm ColoredMNIST VLCS PACS OfficeHome
ERM 52.0 ± 0.1 77.4 ± 0.3 85.7 ± 0.5 67.5 ± 0.5
IRM 51.8 ± 0.1 78.1 ± 0.0 84.4 ± 1.1 66.6 ± 1.0

V-REx 52.1 ± 0.1 77.9 ± 0.5 85.8 ± 0.6 66.7 ± 0.5

Table 3: REx, IRM, and ERM all perform comparably on set of domain generalization benchmarks.

this using the linear-Gaussian structural equation model (SEM) tasks introduced by Arjovsky et al.
(2019). Like CMNIST, these SEMs include spurious features by construction. They also introduce 1)
heteroskedasticity, 2) hidden confounders, and/or 3) elements of X that contain a mixture of causes
and effects of Y . These three properties highlight advantages of IRM over ICP (Peters et al., 2016),
as demonstrated empirically by Arjovsky et al. (2019). REx is also able to handle (2) and (3), but it
performs poorly in the heteroskedastic tasks. See Appendix G.2 for details and Table 4 for results.

4.3 DOMAIN GENERALIZATION IN THE DOMAINBED SUITE

Methodologically, it is inappropriate to assume access to the test environment in domain generalization
settings, as the goal is to find methods which generalize to unknown test distributions. Gulrajani
& Lopez-Paz (2020) introduced the DomainBed evaluation suite to rigorously compare existing
approaches to domain generalization, and found that no method reliably outperformed ERM. We
evaluate V-REx on DomainBed using the most commonly used training-domain validation set method
for model selection. Due to limited computational resources, we limited ourselves to the 4 cheapest
datasets. Results of baseline are taken from Gulrajani & Lopez-Paz (2020), who compare with more
methods. Results in Table 3 give the average over 3 different train/valid splits.
4.4 REINFORCEMENT LEARNING WITH PARTIAL OBSERVABILITY AND SPURIOUS FEATURES

Finally, we turn to reinforcement learning, where covariate shift (potentially favoring REx)
and heteroskedasticity (favoring IRM) both occur naturally as a result of randomness in
the environment and policy. In order to show the benefits of invariant prediction, we
modify tasks from the Deepmind Control Suite (Tassa et al., 2018) to include spurious
features in the observation, and train a Soft Actor-Critic (Haarnoja et al., 2018) agent.
REx outperforms both IRM and ERM, suggesting that REx’s robustness to covariate shift
outweighs the challenges it faces with heteroskedasticity in this setting, see Figure 5.
We average over 10 runs on finger_spin and walker_walk, using hyperparameters tuned on
cartpole_swingup (to avoid overfitting). See Appendix for details and further results.
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Figure 5: Performance and standard error on walker_walk (left), finger_spin (right).

5 CONCLUSION

We have demonstrated that REx, a method for robust optimization, can provide robustness and hence
out-of-distribution generalization in the challenging case where X contains both causes and effects
of Y . In particular, like IRM, REx can perform causal identification, but REx can also perform more
robustly in the presence of covariate shift. Covariate shift is known to be problematic when models
are misspecified, when training data is limited, or does not cover areas of the test distribution. As
such situations are inevitable in practice, REx’s ability to outperform IRM in scenarios involving a
combination of covariate shift and interventional shift makes it a powerful approach.
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Appendices
A APPENDIX OVERVIEW

Our code is available online at: https://anonymous.4open.science/r/12747e81-8505-43cb-b54e-
e75e2344a397/.

The sections of our appendix are as follows:

A) Overview

B) Definition and discussion of extrapolation in machine learning

C) Illustrative examples of how REx works in toy settings

D) Background on causal models

E) Theory

F) The relationship between MM-REx vs. V-REx, and the role each plays in our work

G) Further results and details for experiments mentioned in main text

H) Experiments not mentioned in main text

I) Overview of other topics related to OOD generalization

B DEFINITION AND DISCUSSION OF EXTRAPOLATION IN MACHINE LEARNING

We define interpolation and extrapolation as follows: interpolation refers to making decisions or
predictions about points within the convex hull of the training examples and extrapolation refers to
making decisions or predictions about points outside their convex hull.8 This generalizes the familiar
sense of these terms for one-dimensional functions. An interesting consequence of this definition is:
for data of high intrinsic dimension, generalization requires extrapolation (Hastie et al., 2009), even
in the i.i.d. setting. This is because the volume of high-dimensional manifolds concentrates near their
boundary; see Figure 6.

Extrapolation in the space of risk functions. The same geometric considerations apply to extrap-
olating to new domains. Domains can be highly diverse, varying according to high dimensional
attributes, and thus requiring extrapolation to generalize across. Thus Risk Extrapolation might often
do a better job of including possible test domains in its perturbation set than Risk Interpolation does.

Training points

Test point

Figure 6: Illustration of the importance of extrapolation for generalizing in high dimensional space.
In high dimensional spaces, mass concentrates near the boundary of objects. For instance, the uniform
distribution over a ball in N + 1-dimensional space can be approximated by the uniform distribution
over the N -dimensional hypersphere. We illustrate this in 2 dimensions, using the 1-sphere (i.e. the
unit circle). Dots represent a finite training sample, and the shaded region represents the convex hull
of all but one member of the sample. Even in 2 dimensions, we can see why any point from a finite
sample from such a distribution remains outside the convex hull of the other samples, with probability
1. The only exception would be if two points in the sample coincide exactly.

8Surprisingly, we were not able to find any existing definition of these terms in the machine learning literature.
They have been used in this sense (Hastie et al., 2009; Haffner, 2002), but also to refer to strong generalization
capabilities more generally (Sahoo et al., 2018).
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C ILLUSTRATIVE EXAMPLES OF HOW REX WORKS IN TOY SETTINGS

Here, we work through two examples to illustrate:

1. How to understand extrapolation in the space of probability density/mass functions
(PDF/PMFs)

2. How REx encourages robustness to covariate shift via distributing capacity more evenly
across possible input distributions.

