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Abstract

In traditional federated learning, a single global
model cannot perform equally well for all clients.
Therefore, the need to achieve the client-level fair-
ness in federated system has been emphasized,
which can be realized by modifying the static ag-
gregation scheme for updating the global model to
an adaptive one, in response to the local signals of
the participating clients. Our work reveals that ex-
isting fairness-aware aggregation strategies can be
unified into an online convex optimization frame-
work, in other words, a central server’s sequential
decision making process. To enhance the decision
making capability, we propose simple and intu-
itive improvements for suboptimal designs within
existing methods, presenting AAggFF. Consider-
ing practical requirements, we further subdivide
our method tailored for the cross-device and the
cross-silo settings, respectively. Theoretical anal-
yses guarantee sublinear regret upper bounds for
both settings: O(

√
T logK) for the cross-device

setting, and O(K log T ) for the cross-silo setting,
with K clients and T federation rounds. Exten-
sive experiments demonstrate that the federated
system equipped with AAggFF achieves better
degree of client-level fairness than existing meth-
ods in both practical settings. Code is available at
https://github.com/vaseline555/AAggFF.
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1. Introduction
Federated Learning (FL) has been posed as an effective
strategy to acquire a global model without centralizing data,
therefore with no compromise in privacy (McMahan et al.,
2017). It is commonly assumed that the central server coor-
dinates the whole FL procedure by repeatedly aggregating
local updates from participating K clients during T rounds.

Since each client updates the copy of a global model with its
own data, variability across clients’ data distributions causes
many problems (Kairouz et al., 2021; Li et al., 2020b).
The client-level fairness (Chen et al., 2023) is one of the
main problems affected by such a statistical heterogeneity
(Kairouz et al., 2021; Li et al., 2020b; Mohri et al., 2019; Li
et al., 2019). Although the performance of a global model
is high in average, some clients may be more benefited than
others, resulting in violation of the client-level fairness. In
this situation, there inevitably exists a group of clients who
cannot utilize the trained global model due to its poor per-
formance. This is a critical problem in practice since the
underperformed groups may lose motivation to participate
in the federated system. To remedy this problem, previous
works (Mohri et al., 2019; Li et al., 2019; 2020a; Hu et al.,
2022; Zhang et al., 2022) proposed to modify the static
aggregation scheme into an adaptive aggregation strategy,
according to given local signals (e.g., losses or gradients).
In detail, the server re-weights local updates by assigning
larger mixing coefficients to higher local losses.

When updating the mixing coefficients, however, only a few
bits are provided to the server, compared to the update of
a model parameter. For example, suppose that there exist
K clients in the federated system, each of which has N
local samples. When all clients participate in each round,
KN samples are used effectively for updating a new global
model θ. On the contrary, only K bits (e.g., local losses:
F1(θ), ..., FK(θ)) are provided to the server for an update
of mixing coefficients. This is aggravated in cases where K
is too large, thus client sampling is inevitably required. In
this case, the server is provided with far less than K signals,
which hinders faithful update of the mixing coefficients.

For sequentially updating a status in this sample-deficient sit-
uation, the Online Convex Optimization (OCO) framework
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is undoubtedly the best solution. Interestingly, we discov-
ered that most existing adaptive aggregation strategies can
be readily unified into the OCO framework. Starting from
this unification result, we propose an improved design for a
fair FL algorithm in the view of sequential decision making.
Since there exist OCO algorithms specialized for the setting
where the decision space is a simplex (i.e., same as the do-
main of the mixing coefficient), these may be adopted to FL
setting with some modifications for practical constraints.

In practice, FL is subdivided into two settings: cross-silo
setting and cross-device setting (Kairouz et al., 2021). For
K clients and T training rounds, each setting requires a
different dependency on K and T . In the cross-silo setting,
the number of clients (e.g., institutions) is small and usu-
ally less than the number of rounds (i.e., K < T ). e.g.,
K = 20 institutions with T = 200 rounds (Dayan et al.,
2021). On the other hand, in the cross-device setting, the
number of clients (e.g., mobile devices) is larger than the
number of rounds (K > T ). e.g., K = 1.5 × 106 with
T = 3, 000 rounds (Hard et al., 2018). In designing an FL
algorithm, these conditions should be reflected for the sake
of practicality.

Contributions We propose AAggFF, a sequential deci-
sion making framework for the central server in FL tailored
for inducing client-level fairness in the system. The contri-
butions of our work are summarized as follows.

• We unify existing fairness-aware adaptive aggregation
methods into an OCO framework and propose better
online decision making designs for pursuing client-
level fairness by the central server. (Section 3)

• We propose AAggFF, which is designed to enhance the
client-level fairness, and further specialize our method
into two practical settings: AAggFF-S for cross-silo
FL and AAggFF-D for cross-device FL. (Section 4)

• We provide regret analyses on the behavior of two
algorithms, AAggFF-S and AAggFF-D, presenting
sublinear regrets. (Section 5)

• We evaluate AAggFF on extensive benchmark datasets
for realistic FL scenarios with other baselines.
AAggFF not only boosts the worst-performing clients
but also maintains overall performance. (Section 6)

2. Related Works
Client-Level Fairness in Federated Learning The statis-
tical heterogeneity across clients often causes non-uniform
performances of a single global model on participating
clients, which is also known as the violation of client-level
fairness. Fairness-aware FL algorithms aim to eliminate
such inequality to achieve uniform performance across all

clients. There are mainly two approaches to address the
problem (Chen et al., 2023): a single model approach, and
a personalization approach. This paper mainly focuses on
the former, which is usually realized by modifying the FL
objective, such as a minimax fairness objective (Mohri et al.,
2019) (which is also solved by multi-objective optimization
(Hu et al., 2022) and is also modified to save a commu-
nication cost (Deng et al., 2020)), alpha-fairness (Mo &
Walrand, 2000) objective (Li et al., 2019), suppressing out-
liers (i.e., clients having high losses) by tilted objective (Li
et al., 2020a), and adopting the concept of proportional fair-
ness to reach Nash equilibrium in performance distributions
(Zhang et al., 2022). While the objective can be directly
aligned with existing notions of fairness, it is not always a
standard for the design of a fair FL algorithm. Notably, most
of works share a common underlying principle: assigning
more weights to a local update having larger losses.

Definition 2.1. (Client-Level Fairness; Definition 1 of (Li
et al., 2019), Section 4.2 of (Chen et al., 2023)) We in-
formally define the notion of client-level fairness in FL as
the status where a trained global model yields uniformly
good performance across all participating clients. Note that
uniformity can be measured by the spread of performances.

Online Decision Making The OCO framework is de-
signed for making sequential decisions with the best utili-
ties, having solid theoretical backgrounds. It aims to min-
imize the cumulative mistakes of a decision maker (e.g.,
central sever), given a response of the environment (e.g.,
losses from clients) for finite rounds t ∈ [T ]. The cumu-
lative mistakes of the learner are usually denoted as the
cumulative regret (see (5)), and the learner can achieve sub-
linear regret in finite rounds using well-designed OCO al-
gorithms (Shalev-Shwartz et al., 2012; McMahan, 2017;
Orabona, 2019). In designing an OCO algorithm, two
main frameworks are mainly considered: Online Mirror De-
scent (OMD) (Nemirovskij & Yudin, 1983; Warmuth et al.,
1997; Beck & Teboulle, 2003) and Follow-The-Regularized-
Leader (FTRL) (Abernethy et al., 2009; Hazan & Kale,
2010; Agarwal & Hazan, 2005; Shalev-Shwartz & Singer,
2006). One of popular instantiations of both frameworks is
the Online Portfolio Selection (OPS) algorithm, of which
decision space is restricted to a probability simplex. The
universal portfolio algorithm is the first that yields an opti-
mal theoretical regret, O(K log T )) despite its heavy com-
putation (O(K4T 14)) (Cover, 1991), the Online Gradient
Descent (Zinkevich, 2003) and the Exponentiated Gradient
(EG) (Helmbold et al., 1998) show slightly worse regrets
(both are O(

√
T )), but can be executed in linear runtime

in practice (O(K)). Plus, the Online Newton Step (ONS)
(Agarwal et al., 2006; Hazan et al., 2007) presents logarith-
mic regret with quadratic runtime in K. Since these OPS
algorithms are proven to perform well when the decision
is a probability vector, we adopt them for finding adaptive
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mixing coefficients to achieve performance fairness in FL.
To the best of our knowledge, we are the first to consider
fair FL algorithms under the OCO framework.

3. Backgrounds
3.1. Mixing Coefficients in Federated Learning

The canonical objective of FL is given as follows:

min
θ∈Rd

F (θ) =
∑K

i=1
piFi (θ) . (1)

For K clients, the FL objective aims to minimize the com-
posite objectives, where client i’s local objective is Fi (θ),
weighted by a corresponding mixing coefficient pi ≥ 0
(
∑K

i=1 pi = 1), which is usually set to be a static value pro-
portional to the sample size ni: e.g., pi = ni

n , n =
∑K

j=1 nj .
Each local objective, Fi (θ) = 1

ni

∑ni

k=1 L (ξk;θ), is de-
fined as the average of per-sample training loss L (·;θ) cal-
culated from the local dataset, Di = {ξk}ni

k=1. Denote
∥ · ∥p as an Lp-norm and ∆K−1 as a probability simplex
where ∆K−1 =

{
q ∈ RK : qi ≥ 0, ∥q∥1 = 1

}
. Note that

the mixing coefficient is a member of ∆K−1.

In vanilla FL, the role of the server to solve (1) is to naively
add up local updates into a new global model by weighting
each update with the static mixing coefficient proportional
to ni. As the fixed scheme often violates the client-level
fairness, the server should use adaptive mixing coefficients
to pursue overall welfare across clients. This can be modeled
as an optimization w.r.t. p ∈ ∆K−1, apart from (1).

3.2. Online Convex Optimization as a Unified Language

To mitigate the performance inequalities across clients, adap-
tive mixing coefficients can be estimated in response to local
signals (e.g., local losses of a global model). Intriguingly,
the adaptive aggregation strategies in existing fair FL meth-
ods (McMahan et al., 2017; Mohri et al., 2019; Li et al.,
2019; 2020a; Zhang et al., 2022) can be readily unified into
one framework, borrowing the language of OCO.
Remark 3.1. Suppose we want to solve a minimization
problem defined in (2). For all t ∈ [T ], it aims to minimize a
decision loss ℓ(t) (p) = −

〈
p, r(t)

〉
(where ⟨·, ·⟩ is an inner

product) defined by a response r(t) ∈ RK and a decision
p ∈ ∆K−1, with a regularizer R (p) having a constant step
size η ∈ R≥0.

p(t+1) = argmin
p∈∆K−1

ℓ(t) (p) + ηR (p) (2)

As long as the regularizerR (p) in the Remark 3.1 is fixed as
the negative entropy, i.e., R (p) =

∑K
i=1 pi log pi, this sub-

sumes aggregation strategies proposed in FedAvg (McMa-
han et al., 2017), AFL (Mohri et al., 2019), q-FFL (Li et al.,

2019), TERM (Li et al., 2020a), and PropFair (Zhang
et al., 2022). It has an update as follows.

p
(t+1)
i ∝ p(t)i exp

(
r
(t)
i /η

)
(3)

This is widely known as EG (Helmbold et al., 1998), a
special realization of OMD (Nemirovskij & Yudin, 1983;
Warmuth et al., 1997; Beck & Teboulle, 2003). We summa-
rize how existing methods can be unified under this OCO
framework in Table 1. The detailed derivations of mixing co-
efficients from each method are provided in Appendix A.1.

To sum up, we can interpret the aggregation mechanism in
FL is secretly a result of the server’s sequential decision
making behind the scene. Since the sequential learning
scheme is well-behaved in a sample-deficient setting, adopt-
ing OCO is surely a suitable tactic for the server in that only
a few bits are provided to update the mixing coefficients in
each FL round, e.g, the number of local responses collected
from the clients is at most K. However, existing methods
have not been devised with sequential decision making in
mind. Therefore, one can easily find suboptimal designs
inherent in existing methods from an OCO perspective.

3.3. Sequential Probability Assignment

To address the client-level fairness, the server should make
an adaptive mixing coefficient vector, p(t) ∈ ∆K−1, for
each round t ∈ [T ]. In other words, the server needs to
assign appropriate probabilities sequentially to local updates
in every FL communication round.

Notably, this fairly resembles OPS, which seeks to maxi-
mize an investor’s cumulative profits on a set of K assets
during T periods, by assigning his/her wealth p ∈ ∆K−1 to
each asset every time. In the OPS, the investor observes a
price of all assets, r(t) ∈ RK for each time t ∈ [T ] and ac-
cumulates corresponding wealth according to the portfolio
p(t) ∈ ∆K−1. After T periods, achieved cumulative profits
is represented as

∏T
t=1

(
1 +

〈
p(t), r(t)

〉)
, or in the form of

logarithmic growth ratio,
∑T

t=1 log
(
1 +

〈
p(t), r(t)

〉)
. In

other words, one can view that OPS algorithms adopt nega-
tive logarithmic growth as a decision loss.

Definition 3.2. (Negative Logarithmic Growth as a Deci-
sion Loss) For all t ∈ [T ], define a decision loss ℓ(t) :
∆K−1 × RK → R as follows.

ℓ(t)(p) = − log(1 + ⟨p, r(t)⟩), (4)

where p is a decision vector in ∆K−1 and r(t) is a response
vector given at time t.

