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ABSTRACT

Unpaired domain translation remains a challenging task due to the need of find-
ing a balance between faithfulness and realism. Diffusion-based methods for un-
paired translation typically excel at realism, but require numerous inference steps
and tend to offer suboptimal input-output alignment. Many of the optimal trans-
port (OT) based methods, on the other hand, offer efficient few-step inference
and reach superior input-output alignment, but heavily rely on adversarial training
and inherit its shortcomings. In this paper, we propose a method called Regu-
larized Distribution Matching Distillation (RDMD), which combines the best of
both worlds. It replaces the adversarial training with diffusion-based distribution
matching, addressing the typical shortcomings of OT methods and providing a
strong initialization for the trained models. RDMD maintains the advantages of
the OT methods by providing one-step inference and explicitly controlling the
input-output faithfulness via regularization of the transport cost. We prove that
in theory RDMD approximates the OT map and demonstrate its empirical per-
formance on several tasks, including unpaired image-to-image translation in pixel
and latent space and unpaired text detoxification. Empirical results show that
RDMD achieves a comparable or better faithfulness-realism trade-off compared
to the diffusion and OT-based baselines.

1 INTRODUCTION

Learning a mapping between two distributions from non-aligned data, a task known as unpaired
translation, is essential when paired datasets are prohibitively expensive or impossible to collect. In
computer vision, a prominent example is unpaired image-to-image translation (Isola et al., 2017; Zhu
et al., 2017), which aims to preserve the cross-domain properties of an input image while changing
its source-domain features to match the target. Common examples include transforming cats into
dogs (Choi et al., 2020) or human faces into anime (Korotin et al., 2022).

Unpaired translation remains a fundamentally challenging problem due to the absence of input-
output alignment. This implies that a desirable translation method should reconcile two competing
objectives: faithfulness, which ensures the translated output preserves the core content of the source
input, and realism, which requires the output to be indistinguishable from true samples of the target
domain. Achieving an optimal balance in this trade-off is central to unpaired translation.

Current state-of-the-art approaches tend to excel at one objective at the expense of the other, a di-
chotomy that we summarize in Table 1. On one side, Diffusion models (DMs) (Ho et al., 2020;
Song et al., 2020b; Dhariwal & Nichol, 2021; Karras et al., 2022) offer exceptional realism via
high-quality generation. DM-based unpaired translation methods typically manipulate their latent
space or sampling scheme to maintain alignment. Broadly, one-sided unpaired translation meth-
ods (Choi et al., 2021; Meng et al., 2021; Zhao et al., 2022) based on DMs commonly guide target
DM sampling process towards samples similar to the input image from the source domain. Two-
sided translation models (Su et al., 2022; Wu & De la Torre, 2023) enforce faithfulness by training
an additional model on the source domain to ensure that a more content-rich source encoding is used
for generating the target object. However, explicitly controlling faithfulness in DMs is non-trivial
and constitutes their main drawback alongside their high inference costs.

Alternatively, unpaired translation can be formalized as an optimal transport (OT) (Villani et al.,
2009; Santambrogio, 2015) problem, which consists of finding the minimal-cost mapping between
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Figure 1: One-step translation between ImageNet classes with RDMD.

Table 1: Qualitative comparison of different families of unpaired translation methods. We denote
strong advantage by  , moderate advantage by  , and no advantage by #. * stands for a realism
that highly depends on the sufficient amount of data.

Family DM (1-sided) DM (2-sided) OT RDMD

Faithfulness #    
Realism    *  
One(few)-step # #   
Data efficiency   #  
Theory     

distributions. This formulation provides significant advantages: a strong theoretical foundation,
guaranteed faithfulness through explicit cost regularization, and highly efficient one-step inference.
Despite these benefits, OT-based methods (Korotin et al., 2022; Gushchin et al., 2024b; Choi et al.,
2024) typically rely on adversarial training to match the target distribution. This dependency makes
them prone to training instabilities and limits their generative quality, preventing them from match-
ing the realism of DMs.

Table 1 contextualizes our work in comparison with other method families. In particular, it highlights
the downsides of the existing methods. We show limited faithfulness of the DM-based methods by
providing the trade-off curves in Figure 3 and samples in Figure 5. In case of OT methods, the
most significant problem is adversarial training. We highlight that OT-based methods that utilize it
struggle with producing realistic samples in low-data regime (Figure 4 and Table 3) and may produce
artifacts in general (Figures 12, 13, 14, 15).

In this work, we introduce a method called Regularized Distribution Matching Distillation (RDMD),
which overcomes shortcomings of both paradigms and achieves a better faithfulness-realism trade-
off than diffusion-based and OT methods. The key idea behind RDMD is to replace the unstable
adversarial objective in OT methods with a diffusion-based distribution matching loss (Yin et al.,
2023; Nguyen & Tran, 2023).

We summarize our contributions as follows:

1. We provide a theoretical analysis of the method and show that with the novel objective,
RDMD approximately solves the OT problem;

2. We emphasize one-step inference, strong initialization, and fast convergence of the method
made possible due to using the diffusion paradigm and utilizing the pre-trained target DM;

3. We demonstrate that RDMD maintains quality even with significant data constraints, a
common failure case of OT methods (Table 3, Figure 4);

4. We validate the applicability of RDMD across different modalities, including the unpaired
image-to-image translation in pixel and latent space and text detoxification;

5. Our experiments show strong empirical results: RDMD surpasses OT methods in terms of
realism and diffusion methods at faithfulness, achieving a better trade-off than the baselines
on different unpaired image-to-image problems.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 BACKGROUND

2.1 DIFFUSION MODELS

Diffusion models (Song & Ermon, 2019; Ho et al., 2020) are a class of models that sequentially
perturb data distribution pdata with noise, transforming it into a tractable unstructured distribution.
Using this distribution as a prior and reversing the process by progressively removing the noise
yields a sampling procedure from pdata. A common way to formalize diffusion models consists in
defining distribution dynamics {pt(xt)}t∈[0,T ], obtained by adding an independent Gaussian noise
σtε with progressively growing variance σ2

t to the original data sample x0 ∼ pdata: xt = x0+σtε
1.

Conveniently, the equivalent distribution dynamics can be represented via a deterministic counter-
part given by the ordinary differential equation (ODE)

dxt = −1

2

(
σ2
t

)′ · ∇xt log pt(xt)dt; x0 ∼ pdata, (1)

where ∇xt log pt(xt) is called the score function of pt(xt). Equation 1 is also called Probability
Flow ODE (PF-ODE). This formulation allows one to obtain a backward process of data generation
by simply reversing the velocity of the particle. In particular, one can obtain samples from pdata by
taking xT ∼ pT and running the PF-ODE backwards in time, given access to the score function. The
sampling procedure is essentially multi-step, which imposes computational challenges but enables
control of the resources-quality trade-off.

Diffusion models learn score functions ∇xt log pt(xt) of noisy distributions by approximating them
via the Denoising Score Matching (Vincent, 2011) objective:

min
θ

∫ T

0

βt Ep0,t(x0,xt)∥D
θ
t (xt)− x0∥2dt, (2)

where Dθ
t is called the denoising network and βt is some positive weighting function. The minimum

in the Equation 2 is attained at D∗
t (xt) = Ep0|t(x0|xt) [x0] and is related to the corresponding score

function via Tweedie’s formula (Efron, 2011) st(xt) := ∇xt
log pt(xt) = (xt −D∗

t (xt)) /σ
2
t (also

called the score identity). Therefore, diffusion models optimize the score functions of the perturbed
distributions by learning to denoise objects at various noise levels via the denoiser Dθ

t and setting
∇xt

log pt(xt) ≈ sθt (xt) = (xt −Dθ
t (xt))/σ

2
t .