C.1 6D EXAMPLE OF REX

Here we provide a simple example illustrating how to understand extrapolations of probability
distributions. Suppose X ∈ {0, 1, 2} and Y ∈ {0, 1}, so there are a total of 6 possible types of
examples, and we can represent their distributions in a particular domain as a point in 6D space:
(P (0, 0), P (0, 1), P (1, 0), P (1, 1), P (2, 0), P (2, 1)). Now, consider three domains e1, e2, e3 given
by

1. (a, b, c, d, e, f)

2. (a, b, c, d, e− k, f + k)

3. (2a, 2b, c(1− a+b
c+d ), d(1− a+b

c+d ), e, f)

The difference between e1 and e2 corresponds to a shift in P (Y |X = 2), and suggests that Y cannot
be reliably predicted across different domains when X = 2. Meanwhile, the difference between
e1 and e3 tells us that the relative probability of X = 0 vs. X = 1 can change, and so we might
want our model to be robust to these sorts of covariate shifts. Extrapolating risks across these 3
domains effectively tells the model: “don’t bother trying to predict Y when X = 2 (i.e. aim for
P̂ (Y = 1|X = 2) = .5), and split your capacity equally across the X = 0 and X = 1 cases”. By
way of comparison, IRM would also aim for P̂ (Y = 1|X = 2) = .5, whereas ERM would aim for
P̂ (Y = 1|X = 2) = 3f+k

3e+3f (assuming |D1| = |D2| = |D3|). And unlike REx, both ERM and IRM
would split capacity between X = 0/1/2 cases according to their empirical frequencies.

C.2 COVARIATE SHIFT EXAMPLE

Viewing REx as robust learning over the affine span of the training distributions reveals its potential to
improve robustness to distribution shifts. Consider a situation in which a model encounters two types
of inputs: COSTLY inputs with probability q and CHEAP inputs with probability 1− q. The model
tries to predicts the input – it outputs COSTLY with probability p and CHEAP with probability
1− p. If the model predicts right its risk is 0, but if it predicts COSTLY instead of CHEAP it gets
a risk u = 2, and if it predicts CHEAP instead of COSTLY it gets a risk v = 4. The risk has
expectationRq(p) = (1− p)(1− q)u+ pqv. We have access to two domains with different input
probabilities q1 < q2. This is an example of pure covariate shift.

We want to guarantee the minimal risk over the set of all possible domains:

min
p∈[0,1]

max
q∈[0,1]

Rq(p) = (1− p)(1− q)u+ pqv

as illustrated in Figure 7. The saddle point solution of this problem is p = ω = u/u+v and
Rq(p) = uv/u+v,∀q. From the figure we see thatRq1(p) = Rq2(p) can only happen for p = ω, so
the risk extrapolation principle will return the minimax optimal solution.

If we use ERM to minimize the risk, we will pool together the domains into a new domain with
COSTLY input probability q̄ = (q1 + q2)/2. ERM will return p = 0 if q̄ > ω and p = 1
otherwise. Risk interpolation (RI) minp maxq∈{q1,q2}Rq(p) will predict p = 0 if q1, q2 > ω, p = 1
if q1, q2 < ω and p = ω if q1 < ω < q2. We see that only REx finds the minimax optimum for
arbitrary values of q1 and q2.
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Figure 7: Each grey line is a riskRq(p) as functions of p for a specific value of q. The blue line is
when q = ω. We highlight in red the curve maxqRq(p) whose minimum is the saddle point marked
by a purple star in p = ω.

D BACKGROUND ON CAUSAL MODELS

D.1 CAUSAL MODELS: DEFINITIONS AND NOTATION

A causal graphical model (Koller & Friedman, 2009; Pearl, 2009) is a directed acyclic graph, where
edges point from causes (including noise variables) to effects. Specifying the way an effect N is
computed based on the values of its causes (the mechanism, structural equation, or structural
assignment for Y , commonly denoted fN , although we use mN in this work) yields a Structural
Causal Model (SCM), denoted by C. We refer the reader to Peters et al. (2017), definition 6.2, for
more technical details.9 At a high level, SCMs are to causal graphical models as joint probability
distributions are to probabilistic graphical models (PGMs); rather than just specifying causal or
independence assumption, they fill in the details of what values each node can take on and how
exactly the nodes influence or depend on one another.

To highlight the difference between causal and probabilistic models, it helps to think of an SCM as
analogous to a computational graph in a deep learning framework such as Pytorch or TensorFlow,
with root nodes corresponding to independent noise variables. Elaborating: both objects specify
how to compute a node, given the values of its parents.10 And while the value of a node may be
statistically dependent on any node to which it is path-connected, its value is only directly influenced
by the value of its parents, or by the programmer setting it to a particular value. In this analogy,
setting the value of the node corresponds to an intervention. More formally, an intervention, ι can
be any modification to the mechanisms of one or more variables; it can even introduce new edges, so
long as it does not introduce a cycle. Applying an intervention on C defines a new SCM, Cι.

The mechanisms of C describe a generative process for the data: absent any conditioning or in-
terventions (which are viewed as producing a new SCM, rather than modifying C), the data can
be generated using ancestral sampling, defining a joint distribution over all the nodes. This sam-
pling process where, N = mN (Pa(N), εN ), defines an entailed distribution, PC

N (N) for every
node N in C. Examining this sampling process reveals that the entailed distribution of N de-
pends only on its mechanism and the value of its parents. As a simple consequence, we have that:
PC
Y (Y |Q) = P (Y |Pa(Y )) = P (Y |do(Q = q)) for Q representing all the other nodes in C. Al-

9SCMs are sometimes called Structural Equation Models (SEMs), although this term is often reserved for
SCMs with linear mechanisms. We do not make assumptions about SCM mechanisms (e.g. linearity), unless
stated otherwise.

10In an SCM, every node has its own unique independent noise variable, εN , as a parent, which is independent
of all other nodes. Any “inherent randomness” in N arises from εN .
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though all the nodes of C will not necessarily be observed, we assume that they are (i.e. X = Q for
supervised learning) for the remainder of the appendix, and overload mY (x) to refer to the entailed
distribution for Y , given the values of its parents (only).

D.2 CAUSAL APPROACHES TO DOMAIN GENERALIZATION

A number of works draw connections between causality, domain generalization, and robustness.
Storkey (2009); Moreno-Torres et al. (2012); Schölkopf et al. (2012) characterize different types of
distributional shift in probabilistic and causal terms. A common thread in these works is that the
statistical relationship P (effect|cause) should typically be preserved. In other words, interventions
are assumed to be rare or sparse; or perhaps only certain types of interventions are allowed. For
instance, the assumption of constant P (Y |X) is appropriate when X causes Y , and X but not Y may
be subject to interventions. But when the roles are reversed, and Y causes X , constant P (X|Y ) is a
better assumption (Lipton et al., 2018). Bühlmann (2018b) and Rothenhäusler et al. (2018) describe
causal learning as a special case of robust learning, with the perturbation set given by the set of
possible interventions that do not change the mechanism of Y .

E THEORY

E.1 CAUSAL DISCOVERY WITH REX

We prove that Risk Extrapolation learns the causal mechanism of Y under the same assumptions as
used by Peters et al. (2016) in their work on Invariant Causal Prediction (ICP). These are somewhat
restrictive:11

• We assume that the causes of Y are observed, i.e. Pa(Y ) ⊆ X .