Again, the OPS algorithm can serve as a metaphor for the
central server’s fairness-aware online decision making in FL.
For example, one can regard a response (i.e., local losses)
of K clients at a specific round t the same as returns of
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Table 1: Summary of Unification Results of Existing Fair FL Methods into an OCO Framework (2), viz. Remark 3.1

Method Original Objective (w.r.t. θ)
Response
(r

(t)
i )

Last Decision
(p

(t)
i )

Step Size
(η)

New Decision
(p

(t+1)
i )

FedAvg (McMahan et al., 2017) minθ∈Rd

∑K
i=1

ni

n Fi (θ) 0 ni/n 1 ∝ ni
q-FedAvg (Li et al., 2019)
(AFL (Mohri et al., 2019))

minθ∈Rd

∑K
i=1

ni/n
q+1 F

q+1
i (θ)

(AFL if q →∞)
q logFi(θ

(t)) ni/n 1 ∝ niF q
i

(
θ(t)
)

TERM (Li et al., 2020a) minθ∈Rd
1
λ log(

∑K
i=1

ni

n exp(λFi(θ))) Fi(θ
(t)) ni/n

1
λ ∝ ni exp

(
λFi

(
θ(t)
))

PropFair (Zhang et al., 2022) minθ∈Rd −
∑K

i=1
ni

n log(M − Fi(θ)) − log(M − Fi(θ
(t))) ni/n 1 ∝ ni

M−Fi(θ(t))

assets on the day t. Similarly, by considering cumulative
losses (i.e., cumulative wealth) achieved until t, the server
can determine the next mixing coefficients (i.e., portfolio
ratios) in ∆K−1. In the same context, the negative loga-
rithmic growth can also be adopted as the decision loss.
Accordingly, we can adopt well-established OPS strategies
for achieving client-level fairness in FL.

Including OPS, a de facto standard objective for OCO is to
minimize the regret defined in (5), with regard to the best
decision in hindsight, p⋆ ≜ argminp∈∆K−1

∑T
t=1 ℓ

(t)(p),
given all decisions {p(1), ...,p(T )}. (Shalev-Shwartz et al.,
2012; McMahan, 2017; Orabona, 2019)

Regret(T )(p⋆) =
∑T

t=1
ℓ(t)(p(t))−

∑T

t=1
ℓ(t) (p⋆) (5)

In finite time T , an online decision making strategy should
guarantee that the regret grows sublinearly. Therefore, when
OPS strategies are modified for the fair FL, we should check
if the strategy can guarantee vanishing regret upper bound
in T . Besides, we should also consider the dependency on
K due to practical constraints of the federated system.

4. Proposed Methods
4.1. Improved Design for Better Decision Making

From the Remark 3.1 and Table 1, one can easily notice
suboptimal designs of existing methods in terms of OCO,
as follows.

a) Existing methods are stateless in making a new de-
cision, p(t+1)

i . The previous decision is ignored as a
fixed value (p(t)i = ni/n) in the subsequent decision
making. This naive reliance on static coefficients still
runs the risk of violating client-level fairness.

b) The decision maker sticks to a fixed and arbitrary step
size η, or a fixed regularizer R(p) across t ∈ [T ],
which can significantly affect the performance of OCO
algorithms and should be manually selected.

c) The decision loss is neither Lipschitz continuous nor
strictly convex, which is related to achieving a sublinear
regret.

As a remedy for handling a) and b), the OMD objective for
the server (i.e., (2)) can be replaced as follows.

p(t+1) = argmin
p∈∆K−1

∑t

τ=1
ℓ(τ) (p) +R(t+1) (p) (6)

This is also known as FTRL objective (Abernethy et al.,
2009; Hazan & Kale, 2010; Agarwal & Hazan, 2005;
Shalev-Shwartz & Singer, 2006), which is inherently a
stateful sequential decision making algorithm that adapts to
histories of decision losses,

∑t
τ=1 ℓ

(τ) (p), where ℓ(t) :
∆K−1 × RK → R, with the time-varying regularizer
R(t) : ∆K−1 → R. Note that the time-varying regularizer
is sometimes represented as, η(t+1)R(p), a fixed regularizer
R (p) multiplied by a time-varying step size, η(t+1) ∈ R≥0,
which can later be automatically determined from the regret
analysis (see e.g., Remark 4.5).

Additionally, when equipped with the negative logarithmic
growth as a decision loss (i.e., (4)), the problem c) can be
addressed due to its strict convexity and Lipscthiz continuity.
(See Lemma 4.1) Note that when the loss function is convex,
we can run the FTRL with a linearized loss (i.e., ℓ̃(t) (p) =〈
p, g(t)

〉
where g(t) = ∇ℓ(t)

(
p(t)
)
). This is useful in that a

closed-form update can be obtained thanks to the properties
of the Fenchel conjugate (see Remark 4.5).

4.2. AAggFF: Adaptive Aggregation for Fair Federated
Learning

Based on the improved objective design derived from
the FTRL, we now introduce our methods, AAggFF, an
acronym of Adaptive Aggregation for Fair Federated Learn-
ing). Mirroring the practical requirements of FL, we further
subdivide into two algorithms: AAggFF-S for the cross-
silo setting and AAggFF-D for the cross-device setting.

4.2.1. AAGGFF-S: ALGORITHM FOR THE CROSS-SILO
FEDERATED LEARNING

In the cross-silo setting, it is typically assumed that all K
clients participate in T rounds, since there are a moderately
small number of clients in the federated system. Therefore,
the server’s stateful decision making is beneficial for en-
hancing overall welfare across federation rounds. This is
also favorable since existing OPS algorithms can be readily
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adopted.

Online Newton Step (Agarwal et al., 2006; Hazan et al.,
2007) The ONS algorithm updates a new decision as fol-
lows (α and β are constants to be determined).

p(t+1) = argmin
p∈∆K−1

∑t

τ=1
ℓ̃(τ) (p) +

α

2
∥p∥22

+
β

2

∑t

τ=1
(⟨g(τ),p− p(τ)⟩)2

(7)

The ONS can be reduced to the FTRL objective intro-
duced in (6). It can be retrieved when we use a lin-
earized loss, ℓ̃(t) (p) =

〈
p, g(t)

〉
, and the time-varying

proximal regularizer, defined as R(t+1) (p) = α
2 ∥p∥

2
2 +

β
2

∑t
τ=1

(〈
g(τ),p− p(τ)

〉)2
.

We choose ONS in that its regret is optimal in T , which
is also a dominating constant for the cross-silo FL setting:
O(L∞K log T ) regret upper bound, where L∞ is the Lip-
schitz constant of decision loss w.r.t. ∥ · ∥∞. That is, L∞
should be finite for a vanishing regret (see Theorem 5.1).

Necessity of Bounded Response Note that the Lipchitz
continuity of the negative logarithmic growth as a decision
loss is determined as follows.

Lemma 4.1. For all t ∈ [T ], suppose each entry of a re-
sponse vector r(t) ∈ RK is bounded as r(t)i ∈ [C1, C2]
for some constants C1 and C2 satisfying 0 < C1 < C2.
Then, the decision loss ℓ(t) defined in (4) is C2

1+C1
-Lipschitz

continuous in ∆K−1 w.r.t. ∥ · ∥∞.

From now on, all proofs are deferred to Appendix A.2. Ac-
cording to the Lemma 4.1, the Lipschitz constant of the
decision loss, L∞, is dependent upon the range of a re-
sponse vector’s element. While from the unification result
in Table 1, one can easily notice that the response is con-
structed from local losses collected in round t, Fi(θ

(t)) ∈
R≥0, i ∈ [K].

This is a scalar value calculated from a local training set
of each client, using the current model θ(t) before its local
update. Since the local loss function is typically unbounded
above (e.g., cross-entropy), it should be transformed into
bounded values to satisfy the Lipschitz continuity. In exist-
ing fair FL methods, however, all responses are not bounded
above, thus we cannot guarantee the Lipschitz continuity.

To ensure a bounded response, we propose to use a trans-
formation denoted as ρ(t)(·), inspired by the cumulative
distribution function (CDF) as follows.

Definition 4.2. (CDF-driven Response Transformation) We
define r(t)i ≡ ρ(t)

(
Fi(θ

(t))
)

, each element of the response
vector is defined from the corresponding entry of a local

loss by an element-wise mapping ρ(t) : R≥0 → [C1, C2],
given a pre-defined CDF as:

ρ(t)
(
Fi

(
θ(t)
))

≜ C1 + (C2 − C1)CDF

Fi

(
θ(t)
)

F̄(t)

 ,

(8)
where F̄(t) = 1

|S(t)|
∑

i∈S(t) Fi

(
θ(t)
)

, and S(t) is an index
set of available clients in t.

Note again that the larger mixing coefficient should be as-
signed for the larger local loss. In such a perspective, us-
ing the CDF for transforming a loss value is an acceptable
approach in that the CDF value is a good indicator for es-
timating “how large a specific local loss is”, relative to
local losses from other clients. To instill the comparative
nature, local losses are divided by the average of observed
losses in time t before applying the transformation. As a
result, all local losses are centered on 1 in expectation. See
Appendix B.1 for detailed discussions.

In summary, the whole procedure of AAggFF-S is illus-
trated as a pseudocode in Algorithm 2.

4.2.2. AAGGFF-D: ALGORITHM FOR THE
CROSS-DEVICE FEDERATED LEARNING

Unlike the cross-silo setting, we cannot be naı̈vely edopt
existing OCO algorithms for finding adaptive mixing co-
efficients in the cross-device setting. It is attributed to the
large number of participating clients in this special setting.
Since the number of participating clients (K) is massive
(e.g., Android users are over 3 billion (Curry, 2023)), the
dependence on K in terms of regret bound and algorithm
runtime is as significant as a total communication round T .

Linear Runtime OCO Algorithm The ONS has regret
proportional to K and runs in O

(
K2 +K3

)
1 per round,

which is nearly impossible to be adopted for the cross-device
FL setting due to largeK, even though the logarithmic regret
is guaranteed in T . Instead, we can exploit the variant of
EG adapted to FTRL (Orabona, 2019), which can be run in
O (K) time per round.

p(t+1) = argmin
p∈∆K−1

∑t

τ=1
ℓ̃(τ) (p) + η(t+1)R(p), (9)

where η(t) is non-decreasing step size across t ∈ [T ], and
R(p) =

∑K
i=1 pi log pi is a negative entropy regularizer.

Still, the regret bound gets worse than that of ONS, as
O
(
L∞
√
T logK

)
(see Theorem 5.2).

Partially Observed Response The large number of
clients coerces the federated system to introduce the client

1A generalized projection required for the Online Newton Step
can be solved in Õ

(
K3

)
(Agarwal et al., 2006; Hazan et al., 2007).
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sampling scheme in each round. Therefore, the decision
maker (i.e., the central server) cannot always observe all
entries of a response vector per round. This is problematic
in terms of OCO, since OCO algorithms assume that they
can acquire intact response vector for every round t ∈ [T ].
Instead, when the client sampling is introduced, the learner
can only observe entries of sampled client indices in the
round t, denoted as S(t).

To make a new decision using a partially observed response
vector, the effect of unobserved entries should be appro-
priately estimated. We solve this problem by adopting a
doubly robust (DR) estimator (Robins et al., 1994; Bang
& Robins, 2005) for the expectation of the response vector.
The rationale behind the adoption of the DR estimator is the
fact that the unobserved entries are missing data.

For handling the missingness problem, the DR estimator
combines inverse probability weighting (IPW (Auer et al.,
2002)) estimator and imputation mechanism, where the
former is to adjust the weight of observed entries by the
inverse of its observation probability (i.e., client sampling
probability), and the latter is to fill unobserved entries with
appropriate values specific to a given task.

Similar to the IPW estimator, the DR estimator is an un-
biased estimator when the true observation probability is
known. Since we sample clients uniformly at random with-
out replacement, the observation probability is known (i.e.,
C ∈ (0, 1)) to the algorithm.

Lemma 4.3. DenoteC = P
(
i ∈ S(t)

)
as a client sampling

probability in a cross-device FL setting for every round
t ∈ [T ]. The DR estimator r̆(t), of which element is defined
in (10) is an unbiased estimator of given partially observed
response vector r(t). i.e., E

[
r̆(t)
]
= r(t).

r̆
(t)
i =

(
1− I(i ∈ S(t))

C

)
r̄(t) +

I
(
i ∈ S(t)

)
C

r
(t)
i , (10)

where r̄(t) = 1

|S(t)|
∑

i∈S(t) r
(t)
i .

Still, it is required to guarantee that the gradient vector from
the DR estimator is also an unbiased estimator of a true
gradient of a decision loss. Unfortunately, the gradient of a
decision loss is not linear in the response vector due to its
fractional form: g(t) = ∇ℓ(t)

(
p(t)
)
= − r(t)

1+⟨p(t),r(t)⟩ .

Therefore, we instead use linearly approximated gradient
w.r.t. a response vector as follows.

Lemma 4.4. Denote the gradient of a decision loss in terms
of a response vector as g ≡ h(r) = [h1(r), ..., hK(r)]

⊤
=

− r
1+⟨p,r⟩ . It can be linearized for the response vector into

g̃ ≡ h̃(r), given a reference r0 as follows. (Note that the

superscript (t) is omitted for a brevity of notation)

g ≈ g̃ ≡ h̃(r) = − r

1 + ⟨p, r0⟩
+

r0p
⊤(r − r0)

(1 + ⟨p, r0⟩)2
(11)

Further denote ğ as a gradient estimate from (11) using the
DR estimator of a response vector according to (10), at an
arbitrary reference r0. Then, ğ is an unbiased estimator
of the linearized gradient of a decision loss at r0, which is
close to the true gradient: E [ğ] = g̃ ≈ g.

As suggested in (10), we similarly set the reference as an
average of observed responses at round t, i.e., r(t)0 = r̄(t)1K .
It is a valid choice in that dominating unobserved entries are
imputed by the average of observed responses as in (10).

To sum up, we can update a new decision using this unbiased
and linearly approximated gradient estimator even if only a
partially observed response vector is provided (i.e., mixing
coefficients of unsampled clients can also be updated). Note
that the linearized gradient calculated from the DR estimator,
ğ, has finite norm w.r.t. ∥ · ∥∞ (see Lemma A.2).

Closed-Form Update Especially for the cross-device set-
ting, we can obtain a closed-form update of the objective
(9), which is due to the property of Fenchel conjugate.
Remark 4.5. The objective of AAggFF-D stated in (9) has
a closed-form update formula as follows. (Orabona, 2019)

p
(t+1)
i ∝ exp

(
−
√
logK

∑t
τ=1 ğ

(τ)
i

L̆∞
√
t+ 1

)
(12)

It is equivalent to setting the time-varying step size as
η(t) = L̆∞

√
t√

logK
. Note that ğ(t)i is an entry of gradient from

DR estimator defined in Lemma 4.4 and L̆∞ is a corre-
sponding Lipschitz constant satisfying ∥ğ∥∞ ≤ L̆∞ stated
in Lemma A.2. See Appendix A.6 for the derivation.