2.2 DISTRIBUTION MATCHING DISTILLATION

Distribution Matching Distillation (Luo et al., 2024; Yin et al., 2023; 2024) aims to train a free-form
generator Gθ(z) to match the given distribution pdata. Its input z is assumed to come from a tractable
input distribution pnoise. Formally, matching two distributions can be achieved by optimizing the KL
divergence KL(pGθ ∥ pdata) between the distribution pGθ of Gθ(z) and the data distribution pdata.
However, the authors modify the functional to be tractable through the diffusion framework. They
relax the original loss by using an ensemble of KL divergences between distributions, which are
perturbed by the forward diffusion process:∫ T

0

ωt KL
(
pGθ
t ∥ pdata

t

)
dt. (3)

Here, ωt is a weighting function, pGθ
t and pdata

t are the perturbed versions of the generator distribu-
tion and pdata up to the time step t. In theory, the minima of Equation 3 objective is attained if and
only if (Wang et al., 2024, Thm. 1) pGθ = pdata. In practice, the ensemble of KL divergences, which
can be equivalently written as∫ T

0

ωt EN (ε|0,I)pnoise(z) log
pGθ
t (Gθ(z) + σtε)

pdata
t (Gθ(z) + σtε)

dt, (4)

1This noising scheme is called Variance Exploding (VE) (Song et al., 2020b). While there are other noising
schemes, such as e.g., Variance Preserving (VP), they are equivalent up to multiplication (Song et al., 2020a),
so we stick to VE for simplicity.
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produces gradient ωt

(
sGθ
t − sdata

t

)
∇θGθ(z) . It amounts to calculating the scores of noisy distri-

butions at the point Gθ(z) + σtε and performing backpropagation. 2

Given this, the authors approximate sdata
t with the pre-trained diffusion model, which we will denote

sdata
t as well with a slight abuse of notation. The whole procedure now can be considered as the

distillation of sdata
t into Gθ. At the same time, sGθ

t represents the score of the noised distribution of
the generator, which is intractable and is therefore approximated by an additional ”fake” diffusion
model sϕt and the corresponding denoiser Dϕ

t . It is trained on the standard denoising score matching
objective with the generator’s samples at the input. The joint training procedure is essentially the
coordinate descent 

min
θ

T∫
0

ωt Eε,z log
pϕt (Gθ(z) + σtε)

pdata
t (Gθ(z) + σtε)

dt;

min
ϕ

T∫
0

βt Eε,z∥Dϕ
t (Gθ(z) + σtε)−Gθ(z)∥2 dt,

(5)

where the stochastic gradient with respect to the fake network parameters ϕ is calculated by back-
propagation, and the generator’s stochastic gradient is calculated directly as ωt (s

ϕ
t −sdata

t )∇θGθ(z)
with the scores are evaluated at the point Gθ(z)+σtε. Minimization of the fake network’s objective
ensures sϕt = sGθ

t ⇔ pϕt = pGθ
t . Under this condition, the generator’s objective is equal to the

original ensemble of KL divergences from Equation 3, minimizing which solves the initial problem
and implies pGθ = pdata.

2.3 UNPAIRED TRANSLATION AND OPTIMAL TRANSPORT

The problem of unpaired translation consists of learning a mapping G between the source distri-
bution pS and the target distribution pT given the corresponding independent data sets of samples.
When optimized, the mapping should appropriately adapt G(x) to the target distribution pT , while
preserving the input’s cross-domain features. One way to formalize this is by introducing the notion
of a ”transportation cost” c(·, ·) between the generator’s input and output and stating that it should
not be too large on average. Monge’s optimal transport (OT) problem (Villani et al., 2009; Santam-
brogio, 2015) follows this reasoning and aims at finding the mapping with the least average transport
cost among all the mappings that fit the target pT :

inf
G:G(x)∼pT

EpS(x)c(x, G(x)), (6)

which can be seen as a mathematical formalization of the domain translation task. In a practical
setting, one can choose c(·, ·) to be any reasonable distance between images or their features that
one aims to preserve, such as pixel-wise distance or the difference between embeddings.

3 METHODOLOGY

3.1 REGULARIZED DISTRIBUTION MATCHING DISTILLATION

We build the method specifically for solving the Monge OT problem (Equation 6). To this end,
we train a generator Gθ(x) to explicitly satisfy both requirements of the Monge problem: realistic
samples pGθ ≈ pT and low transport cost EpS c(x, Gθ(x)). We first note that producing realistic
samples can be done via minimizing the integral KL divergence

L(θ) =
T∫

0

ωt KL
(
pGθ
t ∥ pTt

)
dt =

T∫
0

ωt EpS(x)N (ε|0,I) log
pGθ
t (Gθ(x) + σtε)

pTt (Gθ(x) + σtε)
dt, (7)

where pGθ
t and pTt represent, respectively, the distribution of the generator output Gθ(x) and the

target distribution pT , both perturbed by the forward process up to the timestep t.

2Note that there is one more summand, which contains the parametric score ∇θ log p
Gθ
t . However, its

expected value is zero (Williams, 1992), and the summand can be omitted.
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Optimizing the objective in Equation 7, one obtains a generator, which takes x ∼ pS and outputs
Gθ(x) ∼ pT , so it performs the desired transfer between the two distributions. However, there are
no guarantees that the input and the output will be related. We fix the issue by explicitly penalizing
the input-output transport cost of the generator and obtain the objective

min
θ

Lλ(θ) = min
θ

[
L(θ) + λEpS(x)c (x, Gθ(x))

]
, (8)

where c(·, ·) is the cost function, which describes the object properties that we aim to preserve after
transfer, and λ is the regularization coefficient. Choosing an appropriate λ will result in finding a
balance between fitting the target distribution and preserving the properties of the input.

As in DMD, we assume that the perturbed target distributions are represented by a pre-trained diffu-
sion model sTt and approximate the generator distribution score sGθ

t by the additional fake diffusion
model sϕt . Analogous to the DMD procedure (Equation 5), we perform the coordinate descent in
which, however, the generator objective is now regularized. We call the procedure Regularized
Distribution Matching Distillation (RDMD). Formally, we optimize

min
θ

T∫
0

ωt Eε,x log
pϕt (Gθ(x) + σtε)

pTt (Gθ(x) + σtε)
dt+ λEpS(x)c (x, Gθ(x)) ;

min
ϕ

T∫
0

βt Eε,x∥Dϕ
t (Gθ(x) + σtε)−Gθ(x)∥2 dt.

(9)

Given the optimal fake score sϕt , the generator’s objective becomes equal to the desired loss in
Equation 8, which validates the procedure.

3.2 ANALYSIS OF THE METHOD

The optimization problem in Equation 8 can be seen as the soft-constrained optimal transport, which
balances between satisfying the output distribution constraint and preserving the original image
properties. If one takes λ ≈ 0, the objective essentially becomes equivalent to the Monge problem
(Equation 6). It can be seen by replacing the λ coefficient before the transport cost with the 1/λ
coefficient before the KL divergence. For small λ, it is almost equal to +∞ whenever the generator’s
output and the target distributions differ, making the corresponding problem hard-constrained and
equivalent to the original optimal transport problem. Based on this observation, we prove
Theorem 3.1. Let c(x,y) be the quadratic cost 3 ∥x − y∥2 and Gλ be the theoretical optimum of
the objective in Equation 8. Then, under mild regularity conditions, it converges in probability (with
respect to pS ) to the optimal transport map G∗, i.e.