• We assume that the homoskedasticity (a slight generalization of the additive noise setting
assumed by Peters et al. (2016)).

The contribution of our theory (vs. ICP) is to prove that equalizing risks is sufficient to learn the
causes of Y . In contrast, they insist that the entire distribution of error residuals (in predicting Y ) be
the same across domains.

Theorem 1 demonstrates a practical result: we only need 3 interventions on each dimension of the
input in order to identify a linear SEM model using REx. Theorem 2 on the other hand, is meant
to provide insight into how the REx principle relates to causal invariance, not a practical result; the
perturbation set in these theorems is uncountably infinite. It might also be possible to prove that REx
identifies underlying causal structure in the limit of countably many diverse interventions, given some
assumptions about the underlying casual structure, but we leave this to future work.

E.1.1 THE LINEAR CASE

We begin with a theorem based on the setting explored by Peters et al. (2016):

Theorem 1. Given a Linear SEM, Xi ←
∑
j 6=i β(i,j)Xj + εi, with Y .

= X0, suppose a predictor
fβ(X) =

∑
j:j>0 βjXj + εj satisfies REx for the mean-squared error (MSE) and a perturbation set

of domains that contains 3 distinct do() interventions for each Xi : i > 0. Then βj = β0, j, for all j.

Proof. We adapt the proof of Theorem 4i from Peters et al. (2016) to show that REx will learn the
correct model under similar assumptions. Let Y ← γX + ε be the mechanism for Y , assumed to be
fixed across all domains, and let Ŷ = βX be our predictor. Then the residual isR(β) = (γ−β)X+ε.
Define αi

.
= γi−βi, and consider an intervention do(Xj = x) on the youngest nodeXj with αj 6= 0.

Then as in eqn 36/37 of Peters et al. (2016), we compare the residuals R of this intervention and of
the observational distribution:

11Although we believe they could be substantially weakened, we emphasize that the goal of REx is OOD
generalization, not causal discovery, which we view as merely a means to that end. Thus, in cases where the
causal model is not a maximal invariant predictor (MIP), we expect REx to learn the MIP, not the mechanism.
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Robs(β) = αjXj +
∑
i 6=j

αiXi + ε Rdo(Xj=x)(β) = αjx+
∑
i 6=j

αiXi + ε (7)

We now compute the MSE risk for both domains, set them equal, and simplify to find a quadratic
formula for x:

E

(αjXj +
∑
i 6=j

αiXi + ε)2

 = E

(αjx+
∑
i6=j

αiXi + ε)2

 (8)

0 = α2
jx

2 + 2αjE[
∑
i 6=j

αiXi + ε]x− E

(αjXj)
2 − 2αjXj(

∑
i 6=j

αiXi + ε)

 (9)

Since there are at most two values of x that satisfy this equation, any other value leads to a violation
of REx, so that αj needs to be zero – contradiction. In particular having domains with 3 different
do-interventions on every Xi guarantees that the risks are not equal across all domains.

E.1.2 THE GENERAL CASE

Given the assumption that a predictor satisfies REx over all interventions that do not change the
mechanism of Y , we can prove a much more general result.

Preliminaries: Our setting and assumptions for this case are:

1. We consider an arbitrary SCM, C, generating Y and X .
2. We use mY to denote the mechanism for Y , as well as the entailed distribution mY (x)

.
=

PC
Y (Y ) = P (Y |Pa(Y )) = P (Y |do(X = x)).

3. An intervention ι represents an arbitrary change to the mechanisms of C, similarly to
Arjovsky et al. (2019), and we define the causal perturbation set of Y EI as the set of
domains whose intervention does not change mY , similarly to Peters et al. (2016).

4. We assume that ` is a (strictly) proper scoring rule.
5. We say the SEM is homoskedastic when the Bayes error rate for `(mY (x),mY (x)) is the

same for all x ∈ X , otherwise, it is heteroskedastic.12

Theorem 2. In the homoskedastic case, a predictor that satisfies REx over EI uses mY (x) as its
predictive distribution on input x for all x ∈ X .

The intuition of the proof is as follows:

1. We first show that that the distribution of Y given its parents doesn’t depend on the domain,
and so mY can be used to make reliable point-wise predictions across domains.

2. This translates into equality of risk across domains when the overall difficulty of the examples
is held constant across domains, by assuming homoskedasticity.13

3. While a different predictor might do a better job on some domains, we can always find an
domain where it does worse than mY , and so mY is both unique and optimal.

We emphasize that the predictor is not restricted to any particular class of models, and is a generic
function f : X → P(Y ), where P(Y ) is the set of distributions over Y . Hence, we drop θ from the
below discussion and simply use f to represent the predictor, andR(f) its risk.

12 Note that our definitions of homoskedastic/heteroskedastic do not correspond to the types of domains
constructed in Arjovsky et al. (2019), Section 5.1, but rather are a generalization of the definitions of these terms
as commonly used in statistics. Specifically, for us, heteroskedasticity means that the “predicatability” (e.g.
variance) of Y differs across inputs x, whereas for Arjovsky et al. (2019), it means the predicatability of Y at a
given input varies across domains; we refer to this second type as domain-homo/heteroskedasticity for clarity.

13Note we could also assume no covariate shift in order to fix the difficulty, but this seems hard to motivate in
the context of interventions on X .
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Proof. LetRe(f, x) be the loss of predictor f on point x in domain e, andRe(f) =
∫
P e(x)

Re(f, x)

be the risk of f in e. Define ι(x) as the domain given by the intervention do(X = x), and note that
Rι(x)(f) = Rι(x)(f, x).

Let X1
.
= Pa(Y ). For every x ∈ X , mY (x)

.
= P (Y |do(X = x)) = P (Y |do(X1 = x1)) =

P (Y |X1 = x1) is invariant (meaning “independent of domain”) by definition; P (Y |do(X =
x)) = P (Y |do(X1 = x1)) = P (Y |X1 = x1) follows from the semantics of SEM/SCMs, and
the fact that we don’t allow mY to change across domains. Specifically Y is always generated
by the same ancestral sampling process that only depends on X1 and εY . Thus the risk of the
predictor mY (x) at point x, Re(mY , x) = `(mY (x),mY (x)) is also invariant, soit R(mY , x).
ThusRe(mY ) =

∫
P e(x)

Re(mY , x) =
∫
P e(x)

R(mY , x) is invariant wheneverR(mY , x) does not
depend on x (homoskedastic case).