In summary, the whole procedure of AAggFF-D is illus-
trated in Algorithm 3.

5. Regret Analysis
In this section, we provide theoretical guarantees of our
methods, AAggFF-S and AAggFF-D in terms of sequen-
tial decision making. The common objective for OCO algo-
rithms is to minimize the regret across a sequence of decision
losses in eq. (5). We provide sublinear regret upper bounds
in terms of T as follows.

Theorem 5.1. (Regret Upper Bound for AAggFF-S (i.e.,
ONS (Agarwal et al., 2006; Hazan et al., 2007))) With the
notation in eq. (7), suppose for every p ∈ ∆K−1, and
for every t ∈ [T ], let the decisions {p(t) : t ∈ [T ]} be
derived by AAggFF-S for K clients during T rounds in

6
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Table 2: Comparison Results of AAggFF-S in the Cross-Silo Setting

Dataset Berka MQP ISIC
(AUROC) (AUROC) (Acc. 5)

Method Avg.
(↑)

Worst
(↑)

Best
(↑)

Gini
(↓)

Avg.
(↑)

Worst
(↑)

Best
(↑)

Gini
(↓)

Avg.
(↑)

Worst
(↑)

Best
(↑)

Gini
(↓)

FedAvg
(McMahan et al., 2017)

80.09
(2.45)

48.06
(25.15)

99.03
(1.37)

10.87
(4.11)

56.06
(0.06)

41.03
(4.33)

76.31
(8.42)

8.63
(0.91)

87.42
(2.11)

69.92
(6.78)

92.57
(2.56)

4.84
(1.17)

AFL
(Mohri et al., 2019)

79.70
(4.14)

49.02
(25.89)

98.55
(2.05)

10.58
(5.03)

56.01
(0.30)

41.28
(3.92)

75.54
(6.77)

8.56
(1.24)

87.39
(2.31)

68.17
(10.09)

93.33
(2.18)

4.80
(1.74)

q-FedAvg
(Li et al., 2019)

79.98
(3.89)

49.44
(26.15)

98.07
(2.73)

10.62
(5.22)

56.89
(0.42)

40.22
(3.06)

79.38
(9.09)

8.68
(0.57)

41.59
(16.22)

20.38
(23.24)

58.08
(28.52)

22.25
(10.02)

TERM
(Li et al., 2020a)

80.11
(3.08)

48.96
(25.79)

99.03
(1.37)

10.86
(4.73)

56.47
(0.19)

40.73
(4.36)

76.80
(8.30)

8.67
(1.43)

87.89
(1.69)

77.32
(5.84)

96.00
(3.27)

3.77
(0.94)

FedMGDA
(Hu et al., 2022)

79.24
(2.96)

46.38
(24.11)

99.03
(1.37)

11.64
(4.84)

53.02
(1.67)

34.91
(2.22)

69.65
(3.89)

10.33
(0.44)

42.36
(14.94)

21.44
(21.30)

59.21
(28.52)

22.25
(10.02)

PropFair
(Zhang et al., 2022)

79.61
(4.49)

49.44
(26.15)

98.07
(2.73)

10.47
(5.04)

56.60
(0.39)

41.71
(3.80)

79.09
(7.40)

8.74
(0.87)

83.88
(2.50)

58.36
(11.63)

91.35
(2.48)

7.91
(2.10)

AAggFF-S
(Proposed)

80.93
(2.96)

52.08
(23.59)

99.03
(1.37)

10.16
(3.80)

56.63
(0.54)

41.79
(4.43)

75.56
(6.53)

8.38
(0.77)

89.76
(1.03)

85.17
(3.87)

98.22
(1.66)

2.52
(0.38)

Table 3: Comparison Results of AAggFF-D in the Cross-Device Setting

Dataset CelebA Reddit SpeechCommands
(Acc. 1) (Acc. 1) (Acc. 5)

Method Avg.
(↑)

Worst
10% (↑)

Best
10%(↑)

Gini
(↓)

Avg.
(↑)

Worst
10%(↑)

Best
10%(↑)

Gini
(↓)

Avg.
(↑)

Worst
10%(↑)

Best
10%(↑)

Gini
(↓)

FedAvg
(McMahan et al., 2017)

90.79
(0.53)

55.76
(0.84)

100.00
(0.00)

7.86
(0.30)

10.76
(1.45)

2.50
(0.21)

20.86
(3.64)

25.66
(0.49)

75.51
(1.08)

7.93
(2.87)

100.00
(0.00)

24.58
(1.34)

q-FedAvg
(Li et al., 2019)

90.88
(0.19)

55.73
(0.85)

100.00
(0.00)

7.82
(0.21)

12.76
(0.32)

3.38
(0.20)

21.81
(0.19)

23.34
(0.34)

73.34
(0.47)

11.19
(0.47)

100.00
(0.00)

23.16
(0.13)

TERM
(Li et al., 2020a)

90.71
(0.65)

55.66
(0.93)

100.00
(0.00)

7.90
(0.38)

12.02
(0.16)

2.85
(0.41)

20.74
(0.65)

24.15
(1.05)

70.90
(2.96)

5.98
(1.10)

100.00
(0.00)

26.37
(1.32)

FedMGDA
(Hu et al., 2022)

88.33
(0.63)

48.60
(25.85)

100.00
(0.00)

9.75
(0.59)

10.58
(0.18)

2.35
(0.20)

19.09
(0.62)

25.20
(0.22)

72.45
(1.88)

9.65
(2.90)

100.00
(0.00)

23.68
(1.27)

PropFair
(Zhang et al., 2022)

87.25
(5.01)

48.11
(10.03)

100.00
(0.00)

10.39
(3.43)

11.26
(0.71)

1.95
(0.32)

21.33
(0.92)

25.97
(1.02)

73.64
(3.31)

7.30
(1.02)

100.00
(0.00)

24.97
(1.09)

AAggFF-D
(Proposed)

91.27
(0.07)

56.71
(0.08)

100.00
(0.00)

7.54
(0.04)

12.95
(0.39)

4.75
(0.76)

22.81
(1.36)

22.59
(0.28)

76.68
(0.80)

14.54
(2.58)

100.00
(0.00)

21.42
(0.81)

Algorithm 2. Then, the regret defined in eq. (5) is bounded
above as follows, where α and β are determined as α =
4KL∞, β = 1

4L∞
.

Regret(T ) (p⋆) ≤ 2L∞K

(
1 + log

(
1 +

T

16K

))
.

From the Theorem 5.1, we can enjoyO (L∞K log T ) regret
upper bound, which is an acceptable result, considering a
typical assumption in the cross-silo setting (i.e., K < T ).

For the cross-device setting, we first present the full syn-
chronization setting, which requires no extra adjustment.

Theorem 5.2. (Regret Upper Bound for AAggFF-D with
Full-Client Participation) With the notation in (9), suppose
for every p ∈ ∆K−1, and for every t ∈ [T ], let the decisions
{p(t) : t ∈ [T ]} be derived by AAggFF-D for K clients
with client sampling probability C = 1 during T rounds
in Algorithm 3. Then, the regret defined in (5) is bounded
above as follows.

Regret(T ) (p⋆) ≤ 2L∞
√
T logK.

When equipped with a client sampling, the randomness from
the sampling should be considered. Due to local losses of
selected clients can only be observed, AAggFF-D should be
equipped with the unbiased estimator of a response vector
(from Lemma 4.3) and a corresponding linearly approxi-
mated gradient vector (from Lemma 4.4). Since they are
unbiased estimators, the expected regret is also the same.

Corollary 5.3. (Regret Upper Bound for AAggFF-D with
Partial-Client Participation) With the client sampling prob-
ability C ∈ (0, 1), the DR estimator of a partially observed
response r̆(t) and corresponding linearized gradient ğ(t)

for all t ∈ [T ], the regret defined in (5) is bounded above in
expectation as follows.

E
[
Regret(T )(p⋆)

]
≤ O

(
L∞
√
T logK

)
.

6. Experimental Results
We design experiments to evaluate empirical performances
of our proposed framework AAggFF, composed of sub-
methods AAggFF-S and AAggFF-D.
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Table 4: Description of Federated Benchmarks for Cross-
Silo and Cross-Device Settings

Cross-Silo Cross-Device
Dataset K T Dataset K T

Berka 7 100 CelebA 9,343 3,000
MQP 11 100 Reddit 817 300
ISIC 6 50 SpeechCommands 2,005 500

Experimental Setup We conduct experiments on datasets
mirroring realistic scenarios in federated systems: multi-
ple modalities (vision, text, speech, and tabular form) and
natural data partitioning. We briefly summarize FL settings
of each dataset in Table 4. For the cross-silo setting, we
used Berka tabular dataset (Berka, 1999), MQP clinical text
dataset (McCreery et al., 2020), and ISIC oncological im-
age dataset (Codella et al., 2018) (also a part of FLamby
benchmark (Ogier du Terrail et al., 2022)). For the cross-
device setting, we used CelebA vision dataset (Liu et al.,
2015), Reddit text dataset (both are parts of LEAF bench-
mark (Caldas et al., 2019)) and SpeechCommands audio
dataset (Warden, 2018).

Instead of manually partitioning data to simulate statistical
heterogeneity, we adopt natural client partitions inherent
in each dataset. Each client dataset is split into an 80%
training set and a 20% test set in a stratified manner where
applicable. All experiments are run with 3 different random
seeds after tuning hyperparameters. See Appendix C for
full descriptions of the experimental setup.

Improvement in the Client-Level Fairness We com-
pare our methods with existing fair FL methods includ-
ing FedAvg (McMahan et al., 2017), AFL (Mohri et al.,
2019), q-FedAvg (Li et al., 2019), TERM (Li et al., 2020a),
FedMGDA (Hu et al., 2022), and PropFair (Zhang et al.,
2022). Since AFL requires full synchronization of clients
every round, it is only compared in the cross-silo setting.

In the cross-silo setting, we assume all K clients participate
in T federation rounds (i.e., C = 1), and in the cross-
device setting, the client participation rate C ∈ (0, 1) is
set to ensure 5 among K clients are participating in each
round. We evaluate each dataset using appropriate metrics
for tasks as indicated under the dataset name in Table 2
and 3, where the average, the best (10%), the worst (10%),
and Gini coefficient2 of clients’ performance distributions
are reported with the standard deviation inside parentheses
in gray color below the averaged metric.

From the results, we verify that AAggFF can lead to en-
hanced worst-case metric and Gini coefficient in both set-
tings while retaining competitive average performance to

2The Gini coefficient is inflated by (×102) for readability.

other baselines. Remarkably, along with the improved worst-
case performance, the small Gini coefficient indicates that
performances of clients are close to each other, which is
directly translated into the improved client-level fairness.

Table 5: Accuracy Parity Gap in the Cross-Silo Setting

Dataset Berka MQP ISIC

Method ∆AG (↓)

FedAvg
(McMahan et al., 2017)

50.84
(23.98)

35.30
(5.39)

22.64
(4.50)

AFL
(Mohri et al., 2019)

50.98
(23.78)

34.26
(5.16)

25.16
(8.01)

q-FedAvg
(Li et al., 2019)

50.43
(22.15)

39.16
(7.13)

37.69
(5.52)

TERM
(Li et al., 2020a)

49.60
(23.74)

36.07
(6.93)

15.19
(9.26)

FedMGDA
(Hu et al., 2022)

44.46
(17.49)

34.74
(1.74)

37.69
(5.52)

PropFair
(Zhang et al., 2022)

49.05
(23.78)

37.38
(4.35)

32.99
(9.60)

AAggFF-S
(Proposed)

44.03
(17.55)

33.77
(3.31)

13.05
(2.23)

Table 6: Accuracy Parity Gap in the Cross-Device Setting

Dataset CelebA Reddit Speech
Commands

Method ∆AG (↓)
FedAvg
(McMahan et al., 2017)

44.25
(0.84)

18.36
(3.52)

92.07
(2.87)

q-FedAvg
(Li et al., 2019)

44.27
(0.85)

18.43
(0.09)

88.81
(0.47)

TERM
(Li et al., 2020a)

44.34
(0.93)

17.89
(0.75)

94.02
(1.10)

FedMGDA
(Hu et al., 2022)

51.40
(2.59)

16.74
(0.43)

90.35
(2.90)

PropFair
(Zhang et al., 2022)

51.90
(10.03)

19.39
(0.64)

92.70
(1.02)

AAggFF-D
(Proposed)

43.29
(0.08)

18.07
(0.70)

85.46
(2.58)

Connection to Accuracy Parity As discussed in (Li et al.,
2019), the client-level fairness can be loosely connected to
existing fairness notion, the accuracy parity (Zafar et al.,
2017). It is guaranteed if the accuracies in protected groups
are equal to each other. While the accuracy parity requires
equal performances among specific groups having protected
attributes (Zafar et al., 2017; Cotter et al., 2019), this is too
restrictive to be directly applied to FL settings, since each
client cannot always be exactly corresponded to the concept
of ‘a group’, and each client’s local distribution may not be
partitioned by protected attributes in the federated system.

With a relaxation of the original concept, we adopt the
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notion of accuracy parity for measuring the degree of the
client-level fairness in the federated system, i.e., we simply
regard the group as each client. As a metric, we adopt the
accuracy parity gap (∆AG) proposed by (Zhao et al., 2019;
Chi et al., 2021), which is simply defined as an absolute
difference between the performance of the best and the
worst performing groups (clients). The results are in Table 5
and Table 6. It can be said that the smaller the ∆AG, the
more degree of the accuracy parity fairness (and therefore
the client-level fairness) is achieved.

It should be noted that strictly achieving the accuracy parity
can sometimes require sacrifice in the average performance.
This is aligned with the result of Reddit dataset in Table 6,
where FedMGDA (Hu et al., 2022) achieved the smallest
∆AG, while its average performance is only 10.58 in Ta-
ble 3. This is far lower than our proposed method’s average
performance, 12.95. Except this case, AAggFF consistently
shows the smallest ∆AG than other baseline methods, which
is important in the perspective of striking a good balance
between overall utility and the client-level fairness.