Gλ pS

−−−→
λ→0

G∗. (10)

The detailed proof can be found in Appendix B. Informally, it means that the optimal transport map
can be approximated by the RDMD generator, trained on Equation 9, given a small regularization
coefficient, enough capacity of the architecture, and convergence of the optimization algorithm.

It is important to consider this result from a different perspective. It is ideologically similar to the
L2 regularization for over-parameterized least squares regression. The original least squares, in this
case, have a manifold of solutions. At the same time, by adding L2 weight penalty and taking the
limit as the regularization coefficient goes to zero, one obtains a solution with the least norm based
on the Moore-Penrose pseudo-inverse. In our case, numerous maps may be optimal in the original
DMD procedure, since it only requires matching the distribution at the output. However, training
RDMD with λ ≈ 0 results in a feasible solution with almost optimal transport cost.

4 EXPERIMENTS

This section presents the experimental results on several unpaired translation tasks. We explore
the effect of varying the regularization coefficient λ on the learned mappings in a 2D toy setting

3We prove the theorem only for the quadratic case due to difficulties in analyzing minima of the Monge
Problem (Equation 6) in general cases (De Philippis & Figalli, 2014). In practice, however, one can use any
cost function of interest.
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Figure 2: RDMD training dynamics on AFHQv2 Cat ↔ Wild translation problem. RDMD achieves
strong initialization with meaningful mappings by utilizing the pre-trained target DM. Here, RDMD
exhibits rapid convergence to near-optimal performance in 500-1000 training iterations. 500 itera-
tions correspond to approximately 100 minutes of training on 2× NVIDIA A100 GPU.

in Appendix C. In Section 4.1, we extensively compare our method’s faithfulness-realism trade-
off with the diffusion-based and OT-based baselines on four translation problems in 64 × 64 and
128 × 128 pixel space. In Section 4.2, we scale our method for latent-space translation between
pairs of ImageNet classes. In Section E.7, we verify broader applicability of RDMD on unpaired
text detoxification. We choose the transport cost c(x,y) = ∥x−y∥2 in image-to-image experiments.
The additional training details can be found in Appendix E.

Initialization RDMD shares the architecture between all three used networks: the target score,
the fake score, and the generator. This setting allows for obtaining strong models’ initialization
and significantly speeding up convergence. We utilize the pre-trained target score in two ways.
First, we initialize the fake model with its copy. Second, we initialize the generator Gθ(x) with the
denoiser parameterization DT

σ (x) of the pre-trained target score, but with a fixed σ̂ ∈ [0, T ] (since
the generator is independent of time at input). The denoiser parameterization is trained to denoise
images from the target domain. Being an initialization for the generator, the denoiser network
DT

σ̂ (x) treats a source object x as the noised target object y + σ̂ε and tries to ”denoise” it into
the output, realistic for the target domain. It thus tries to generate realistic outputs while preserving
high faithfulness, which is crucial for domain translation. This combination of meaningful mappings
with strong initialization of weights of all networks allows for the rapid convergence of RDMD. We
visualize its training dynamics in Figure 2 and demonstrate it is capable of achieving near-optimal
performance in just hundreds of GPU-minutes. We set σ̂ = 1.0 for all experiments except CelebA-
128, where σ̂ = 3.0. We explore the choice of σ̂ in Appendix D.

Baselines We compare our method with the three families of baselines. One-sided DMs use a
single target diffusion model to denoise a perturbed source image (SDEdit, Meng et al. (2021))
or guide sampling by enforcing source closeness (ILVR, Choi et al. (2021)) and classifier-driven
domain dissimilarity (EGSDE, Zhao et al. (2022)). Two-sided DMs use both source (encoding) and
target (decoding) diffusion models, linking them via deterministic ODE sampling (DDIB, Su et al.
(2022)) or by replacing target noise with noise predictions from the source process (CycleDiff, Wu
& De la Torre (2023)). OT methods use discriminator-based training to enforce realism, maintaining
faithfulness by utilizing an L2 loss with displacement interpolation (DIOTM, Choi et al. (2024)) or
by iteratively refining the underlying Markov process (ASBM, Gushchin et al. (2024b)). We include
a complete description of the relevant methods in Appendix A.

4.1 I2I IN PIXEL SPACE

Next, we compare the proposed RDMD method with OT-based and diffusion-based baselines on
64 × 64 AFHQv2 (Choi et al., 2020) Cat ↔ Wild and 128 × 128 CelebA (Liu et al., 2015) Male
↔ Female translation problems. We do not compare with GAN-based methods since they mostly
demonstrate results that are inferior to those of EGSDE (Zhao et al., 2022) in terms of FID and
PSNR. We pre-train the target diffusion models with EDM (Karras et al., 2022) parameterization.
We use the DDPM++ (Song et al., 2020b) architecture for 64 × 64 experiments and ADM (Dhari-
wal & Nichol, 2021) (with 128 model channels instead of 192) for 128 × 128 experiments. The

6
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Figure 3: Comparison of RDMD with the baselines on AFHQv2 64 × 64 Cat ↔ Wild translation
tasks. The figure demonstrates the tradeoff between generation quality (FID↓) and the input-output
faithfulness (LPIPS↓).

Table 2: Comparison of RDMD with diffusion and OT-based baselines in pixel space. We mark the
best results in bold and the best results among few-step methods in italic and bold.

(a) 64× 64 Cat ↔ Wild

Wild→Cat Cat→Wild

Model FID LPIPS FID LPIPS NFE

ILVR 21.63 0.500 16.06 0.549 35
SDEdit 17.98 0.529 14.02 0.520 35
EGSDE 20.08 0.483 13.81 0.489 35

DDIB 16.81 0.424 9.69 0.433 70
CycleDiff 16.73 0.477 13.90 0.473 140

ASBM 21.91 0.464 20.48 0.477 3
DIOTM 20.82 0.417 16.18 0.418 1

DMD 19.44 0.448 12.80 0.456 1
RDMD 17.31 0.352 14.43 0.374 1

(b) 128× 128 Male ↔ Female

Male→Female Female→Male

Model FID LPIPS FID LPIPS NFE

ILVR 24.42 0.503 19.21 0.514 35
SDEdit 8.85 0.530 7.72 0.533 35
EGSDE 21.90 0.464 20.03 0.472 35

DDIB 5.39 0.342 3.72 0.348 70
CycleDiff 6.82 0.327 5.11 0.335 140

ASBM 15.93 0.370 26.08 0.376 3
DIOTM 9.49 0.271 10.48 0.246 1

DMD 12.58 0.333 12.66 0.330 1
RDMD 9.30 0.236 6.68 0.237 1

networks have approximately 55M and 130M parameters, respectively. We slightly adapt the offi-
cial diffusion baselines’ implementations for compatibility with the EDM setting. For each of the
diffusion-based baselines, we run a grid of hyperparameters, if applicable. The detailed hyperpa-
rameter values can be found in Appendix E.4 and E.5.