Now, we show that any other g achieves higher risk than mY for at least one domain. This demon-
strates both that mY achieves minimal risk (thus satisfying REx), and that it is the unique pre-
dictor which does so (and thus no other predictors satisfy REx). We suppose such a g exists and
construct an domain where it achieves higher risk than mY . Specifically, if g 6= mY then let
x ∈ X be a point such that g(x) 6= mY (x). And since ` is a strictly proper scoring rule, this
implies that `(g(x),mY (x)) > `(mY (x),mY (x)). But the is exactly the risk of g on the domain
ι
.
= ι(do(X = x)), and thus g achieves higher risk than mY in ι.

Remark. Even given infinite data from a distribution with full support over EI , the ERM principle
does not, in general, recover the causal mechanism for Y . Rather, the ERM solution depends
on the distribution over domains. As an example, consider the colored MNIST task with 1 − ε
mass on the training domain where P (color = Red|Y = 1) = P (color = Green|Y = 0) =
.9, P (color = Red|Y = 0) = P (color = Green|Y = 1) = .1, P (Y = 0) = P (Y = 1) = .5,
and ε mass distributed across other domains using a distribution with full support. For ε close to 1,
the ERM solution will be dominated by this domain, and the model’s predictions will approximate
P̂ (Y = 1|color = Red) ≈ .9, P̂ (Y = 1|color = Green) ≈ .1.

E.2 REX AS DRO

We note that MM-REx is also performing robust optimization over a convex hull, see Fig-
ure 1. The corners of this convex hull correspond to “extrapolated domains” with coefficients
(λmin, λmin, ..., (1 − (m − 1)λmin)) (up to some permutation). However, these domains do not
necessarily correspond to valid probability distributions; in general, they are quasidistributions, which
can assign negative probabilities to some examples. This means that, even if the original risk functions
were convex, the extrapolated risks need not be. However, in the case where they are convex, then
existing theorems, such as the convergence rate result of (Sagawa et al., 2019). This raises several
important questions:

1. When is the affine combination of risks convex?

2. What are the effects of negative probabilities on the optimization problem REx faces, and
the solutions ultimately found?

We hypothesize that affine combinations of risks will remain convex in mean-squared error regression
problems under fairly weak assumptions.

Negative probabilities: Figure 8 illustrates this for a case where X = Z2
2, i.e. x is a binary vector

of length 2. Suppose x1, x2 are independent in our training domains, and represent the distribution for
a particular domain by the point (P (X1 = 1), P (X2 = 1)). And suppose our 4 training distributions
have (P (X1 = 1), P (X2 = 1)) equal to {(.4, .1), (.4, .9), (.6, .1), (.6, .9)}, with P (Y |X) fixed.

F THE RELATIONSHIP BETWEEN MM-REX VS. V-REX, AND THE ROLE EACH
PLAYS IN OUR WORK

The MM-REx and V-REx methods play different roles in our work:
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Figure 8: The perturbation set for MM-REx can include “distributions” which assign invalid (e.g.
negative) probabilities to some data-points. The range of valid distributions P (X) is shown in grey,
and P (X) for 4 different training domains are shown as red points. The interior of the dashed line
shows the perturbation set for λmin = −1/2.

• We use MM-REx to illustrate that REx can be instantiated as a variant of robust optimization,
specifically a generalization of the common Risk Interpolation approach. We also find MM-
REx provides a useful geometric intuition, since we can visualize its perturbation set as an
expansion of the convex hull of the training risks or distributions.
• We expect V-REx to be the more practical algorithm. It is simple to implement. And

it performed better in our CMNIST experiments; we believe this may be due to V-REx
providing a smoother gradient vector field, and thus more stable optimization, see Figure F.

Either method recovers the REx principle as a limiting case, as we prove in Section F.1. We also
provide a sequence of mathematical derivations that sheds light on the relationship between MM-REx
and V-REx in Section F.2 we can view these as a progression of steps for moving from the robust
optimization formulation of MM-REx to the penalty term of V-REx:

1. From minimax to closed form: We show how to arrive at the closed-form version of
MM-REx provided in Eqn. 5.

2. Closed form as mean absolute error: The closed form of MM-REx is equivalent to a
mean absolute error (MAE) penalty term when there are only two training domains.

3. V-REx as mean squared error: V-REx is exactly equivalent to a mean squared error
penalty term (always). Thus in the case of only two training domains, the difference between
MM-REx and V-REx is just a different choice of norm.

F.1 V-REX AND MM-REX ENFORCE THE REX PRINCIPLE IN THE LIMIT

We prove that both MM-REx and V-REx recover the constraint of perfect equality between risks in
the limit of λmin → −∞ or β →∞, respectively. For both proofs, we assume all training risks are
finite.
Proposition 1. The MM-REx risk of predictor fθ, RMM−REx(θ) → ∞ as λmin → −∞ unless
Rd = Re for all training domains d, e.

Proof. Suppose the risk is not equal across domains, and let the largest difference between any two
training risks be ε > 0. Then RMM−REx(θ) = (1 −mλmin) maxeRe(θ) + λmin

∑m
i=1Ri(θ) =

maxeRe(θ)−mλmin maxeRe(θ)+λmin

∑m
i=1Ri(θ) ≥ maxeRe(θ)−λminε, with the inequality

resulting from matching up the m copies of λmin maxeRe with the terms in the sum and noticing
that each pair has a non-negative value (sinceRi −maxeRe is non-positive and λmin is negative),
and at least one pair has the value −λminε. Thus sending λ → −∞ sends this lower bound on
RMM−REx to∞ and henceRMM−REx →∞ as well.

Proposition 2. The V-REx risk of predictor fθ,RV−REx(θ)→∞ as β →∞ unlessRd = Re for
all training domains d, e.
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Figure 9: Vector fields of the gradient evaluated at different values of training risksR1(θ),R2(θ).
We compare the gradients forRMM-REx (left) andRV-REx (right). Note that forRV-REx, the gradient
vectors curve smoothly towards the direction of the origin, as they approach the diagonal (where
training risks are equal); this leads to a smoother optimization landscape.

Proof. Again, let ε > 0 be the largest difference in training risks, and let µ be the mean of the
training risks. Then there must exist an e such that |Re − µ| ≥ ε/2. And thus V ari(Ri(θ)) =∑
i(Ri−µ)2 ≥ (ε/2)2, since all other terms in the sum are non-negative. Since ε > 0 by assumption,

the penalty term is positive and thusRV−REx(θ)
.
=
∑
iRi(θ) + βV ari(Ri(θ)) goes to infinity as

β →∞.