Table 7: Improved Performance of FL Algorithms after
being Equipped with AAggFF

Dataset Heart
(AUROC)

TinyImageNet
(Acc. 5)

Method Avg.
(↑)

Worst
(↑)

Avg.
(↑)

Worst
10%(↑)

84.42 (2.45) 65.22 (9.78) 85.93 (0.77) 50.95 (0.15)FedAvg
(McMahan et al., 2017) 85.04(2.86) 66.56 (10.81) 86.66 (0.63) 51.50 (2.32)

84.48(0.25) 65.44(9.77) 86.49 (0.72) 51.64 (2.07)FedProx
(Li et al., 2020c) 85.72(2.81) 66.67(10.71) 86.11 (0.72) 52.29 (2.16)

84.34(2.78) 65.44(10.12) 87.04 (1.05) 53.54 (2.63)FedAdam
(Reddi et al., 2020) 84.84(2.85) 67.00(10.61) 87.89 (0.90) 55.92 (2.25)

84.29(2.62) 65.67(10.68) 86.70 (1.40) 52.81 (3.50)FedYogi
(Reddi et al., 2020) 84.86(3.01) 67.00(11.09) 87.42 (0.94) 54.76 (3.11)

84.61(2.96) 65.67(10.68) 83.52 (0.63) 45.09 (1.79)FedAdagrad
(Reddi et al., 2020) 85.09(2.91) 66.67(10.37) 84.62 (0.51) 47.88 (1.95)

Plug-and-Play Boosting We additionally check if
AAggFF can also boost other FL algorithms than FedAvg,
such as FedAdam, FedAdagrad, FedYogi (Reddi
et al., 2020) and FedProx (Li et al., 2020c). Since the
sequential decision making procedure required in AAggFF
is about finding a good mixing coefficient, p, this is or-
thogonal to the minimization of θ. Thus, our method can
be easily integrated into existing methods with no special
modification, in a plug-and-play manner.

For the verification, we test with two more datasets, Heart
(Janosi et al., 1988) and TinyImageNet (Le & Yang, 2015),
each of which is suited for binary and multi-class classifica-
tion (i.e., 200 classes in total). Since the Heart dataset is a
part of FLamby benchmark (Ogier du Terrail et al., 2022),
it has pre-defined K = 4 clients. For the TinyImageNet
dataset, we simulate statistical heterogeneity forK = 1, 000
clients using Dirichlet distribution with a concentration of

0.01, following (Hsu et al., 2019). The results are in Table 7,
where the upper cell represents the performance of a naive
FL algorithm, and the lower cell contains a performance
of the FL algorithm with AAggFF. While the average per-
formance remains comparable, the worst performance is
consistently boosted in both cross-silo and cross-device set-
tings. This underpins the efficacy and flexibility of AAggFF,
which can strengthen the fairness perspective of existing FL
algorithms.

7. Limitations and Future Works
Our work suggests interesting future directions for better
federated systems, which may also be a limitation of the
current work. First, we can exploit side information (e.g., pa-
rameters of local updates) to not preserve all clients’ mixing
coefficients, and filter out malicious signals for robustness.
For example, the former can be realized by adopting other
decision making schemes such as contextual Bayesian opti-
mization (Char et al., 2019), and the latter can be addressed
by clustered FL (Ghosh et al., 2020; Sattler et al., 2020)
for a group-wise estimation of mixing coefficients. Both
directions are promising and may improve the practicality
of federated systems. Furthermore, the FTRL objective can
be replaced by the Follow-The-Perturbed-Leader (FTPL)
(Kalai & Vempala, 2005), of which random perturbation
in decision making process can be directly linked to the
differential privacy (DP (Dwork, 2006)) guarantee (McMil-
lan, 2018), which is frequently considered for the cross-silo
setting. Last but not least, further convergence analysis is
required w.r.t. the parameter perspective along with mixing
coefficients, e.g., using bi-level optimization formulation.

8. Conclusion
For improving the degree of the client-level fairness in FL,
we first reveal the connection of existing fair FL methods
with the OCO. To emphasize the sequential decision mak-
ing perspective, we propose improved designs and further
specialize them into two practical settings: cross-silo FL
& cross-device FL. Our framework not only efficiently en-
hances a low-performing group of clients compared to ex-
isting baselines, but also maintains an acceptable average
performance with theoretically guaranteed behaviors. It
should also be noted that AAggFF requires no extra com-
munication and no added local computation, which are
significant constraints for serving FL-based services. With
this scalability, our method can also improve the fairness
of the performance distributions of existing FL algorithms
without much modification to their original mechanism. By
explicitly bringing the sequential decision making scheme
to the front, we expect our work to open up new designs to
promote the practicality and scalability of FL.
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A. Derivations & Proofs
A.1. Derivation of Mixing Coefficients from Existing Methods

In this section, we provide details of the unification of existing methods in the OCO framework, introduced in Section 3. We
assume full-client participation for derivation, and we denote n =

∑K
i=1 ni as a total sample size for the brevity of notation.

Suppose any FL algorithms follow the update formula in (13), where we define p(t+1) as a mixing coefficient vector
discussed in Section 3.2.

θ(t+1) ← θ(t) −

(
K∑
i=1

p
(t+1)
i

(
θ(t) − θ

(t+1)
i

))
, (13)

where θ(t) is a global model in a previous round t, θ(t+1)
i is a local update from i-th client starting from θ(t), and θ(t+1) is

a new global model updated by averaging local updates with corresponding mixing coefficient p(t+1)
i .

FedAvg (McMahan et al., 2017) The update of a global model from FedAvg is defined as follows.

θ(t+1) ← θ(t) −

(
K∑
i=1

ni
n

(
θ(t) − θ

(t+1)
i

))
, (14)

where ni is the sample size of client i. Thus, we can regard p(t+1)
i ∝ ni in FedAvg.

AFL & q-FedAvg (Mohri et al., 2019; Li et al., 2019) The objective of AFL is a minimax objective defined as follows.

min
θ∈Rd

max
v∈∆K−1

K∑
i=1

viFi (θ) , (15)

which is later subsumed by q-FedAvg as its special case for the algorithm-specific constant q, where q → 0.

The objective of q-FedAvg is therefore defined with a nonnegative constant q as follows.

min
θ∈Rd

K∑
i=1

1

q + 1

ni
n
F q+1
i (θ)

= min
θ∈Rd

K∑
i=1

ni
n
F̃i (θ) ,

(16)

which is reduced to FedAvg when q = 0.

The update of a global model from (16) has been proposed in the form of a Newton style update by assuming L-Lipschitz
continuous gradient of each local objective (i.e., q-FedSGD) (Li et al., 2019).

θ(t+1) = θ(t) −

 K∑
j=1

nj
n
∇2F̃j

(
θ(t)
)−1

K∑
i=1

ni
n
∇F̃i

(
θ(t)
)

⪯ θ(t) −

 K∑
j=1

nj
n
Lq,jI

−1
K∑
i=1

ni
n
F q
i

(
θ(t)
)
∇Fi

(
θ(t)
)
,

(17)

where Lq,i = qF q−1
i

(
θ(t)
)
∥∇Fi

(
θ(t)
)
∥2 + LF q

i

(
θ(t)
)

is an upper bound of the local Lipschitz gradient of F̃i

(
θ(t)
)

(see Lemma 3 of (Li et al., 2019)). This can be extended to q-FedAvg by replacing∇Fi

(
θ(t)
)

into L
(
θ(t) − θ

(t+1)
i

)
.

To sum up, the update formula of a global model from q-FedAvg (including AFL as a special case) is as follows.

θ(t+1) ∝ θ(t) −

(
K∑
i=1

ni

n LF
q
i (θ

(t))∑K
j=1

nj

n Lq,j

(
θ(t) − θ

(t+1)
i

))
, (18)
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which implies p(t+1)
i ∝ niF q

i

(
θ(t)
)

.

TERM (Li et al., 2020a) The objective of TERM is dependent upon a hyperparameter, a tilting constant λ ∈ R.

min
θ∈Rd

1

λ
log

(
K∑
i=1

ni
n

exp
(
λFi(θ

(t))
))

(19)

The corresponding update formula is given as follows.

θ(t+1) = θ(t) −

 K∑
i=1

(ni/n) exp
(
λFi

(
θ(t)
))

∑K
j=1 (nj/n) exp

(
λFj

(
θ(t)
)) (θ(t) − θ

(t+1)
i

) (20)

From the update formula, we can conclude that p(t+1)
i ∝ ni exp

(
λFi

(
θ(t)
))

.

PropFair (Zhang et al., 2022) The objective of PropFair is to maximize Nash social welfare by regarding a negative
local loss as an achieved utility as follows.

min
θ∈Rd

−
K∑
i=1

pi log (M − Fi (θ)) , (21)

where M ≥ 1 is a problem-specific constant.

The corresponding update formula is given as follows.

θ(t+1) ∝ θ(t) +

(
K∑
i=1

ni
n
∇ log

(
M − Fi

(
θ(t)
)))

= θ(t) −

 K∑
i=1

ni
n

∇Fi

(
θ(t)
)

M − Fi

(
θ(t)
)
 . (22)

Similar to q-FedAvg, by replacing the gradient ∇Fi

(
θ(t)
)

into
(
θ(t) − θ

(t+1)
i

)
, the update formula finally becomes:

θ(t+1) ∝ θ(t) −

 K∑
i=1

ni/n

M − Fi

(
θ(t)
) (θ(t) − θ

(t+1)
i

) , (23)

which implies p(t+1)
i ∝ ni

M−Fi(θ(t))
.

A.2. Technical Lemmas

In this section, we provide technical lemmas and proofs (including deferred ones in the main text) required for proving
Theorem 5.1, Theorem 5.2, and Corollary 5.3.

A.2.1. STRICT CONVEXITY OF DECISION LOSS

Lemma A.1. For all t ∈ [T ], the decision loss ℓ(t) defined in (4) satisfies following for γ ∈ (0, 1), i.e., the decision loss is a
strictly convex function of its first argument.

ℓ(t) (γp+ (1− γ)q) < γℓ(t) (p) + (1− γ)ℓ(t) (q) ,∀p, q ∈ ∆K−1,p ̸= q. (24)

Proof. From the left-hand side, we have

ℓ(t) (γp+ (1− γ)q)

=− log
(
1 + ⟨γp+ (1− γ)q, r(t)⟩

)
=− log

(
1 + ⟨γp, r(t)⟩+ ⟨(1− γ)q, r(t)⟩

)
=− log

(
γ(1 + ⟨p, r(t)⟩) + (1− γ)(1 + ⟨q, r(t)⟩)

)
.

(25)
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Since the negative of logarithm is strictly convex, the last term becomes

− log
(
γ(1 + ⟨p, r(t)⟩) + (1− γ)(1 + ⟨q, r(t)⟩)

)
< γ

(
− log(1 + ⟨p, r(t)⟩)

)
+ (1− γ)

(
− log(1 + ⟨q, r(t)⟩)

)
, (26)

which satisfies the definition of the strict convexity, thereby concludes the proof. ■

A.2.2. LIPSCHITZ CONTINUITY OF DECISION LOSS (LEMMA 4.1)

From the definition of the Lipschitz continuity w.r.t. ∥ · ∥, we need to check if the decision loss ℓ(t) satisfies following
inequality for the constant L∞. ∣∣∣ℓ(t) (p)− ℓ(t) (q)∣∣∣ ≤ L∞ ∥p− q∥∞ . (27)

Proof. From Lemma A.1, we have the following inequality from the convexity of the decision loss.∣∣∣ℓ(t) (p)− ℓ(t) (q)∣∣∣ ≤ ∣∣∣⟨∇ℓ(t) (p) ,p− q⟩
∣∣∣

=

∣∣∣∣−⟨p− q, r(t)⟩
1 + ⟨p, r(t)⟩

∣∣∣∣
=

1

1 + ⟨p, r(t)⟩

∣∣∣〈q, r(t)〉− 〈p, r(t)〉∣∣∣
(28)

Setting the denominator to be the minimum value,
〈
p, r(t)

〉
is C1, we have the upper bound as follows.

1

1 +
〈
p, r(t)

〉 ∣∣∣〈q, r(t)〉− 〈p, r(t)〉∣∣∣
≤ 1

1 +
〈
p, r(t)

〉 max
(〈

q, r(t)
〉
,
〈
p, r(t)

〉)
≤ 1

1 + C1
max

(〈
q, r(t)

〉
, C1

)
,

(29)

where the first inequality is from the fact that both ⟨p, r(t)⟩ and ⟨q, r(t)⟩ are nonnegative, and the second inequality is due
to the minimized denominator achieving the upper bound. Since ⟨q, r(t)⟩ can achieve its maximum as C2, we can further
bound as follows.

1

1 + C1
max(⟨q, r(t)⟩, C1) ≤

1

1 + C1
max(C2, C1) =

C2

1 + C1
(30)

Finally, using the fact that ∥p− q∥∞ = maxi |pi − qi| = 1, we can conclude the statement by setting L∞ = C2

1+C1
. ■

A.2.3. UNBIASEDNESS OF DOUBLY ROBUST ESTIMATOR (LEMMA 4.3)

Proof. Denote the client sampling probability C ∈ [0, 1] in time t as P (i ∈ S(t)) = C. Taking expectation on the doubly
robust estimator of partially observed response defined in (10), we have

E
[
r̆
(t)
i

]
= E

[(
1− I(i ∈ S(t))

C

)
r̄(t)
]
+ E

[
I(i ∈ S(t))

C
r
(t)
i

]
=

(
1− E[I(i ∈ S(t))]

C

)
r̄(t) +

E
[
I(i ∈ S(t))

]
C

r
(t)
i

=

(
1− P (i ∈ S(t))

C

)
r̄(t) +

P (i ∈ S(t))

C
r
(t)
i

= r
(t)
i ,

(31)

where I(·) is an indicator function.

Note that the randomness of the doubly robust estimator comes from the random sampling of client indices i ∈ S(t) in round
t, thus the expectation is with respect to i ∈ S(t). Thus, we can conclude that E

[
r̆(t)
]
= r(t). See also (Robins et al., 1994;

Bang & Robins, 2005). ■
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A.2.4. UNBIASEDNESS OF LINEARLY APPROXIMATED GRADIENT (LEMMA 4.4)

Proof. The gradient of a decision loss in terms of a response, g ≡ h(r) = [h1(r), ..., hK(r)]⊤ = − r
1+⟨p,r⟩ can be linearly

approximated at reference r0 as follows.

h̃(r) = h(r0) + Jh(r0)(r − r0) (32)

The Jacobian Jh(r) ∈ RK×K is defined as follows.