Faithfulness-realism trade-off In AFHQv2 experiments we focus on comparing the trade-off
achieved by our method and the baselines. The quality metric is FID, the faithfulness metric is
LPIPS (see Figures 8 and 9 in Appendix F.1 for L2, PSNR and SSIM). In addition, we perform
visual comparisons in Figures 12 and 13. We compare our method with the baselines in Figure 3.
Specifically, for each method we run a grid of hyperparameters and represent each run with the cor-
responding point in the plot (see Appendix E for details). We observe that RDMD achieves a better
trade-off given moderately strict requirements on faithfulness: all of our models beat the correspond-
ing baselines in the (approximate) LPIPS range (0.3, 0.4) for Wild → Cat and (0.36, 0.42) for Cat
→ Wild. Here, RDMD also shows strictly better performance than the OT/SB baselines DIOTM
and ASBM. If the lower FID is strongly preferable over the transport cost, then it might be better to
use one of the diffusion baselines. In this case, DDIB and CycleDiffusion show significantly better
faithfulness than one-sided methods.

Metrics comparison We further illustrate the observed performance in Table 2 by choosing one
RDMD run and comparing it with the baselines’ runs with the closest FID (i.e. we compare faithful-
ness given fixed realism). For all four problems, we beat all the baselines in terms of similarity. In
terms of generation quality, DDIB and CycleDiffusion are the only baselines that sometimes achieve
noticeably better FID than RDMD at the cost of worse similarity, expensive sampling (2 times more
function evaluations than in the diffusion sampling) and requiring pre-trained diffusion models for
the source domains. When any of the three limitations becomes a significant concern, RDMD is

7
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Table 3: Comparison of RDMD with OT-
based baselines on CelebA 64 × 64 with
limited data (5k source and target samples).
ASBM and DIOTM generate distorted im-
ages (Figure 4) and suffer from significant
drop in both faithulness and realism.

5k Full data

Model FID LPIPS FID LPIPS

ASBM 43.97 0.349 23.06 0.324
DIOTM 31.34 0.352 15.81 0.204
RDMD 20.99 0.238 10.36 0.176

Figure 4: Visual comparison of RDMD with OT-
based baselines on CelebA 64 × 64 with limited
(5k source and target samples) and full data .

Table 4: Quantitative comparison of RDMD with two-sided diffusion-based baselines on ImageNet
multiclass translation benchmarks. DDIB and CycleDiff perform 100 and 80 encoding-decoding
steps, respectively. This number is multiplied by 3 due to the usage of cfg during decoding.

Animals Birds Fish Insects

Model FID LPIPS FID LPIPS FID LPIPS FID LPIPS NFE

DDIB 25.99 0.457 17.68 0.505 27.04 0.478 23.32 0.454 300 + 2
CycleDiff 30.42 0.460 18.08 0.523 24.96 0.464 20.74 0.412 240 + 2
RDMD 39.85 0.369 24.87 0.415 34.00 0.329 29.57 0.296 1 + 2

generally the preferred method. It is also worth mentioning that RDMD (or DMD in case of Wild
→ Cat) achieves the best FID among the one-step baselines, which we mark in italic and bold. Ad-
ditionally, in Figures 10 and 11 we visualize faithfulness-realism trade-off achieved by our method
and the baselines on Male ↔ Female translation problems.

Data efficiency We further highlight the advantages of RDMD over the existing adversarial-based
OT methods by demonstrating that they perform poorly in problems with limited data. To this end,
we compare RDMD with DIOTM and ASBM on CelebA 64 × 64 Male → Female translation task
with only 5k random samples for source and target data sets (instead of the original ≈ 200k samples
in total). In Table 3 and Figure 4 we demonstrate that both baselines start to produce distorted and
unrealistic images, while RDMD generates blurrier, but still relatively faithful and realistic samples.

4.2 LATENT-SPACE MULTICLASS IMAGENET TRANSLATION

We scale our method and apply it to a more challenging scenario of translating between pairs of
ImageNet (Deng et al., 2009) classes with a single class-conditional model. To this and, we take
256×256 class-conditional LDM (Rombach et al., 2022) as the pre-trained target score and use it as
initialization for both the generator and the fake score. We train one model for translation between
all pairs of ImageNet classes. We describe the setup in details in Appendix E.6.

We validate performance of the obtained model by constructing several benchmarks: Animals, Birds,
Fish, and Insects. In each benchmark we choose 5 related classes and translate 50 test set pictures
of each into all other classes, resulting in total of 50× 5 = 250 inputs and 250× 4 = 1000 outputs
per benchmark. We measure FID (reference statistics correspond to the 5 benchmark classes from
ImageNet training set) and LPIPS and compare with the two-sided diffusion methods DDIB and
CycleDiffusion. Here, RDMD significantly outperforms the baselines in terms of faithfulness. At
the same time, its higher FID may be explained by the visual comparison in Figure 5. Here, RDMD
acts more as an image editing model: it detects only the source object and transforms it into the
target, which may result in an unrealistic environment for the target class. We stress, however, that
this is a desirable property, which is not demonstrated by DDIB and CycleDiffusion. We additionally
verify RDMD’s effectiveness beyond similar classes by performing out-of-domain translation in
Figures 16, 17, 18, 19, 20 in Appendix F.3.
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Figure 5: Visual comparison of RDMD with two-sided diffusion baselines on ImageNet translation
benchmarks: Animals, and Birds.

Table 5: Performance of RDMD, two-sided diffusion baselines (CycleDiff and DDIB) and the
paired (marked by †) translation model Cosmos on text detoxification (ParaDetox).

Model ppl (↓) BLEU (↑) Style Acc. (↑) Similarity (↑) Fluency (↑) J-score (↑) NFE

Cosmos† 262.1 0.694 0.904 0.815 0.753 0.554 200

DDIB 564.9 0.537 0.661 0.758 0.436 0.244 320
CycleDiff 298.2 0.611 0.536 0.856 0.684 0.326 320
RDMD 254.8 0.665 0.864 0.837 0.736 0.537 1

4.3 TEXT DETOXIFICATION

To demonstrate the versatility of RDMD beyond computer vision, we apply our method to the natural
language processing task of text detoxification. This task can be framed as an unpaired text-to-text
translation problem, where the goal is to paraphrase a toxic text into a neutral one while preserving
its original meaning and fluency. For our experiments, we use the ParaDetox dataset (Logacheva
et al., 2022). A complete description of the setup is given in Appendix E.7. The results on the
text detoxification problem can be seen in Table 5. RDMD significantly outperforms the unpaired
baselines and even achieves results comparable to the paired Cosmos† (Meshchaninov et al., 2025)
model while being unpaired and requiring less than 1% of their inference steps.

5 DISCUSSION AND LIMITATIONS

In this paper, we propose RDMD, the novel one-step diffusion-based algorithm for the unpaired
translation. This algorithm replaces the adversarial loss, prominent in the OT-based approaches, with
the diffusion-based distribution matching. The algorithm has efficient one-step inference, explicit
control over faithfulness, strong initialization and fast convergence.

From the theoretical standpoint, we prove that at low regularization coefficients, the theoretical opti-
mum of the introduced objective is close to the optimal transport map (Theorem 3.1). In Section 4.1
we compare our method with the OT and diffusion-based baselines in image-to-image experiments.
We show that our model achieves strong faithfulness-realism trade-off, exhibits fast convergence,
and has low data requirements. In Section 4.2 we showcase the image editing capabilities of our
method in the latent space on a challenging multiclass translation problem. In Section 4.3 we demon-
strate the capabilities of RDMD beyond computer vision on the text detoxification problem, where
it shows superior results in comparison to other unpaired diffusion methods.