F.2 CONNECTING MM-REX TO V-REX

F.2.1 CLOSED FORM SOLUTIONS TO RISK INTERPOLATION AND MINIMAX-REX

Here, we show that risk interpolation is equivalent to the robust optimization objective of Eqn. 4.
Without loss of generality, let R1 be the largest risk, so Re ≤ R1, for all e. Thus we can express
Re = R1 − de for some non-negative de, with d1 = 0 ≥ de for all e. And thus we can write the
weighted sum of Eqn. 5 as:

RMM(θ)
.
= max

Σeλe=1
λe≥λmin

m∑
e=1

λeRe(θ) (10)

= max
Σeλe=1
λe≥λmin

m∑
e=1

λe(R1(θ)− de) (11)

= R1(θ) + max
Σeλe=2
λe≥λmin

m∑
e=1

−λe(de) (12)

(13)

Now, since de are non-negative, −de is non-positive, and the maximal value of this sum is achieved
when λe = λmin for all e ≥ 2, which also implies that λ1 = 1− (m− 1)λmin. This yields the closed
form solution provided in Eqn. 5. The special case of Risk Interpolation, where λmin = 0, yields
Eqn. 4.

F.2.2 MINIMAX-REX AND MEAN ABSOLUTE ERROR REX

In the case of only two training risks, MM-REx is equivalent to using a penalty on the mean absolute
error (MAE) between training risks. However, penalizing the pairwise absolute errors is not equivalent
when there are m > 2 training risks, as we show below. Without loss of generality, assume that
R1 < R2 < ... < Rm. Then (1/2 of) theRMAE penalty term is:
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∑
i

∑
j≤i

(Ri −Rj) = mRm −
∑
j≤m

Rj + (m− 1)Rm−1 −
∑

j≤m−1

Rj . . . (14)

=
∑
j

jRj −
∑
j

∑
i≤j

Ri (15)

=
∑
j

jRj −
∑
j

(m− j + 1)Rj (16)

=
∑
j

(2j −m− 1)Rj (17)

For m = 2, we have 1/2RMAE = (2 ∗ 1− 2− 1)R1 + (2 ∗ 2− 2− 1)R2 = R2 −R1. Now, adding
this penalty term with some coefficient βMAE to the ERM term yields:

RMAE
.
= R1 +R2 + βMAE(R2 −R1) = (1− βMAE)R1 + (1 + βMAE)R2 (18)

(19)

We wish to show that this is equal to RMM for an appropriate choice of learning rate γMAE and
hyperparameter βMAE. Still assuming thatR1 < R2, we have that:

RMM
.
= (1− λmin)R2 + λminR1 (20)

Choosing γMAE = 1/2γMM is equivalent to multiplyingRMM by 2, yielding:

2RMM
.
= 2(1− λmin)R2 + 2λminR1 (21)

Now, in order forRMAE = 2RMM, we need that:

2− 2λmin = 1 + βMAE (22)
2λmin = 1− βMAE (23)

(24)

And this holds whenever βMAE = 1− 2λmin. When m > 2, however, these are not equivalent, since
RMM puts equal weight on all but the highest risk, whereasRMAE assigns a different weight to each
risk.

F.2.3 PENALIZING PAIRWISE MEAN SQUARED ERROR (MSE) YIELDS V-REX

The V-REx penalty (Eqn. 6) is equivalent to the average pairwise mean squared error between all
training risks (up to a constant factor of 2). Recall thatRi denotes the risk on domain i. We have:

1

2n2

∑
i

∑
j

(Ri −Rj)2
=

1

2n2

∑
i

∑
j

(
R2
i +R2

j − 2RiRj
)

(25)

=
1

2n

∑
i

R2
i +

1

2n

∑
j

R2
j −

1

n2

∑
i

∑
j

RiRj (26)

=
1

n

∑
i

R2
i −

(
1

n

∑
i

Ri

)2

(27)

= Var(R) . (28)

G FURTHER RESULTS AND DETAILS FOR EXPERIMENTS MENTIONED IN MAIN
TEXT

G.1 CMNIST WITH COVARIATE SHIFT

Here we present the following additional results:

1. Figure 1 of the main text with additional results using MM-REx, see G.1. These results
used the “default” parameters from the code of Arjovsky et al. (2019).
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2. A plot with results on these same tasks after performing a random search over hyperparameter
values similar to that performed by Arjovsky et al. (2019).

3. A plot with the percentage of the randomly sampled hyperparameter combinations that have
satisfactory (> 50%) accuracy, which we count as “success” since this is better than random
chance performance.

These results show that REx is able to handle greater covariate shift than IRM, given appropriate
hyperparameters. Furthermore, when appropriately tuned, REx can outperform IRM in situations
with covariate shift. The lower success rate of REx for high values of p is because it produces
degenerate results (where training accuracy is less than test accuracy) more often.

The hyperparameter search consisted of a uniformly random search of 340 samples over the following
intervals of the hyperparameters:

1. HiddenDim = [2**7, 2**12]
2. L2RegularizerWeight = [10**-2, 10**-4]
3. Lr = [10**-2.8, 10**-4.3]
4. PenaltyAnnealIters = [50, 250]
5. PenaltyWeight = [10**2, 10**6]
6. Steps = [201, 601]
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Figure 10: This is Figure 4 of main text with additional results using MM-REx. For each covariate
shift variant (class imbalance, digit imbalance, and color imbalance from left to right as described in
"CMNIST with covariate shift" subsubsection of Section 4.1 in main text) of CMNIST, the standard
error (the vertical bars in plots) is higher for MM-REx than for V-REx.
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Figure 11: This is Figure 4 of main text (class imbalance, digit imbalance, and color imbalance from
left to right as described in "CMNIST with covariate shift" subsubsection of Section 4.1 in main text),
but with hyperparameters of REx and IRM each tuned to perform as well as possible for each value
of p for each covariate shift type.

G.2 SEMS FROM “INVARIANT RISK MINIMIZATION”

Here we present experiments on the (linear) structural equation model (SEM) tasks introduced by
Arjovsky et al. (2019). Arjovsky et al. (2019) construct several varieties of SEM where the task is
to predict targets Y from inputs X1, X2, where X1 are (non-anti-causal) causes of Y , and X2 are
(anti-causal) effects of Y . We refer the reader to Section 5.1 and Figure 3 of Arjovsky et al. (2019)
for more details. We use the same experimental settings as Arjovsky et al. (2019) (except we only
run 7 trials), and report results in Table 4.
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Figure 12: This also corresponds to class imbalance, digit imbalance, and color imbalance from left
to right as described in "CMNIST with covariate shift" subsubsection of Section 4.1 in main text;
but now the y-axis refers to what percentage of the randomly sampled hyperparameter combinations
we deemed to to be satisfactory. We define satisfactory as simultaneously being better than random
guessing and having train accuracy greater than test accuracy. For p less than .5, a larger percentage
of hyperparameter combinations are often satisfactory for REx than for IRM; for p greater than .5,
a larger percentage of hyperparameter combinations are often satisfactory for IRM than for REx
because train accuracy is greater than test accuracy for more hyperparameter combinations for IRM.
We stipulate that train accuracy must be greater than test accuracy because test accuracy being greater
than train accuracy usually means the model has learned a degenerate prediction rule such as "not
color".