Jh(r) =

[
∂h

∂r1
, ...,

∂h

∂rK

]

=


∂h1

∂r1
· · · ∂h1

∂rK
...

. . .
...

∂hK

∂r1
· · · ∂hK

∂rK



=


− 1

1+⟨p,r⟩ +
p1r1

(1+⟨p,r⟩)2
p2r1

(1+⟨p,r⟩)2 · · · pKr1
(1+⟨p,r⟩)2

p1r2
(1+⟨p,r⟩)2 − 1

1+⟨p,r⟩ +
p2r2

(1+⟨p,r⟩)2 · · · pKr2
(1+⟨p,r⟩)2

...
...

. . .
...

p1rK
(1+⟨p,r⟩)2

p2rK
(1+⟨p,r⟩)2 · · · − 1

1+⟨p,r⟩ +
pKrK

(1+⟨p,r⟩)2


= − 1

1 + ⟨p, r⟩
IK +

1

(1 + ⟨p, r⟩)2
rp⊤

(33)

Plugging (33) into (32) with respect to arbitrary reference r0, we have a linearized gradient of a decision loss as follows.

g̃ ≜ h̃(r) = − r0
1 + ⟨p, r0⟩

− (r − r0)

1 + ⟨p, r0⟩
+

r0p
⊤(r − r0)

(1 + ⟨p, r0⟩)2

= − r

1 + ⟨p, r0⟩
+

r0p
⊤(r − r0)

(1 + ⟨p, r0⟩)2
.

(34)

From the statement of Lemma 4.4, plugging the doubly robust estimator of the partially observed response, r̆ from
Lemma 4.3 into above, we have gradient estimate ğ as follows.

ğ = h̃(r̆) = − r̆

1 + ⟨p, r0⟩
+

r0p
⊤(r̆ − r0)

(1 + ⟨p, r0⟩)2
. (35)

Taking an expectation, we have

E [ğ] = E
[
h̃(r̆)

]
= − E [r̆]

1 + ⟨p, r0⟩
+

r0p
⊤(E [r̆]− r0)

(1 + ⟨p, r0⟩)2
= − r

1 + ⟨p, r0⟩
+

r0p
⊤(r − r0)

(1 + ⟨p, r0⟩)2

= h̃(r) = g̃ ≈ g.

(36)

■

A.2.5. LIPSCHITZ CONTINUITY OF LINEARLY APPROXIMATED GRADIENT FROM DOUBLY ROBUST ESTIMATOR

Lemma A.2. Denote ğ(t) as the linearized gradient calculated from the doubly robust estimator of a response vector,
r(t), with reference r

(t)
0 = r̄ = r̄(t)1K where r̄(t) = 1

|S(t)|
∑

i∈S(t) r
(t)
i . When S(t) is a randomly selected client

indices in round t and C = P
(
i ∈ S(t)

)
is a client sampling probability, then

∥∥∥ğ(t)
∥∥∥
∞
≤ L̆∞ = C2

1+C1
+ 2(C2−C1)

C(1+C1)
for

r
(t)
i ∈ [C1, C2],∀i ∈ S(t).

Proof. Note that we intentionally omit superscript (t) from now on for the brevity of notation. The linearized gradient
constructed from the doubly robust estimator of a response vector has a form as follows, according to (34).

ğ = − r̆

1 + ⟨p, r̄⟩
+

r̄p⊤(r̆ − r̄)

(1 + ⟨p, r̄⟩)2
, (37)
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where we used r̄ = r̄1K as a reference r0, therefore ∥r̄∥∞ = r̄ ≤ C2.

Thus, we have

∥ğ∥∞

=

∥∥∥∥− r̆

1 + ⟨p, r̄⟩
+

r̄p⊤(r̆ − r̄)

(1 + ⟨p, r̄⟩)2

∥∥∥∥
∞

≤
∥∥∥∥− r̆

1 + ⟨p, r̄⟩

∥∥∥∥
∞

+

∥∥∥∥ r̄p⊤(r̆ − r̄)

(1 + ⟨p, r̄⟩)2

∥∥∥∥
∞

=
∥r̆∥∞

1 + ⟨p, r̄⟩
+

1

(1 + ⟨p, r̄⟩)2
∥∥r̄p⊤(r̆ − r̄)

∥∥
∞

≤
∥r̆∥∞

1 + ⟨p, r̄⟩
+

1

(1 + ⟨p, r̄⟩)2
∥∥r̄p⊤∥∥

∞ ∥r̆ − r̄∥∞

=
∥r̆∥∞

1 + ⟨p, r̄⟩
+

1

(1 + ⟨p, r̄⟩)2
∥r̄∥∞ ∥p∥1 ∥r̆ − r̄∥∞

=
∥r̆∥∞

1 + ⟨p, r̄⟩
+

1

(1 + ⟨p, r̄⟩)2
∥r̄∥∞ ∥r̆ − r̄∥∞

, where the first inequality is due to triangle inequality, the second inequality is due to the property that ∥Ax∥∞ ≤
∥A∥∞ ∥x∥∞ for a matrix A ∈ RK×K and a vector x ∈ RK ,x ̸= 0K , the very next equality is due to |xy⊤|∞ =
maxi ∥xiy⊤∥1 = maxi |xi|∥y∥1 = ∥x∥∞∥y∥1, and the last equality is trivial since p ∈ ∆K−1.

Since ⟨p, r̄⟩ =
∑K

i=1 (pir̄) = r̄, this can be further bounded as follows.

=
1

1 + r̄
∥r̆∥∞ +

r̄

(1 + r̄)
2 ∥r̆ − r̄∥∞

=
1 + r̄

(1 + r̄)
2 ∥r̆∥∞ +

r̄

(1 + r̄)
2 ∥r̆ − r̄∥∞

≤ 1

1 + r̄
(∥r̆∥∞ + ∥r̆ − r̄∥∞) ,

(38)

Since 1
1+r̄ ≤

1
1+C1

, we can further upper bound as follows.

1

1 + r̄
(∥r̆∥∞ + ∥r̆ − r̄∥∞) ≤ 1

1 + C1
(∥r̆∥∞ + ∥r̆ − r̄∥∞) (39)

To upper bound each term, let us look into r̆ first. By the definition in (10), we have

r̆ =

{
r̄1K , i /∈ S(t)(
1− 1

C

)
r̄1K + 1

C r, i ∈ S(t)
. (40)

For each case, ∥r̆∥∞ becomes

∥r̆∥∞ =

{
r̄, i /∈ S(t)

supi
∣∣ 1
C (ri − r̄) + r̄

∣∣ , i ∈ S(t).
(41)

For the first case, the average is smaller than its maximum, thus r̄ ≤ C2. For the second case, it can be upper bounded as
supi

∣∣ 1
C (ri − r̄) + r̄

∣∣ ≤ 1
C supi |ri − r̄|+ C2 by the triangle inequality.

From the trivial fact that the deviation from the average is always smaller than its range,

1

C
sup
i
|ri − r̄| ≤ 1

C
(C2 − C1). (42)
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Combined, we have the following upper bounds.

∥r̆∥∞ ≤

{
C2, i /∈ S(t)

C2−C1

C + C2, i ∈ S(t)
(43)

Similarly, for the second term inside in (39), we have:

∥r̆ − r̄∥∞ =

{
0, i /∈ S(t)

1
C supi |ri − r̄| , i ∈ S(t).

(44)

Corresponding upper bounds are:

∥r̆ − r̄∥∞ ≤

{
0, i /∈ S(t)

C2−C1

C , i ∈ S(t)
(45)

Finally, adding (43) and (45) to have (39), we have:∥∥∥ğ(t)
∥∥∥
∞
≤

{
C2

1+C1
, i /∈ S(t)

C2

1+C1
+ 2(C2−C1)

C(1+C1)
, i ∈ S(t).

(46)

Finally, it suffices to set L̆∞ = C2

1+C1
+ 2(C2−C1)

C(1+C1)
to conclude the proof. ■

A.2.6. REGRET FROM A LINEARIZED LOSS

Corollary A.3. From the convexity of a decision loss ℓ(t) (Lemma A.1), the regret defined in (5) satisfies

Regret(T ) (p⋆) =

T∑
t=1

ℓ(t)
(
p(t)
)
−

T∑
t=1

ℓ(t) (p⋆) ≤
T∑

t=1

ℓ̃(t)
(
p(t)
)
−

T∑
t=1

ℓ̃(t) (p⋆) , (47)

where ℓ̃(t) is a linearized loss defined as ℓ̃(t) (p) =
〈
p, g(t)

〉
and g(t) = ∇ℓ(t)

(
p(t)
)
.

Proof. It is straightforward from the convexity of the decision loss.

ℓ(t)(p(t))− ℓ(t)(p⋆) ≤
〈
g(t),p(t) − p⋆

〉
. (48)

Summing up both sides for t ∈ [T ], we proved the statement. ■

A.2.7. EQUALITY FOR THE REGRET

Lemma A.4. (Lemma 7.1 of (McMahan, 2017); Lemma 5 of (Orabona, 2019)) Let us define L(t) (p) ≜
∑t−1

τ=1 ℓ
(τ)(p) +

R(t)(p), where ℓ : ∆K−1 × Rd → R is an arbitrary loss function and R(t) : ∆K−1 → R is an arbitrary regularizer,
non-decreasing across t ∈ [T ]. Assume further that p(t) = argminp∈∆K−1

L(t) (p). Then, for any p⋆ ∈ ∆K−1, we have

Regret(T )(p⋆) =

T∑
t=1

ℓ(t)
(
p(t)
)
−

T∑
t=1

ℓ(t) (p⋆)

= R(T+1) (p⋆)−R(1)
(
p(1)

)
+ L(T+1)

(
p(T+1)

)
− L(T+1) (p⋆)

+

T∑
t=1

[
L(t)

(
p(t)
)
− L(t+1)

(
p(t+1)

)
+ ℓ(t)

(
p(t)
)]
.

(49)

Proof. Since
∑T

t=1 ℓ
(t)
(
p(t)
)

appears in both sides, we only need to show that

−
T∑

t=1

ℓ(t)(p⋆) = R(T+1) (p⋆)−R(1)
(
p(1)

)
+ L(T+1)

(
p(T+1)

)
− L(T+1) (p⋆) +

T∑
t=1

[
L(t)

(
p(t)
)
− L(t+1)

(
p(t+1)

)]
(50)
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First, note that

ℓ(t) (p⋆) =

t∑
τ=1

ℓ(τ) (p⋆)−
t−1∑
τ=1

ℓ(τ) (p⋆) =
(
L(t+1) (p⋆)−R(t+1) (p⋆)

)
−
(
L(t) (p⋆)−R(t) (p⋆)

)
. (51)

Summing up the right-hand side of the above from t = 1, ..., T , we have

T∑
t=1

ℓ(t) (p⋆) =
(
L(T+1) (p⋆)−R(T+1) (p⋆)

)
−
(
L(1) (p⋆)−R(1) (p⋆)

)
= L(T+1) (p⋆)−R(T+1) (p⋆) , (52)

by telescoping summation. Thus,

−
T∑

t=1

ℓ(t) (p⋆) = R(T+1)(p⋆)− L(T+1)(p⋆). (53)

Similarly,

T∑
t=1

[
L(t)

(
p(t)
)
− L(t+1)

(
p(t+1)

)]
= L(1)

(
p(1)

)
− L(T+1)

(
p(T+1)

)
= R(1)

(
p(1)

)
− L(T+1)

(
p(T+1)

)
. (54)

Rearranging,

0 = L(T+1)
(
p(T+1)

)
−R(1)

(
p(1)

)
+

T∑
t=1

[
L(t)

(
p(t)
)
− L(t+1)

(
p(t+1)

)]
(55)

Adding (53) and (55), we have

−
T∑

t=1

ℓ(t) (p⋆) = R(T+1) (p⋆)−R(1)
(
p(1)

)
+ L(T+1)

(
p(T+1)

)
− L(T+1) (p⋆) +

T∑
t=1

[
L(t)

(
p(t)
)
− L(t+1)

(
p(t+1)

)]
(56)

Finally, by adding
∑T

t=1 ℓ
(t)
(
p(t)
)

to both sides, we prove the statement. Note that the left hand side of the main statement
does not depend on R(t), thus we can replace R(T+1) (p⋆) into R(T ) (p⋆). (Remark 7.3 of (Orabona, 2019)) ■

A.2.8. UPPER BOUND TO THE SUBOPTIMALITY GAP

Lemma A.5. (Oracle Gap; Corollary 7.7 of (Orabona, 2019)) Let f : RK → R be a µ-strongly convex w.r.t. ∥ · ∥ over its
domain. Let x⋆ = argminx f(x). Then, for all x ∈ dom ∂f(x), and g ∈ ∂f(x), we have:

f(x)− f(x⋆) ≤ 1

2µ
∥g∥2⋆, (57)

where ∥ · ∥⋆ is a dual norm of ∥ · ∥.

A.2.9. PROGRESS BOUND

Lemma A.6. (Progress Bound of FTRL with Proximal Regularizer) With a slight abuse of notation, assume L(t) is closed,
subdifferentiable and µ(t)-strongly convex w.r.t. ∥ · ∥ in ∆K−1. First assume that p(t+1) = argminp∈∆K−1

L(t+1) (p).
Assume further that the regularizer satisfies p(t) = argminp∈∆K−1

(
R(t+1) (p)−R(t) (p)

)
, and g(t) ∈ ∂L(t+1)(p(t)).

Then, we have the following inequality:

L(t)
(
p(t)
)
− L(t+1)

(
p(t+1)

)
+ ℓ(t)

(
p(t)
)
≤
∥∥g(t)

∥∥2
⋆

2µ(t+1)
+
(
R(t)

(
p(t)
)
−R(t+1)

(
p(t)
))

, (58)

where ∥ · ∥⋆ is a dual norm of ∥ · ∥.
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Proof.