In terms of limitations, we admit that our theory works in the asymptotic regime, while one could
derive more precise non-limit bounds. Our experimental results are limited in terms of achieving
the lowest baselines’ FID values (e.g. in Male→Female experiment we achieve 9.3, while one of
the multi-step baselines, DDIB, achieves 5.39). We see making few-step modification as a potential
way to mitigate this difference. Furthermore, the desired feature of the method would be switching
among different regularization coefficients without re-training. Potential impacts include further
development and acceleration of unpaired translation models.
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REPRODUCIBILITY STATEMENT

To ensure the clarity and reproducibility of our work, we provide excessive description of our
method. All experimental details, including batch sizes, optimizer choice, model architectures, and
specific hyperparameter configurations are thoroughly documented in Appendix E. Furthermore, our
experiments are built upon publicly available datasets (e.g. AFHQv2, CelebA, ImageNet) to ensure
our experimental setups are accessible and verifiable.
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A RELATED WORK

GANs were the prevalent paradigm in the unpaired tranlsation (unpaired image-to-image, I2I, in
particular) for a long time. Among other methods, CycleGAN (Zhu et al., 2017), DualGAN (Yi
et al., 2017), and DiscoGAN (Kim et al., 2017) pioneered the utilization of the cycle-consistency
paradigm with the adversarial loss. It gave rise to many two-sided methods, including UNIT (Liu
et al., 2017) and MUNIT (Huang et al., 2018) that divide the encoding into style-space and content-
space, and SCAN (Li et al., 2018) that splits the procedure into coarse and fine stages. The one-sided
GAN-based methods tackle inpaired tranlsation without learning the inverse for better computational
efficiency. DistanceGAN (Benaim & Wolf, 2017) achieves it by learning to preserve the distance
between pairs of samples, GCGAN (Fu et al., 2019) imposes geometrical consistency constraints,
and CUT (Park et al., 2020) uses the contrastive loss to maximize the patch-wise mutual information
between input and output.

Diffusion-based unpaired translation models modify the diffusion process using the source image.
SDEdit (Meng et al., 2021) initializes the reverse diffusion process for the target distribution with
the noisy source picture instead of pure noise to maintain similarity. Many methods guide (Ho &
Salimans, 2022; Epstein et al., 2023) the target diffusion process. ILVR (Choi et al., 2021) adds the
correction that enforces the current noisy sample to resemble the source. EGSDE (Zhao et al., 2022)
combines the idea of ILVR with training a classifier between domains and encouraging dissimilarity
between the corresponding embeddings to distinguish between the domains. The other diffusion-
based approaches include two-sided methods based on the concatenation of two diffusion models
(DDIB (Su et al., 2022) and CycleDiff (Wu & De la Torre, 2023)).

Optimal transport (Villani et al., 2009; Peyré et al., 2019) is another useful framework for the un-
paired translation. Methods based on it reformulate the OT problem (Eq. 6) and its modifications as
Entropic OT (EOT) (Cuturi, 2013) or Schrödinger Bridge (SB) (Föllmer, 1988) to be accessible in
practice. In particular, OTM (Fan et al., 2021) and NOT (Korotin et al., 2022) use the Lagrangian
multipliers formulation of the distribution matching constraint, which results in adversarial train-
ing. DIOTM (Choi et al., 2024) builds on top of this idea by utilizing the displacement interpolation
formula for the dynamic OT problem and forcing satisfaction of the Hamilton-Jacobi-Bellman equa-
tion. ENOT (Gushchin et al., 2024a) and NSB (Kim et al., 2023a) utilize similar observations for
tackling the Enropic OT problem.

The other methods obtain (partially) simulation-free techniques by iteratively refining the stochastic
process between two distributions. De Bortoli et al. (2021); Vargas et al. (2021) define this refine-
ment as learning of the time-reversal with the corresponding initial distribution (source or target).
Other methods build on Flow (Lipman et al., 2022; Tong et al., 2023; Albergo & Vanden-Eijnden,
2022) and Bridge (Somnath et al., 2023; Peluchetti, 2023) Matching and their sequential reitera-
tion (Liu et al., 2022; 2023; Shi et al., 2024). DSBM (Shi et al., 2024) reiterates the Bridge Match-
ing, while ASBM (Gushchin et al., 2024b) improves its computational efficiency by considering its
discrete-time counterpart.

Diffusion distillation techniques are mainly divided into two families. First family of methods
uses the pre-trained diffusion model as a (multi-step) noise→ image mapper and learns it. This
includes optimizing the regression loss between the outputs (Salimans & Ho, 2022) or learning the
integrator of the corresponding ODE (Gu et al., 2023; Song et al., 2023; Kim et al., 2023b), including
ODEs with guidance (Meng et al., 2023). Second family of methods considers diffusion models
as a source of ”knowledge” that can push an arbitrary model toward matching the distributional
constraint. It is commonly formalized as optimizing the Integrated KL divergence (Luo et al., 2024;
Yin et al., 2023; 2024; Nguyen & Tran, 2023) by training an additional ”fake” diffusion model on
the generator’s output distribution. Other methods consider matching scores (Zhou et al., 2024)
or moments (Salimans et al., 2024) of the corresponding distributions. Notably, these methods do
not have any specific restrictions on the model structure, which allows their wide usage (e.g., in
text-to-3D (Poole et al., 2022; Wang et al., 2024)). Importantly, it allows us to push the generator
towards the target distribution in the unpaired translation setting, combined with the transport cost
regularization.
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B THEORY

In this section, we aim at proving the main theoretical result of the work: solution of the soft-
constrained RDMD objective converges to the solution of the hard-constrained Monge problem. Our
proof is largely based on the work of Liero et al. (2018). It introduces the family of entropy-transport
problems, consisting in optimizing the transport cost with soft constraints based on the divergence
between the map’s output distribution and the target. There are, however, differences between the
problems, that prevent us from reducing the functional in Eq. 8 to the entropy-transport problems.
First, authors consider the case of finite non-negative measures, while we stick to the probability
distributions. Second, the family of Csiszár f -divergences (Csiszár, 1967), used by Liero et al.
(2018), seemingly does not contain the integral ensemble of KL divergences, used in Eq. 8. Finally,
we illustrate the proof in a simpler particular setting for the narrative purposes. Nevertheless, the
used ideas are very similar.