These experiments include several variants of a simple SEM, given by:

X1 = N1

Y = W1→YX1 +NY

X2 = WY→2Y +N2

WhereN1, NY , N2 are all sampled i.i.d. from normal distributions. The variance of these distributions
may vary across domains.

While REx achieves good performance in the domain-homoskedastic case, it performs poorly in the
domain-heteroskedastic case, where the amount of intrinsic noise, σ2

y in the target changes across
domains.14 Intuitively, this is because the irreducible error varies across domains in these tasks,
meaning that the risk will be larger on some domains than others, even if the model’s predictions
match the expectation E(Y |Pa(Y )). We tried using a “baseline” (see Eqn. 4) of re = V ar(Ye)
(Meinshausen et al., 2015) to account for the different noise levels in Y , but this did not work.

We include a mathematical analysis of the simple SEM given above in order to better understand why
REx succeeds in the domain-homoskedastic, but not the domain-heteroskedastic case. Assuming that
Y,X1, X2 are scalars, this SEM becomes

X1 = N1

Y = w1→yN1 +NY

X2 = wy→2w1→yN1 + wy→2NY +N2

We consider learning a model Ŷ = αX1 + βX2. Then the residual is:

Ŷ − Y = (α+ w1→y(βwy→2 − 1))N1 + (βwy→2 − 1)NY + βN2

Since all random variables have zero mean, the MSE loss is the variance of the residual. Using the
fact that the noise N1, NY , N2 are independent, this equals:

E[(Ŷ − Y )2] = (α+ w1→y(βwy→2 − 1))2σ2
1 + (βwy→2 − 1)2σ2

Y + β2σ2
2

Thus when (only) σ2 changes, the only way to keep the loss unchanged is to set the coefficient in
front of σ2 to 0, meaning β = 0. By minimizing the loss, we then recover α = w1→y; i.e. in the
domain-homoskedastic setting, the loss equality constraint of REx yields the causal model. On the
other hand, if (only) σY changes, then REx enforces β = 1/wy→2, which then induces α = 0,
recovering the anticausal model.

14See Footnote 12.
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FOU(c) FOU(nc) FOS(c) FOS(nc)

IRM 0.001±0.000 0.001±0.000 0.001±0.000 0.000±0.000
REx, re = 0 0.001±0.000 0.008±0.002 0.007±0.002 0.000±0.000
REx, re = V(Ye) 0.816±0.149 1.417±0.442 0.919±0.091 0.000±0.000

POU(c) POU(nc) POS(c) POS(nc)

IRM 0.004±0.001 0.006±0.003 0.002±0.000 0.000±0.000
REx, re = 0 0.004±0.001 0.004±0.001 0.002±0.000 0.000±0.000
REx, re = V(Ye) 0.915±0.055 1.113±0.085 0.937±0.090 0.000±0.000

FEU(c) FEU(nc) FES(c) FES(nc)

IRM 0.0053±0.0015 0.1025±0.0173 0.0393±0.0054 0.0000±0.0000
REx, re = 0 0.0390±0.0089 19.1518±3.3012 7.7646±1.1865 0.0000±0.0000
REx, re = V(Ye) 0.7713±0.1402 1.0358±0.1214 0.8603±0.0233 0.0000±0.0000

PEU(c) PEU(nc) PES(c) PES(nc)

IRM 0.0102±0.0029 0.0991±0.0216 0.0510±0.0049 0.0000±0.0000
REx, re = 0 0.0784±0.0211 46.7235±11.7409 8.3640±2.6108 0.0000±0.0000
REx, re = V(Ye) 1.0597±0.0829 0.9946±0.0487 1.0252±0.0819 0.0000±0.0000

Table 4: Average mean-squared error between true and estimated weights on causal (X1) and
non-causal (X2) variables. Top 2: When the level of noise in the anti-causal features varies across
domains, REx performs well (FOU, FOS, POU, POS). Bottom 2: When the level of noise in the
targets varies instead, REx performs poorly (FEU, FES, PEU, PES). Using the baselines re = V(Y )
does not solve the problem, and indeed, hurts performance on the homoskedastic domains.

While REx (like ICP (Peters et al., 2016)) assumes the mechanism for Y is fixed across domains
(meaning P (Y |Pa(Y )) is independent of the domain, e), IRM makes the somewhat weaker assump-
tion that E(Y |Pa(Y )) is independent of domain. While it is plausible that an appropriately designed
variant of REx could work under this weaker assumption, we believe forbidding interventions on Y
is not overly restrictive, and such an extension for future work.

G.3 REINFORCEMENT LEARNING EXPERIMENTS

Here we provide details and further results on the experiments in Section 4.4. We take tasks from the
Deepmind Control Suite (Tassa et al., 2018) and modify the original state, s, to produce observation,
o = (s + ε, ηs′) including noise ε and spurious features ηs′, where s′ contains 1 or 2 dimensions of
s. The scaling factor takes values η = 1/2/3 for the two training and test domains, respectively. The
agent takes o as input and learns a representation using Soft Actor-Critic (Haarnoja et al., 2018) and
an auxiliary reward predictor, which is trained to predict the next 3 rewards conditioned on the next 3
actions. Since the spurious features are copied from the state before the noise is added, they are more
informative for the reward prediction task, but they do not have an invariant relationship with the
reward because of the domain-dependent η.

The hyperparameters used for training Soft Actor-Critic can be found in Table 5. We used
cartpole_swingup as a development task to tune the hyperparameters of penalty weight (cho-
sen from [0.01, 0.1, 1, 10]) and number of iterations before the penalty is turned up (chosen from
[5000, 10000, 20000]), both for REx and IRM. The plots with the hyperparameter sweep are in Figure
13.
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Figure 13: Hyperparameter sweep for IRM and REx on cartpole_swingup. Green, blue, and
orange curves correspond to REx, ERM, and IRM, respectively. The subfigure titles state the penalty
strength (“penalty”) and after how many iterations the penalty strength was increased (“iters”). We
chose a penalty factor of 1 and 10k iterations.