L(t)
(
p(t)
)
− L(t+1)

(
p(t+1)

)
+ ℓ(t)

(
p(t)
)

=
(
L(t)

(
p(t)
)
+ ℓ(t)

(
p(t)
)
+R(t+1)

(
p(t)
)
−R(t)

(
p(t)
))
− L(t+1)

(
p(t+1)

)
−R(t+1)

(
p(t)
)
+R(t)

(
p(t)
)

= L(t+1)
(
p(t)
)
− L(t+1)

(
p(t+1)

)
−R(t+1)

(
p(t)
)
+R(t)

(
p(t)
)

≤
∥∥g(t)

∥∥2
⋆

2µ(t+1)
−R(t+1)

(
p(t)
)
+R(t)

(
p(t)
)
,

(59)

where the first inequality is due the assumption that p(t+1) = argminp∈∆K−1
L(t+1) (p), g(t) ∈ ∂L(t+1)(p(t)), and the

result from Lemma A.5. See also Lemma 7.23 of (Orabona, 2019). ■

Lemma A.7. (Progress Bound of FTRL with Non-Decreasing Regularizer) With a slight abuse of notation, assume L(t) to
be closed and sub-differentiable in ∆K , and

(
L(t) + ℓ(t)

)
to be closed, differentiable and ν(t)-strongly convex w.r.t. ∥ · ∥1 in

∆K−1. Further define with an abuse of notation again that g(t) = ∇ℓ(t)(p(t)) ∈ ∂
(
L(t) + ℓ(t)

) (
p(t)
)
, and define further

that p(t) = argminp∈∆K−1
L(t) (p). Then, we have the following inequality:

L(t)
(
p(t)
)
− L(t+1)

(
p(t+1)

)
+ ℓ(t)

(
p(t)
)
≤
∥∥g(t)

∥∥2
∞

2ν(t)
+
(
R(t)

(
p(t+1)

)
−R(t+1)

(
p(t+1)

))
. (60)

Proof. Let us first assume that p(t)
∗ = argminp∈∆K−1

(
L(t) (p) + ℓ(t) (p)

)
. Observe that

L(t+1)
(
p(t+1)

)
= L(t)

(
p(t+1)

)
+ ℓ(t)

(
p(t+1)

)
−R(t)

(
p(t+1)

)
+R(t+1)

(
p(t+1)

)
, (61)

we have

L(t)
(
p(t)
)
− L(t+1)

(
p(t+1)

)
+ ℓ(t)

(
p(t)
)

= L(t)
(
p(t)
)
−
(
L(t)

(
p(t+1)

)
+ ℓ(t)

(
p(t+1)

)
−R(t)

(
p(t+1)

)
+R(t+1)

(
p(t+1)

))
+ ℓ(t)

(
p(t)
)

=
(
L(t)

(
p(t)
)
+ ℓ(t)

(
p(t)
))
−
(
L(t)

(
p(t+1)

)
+ ℓ(t)

(
p(t+1)

))
+
(
R(t)

(
p(t+1)

)
−R(t+1)

(
p(t+1)

))
≤
(
L(t)

(
p(t)
)
+ ℓ(t)

(
p(t)
))
−
(
L(t)

(
p
(t)
∗

)
+ ℓ(t)

(
p
(t)
∗

))
+
(
R(t)

(
p(t+1)

)
−R(t+1)

(
p(t+1)

))
≤
∥∥g(t)

∥∥2
∞

2ν(t)
+
(
R(t)

(
p(t+1)

)
−R(t+1)

(
p(t+1)

))
,

(62)

where the first inequality is due the assumption that p(t)
∗ = argminp∈∆K−1

(
L(t) + ℓ(t)

)
(p), g(t) ∈ ∂

(
L(t) + ℓ(t)

)
. Lastly,

the second inequality is the direct result from Lemma A.5. See also Lemma 7.8 of (Orabona, 2019). ■

A.2.10. EXP-CONCAVITY

Definition A.8. A function f : X → R is γ-exp-concave if exp (−γf (x)) is concave for x ∈ X .

Remark A.9. The decision loss defined in (4) is 1-exp-concave.

Lemma A.10. For an γ-exp-concave function f : X → R, let the domain X is bounded, and choose δ ≤ γ
2 such that

|δ ⟨∇f(x),y − x⟩| ≤ 1
2 and for all x,y ∈ X , the following statement holds.

f(y) ≥ f(x) + ⟨∇f(x),y − x⟩+ δ

2
(⟨∇f(y),y − x⟩)2 (63)

Proof. For all such that δ ≤ γ
2 , a function g(x) = exp (−2δf(x)) is concave. From the concavity of g, we have:

g(x) ≤ g(y) + ⟨∇g(y),x− y⟩ . (64)
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By taking logarithm on both sides, we have:

f(x) ≥ f(y)− 1

2δ
log (1− 2δ ⟨∇f(y),x− y⟩) . (65)

From the assumption, we have |δ ⟨∇f(x),y − x⟩| ≤ 1
2 , and using the fact that log(1 + x) ≤ x− x2

4 for |x| ≤ 1, we can
conclude the proof. ■

Remark A.11. (Remark 7.27 from (Orabona, 2019)) For a positive definite matrix B ∈ RK×K , ∥p∥B is a norm induced
by B, defined as ∥p∥B ≜

√
p⊤Bp for p ∈ RK . A function f(p) = 1

2p
⊤Bp is therefore 1-strongly convex w.r.t. ∥ · ∥B .

Note that the dual norm of ∥ · ∥B is ∥ · ∥B−1 .

A.3. Regret Bound of AAggFF-S: Proof of Theorem 5.1

Remark A.12. The regularizer of AAggFF-S (i.e., ONS) is proximal since it has a quadratic form.

Proof. Since Lemma A.4 holds for arbitrary loss function, let us set L(t) (p) ≜
∑t−1

τ=1 ℓ̃
(τ)(p) + α

2 ∥p∥
2
2 +

β
2

∑t−1
τ=1

(〈
g(τ),p− p(τ)

〉)2
as in (7) with a slight abuse of notation. Note that we set R(t) (p) = α

2 ∥p∥
2
2 +

β
2

∑t−1
τ=1

(〈
g(τ),p− p(τ)

〉)2
, which is often called a proximal regularizer.

From the regret, we have:

Regret(T ) (p⋆)

=

T∑
t=1

ℓ(t)
(
p(t)
)
−

T∑
t=1

ℓ(t) (p⋆)

≤
T∑

t=1

ℓ̃(t)
(
p(t)
)
−

T∑
t=1

ℓ̃(t) (p⋆)

= R(T+1) (p⋆)−R(1)
(
p(1)

)
︸ ︷︷ ︸

(i)

+L(T+1)
(
p(T+1)

)
− L(T+1) (p⋆)︸ ︷︷ ︸

(ii)

+

T∑
t=1

[
L(t)

(
p(t)
)
− L(t+1)

(
p(t+1)

)
+ ℓ̃(t)

(
p(t)
)]

︸ ︷︷ ︸
(iii)

(66)

Let us first denote A(t) ≜ g(t)g(t)⊤ for g(t) = ∇ℓ(t)(p(t)) as in the main text, and further denote that B(t) ≜ αIK +

β
∑t

τ=1 A
(τ). Then, we can rewrite the regularizer of AAggFF-D as follows.

R(t) (p) =
α

2
∥p∥22 +

β

2

t−1∑
τ=1

(〈
g(τ),p− p(τ)

〉)2
=
α

2
∥p∥22 +

β

2

t−1∑
τ=1

∥∥∥p(τ) − p
∥∥∥2
A(τ)

(67)

That is, R(t) (p), as well as L(t) (p) is β-strongly convex function w.r.t. ∥·∥B(t−1) , t ∈ [T ].

For (i), since the regularizer R(t) (p) is nonnegative for all t ∈ [T ], it can be upper bounded as R(T+1) (p⋆). Using (67), we
have:

R(T+1) (p⋆) =
α

2
∥p∥22 +

β

2

T∑
t=1

∥∥∥p(t) − p⋆
∥∥∥2
A(t)

. (68)

For (ii), we use the assumption in Lemma A.7, where p(t) = argminp∈∆K−1
L(t) (p). From the assumption, since p(T+1)

is the minimizer of L(T+1), (ii) becomes negative. Thus, we can exclude it in further upper bounding.
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For (iii), we can directly use the result of Lemma A.6.

T∑
t=1

[
L(t)

(
p(t)
)
− L(t+1)

(
p(t+1)

)
+ ℓ̃(t)

(
p(t)
)]

(69)

≤ 1

2β

T∑
t=1

∥∥∥g(t)
∥∥∥2
B(t)−1

+

T∑
t=1

(
R(t)

(
p(t)
)
−R(t+1)

(
p(t)
))

(70)

=
1

2β

T∑
t=1

∥∥∥g(t)
∥∥∥2
B(t)−1

. (71)

Combining all, we have regret upper bound as follows.

Regret(T ) (p⋆) =

T∑
t=1

ℓ(t)
(
p(t)
)
−

T∑
t=1

ℓ(t) (p⋆)

≤
T∑

t=1

ℓ̃(t)
(
p(t)
)
−

T∑
t=1

ℓ̃(t) (p⋆)

≤ α

2
∥p∥22 +

β

2

T∑
t=1

∥∥∥p(t) − p⋆
∥∥∥2
A(t)

+
1

2β

T∑
t=1

∥∥∥g(t)
∥∥∥2
B(t)−1

.

(72)

Lastly, from the result of Lemma A.10, we have

Regret(T ) (p⋆) =

T∑
t=1

ℓ(t)
(
p(t)
)
−

T∑
t=1

ℓ(t) (p⋆)

≤
T∑

t=1

ℓ̃(t)
(
p(t)
)
−

T∑
t=1

ℓ̃(t) (p⋆)− β

2

T∑
t=1

∥∥∥p(t) − p⋆
∥∥∥2
A(t)

≤ α

2
∥p∥22 +

1

2β

T∑
t=1

∥∥∥g(t)
∥∥∥2
B(t)−1

,

(73)

where we need
∣∣β 〈g(t),p− p(t)

〉∣∣ ≤ 1
2 due to the assumption.

To meet the assumption, we have∣∣∣β 〈g(t),p− p(t)
〉∣∣∣ ≤ β∥p− p(t)∥1∥g(t)∥∞ ≤ 2βL∞, (74)

where the first inequality is due to Hölder’s inequality and the second inequality is due to Lemma 4.1 and the fact that a
diameter of the simplex is 2. Thus, we can set β = 1

4L∞
to satisfy the assumption.

For the first term, using the fact that ∥ · ∥2 ≤ ∥ · ∥1, we have

α

2
∥p∥22 ≤

α

2
∥p∥21 ≤

α

2
, (75)

where the last equality is due to p ∈ ∆K−1.

For the second term, denote λ1, ..., λK as the eigenvalues of B(T ) − αIK , then we have:

T∑
t=1

∥∥∥g(t)
∥∥∥2
B(t)−1

≤
K∑
i=1

log

(
1 +

λi
α

)
, (76)

which is the direct result of Lemma 11.11 and Theorem 11.7 of (Cesa-Bianchi & Lugosi, 2006). This can be further bounded
by AM-GM inequality as follows.

K∑
i=1

log

(
1 +

λi
α

)
≤ K log

(
1 +

1

Kα

K∑
i=1

λi

)
(77)
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Since we have
K∑
i=1

λi = trace
(
B(T ) − αIK

)
= trace

(
β

T∑
t=1

g(t)g(t)⊤
)

= β

T∑
t=1

∥g(t)∥22

≤ βKT∥g(t)∥2∞ ≤ βKTL2
∞ =

KTL∞

4
,

(78)

where L∞ is a Lipschitz constant w.r.t. ∥·∥∞ from Lemma 4.1, thus the inequality is due to ∥p∥2 ≤
√
K∥p∥∞,∀p ∈ ∆K−1.

Followingly, we can upper-bound the second term as
T∑

t=1

∥∥∥g(t)
∥∥∥2
B(t)−1

≤ K log

(
1 +

TL∞

4α

)
. (79)

Putting them all together, we have:

Regret(T ) (p⋆) =

T∑
t=1

ℓ(t)
(
p(t)
)
−

T∑
t=1

ℓ(t) (p⋆)

≤
T∑

t=1

ℓ̃(t)
(
p(t)
)
−

T∑
t=1

ℓ̃(t) (p⋆)− 1

2

T∑
t=1

∥∥∥p(t) − p⋆
∥∥∥2
A(t)

≤ α

2
∥p∥22 +

1

2β

T∑
t=1

∥∥∥g(t)
∥∥∥2
B(t)−1

≤ α

2
+
K

2β
log

(
1 +

TL∞

4α

)
=
α

2
+ 2L∞K log

(
1 +

TL∞

4α

)
.

(80)

If we further set α = 4L∞K, we finally have

Regret(T ) (p⋆) ≤ 2L∞K

(
1 + log

(
1 +

T

16K

))
. (81)

■

A.4. Regret Bound of AAggFF-D with Full Client Participation: Proof of Theorem 5.2

Proof. Again, since Lemma A.4 holds for arbitrary loss function, let us set L(t) (p) ≜
∑t−1

τ=1 ℓ̃
(τ)(p)+η(t+1)

∑K
i=1 pi log pi

with a slight abuse of notation. Note that we set R(t) (p) = η(t)
∑K

i=1 pi log pi is a negative entropy regularizer with
non-decreasing time-varying step size η(t), thus L(t) (p) is η(t)-strongly convex w.r.t. ∥ · ∥1. (Proposition 5.1 from (Beck
& Teboulle, 2003)) Then, we have an upper bound of the regret of AAggFF-D (with full-client participation setting) as
follows.

Regret(T ) (p⋆)

=

T∑
t=1

ℓ(t)
(
p(t)
)
−

T∑
t=1

ℓ(t) (p⋆)

≤
T∑

t=1

ℓ̃(t)
(
p(t)
)
−

T∑
t=1

ℓ̃(t) (p⋆)

= R(T+1) (p⋆)−R(1)
(
p(1)

)
︸ ︷︷ ︸

(i)

+L(T+1)
(
p(T+1)

)
− L(T+1) (p⋆)︸ ︷︷ ︸

(ii)

(82)

+

T∑
t=1

[
L(t)

(
p(t)
)
− L(t+1)

(
p(t+1)

)
+ ℓ̃(t)

(
p(t)
)]

︸ ︷︷ ︸
(iii)

,
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where the inequality is due to Corollary A.3.