B.1 PROOF OUTLINE

We start by giving a simple outline of the proof. Given a pair of source and target distributions pS
and pT , RDMD optimizes the following functional with respect to the generator G:

T∫
0

ωt KL
(
pGt ∥ pTt

)
dt+ λEpS(x)c (x, G(x)) , (11)

where pGt and pTt are the generator distribution pG and the target distribution pT , perturbed by the
forward diffusion process up to the time step t. Our goal is to prove that the optimal generator of
the regularized objective converges to the optimal transport map when λ → 0. With a slight abuse
of notation, in this section we will use a different objective

Lα(G) = α

T∫
0

ωt KL
(
pGt ∥ pTt

)
dt+ EpS(x)c (x, G(x)) (12)

and consider the equivalent limit α → +∞. We also define

L∞(G) =

{
EpS(x)c (x, G(x)) , if pG = pT ;

+∞, else
(13)

to be the objective, corresponding to the unconditional formulation of the Monge problem (Eq. 6).
In this section, we will denote minimum of this objective (which is, therefore, the optimal transport
map) as G∞ 4

We first assume that the infimum of the objective Lα is reached and define Gα be the optimal
generator. We denote by {αn}+∞

n=1 an arbitrary sequence with αn → +∞. We first make two
informal assumptions that need to be proved (and will be in some sence further in the section):

1. The sequence Gαn converges (in some sence) to some function Ĝ;

2. Lα is continuous with respect to this convergence, i.e. for every convergent sequence
Gn → G holds Lα(Gn) → Lα(G).

Given this, we first observe that for each map G the sequence of objectives Lαn(G) monotonically
converges to the objective L∞(G). It follows from the fact that the first summand of Lαn converges
to +∞ if and only if the KL divergence is non-zero, which is equivalent to saying that pG and pT

differ (Wang et al., 2024). If instead pG = pT , the summand zeroes out. This also means that the
minimal values of the corresponding objectives form a monotonic sequence:

Lαn(Gαn) ≤ Lαn+1(Gαn+1) ≤ L∞(G∞). (14)

4Solution to the Monge problem is not always unique, but we will further impose assumptions that will
guarantee the uniqueness.
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Finally, the monotonicity implies that for a fixed m

lim
n→∞

Lαn(Gαn) ≥ lim
n→∞

Lαm(Gαn), (15)

since the input Gαn is fixed and Lαn monotonically increases. Using the assumed continuity of the
objective, we obtain

lim
n→∞

Lαn(Gαn) ≥ Lαm(Ĝ) (16)

for each m. Taking the limit m → ∞, we obtain

lim
n→∞

Lαn(Gαn) ≥ L∞(Ĝ). (17)

Combining this set of equations, we obtain:

L∞(G∞) ≥ lim
n→∞

Lαn(Gαn) ≥ L∞(Ĝ) ≥ L∞(G∞), (18)

where the first inequality comes from the monotonicity of the minimal values and the last inequality
uses that G∞ is the minimum of the objective L∞. Hence, that limiting map Ĝ achieves minimal
value of the objective L∞ and is, therefore, the optimal transport map.

At this point, we only need to define and prove some versions of the aforementioned facts:

1. Infimum of Lα is reached;

2. The sequence of minima Gαn converges;

3. Lα is continuous with respect to this convergence.

From now on, we formulate the result in details and stick to the formal proof.

B.2 ASSUMPTIONS AND THEOREM STATEMENT

First, we list the assumptions.

Assumption B.1. The distributions pS and pT have densities with respect to the Lebesgue measure.
The distributions are defined on open bounded subsets X ⊂ Rd and Y ⊂ Rd, where Y is convex.
The densities are bounded away from zero and infinity on X and Y , respectively.

We admit that boundedness of the support is a very restrictive assumption from the theoretical stand-
point, however in our applications (I2I) both source and target distributions are supported on the
bounded space of images. We thus can set X = Y = (0, 1)d.

Assumption B.2. The cost c(x,y) is quadratic ∥x− y∥2.

Here, we stick to proving the theorem only for L2 cost due to difficulties in investigation of Monge
map existence and regularity for general transport costs (De Philippis & Figalli, 2014).

Assumption B.3. The weighting function ωt is positive and bounded.

Assumption B.4. Standard deviation σt of the noise, defined by the forward process, is continuous
in t.

Theorem B.1. Let pS , pT , c , ωt , and σt satisfy the assumptions 1-3. Then, there exists a minimum
Gα of the objective Lα from the Eq. 12. If αn → ∞, the sequence Gαn converges in probability
(with respect to the source distribution) to the optimal transport map G∞:

Gαn
pS

−−−−→
n→∞

G∞. (19)

B.3 THEORETICAL BACKGROUND

We start by listing all the results necessary for the proof. They are mostly related to the topics
of measure theory (weak convergence, in particular) and optimal transport. Most of these classic
facts can be found in the books (Bogachev & Ruas, 2007; Dudley, 2018). Otherwise, we make the
corresponding citations.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Definition B.2. A sequence of probability distributions pn(x) converges weakly to the distribution
p(x) if for all continuous bounded test functions φ ∈ Cb(Rd) holds

Epn(x)φ(x) −−−−→
n→∞

Ep(x)φ(x). (20)

Notation: pn w−→ p.

Definition B.3. A function f : Rd → R is called lower semi-continuous (lsc), if for all xn → x
holds

lim inf
n→∞

f(xn) ≥ f(x). (21)

Theorem B.4 (Portmanteau/Alexandrov). pn
w−→ p is equivalent to the following statement: for

every lsc function f , bounded from below, holds

lim inf
n→∞

Epn(x)f(x) ≥ Ep(x)f(x). (22)

Definition B.5. A sequence of probability measures pn is called relatively compact, if for every
subsequence pnk there exists a weakly convergent subsequece pnkj .

Definition B.6. A sequence of probability measures pn is called tight, if for every ε > 0 there exists
a compact set Kε such that pn(Kε) ≥ 1− ε for all n.

Theorem B.7. (Prokhorov) A sequence of probability measures pn is relatively compact if and only
if it is tight. In particular, every weakly convergent sequence is tight.

Corollary B.8. If there exists a function φ(x) such that its sublevels {x : φ(x) ≤ r} are compact
and for all n

Epn(x)φ(x) ≤ C

holds with some constant C, then pn is tight.

Corollary B.9. If a sequence pn is tight and all of its weakly convergent subsequences converge to
the same measure p, then pn

w−→ p.

Definition B.10. The functional L(p) is called lower semi-continuous (lsc) with respect to the weak
convergence if for all weakly convergent sequences pn w−→ p holds

lim inf
n→∞

L(pn) ≥ L(p). (23)

Theorem B.11 (Posner (1975)). The KL divergence KL(p ∥ q) is lsc (in sense of weak convergence)
with respect to each argument, i.e. if pn w−→ p and qn

w−→ q, then

lim inf
n→∞

KL(pn ∥ q) ≥ KL(p ∥ q) (24)

lim inf
n→∞

KL(p ∥ qn) ≥ KL(p ∥ q). (25)

Theorem B.12 ( Donsker & Varadhan (1983)). The KL divergence can be expressed as

KL(p∥q) = sup
g

(
Ep(x)g(x)− logEq(x)e

g(x)
)
. (26)

Definition B.13. The expression
Ep(x)e

i⟨s,x⟩ (27)

is called the characteristic function (Fourier transform) of the distribution p(x).

Theorem B.14 (Lévy). Weak convergence of probability measures pn
w−→ p is equivalent to the

point-wise convergence of characteristic functions, i.e. Epn(x)e
i⟨s,x⟩ → Ep(x)e

i⟨s,x⟩ for all s.

Definition B.15. A sequence of measurable functions φn(x) is said to converge in measure (in
probability) to the function φ with respect to the measure p(x), if for all ε > 0 holds

p ({x : |φn(x)− φ(x)| > ε}) → 0.

Theorem B.16 (Lebesgue). Let φn, φ be measurable functions such that ∥φn(x)∥, ∥φ(x)∥ ≤ C
and φn(x) → φ(x) pointwise. Then Ep(x)φ

n(x) → Ep(x)φ(x).
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Lemma B.17 (Fatou). For any sequence of measurable functions φn the function lim infn φ
n is

measurable and
b∫

a

lim inf
n→∞

φn(x)dx ≤ lim inf
n→∞

b∫
a

φn(x)dx. (28)

Theorem B.18 ( Brenier (1991)). Given the Assumption B.1, there exists a unique optimal transport
map that solves the Monge problem 6 for the quadratic cost.