Parameter name Value
Replay buffer capacity 1000000
Batch size 1024
Discount γ 0.99
Optimizer Adam
Critic learning rate 10−5

Critic target update frequency 2
Critic Q-function soft-update rate τQ 0.005
Critic encoder soft-update rate τenc 0.005
Actor learning rate 10−5

Actor update frequency 2
Actor log stddev bounds [−5, 2]
Encoder learning rate 10−5

Decoder learning rate 10−5

Decoder weight decay 10−7

L1 regularization weight 10−5

Temperature learning rate 10−4

Temperature Adam’s β1 0.9
Init temperature 0.1

Table 5: A complete overview of hyperparameters used for reinforcement learning experiments.

H EXPERIMENTS NOT MENTIONED IN MAIN TEXT

We include several other experiments which do not contribute directly to the core message of our
paper. Here is a summary of the take-aways from these experiments:

1. Our experiments in the CMNIST domain suggest that the IRM/V-REx penalty terms should
be amplified exactly when the model starts overfitting training distributions.

2. Our financial indicators experiments suggest that IRM and REx often perform remarkably
similarly in practice.

H.1 A POSSIBLE APPROACH TO SCHEDULING IRM/REX PENALTIES

We’ve found that REx and IRM are quite sensitive to the choice of hyperparameters. In particular,
hyperparameters controlling the scheduling of the IRM/V-REx penalty terms are of critical importance.
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For the best performance, the penalty should be increased the relative weight of the penalty term
after approximately 100 epochs of training (using a so-called “waterfall” schedule (Desjardins et al.,
2015)). See Figure 14(b) for a comparison. We also tried an exponential decay schedule instead of
the waterfall and found the results (not reported) were significantly worse, although still above 50%
accuracy.

Given the methodological constraints of out-of-distribution generalization mentioned in (Gulrajani &
Lopez-Paz, 2020), this could be a significant practical issue for applying these algorithms. We aim to
address this limitation by providing a guideline for when to increase the penalty weight, based only
on the training domains. We hypothesize that successful learning of causal features using REx or
IRM should proceed in two stages:

1. In the first stage, predictive features are learned.

2. In the second stage, causal features are selected and/or predictive features are fine-tuned for
stability.

This viewpoint suggests that we could use overfitting on the training tasks as an indicator for when to
apply (or increase) the IRM or REx penalty.

The experiments presented in this section provide observational evidence consistent with this hypoth-
esis. However, since the hypothesis was developed by observing patterns in the CMNIST training
runs, it requires further experimental validation on a different task, which we leave for future work.

H.1.1 RESULTS AND INTERPRETATION

In Figure 14, we demonstrate that the optimal point to apply the waterfall in the CMNIST task is after
predictive features have been learned, but before the model starts to memorize training examples.
Before predictive features are available, the penalty terms push the model to learn a constant predictor,
impeding further learning. And after the model starts to memorize, it become difficult to distinguish
anti-causal and causal features. This second effect is because neural networks often have the capacity
to memorize all training examples given sufficient training time, achieving and near-0 loss (Zhang
et al., 2016). In the limits of this memorization regime, the differences between losses become small,
and gradients of the loss typically do as well, and so the REx and IRMv1 penalties no longer provide
a strong or meaningful training signal, see Figure 15.

H.2 DOMAIN GENERALIZATION: VLCS AND PACS

Here we provide earlier experiments on the VLCS and PACS dataset. We removed these experiments
from the main text of our paper in favor of the more complete DomainBed results.

To test whether REx provides a benefit on more realistic domain generalization tasks, we compared
REx, IRM and ERM performance on the VLCS (Torralba & Efros, 2011) and PACS (Li et al., 2017)
image datasets. Both datasets are commonly-used for multi-source domain generalization. The task
is to train on three domains and generalize to a fourth one at test time.

Since every domain in PACS is used as a test set when training on the other three domains, it is
not possible to perform a methodologically sound evaluation on PACS after examining results on
any of the data. Thus to avoid performing any tuning on test distributions, we use VLCS to tune
hyperparameters and then apply these exact same settings to PACS and report the final average over
10 runs on each domain.

We use the same architecture, training procedure and data augmentation strategy as the (formerly)
state-of-the-art Jigsaw Puzzle approach (Carlucci et al., 2019) (except with IRM or V-REx intead
of JigSaw as auxilliary loss) for all three methods. As runs are very noisy, we ran each experiment
10 times, and report average test accuracies extracted at the time of the highest validation accuracy
on each run. Results on PACS are in Table 7 while detailed results and performance on VLCS are
left to the Appendix. On PACS we found that REx outperforms IRM and IRM outperforms ERM on
average, while all are worse than the state-of-the-art Jigsaw method.
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Figure 14: Stability penalties should be applied around when traditional overfitting begins, to ensure
that the model has learned predictive features, and that penalties still give meaningful training signals.
Top: Test accuracy as a function of epoch at which penalty term weight is increased (learning rate is
simultaneously decreased proportionally). Choosing this hyperparameter correctly is essential for
good performance. Middle: Generalization gap on a validation set with 85% correlation between
color and label (the same as the average training correlation). The best test accuracy is achieved by
increasing the penalty when the generalization gap begins to increase. The increase clearly indicates
memorization because color and shape are only 85%/75% correlated with the label, and so cannot be
used to make predictions with higher than 85% accuracy. Bottom: Accuracy on training/test sets,
as well as an auxilliary grayscale set. Training/test performance reach 85%/15% after a few epochs
of training, but grayscale performance improves, showing that meaningful features are still being
learned.

We use all hyperparameters from the original Jigsaw codebase.15 We use Imagenet pre-trained
AlexNet features and chose batch-size, learning rate, as well as penalty weights based on performance
on the VLCS dataset where test performance on the holdout domain was used for the set of parameters
producing the highest validation accuracy. The best performing parameters on VLCS were then
applied to the PACS dataset without further changes. We searched over batch-sizes in {128, 384},
over penalty strengths in {0.0001, 0.001, 0.01, 0.1, 1, 10}, learning rates in {0.001, 0.01} and used
average performance over all 4 VLCS domains to pick the best performing hyperparameters. Table 6
shows results on VLCS with the best performing hyperparameters.

15https://github.com/fmcarlucci/JigenDG
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Figure 15: Given sufficient training time, empirical risk minimization (ERM) minimizes both REx
and IRMv1 penalty terms on Colored MNIST (without including either term in the loss function).
This is because the model (a deep network) has sufficient capacity to fit the training sets almost
perfectly. This prevents these penalties from having the intended effect, once the model has started to
overfit. The y-axis is in log-scale.