For (i), recall from Lemma A.4 that the regret does not depend on the regularizer, we can bound it after changing from
R(T+1) (p⋆) to R(T ) (p⋆).

R(T ) (p⋆)−R(1) (p) ≤ η(T )
K∑
i=1

p⋆i log p
⋆
i + η(1) logK ≤ η(T )

K∑
i=1

p⋆i log p
⋆
i + η(T ) logK ≤ η(T ) logK. (83)

For (ii), we use the assumption in Lemma A.7, where p(t) = argminp∈∆K−1
L(t) (p). From the assumption, since p(T+1)

is the minimizer of L(T+1), (ii) becomes negative. Thus, we can exclude it from the upper bound.

For (iii), we directly use the result of Lemma A.7 as follows.

T∑
t=1

[
L(t)

(
p(t)
)
− L(t+1)

(
p(t+1)

)
+ ℓ̃(t)

(
p(t)
)]
≤

T∑
t=1

∥∥g(t)
∥∥2
∞

2η(t)
≤

T∑
t=1

L2
∞

2η(t)
, (84)

where the additional terms are removed due to the non-decreasing property of regularizer thanks to the assumption of η(t),
and the last inequality is due to Lemma 4.1. Note that g(t) = ∇ℓ(t)(p(t)).

Combining all, we have regret upper bound as follows.

Regret(T ) (p⋆) =

T∑
t=1

ℓ(t)
(
p(t)
)
−

T∑
t=1

ℓ(t) (p⋆) ≤
T∑

t=1

ℓ̃(t)
(
p(t)
)
−

T∑
t=1

ℓ̃(t) (p⋆) ≤ η(T ) logK +

T∑
t=1

L2
∞

2η(t)
. (85)

Finally, by setting η(t) = L∞
√
t√

logK
, we have

≤ L∞
√
T logK +

L∞
√
logK

2

T∑
t=1

1√
t
≤ 2L∞

√
T logK, (86)

where the inequality is due to
∑T

t=1
1√
t
≤
∫ T

0
dx√
x
= 2
√
T . See also equation (7.3) of (Orabona, 2019). ■

A.5. Regret Bound of AAggFF-D with Partial Client Participation: Proof of Corollary 5.3

Proof. Denote ℓ̆(t) as a linearized loss constructed from r̆(t) and ğ(t). i.e.,

ℓ̆(t)(p) =
〈
p, ğ(t)

〉
=

〈
p,

r̆(t)

1 +
〈
p(t), r̄1K

〉 + r̄1Kp(t)⊤(r̆(t) − r̄1K)

(1 +
〈
p(t), r̄1K

〉
)2

〉
(87)

The expected regret is

E
[
Regret(T ) (p⋆)

]
= E

[
T∑

t=1

(
ℓ(t)
(
p(t)
)
− ℓ(t) (p⋆)

)]

≤ E

[
T∑

t=1

(
ℓ̆(t)
(
p(t)
)
− ℓ̆(t) (p⋆)

)]
= E

[
T∑

t=1

〈
ğ(t),p(t) − p⋆

〉]

= E

[
T∑

t=1

Ei∈S(t)

[〈
ğ(t),p(t) − p⋆

〉]]
(∵ Law of Total Expectation) (88)

≈ E

[
T∑

t=1

〈
g(t),p(t) − p⋆

〉]
(∵ Lemma 4.4)

=

T∑
t=1

(
ℓ̃(t)
(
p(t)
)
− ℓ̃(t) (p⋆)

)
≤ O

(
L∞K

√
T logK

)
■
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Remark A.13. Even though we can enjoy the same regret upper bound in expectation from Corollary 5.3, it should be noted
that the raw regret (i.e., regret without expectation) from ğ(t) may inflate the regret upper bound from O

(
L∞K

√
T logK

)
toO

(
L̆∞K

√
T logK

)
, where L̆∞ is a Lipschitz constant from Lemma A.2, upper bounding

∥∥∥ğ(t)
∥∥∥
∞
≤ L̆∞. It is because

L̆∞ is dominated by 1/C ≈ O (K), which can be a huge number when if C is a tiny constant. Although this inflation
hinders proper update of AAggFF-D empirically, this can be easily eliminated in AAggFF-D through an appropriate choice
of a range (C1 and C2) of the response vector, which ensures practicality of AAggFF-D. See Appendix B.2 for a detail.

A.6. Derivation of Closed-From Update of AAggFF-D

The objective of AAggFF-D in (9) can be written in the following form.

min
p∈∆K−1

t∑
τ=1

ℓ̃(τ)(p) + η(t+1)
K∑
i=1

pi log pi = min
p∈∆K−1

〈
p,

t−1∑
τ=1

ğ(τ)

〉
+ η(t+1)

K∑
i=1

pi log pi

= min
p∈∆K−1

〈
t∑

τ=1

ğ(τ),p

〉
+R(t+1)(p) = max

p∈∆K−1

〈
−

t∑
τ=1

ğ(τ),p

〉
−R(t+1)(p).

(89)

It exactly corresponds to the form of the Fenchel conjugate R(t+1)
∗ , which is defined as follows.

R
(t+1)
∗ (p) = max

p∈∆K−1

〈
−

t∑
τ=1

ğ(τ),p

〉
−R(t+1)(p). (90)

Thus, we can enjoy the property of Fenchel conjugate, which is

p(t+1) = ∇R(t+1)
∗

(
−

t∑
τ=1

ğ(τ)

)
(91)

Since we can derive the log-sum-exp form by solving (90) as follows,

R
(t+1)
∗ (u) = log

(
K∑
i=1

exp (ui)

)
, (92)

we have the closed-form solution for the new decision update.

p
(t+1)
i =

exp
(
−
∑t

τ=1 ğ
(τ)
i /η(t+1)

)
∑K

j=1 exp
(
−
∑t

τ=1 ğ
(τ)
j /η(t+1)

) . (93)

Note that η(t+1) is already determined in Theorem 5.2 and Corollary 5.3 as L̆∞
√
t+1√

logK
, with the reflection of modified

Lipschitz constant from L∞ to L̆∞ (see Remark A.13). See also (Helmbold et al., 1998) and Chapter 6.6 of (Orabona,
2019).
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B. Detailed Designs of AAggFF
B.1. Cumulative Distribution Function for Response Transformation

Choice of Distributions We used the CDF to transform unbounded responses from clients (i.e., local losses of clients)
into bounded values. Among diverse options, we used one of the following 6 CDFs in this work. (Note that erf(x) =
2√
π

∫ x

0
e−y2

dy is the Gauss error function)

1. Weibull (Weibull, 1951): CDF(x) = 1− e−(x/α)β ; we set α = 1 (scale) and β = 2 (shape).

2. Frechet (Fréchet, 1927): CDF(x) = e−( x
α )−β

; we set α = 1 (scale) and β = 1 (shape).

3. Gumbel (Gumbel, 1935): CDF(x) = e−e−(x−α)/β

; we set α = 1 (scale) and β = 1 (shape).

4. Exponential: CDF(x) = 1− e−αx; we set α = 1 (scale).

5. Logistic: CDF(x) = 1
1+e(−(x−α)/β) ; we set α = 1 (scale) and β = 1 (shape).

6. Normal (Gauß, 1809): CDF(x) = 1
2

[
1 + erf

(
x−α
β
√
2

)]
; we set α = 1 (scale) and β = 1 (shape).

Commonly, the scale parameter of all distributions is set to 1, since in (8) we centered inputs to 1 in expectation. Although
we fixed the parameters of each CDF, they can be statistically estimated in practice, such as using maximum spacing
estimation (Cheng & Amin, 1983).

For imposing larger mixing coefficients for larger losses, the transformation should (i) preserve the relative difference
between responses, as well as (ii) not too sensitive for outliers. While other heuristics (e.g., clipping values, subtracting
from arbitrary large constant (Zhang et al., 2022)) for the transformation are also viable options for (i), additional efforts are
still required to address (ii).

On the contrary, CDFs can address both conditions with ease. As CDFs are increasing functions, (i) can be easily satisfied.
For (ii), it can be intrinsically addressed by the nature of CDF itself. Let us start with a simple example.

Suppose we have K = 3 local losses: F1(θ) = 0.01, F2(θ) = 0.10, F3(θ) = 0.02. Since the average is
F̄ = 0.01+0.10+0.02

3 ≈ 0.043, we have inputs of CDF as follows: F1(θ)/F̄ = 0.23, F2(θ)/F̄ = 2.31, F3(θ)/F̄ = 0.46.
These centered inputs are finally transformed into bounded values as in Table A1.

Table A1: Example: Effects of CDF Transformations

Transformed Responses

Weibull CDF
CDF(x) = 1− e(−x2) 0.05 / 1.00 / 0.19

Frechet CDF
CDF(x) = e(−1/x) 0.01 / 0.65 / 0.11

Gumbel CDF
CDF(x) = e(−e(−(x−1))) 0.12 / 0.76 / 0.18

Exponential CDF
CDF(x) = 1− e(−x) 0.21 / 0.90 / 0.37

Logistic CDF
CDF(x) = 1

1+e(−(x−1))
0.32 / 0.79 / 0.37

Normal CDF
CDF(x) = 1

2

[
1 + erf

(
x−1√

2

)] 0.22 / 0.90 / 0.29

While all losses become bounded values in [0, 1], the maximum local loss (i.e., F2(θ) = 0.10) is transformed into different
values by each CDF (see underlined figures in the ‘Transformed Responses’ column of Table A1). When using the Weibull
CDF, the maximum local loss is translated into 1.00, which means that there may be no value greater than 0.10 (i.e., 0.10 is
the largest one in 100% probability) given current local losses. Meanwhile, when using the Frechet CDF, the maximum local
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loss is translated into 0.65, which means that there still is a 35% chance that some other local losses are greater than 0.10
when provided with other losses similar to 0.01 and 0.02. This implies that each CDF treats a maximum value differently.
When a transformation is easily inclined to the maximum value, thereby returning 1 (i.e., maximum of CDF), it may yield a
degenerate decision, e.g., p ≈ [0, 1, 0]⊤.

Fortunately, most of the listed CDFs are designed for modeling maximum values. For example, the three distributions,
Gumbel, Frechet, and Weibull, are grouped as the Extreme Value Distribution (EVD) (Kotz & Nadarajah, 2000). As its
name suggests, it models the behavior of extreme events, and it is well known that any density modeling a minimum or a
maximum of independent and identically distributed (IID) samples follows the shape of one of these three distributions (by
the Extreme Value Theorem (Rusnock & Kerr-Lawson, 2005)). In other words, EVDs can reasonably measure how a certain
value is close to a maximum. Thus, they can estimate whether a certain value is relatively large or small. Otherwise, the
Exponential distribution is a special case of Weibull distribution, and the logistic distribution is also related to the Gumbel
distribution. Last but not least, although it is not a family of EVD, the Normal distribution is also considered due to the
central limit theorem, since the local loss is the sum of errors from IID local samples. We expect the CDF transformation
can appropriately measure a relative magnitude of local losses, and it should be helpful for decision making.

Effects of Response Transformation We also illustrated that the response should be bounded (i.e., Lipschitz continuous)
in section 4.2.1, to have non-vacuous regret upper bound. To acquire bounded response, we compare the cumulative values
of a global objective in (1), i.e.,

∑T
t=1

∑K
i=1 p

(t)
i Fi(θ

(t)) for the cross-silo setting, and
∑T

t=1

∑
i∈S(t) p

(t)
i Fi(θ

(t)) for the
cross-device setting.

Figure A1: Cumulative values of a global objective according to different CDFs (smaller is better). (Left) Berka dataset
(cross-silo setting; K = 7, T = 100). (Right) Reddit dataset (cross-device setting; K = 817, T = 300, C = 0.00612)

In the cross-silo experiment with the Berka dataset, the Normal CDF shows the smallest cumulative values, while in the
cross-device experiment with the Reddit dataset, the Weibull CDF yields the smallest value. For the Berka dataset, the
Normal CDF yields an average performance (AUROC) of 79.37 with the worst performance of 43.75, but the Weibull CDF
shows an average performance of 73.02 with the worst performance of 25.00. The same tendency is also observed in the
Reddit dataset. The Normal CDF presents an average performance (Acc. 1) of 14.05 and the worst performance of 4.26,
while the Weibull CDF shows an average of 12.62 with the worst of 3.35. From these observations, we can conclude that an
appropriate choice of CDF is necessary for better sequential decision making, and suitable transformation helps minimize a
global objective of FL. Note also that these behaviors are also directly related to the global convergence of the algorithm
w.r.t. θ.

B.2. Choice of a Response Range

In regard to determining the range of a response vector, i.e., [C1, C2], we can refer to the Lipschitz continuity in Lemma 4.1
and Lemma A.2. For the cross-silo setting, we can set arbitrary constants so that L∞ = O(1) according to Lemma 4.1.
Thus, for all experiments of AAggFF-S, we set C1 = 0, C2 = 1

K .
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For the cross-device setting, the Lipschitz constant is changed into L̆∞, since it is influenced by the client sampling
probability (C). In detail, C is located in the denominator of the Lipschitz constant, L̆∞, which inflates the resulting
gradient value as C is a constant close to 0. (e.g., when 10 among 100,000 clients are participating in each round,
1/C = 104) This is problematic and even causes an overflow problem empirically in updating a new decision. Thus,
we propose a simple remedy — setting C1 and C2 to be a multiple of C, so that the C in the denominator is to be
canceled out, according to Lemma A.2. For instance, when C1 = 0, C2 = C, resulting Lipschitz constant simply becomes
∥ğ(t)∥∞ ≤ L̆∞ = C

1+0 + 2(C−0)
C(1+0) = C + 2 ≈ 2, which is a constant far smaller than T and K, typically assumed in the

practical cross-device FL setting. Therefore, for all experiments of AAggFF-D, we set C1 = 0, C2 = C.
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C. Experimental Details

Table A2: Statistics of Federated Benchmarks

Dataset Clients Samples Avg. Std.