Proof. This result can be found e.g. in (De Philippis & Figalli, 2014, Theorem 3.1).

Theorem B.19. Given the Assumption B.1, the unique OT Monge map is continuous.

Proof. This is a simplified version of (De Philippis & Figalli, 2014, Theorem 3.3).

B.4 LOWER SEMI-CONTINUITY OF THE LOSS

Having defined all the needed terms and results, we start the proof by re-defining the objective in
Eq. 12 with respect to the joint distribution π input and output of the generator instead of the gen-
erator G itself. Analogous to the Kantorovitch formulation of the optimal transport problem (Kan-
torovitch, 1958), for each measure π on Rd ×Rd (which is also called a transport plan or just plan)
we define the corresponding fuctional as

Lα(π) = α

T∫
0

ωt KL
(
πy,t ∥ pTt

)
dt+ Eπ(x,y)c (x,y) , (29)

where πx and πy are the corresponding projections (marginal distributions) of π and πy,t is the
perturbed y-marginal distribution of π. Note that for π, corresponding to the joint distribution of
(x, G(x)), Lα(π) coincides with Lα(G), defined in Eq. 12. Thus, we aim to optimize Lα(π) with
respect to such plans π, that their x marginal is equal to pS and π(y = G(x)) = 1 for some G.

Definition B.20. We will call a measure π generator-based if its x-marginal is equal to pS and
π(y = G(x)) for some function G.

For the sake of clearity, we note that the distributions πy
t and pTt can be represented as πy ∗ qt and

pT ∗ qt, where ∗ is the convolution operation and qt = N (0, σ2
t I). We thus rewrite the functional as

Lα(π) = α

T∫
0

ωt KL
(
πy ∗ qt ∥ pT ∗ qt

)
dt+ Eπ(x,y)c (x,y) , (30)

Previously, we wanted to establish continuity of the objective. This may not be the case in general.
Instead, we prove the following

Lemma B.21. Lα(π) is lsc with respect to the weak convergence, i.e. for all weakly convergent
sequences πn w−→ π holds

lim inf
n→∞

Lα(πn) ≥ Lα(π). (31)

This result is a direct consequence of the Theorem B.11 about lower semi-continuity of the KL
divergence.

Proof. We start by proving that the projection and the convolution operation preserve weak conver-
gence. For the first, we need to prove that for any test function g ∈ Cb(Rd) holds

Eπn
y (y)g(y) → Eπy(y)g(y) (32)

given πn w−→ π. For this, we note that the function φ(x,y) = g(y) is also bounded and continuous
and, thus

Eπn
y (y)g(y) = Eπn(x,y)φ(x,y) → Eπ(x,y)φ(x,y) = Eπy(y)g(y). (33)
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Regarding the convolution, recall that πn
y ∗ qt is the distribution of the sum of independent variables

with corresponding distributions. Its characteristic function is equal to

Eπn
y∗qt(yt)

ei⟨s,yt⟩ = Eπn
y (y)qt(εt)e

i⟨s,y+εt⟩ = Eπn
y (y)e

i⟨s,y⟩Eqt(εt)e
i⟨s,εt⟩. (34)

Applying the Lévy’s continuity theorem to πn
y

w−→ πy , we take the limit and obtain

Eπy(y)e
i⟨s,y⟩Eqt(εt)e

i⟨s,εt⟩ = Eπy(y)qt(εt)e
i⟨s,y+εt⟩ = Eπy∗qt(yt)

ei⟨s,yt⟩, (35)

which implies
Eπn

y∗qt(yt)
ei⟨s,yt⟩ → Eπy∗qt(yt)

ei⟨s,yt⟩. (36)

We apply the continuity theorem for the convolutions and obtain πn
y ∗ qt

w−→ πy ∗ qt.

With this observation, we prove that the first term of Lα(π) is lsc. First, we apply Lemma B.17
(Fatou) and move the limit inside the integral

lim inf
n→∞

T∫
0

ωt KL
(
πn
y ∗ qt ∥ pT ∗ qt

)
dt ≥

T∫
0

lim inf
n→∞

ωt KL
(
πn
y ∗ qt ∥ pT ∗ qt

)
dt. (37)

Using the lower semi-continuity of the KL divergence (Theorem B.11), we obtain
T∫

0

lim inf
n→∞

ωt KL
(
πn
y ∗ qt ∥ pT ∗ qt

)
dt ≥

T∫
0

ωt KL
(
πy ∗ qt ∥ pT ∗ qt

)
dt. (38)

Finally, the Assumption B.2 on the continuity of c(·, ·) implies its lower semi-coninuity. Theo-
rem B.4 (Portmanteau) states that

lim inf
n→∞

Eπn(x,y)c(x,y) ≥ Eπ(x,y)c(x,y). (39)

Combining inequalities from Eq. 37, Eq. 38 and Eq. 39, we obtain

lim inf
n→∞

Lα(πn) ≥ Lα(π). (40)

B.5 EXISTENCE OF THE MINIMIZER

Now we aim to prove that the objective Lα(π) has a minimum over generator-based plans. First, we
need the following technical lemma about sublevels of the KL part of the functional.
Lemma B.22. Let {πn}∞n=1 be a sequence of generator-based plans that satisfy

T∫
0

ωt KL
(
πn
y,t ∥ pTt

)
dt ≤ C (41)

for some constant C. Then, the sequence {πn}∞n=1 is tight.

Proof. We take arbitrary π from the sequence and apply the Donsker-Varadhan representation (The-
orem B.12) of the KL divergence. We take the test function g(x) = ∥x∥2/(2σ2

T ) and obtain

T∫
0

ωt KL
(
πy,t ∥ pTt

)
dt ≥

T∫
0

ωt

(
Eπy,t(yt)

1

2σ2
T

∥yt∥2 − logEpT
t (yt)

e∥yt∥
2/(2σ2

T )

)
dt. (42)

The choice of g(x) is not very specific, i.e. every function that will produce finite expectations and
integrals is suitable. In the right-hand side, we rewrite the expectations with repect to the original
variable and noise:

T∫
0

ωt

(
Eπy(y)N (ε|0,I)

1

2σ2
T

∥y + σtε∥2 − logEpT (y)N (ε|0,I)e
∥y+σtε∥2/(2σ2

T )

)
dt. (43)
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We rewrite ∥y+σtε∥2 as ∥y∥2+2σt⟨y, σtε⟩+σ2
t ∥ε∥2 and note that expectation of the second term

is zero. The first term is then equal to

1

2σ2
T

T∫
0

ωt dt · Eπy(y)∥y∥
2 +

1

2σ2
T

T∫
0

ωt σ
2
t dt · EN (ε|0,I)∥ε∥2. (44)

Boundedness of ωt (Assumption B.3) implies that the first integral is finite and, say, equal to C1.
The second integral contains a product of bounded ωt and continuous σ2

t (Assumtion B.4), which is
also integrable. We then denote the second summand by C2 and rewrite the first summand as

C1Eπy(y)∥y∥
2 + C2. (45)