28



Under review as a conference paper at ICLR 2021

The final parameters for all methods on PACS were a batch size of 384 with 30 epochs of training with
Adam, using a learning rate of 0.001, and multiplying it by 0.1 after 24 epochs (this step schedule
was taken from the Jigsaw repo).The penalty weight chosen for Jigsaw was 0.9; for IRM and REx it
was 0.1.We used the same data-augmentation pipeline as the original Jigsaw code for ERM, IRM,
Jigsaw and REx to allow for a fair comparison.

VLCS CALTECH SUN PASCAL LABELME Average
REx (ours) 96.72 63.68 72.41 60.40 73.30
IRM 95.99 62.85 71.71 59.61 72.54
ERM 94.76 61.92 69.03 60.55 71.56
Jigsaw (SOTA) 96.46 63.84 70.49 60.06 72.71

Table 6: Accuracy (percent) of different methods on the VLCS task. Results are test accuracy at the
time of the highest validation accuracy, averaged over 10 runs. On VLCS REx outperforms all other
methods. Numbers are shown in strike-through because we selected our hyperparameters based on
highest test set performance; the goal of this experiment was to find suitable hyperparameters for the
PACS experiment.

PACS Art Painting Cartoon Sketch Photo Average
REx (ours) 66.27±0.46 68.8±0.28 59.57±0.78 89.60±0.12 71.07
IRM 66.46±0.31 68.60±0.40 58.66±0.73 89.94±0.13 70.91
ERM 66.01±0.22 68.62±0.36 58.38±0.60 89.40±0.18 70.60

Jigsaw (SOTA) 66.96±0.39 66.67±0.41 61.27±0.73 89.54±0.19 71.11

Table 7: Accuracy (percent) of different methods on the PACS task. Results are test accuracy at the
time of the highest validation accuracy, averaged over 10 runs. REx outperforms ERM on average,
and performs similar to IRM and Jigsaw (the state-of-the-art).

H.3 FINANCIAL INDICATORS

We find that IRM and REx seem to perform similarly across different splits of the data in a prediction
task using financial data. The dataset is split into five years, 2014–18, containing 37 publicly reported
financial indicators of several thousand publicly listed companies each. The task is to predict if a
company’s value will increase or decrease in the following year (see Appendix for dataset details.)
We consider each year a different domain, and create 20 different tasks by selecting all possible
combinations of domains where three domains represent the training sets, one domain the validation
set, and another one the test set. We train an MLP using the validation set to determine an early
stopping point, with β = 104. The per-task results summarized in fig. 16 indicate substantial
differences between ERM and IRM, and ERM and REx. The predictions produced by IRM and REx,
however, only differ insignificantly, highlighting the similarity of IRM and REx. While performance
on specific tasks differs significantly between ERM and IRM/REx, performance averaged over tasks
is not significantly different.

H.3.1 EXPERIMENT DETAILS

We use v1 of the dataset published on 16 and prepare the data as described in.17 We further remove
all the variables that are not shared across all 5 years, leaving us with 37 features, and whiten the data
through centering and normalizing by the standard deviation.

On each subtask, we train an MLP with two hidden layers of size 128 with tanh activations and
dropout (p=0.5) after each layer. We optimize the binary cross-entropy loss using Adam (learning
rate 0.001, β1 = 0.9, β2 = 0.999, ε = 10−8), and an L2 penalty (weight 0.001). In the IRM/REx
experiments, the respective penalty is added to the loss (β = 1) and the original loss is scaled by a

16https://www.kaggle.com/cnic92/200-financial-indicators-of-us-stocks-20142018
17https://www.kaggle.com/cnic92/explore-and-clean-financial-indicators-dataset
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Figure 16: Financial indicators tasks. The left panel indicates the set of training domains; the
middle and right panels show the test accuracy on the respective domains relative to ERM (a black
dot corresponds to a training domain; a colored patch indicates the test accuracy on the respective
domain.)

Overall accuracy Min acc. Max acc.

ERM 54.6± 4.6 47.6 66.2
IRM 55.3± 5.9 45.9 67.5
REx 55.5± 6.0 47.2 68.0

Table 8: Test accuracy of models trained on the financial domain dataset, averaged over all 20 tasks,
as well as min./max. accuracy across the tasks.

factor 10−4 after 1000 iterations. Experiments are run for a maximum of 9000 training iterations
with early stopping based on the validation performance. All results are averaged over 3 trials. The
overall performance of the different models, averaged over all tasks, is summarized in Tab. 8. The
difference in average performance between ERM, IRM, and REx is not statistically significant, as the
error bars are very large.

I OVERVIEW OF OTHER TOPICS RELATED TO OOD GENERALIZATION

Domain adaptation (Ben-David et al., 2010) shares the goal of generalizing to new distributions at
test time, but allows some access to the test distribution. A common approach is to make different
domains have a similar distribution of features (Pan et al., 2010). A popular deep learning method
for doing so is Adversarial Domain Adaptation (ADA) (Ganin et al., 2016; Tzeng et al., 2017; Long
et al., 2018; Li et al., 2018), which seeks a “invariant representation” of the inputs, i.e. one whose
distribution is domain-independent. Recent works have identified fundamental shortcomings with
this approach, however (Zhao et al., 2019; Johansson et al., 2019; Arjovsky et al., 2019; Wu et al.,
2020).

Complementary to the goal of domain generalization is out-of-distribution detection (Hendrycks
& Gimpel, 2016; Hendrycks et al., 2018), where the goal is to recognize examples as belonging
to a new domain. Three common deep learning techniques that can improve OOD generalization
are adversarial training (Goodfellow et al., 2014; Hendrycks & Dietterich, 2019), self-supervised
learning (van den Oord et al., 2018; Hjelm et al., 2018; Hendrycks et al., 2019b; Albuquerque et al.,
2020) and data augmentation (Krizhevsky et al., 2012; Zhang et al., 2017; Cubuk et al., 2018;
Shorten & Khoshgoftaar, 2019; Hendrycks et al., 2019a; Carlucci et al., 2019). These methods can
also been combined effectively in various ways (Tian et al., 2019; Bachman et al., 2019; Gowal
et al., 2019). Data augmentation and self-supervised learning methods typically use prior knowledge
such as 2D image structure. Several recent works also use prior knowledge to design augmentation
strategies for invariance to superficial features that may be spuriously correlated with labels in object
recognition tasks (He et al., 2019; Wang et al., 2019; Gowal et al., 2019; Ilse et al., 2020). In
contrast, REx can discover which features have invariant relationships with the label without such
prior knowledge.
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