Berka 7 621 88.71 24.78
MQP 11 3,048 277.09 63.25
ISIC 6 21,310 3551.67 3976.16

CelebA 9,343 200,288 21.44 7.63
Reddit 817 97,961 119.90 229.85

SpeechCommands 2,005 84,700 42.24 36.69

C.1. Datasets

For the main experiments in Table 2 and Table 3, we used 3 datasets for the cross-silo setting (Berka (Berka, 1999),
MQP (McCreery et al., 2020), and ISIC (Codella et al., 2018; Ogier du Terrail et al., 2022)), and 3 other datasets for the
cross-device setting (CelebA, Reddit (Caldas et al., 2019), and SpeechCommands (Warden, 2018)). In this section, we
describe details of each dataset about its task, metrics, and client partitioning. The statistics of all federated benchmarks are
summarized in Table A2. Note that Avg. and Std. in the table refer to the average and a standard deviation of a sample size
of each client in the federated system.

First, we present details of the federated benchmark for the cross-silo setting.

• Berka is a tabular dataset containing bank transaction records collected from Czech bank (Berka, 1999). Berka
accompanies the loan default prediction task (i.e., binary classification) of each bank’s customers. It is fully anonymized
and is originally composed of 8 relational tables: accounts, clients, disposition, loans, permanent orders, transactions,
demographics, and credit cards. We merged all 8 tables into one dataset by joining the primary keys of each table, and
finally have 15 input features. From the demographics table, we obtain information on the region: Prague, Central
Bohemia, South Bohemia, West Bohemia, North Bohemia, East Bohemia, South Moravia, and North Moravia. We
split each client according to the region and excluded all samples of North Bohemia since it has only one record of loan
default, thus we finally have 7 clients (i.e., banks). Finally, we used the area under the receiver operating characteristic
(ROC) curve for the evaluation metric.

• MQP is a clinical question pair dataset crawled from medical question answering dataset (Ben Abacha & Demner-
Fushman, 2019), and labeled by 11 doctors (McCreery et al., 2020). All paired sentences are labeled as either similar or
dissimilar, thereby it is suitable for the binary classification task. As a pre-processing, we merge two paired sentences
into one sentence by adding special tokens: [SEP], [PAD], and [UNK]. We set the maximum token length to 200,
thus merged sentences less than 200 are filled with [PAD] tokens, and otherwise are truncated. Then, merged sentences
are tokenized using pre-trained DistilBERT tokenizer (Sanh et al., 2019). We regard each doctor as a separate client
and thus have 11 clients. Finally, we used the area under the ROC curve for the evaluation metric.

• ISIC is a dermoscopic image dataset for a skin cancer classification, collected from 4 hospitals. (Codella et al.,
2018; Ogier du Terrail et al., 2022) The task contains 8 distinct melanoma classes, thus designed for the multi-class
classification task. Following (Ogier du Terrail et al., 2022), as one hospital has three different imaging apparatus, its
samples are further divided into 3 clients, thus we finally have 6 clients in total. Finally, we used top-5 accuracy for the
evaluation metric.

Next, we illustrate details of the federated benchmark for the cross-device setting.

• CelebA is a vision dataset containing the facial images of celebrities (Liu et al., 2015). It is curated for federated
setting in LEAF benchmark (Caldas et al., 2019), and is targeted for the binary classification task (presence of smile).
We follow the processing of (Caldas et al., 2019), thereby each client corresponds to each celebrity, having 9,343 total
clients in the federated system. Finally, we used top-1 accuracy for the evaluation metric following (Caldas et al.,
2019).
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• Reddit is a text dataset containing the comments of community users of Reddit in December 2017, and a part of LEAF
benchmark (Caldas et al., 2019). Following (Caldas et al., 2019), we build a dictionary of vocabularies of size 10,000
from tokenized sentences and set the maximum sequence length to 10. The main task is tailored for language modeling,
i.e., next token prediction, given word embeddings in each sentence of clients. Each client corresponds to one of the
community users, thus 817 clients are presented in total. Finally, we used the top-1 accuracy for the evaluation metric
following (Caldas et al., 2019).

• SpeechCommands is designed for a short-length speech recognition task that includes one second 35 short-length
words, such as “Up”, “Down”, “Left”, and “Right” (Warden, 2018). It is accordingly a multi-class classification task
for 35 different classes. While it is collected from 2,618 speakers, we rule out all samples of speakers having too few
samples when splitting the dataset into training and test sets. (e.g., exclude speakers whose total sample counts are less
than 3) As a result, we have 2,005 clients, and each client has 16,000-length time-domain waveform samples. Finally,
we used top-5 accuracy for the evaluation metric.

C.2. Models

For each dataset, we used task-specific model architectures which are already used in previous works, or widely used in
reality, to simulate the practical FL scenario as much as possible. For the experiment of the cross-silo setting, we used the
following models.

• Logistic Regression is used for the Berka dataset. We used a simple logistic regression model with a bias term, and the
output (i.e., logit vector) is transformed into predicted class probabilities by the softmax function.

• DistilBERT (Sanh et al., 2019) is used for the MQP dataset. We used a pre-trained DistilBERT model, from BookCorpus
and English Wikipedia (Sanh et al., 2019). We also used the corresponding DistilBERT tokenizer for the pre-processing
of raw clinical sentences. For a fine-tuning of the pre-trained DistilBERT model, we attach a classifier head next to
the last layer of the DistilBERT’s encoder, which outputs an embedding of 768 dimension. The classifier is in detail
processing the embedding as follows: (768-ReLU-Dropout-2), where each figure is an output dimension of a fully
connected layer with a bias term, ReLU is a rectified linear unit activation layer, and Dropout (Srivastava et al., 2014)
is a dropout layer having probability of 0.1. In the experiment, we trained all layers including pre-trained weights.

• EfficientNet (Tan & Le, 2019) is used for the ISIC dataset. We also used the pre-trained EfficientNet-B0 model from
ImageNet benchmark dataset (Deng et al., 2009). For fine-tuning, we attach a classifier head after the convolution
layers of EfficientNet. The classifier is composed of the following components: (AdaptiveAvgPool(7, 7)-Dropout-8),
where AdaptiveAvgPool(cdot, cdot) is a 2D adaptive average pooling layer outputs a feature map of size 7× 7 (which
are flattened thereafter), Dropout is a dropout layer with a probability of 0.1, and the last linear layer outputs an
8-dimensional vector, which is the total number of classes.

Next, for the cross-device setting, we used the following models.

• ConvNet model used in LEAF benchmark (Caldas et al., 2019) is used for the CelebA dataset. It is composed of four
convolution layers, of which components are: 2D convolution layer without bias term with 32 filters of size 3 × 3
(stride=1, padding=1), group normalization layer (the number of groups is decreased from 32 by a factor of 2: 32, 16,
8, 4), 2D max pooling layer with 2× 2 filters, and a ReLU nonlinear activation layer. Plus, a classifier comes after the
consecutive convolution layers, which are composed of: (AdaptiveAvgPool(5, 5)-1), which are a 2D adaptive average
pooling layer that outputs a feature map of size 5× 5 (which are flattened thereafter), and a linear layer with a bias
term outputs a scalar value since it is a binary classification task.

• StackedLSTM model used in LEAF benchmark (Caldas et al., 2019) is used for the Reddit dataset. It is composed of an
embedding layer of which the number of embeddings is 200, and outputs an embedding vector of 256 dimensions.
It is processed by consecutive 2 LSTM (Hochreiter & Schmidhuber, 1997) layers with the hidden size of 256, and
enters the last linear layer with a bias term, which outputs a logit vector of 10,000 dimensions, which corresponds to
the vocabulary size.

• M5 (Dai et al., 2017) model is used for the SpeechCommands dataset. It is composed of four 1D convolution layers
followed by a 1D batch normalization layer, ReLU nonlinear activation, and a 1D max pooling layer with a filter of
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size 4. All convolution layers EXCEPT the input layer have a filter of size 3, and the numbers of filters are 64, 128, and
256 (all with stride=1 and padding=1). The input convolution layer has 64 filters with a filter of size 80, and stride of 4.
Lastly, one linear layer outputs a logit vector of 35 dimensions.

C.3. Hyperparameters

Before the main experiment, we first tuned the hyperparameter of all baseline fair FL algorithms from a separate random
seed. The hyperparameter of each fair algorithm is listed as follows.

• AFL (Mohri et al., 2019) — a step size of a mixing coefficient ∈{0.01, 0.1, 1.0}

• q-FedAvg (Li et al., 2019) — a magnitude of fairness, ∈{0.1, 1.0, 5.0}

• TERM (Li et al., 2020a) — a tilting constant, λ, ∈{0.1, 1.0, 10.0}

• FedMGDA (Hu et al., 2022) — a deviation from static mixing coefficient ∈{0.1, 0.5, 1.0}

• PropFair (Zhang et al., 2022) — a baseline constant ∈{2, 3, 5}

Each candidate value is selected according to the original paper, and we fix the number of local epochs, E = 1 (following
the set up in (Li et al., 2019)), along with the number of local batch size B = 20 in all experiments. For each dataset,
a weight decay (L2 penalty) factor (ψ), a local learning rate (ζ), and variables related to a learning rate scheduling (i.e.,
learning rate decay factor (ϕ), and a decay step (s)) are tuned first with FedAvg (McMahan et al., 2017) as follows.

• Berka: ψ = 10−3, ζ = 100, ϕ = 0.99, s = 10

• MQP: ψ = 10−2, ζ = 10−
5
2 , ϕ = 0.99, s = 15

• ISIC: ψ = 10−2, ζ = 10−4, ϕ = 0.95, s = 5

• CelebA: ψ = 10−4, ζ = 10−1, ϕ = 0.96, s = 300

• Reddit: ψ = 10−6, ζ = 10
7
8 , ϕ = 0.95, s = 20

• SpeechCommands: ψ = 0, ζ = 10−1, ϕ = 0.999, s = 10

This is intended under the assumption that all fair FL algorithms should at least be effective in the same setting of the FL
algorithm with the static aggregation scheme (i.e., FedAvg). Note that client-side optimization in all experiments is done
by the Stochastic Gradient Descent (SGD) optimizer.

C.4. Implementation Details

All code is implemented in PyTorch (Paszke et al., 2019), simulating a central parameter server that orchestrates a whole
FL procedure and operates AAggFF. We further simulate K participating clients having their own local samples, and a
communication scheme with the central server. All experiments are conducted on a server with 2 Intel®Xeon®Gold 6226R
CPUs (@ 2.90GHz) and 2 NVIDIA®Tesla®V100-PCIE-32GB GPUs.
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D. Pseudocode for AAggFF
D.1. Pseudocode for ClientUpdate

Algorithm 1 ClientUpdate
Input: number of local epochs E, local batch size B, local learning rate ζ, global model θ
Procedure:
Evaluate the received global model on training set according to eq. (94) to yield Fi (θ).
Set local model θ(0) ← θ
for e = 0 to E − 1 do
Be ← Split the client training dataset into batches of size B.
for mini-batch Ξ in Be do

Update the model θ(e) ← θ(e) − ζ
B

B∑
j=1

∇θL
(
Ξ;θ(e)

)
.

end for
Set θ(e+1) ← θ(e)

end for
Return: Fi (θ), θ − θ(E).

For generating a response vector, each client is requested to evaluate the received global model on its training samples,
{ξk}ni

k=1, before the local update. As a result of the evaluation, the local loss of client i at round t, i.e., Fi

(
θ(t)
)

, is
calculated as follows.

Fi

(
θ(t)
)
=

1

ni

ni∑
k=1

L
(
ξk;θ

(t)
)
, (94)

where ni is the total sample size of client i, l is a loss function specific to the task, and hθ is a hypothesis realized by the
parameter θ.

D.2. Pseudocode for AAggFF-S

Algorithm 2 AAggFF-S
Input: number of clients K, total rounds T , transformation ρ, minimum and maximum of a response [C1, C2].
Initialize: mixing coefficients p(1) = 1

K1K , global model θ(1) ∈ Rd

Procedure:
for t = 0 to T − 1 do

for each client i = 1, ...,K in parallel do
Fi

(
θ(t)
)
,θ(t) − θ

(t+1)
i ← ClientUpdate

(
θ(t)
)

end for
Return r(t) according to eq. (8) and C1, C2.
Suffer decision loss ℓ(t)(p(t)) according to eq. (4).
Return a gradient g(t) = ∇ℓ(t)

(
p(t)
)
.

Return a mixing coefficient p(t+1) according to eq. (7).

Update a global model θ(t+1) = θ(t) −
K∑
i=1

p
(t+1)
i

(
θ(t) − θ

(t+1)
i

)
.

end for
Return: θ(T )

D.3. Pseudocode for AAggFF-D

After updating whole entries of a decision variable, the server only exploits mixing coefficients of which indices correspond
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Algorithm 3 AAggFF-D
Input: number of clients K, client sampling ratio C ∈ (0, 1), total rounds T , transformation ρ, range of a response
[C1, C2].
Initialize: mixing coefficients p(0) = 1

K1K , global model θ(0) ∈ Rd

Procedure:
for t = 0 to T − 1 do
S(t) ←Wait until min(1, ⌊C ·K⌋) clients are active in a network.
for each client i ∈ S(t) in parallel do
Fi

(
θ(t)
)
,θ(t) − θ

(t+1)
i ← ClientUpdate

(
θ(t)
)

end for
Return r̆(t) according to eq. (8), eq. (10), and C1, C2.
Suffer decision loss ℓ(t)(p(t)) according to eq. (4).
Return a gradient estimate ğ(t) according to eq. (11).
Return mixing coefficients p(t+1) according to eq. (12)).
Acquire selected coefficients p̃(t+1) according to eq. (95).
Update a global model θ(t+1) = θ(t) −

∑
i∈S(t)

p̃
(t+1)
i

(
θ(t) − θ

(t+1)
i

)
.

end for
Return: θ(T )

to selected clients. Denoting as p̃(t+1) ∈ ∆|S(t)|−1, each selected entry is normalized as follows.

p̃
(t+1)
i =

p
(t+1)
i∑

j∈S(t) p
(t+1)
j

, i ∈ S(t) (95)

This ensures that selected coefficients also satisfy the condition for being a probability vector (i.e., sum up to 1).
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