As for the second summand, we see that the expectation

EpT (y)N (ε|0,I)e
∥y+σtε∥2/(2σ2

T ) (46)

with respect to ε will be finite, because σ2
t /(2σ

2
T ) is always less than 1/2, which will make the expo-

nent have negative degree. Moreover, simple calculations show that this function will be continuous
with respect to σt and have only quadratic terms with respect to y inside the exponent, i.e. have the
form

ea(σt)∥y−b(σt)∥2+c(σt) (47)
with continuous a, b, c. We now want to prove that the expectation

EpT (y)e
α(σt)∥y−β(σt)∥2+γ(σt) (48)

will also be continuous in t. First, due to the boundedness of y, this expectation is finite. Second,
for tn → t:

lim
n→∞

EpT (y)e
a(σtn )∥y−b(σtn )∥2+c(σtn ) = (49)

= EpT (y) lim
n→∞

ea(σtn )∥y−b(σtn )∥2+c(σtn ) = (50)

= EpT (y)e
a(σt)∥y−b(σt)∥2+c(σt) (51)

due to the Theorem B.16 (Lebesgue’s dominated convergence). It is applicable, since y is bounded
and all the functions are continuous, thus bounded in [0, T ].

We thus obtain that the second integral contains bounded ωt multiplied by the logarithm of continu-
ous function, which is always ≥ 1 (positive exponent). This means that the whole integral is finite.
Denoting it by C3, we obtain

C1Eπy(y)∥y∥
2 + C2 − C3 ≤

T∫
0

ωt KL
(
πy,t ∥ pTt

)
dt. (52)

Combined with the condition of the lemma, we obtain

C1Eπy(y)∥y∥
2 + C2 − C3 ≤

T∫
0

ωt KL
(
πy,t ∥ pTt

)
dt ≤ C, (53)

which implies

Eπy(y)∥y∥
2 ≤ C + C3 − C2

C1
:= C4. (54)

We thus obtained a uniform bound on some statistic with respect to all measures from {πn}. The
function ∥y∥2 has compact sublevel sets {∥y∥2 ≤ r}. Lemma B.8 then states that the sequence πn

y

is tight, i.e. for all ε > 0 there is a compact set Kε with πn
y(y ∈ Kε) ≥ 1− ε.

Finally, marginal x distribution of each of the πn is pS , which is bounded (Assumption B.1), i.e.
there is a compact K that πn(x ∈ K) = 1. Combined with the previous observation, we obtain

πn(x ∈ K,y ∈ Kε) ≥ 1− ε (55)

for all n. The cartesian product K × Kε is also compact. Theorem B.7 (Prokhorov) then implies
that the sequence πn is tight.
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Now we are ready to prove the following
Lemma B.23. Infimum of the loss Lα(π) over all generator-based transport plans π (with πx = pS

and π(y = G(x)) for some G) is attained on some plan π̂.

Proof. We start by observing that there is at least one feasible π with the aforementioned properties.
For this purpose one can take the optimal transport map G∞ between pS and pT , which is unique
by Theorem B.18 under Assumptions B.1, B.2.

Let πn be a sequence of feasible generator-based measures that Lα(πn) converges to the corre-
sponding infimum Lα

inf (it exists by the definition of the infimum). Without loss of generality, we
can assume that Lα(πn) ≤ Lα

inf + 1 for all n (if not, one can drop large enough sequence prefix).
This implies that for all n holds

α

T∫
0

ωt KL
(
πy,t ∥ pTt

)
dt ≤ Lα

inf + 1. (56)

Lemma B.22 implies that the sequence πn is tight. Prokhorov theorem then states that πn has a
weakly convergent subsequence πnk

w−→ π̂. Lower semi-continuity of the loss Lα implies that

lim inf
k→∞

Lα(πnk) ≥ Lα(π̂) ≥ Lα
inf . (57)

At the same time, Lα(πnk) is assumed to converge to Lα
inf , which means that π̂ is indeed the mini-

mum.

B.6 FINISH OF THE PROOF

Theorem B.1 proof. Finally, we combine the previous technical observations with the proof sketch
from the Section B.1. Let αn → ∞ be a sequence of coefficients, Gαn be the optimal generators
with respect to Lαn and παn the joint distributions of (x, Gαn(x)). Additionally, we define π∞ to
be the optimal transport plan, corresponding to (x, G∞(x)), where G∞(x) is the optimal transport
map. First, due to the monotonicity of Lα with respect to α, we have

Lαn(παn) ≤ Lαn+1(παn+1) ≤ L∞(π∞). (58)

This implies that for all n holds

αn

T∫
0

ωt KL
(
παn
y,t ∥ pTt

)
dt ≤ L∞(π∞) ⇒ (59)

⇒
T∫

0

ωt KL
(
παn
y,t ∥ pTt

)
dt ≤ L∞(π∞)

αn
≤ L∞(π∞)

min
n

αn
, (60)

which is finite, since αn → +∞. One more time, we apply Lemma B.22 and conclude that the
sequence παn is tight.

Let παnk be its weakly convergent subsequence: παnk
w−→ π̂. Analogously to the Section B.1, we

observe that
lim inf
k→∞

Lαnk (παnk ) ≥ lim inf
k→∞

Lαnm (παnk ) ≥ Lαnm (π̂) (61)

for any fixed m. The first inequality is due to the monotonicity of Lα with respect to α and second
is the implication of lower semi-continuity of the loss Lα with respect to weak convergence. Taking
the limit m → ∞, we obtain

lim inf
k→∞

Lαnk (παnk ) ≥ L∞(π̂). (62)

Combining all these observations, we obtain the following sequence of inequalities

L∞(π∞) ≥ lim inf
k→∞

Lαnk (παnk ) ≥ L∞(π̂) ≥ L∞(π∞), (63)

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

which implies that the limiting measure π̂ reaches the minimum of the objective over generator-
based plans. By the uniqueness of the optimal transport map G∞ under the Assump-
tions B.1, B.2, B.3, we conclude that all the convergent subsequences παnk converge to the optimal
measure π∞. Using Corollary B.9 of the Prokhorov theorem, we deduce that παn

w−→ π∞.

Finally, we want to replace the weak convergence of παn to π∞ with the convergence in probability
of the generators, i.e. show

Gαn
pS

−−→ G∞. (64)
To this end, we represent the corresponding probability as the expectation of the indicator and upper
bound it with a continuous function:

pS (∥Gαn(x)−G∞(x)∥ > ε) = EpS(x)I{∥Gαn(x)−G∞(x)∥ > ε} (65)

≤ EpS(x)d (G
αn(x), G∞(x)) , (66)

where d is a continuous indicator approximation, defined as

d(u,v) =

{
∥u−v∥

ε , if 0 ≤ ∥u− v∥ < ε;

1, if ∥u− v∥ ≥ ε.
(67)

We define the test function
φ(x,y) = d (y, G∞(x)) (68)

and rewrite the upper bound as

EpS(x)d (G
αn(x), G∞(x)) = EpS(x)φ(x, G

αn(x)) = Eπαn (x,y)φ(x,y). (69)

Due to Assumptions B.1, B.2 and Theorem B.14 the optimal transport map G∞ is continuous, which
implies that this test function is bounded and continuous. Given the weak convergence of παn , we
have

Eπαn (x,y)φ(x,y) → Eπ∞(x,y)φ(x,y) = EpS(x)φ(x, G
∞(x)) = (70)

= EpS(x)d(G
∞(x), G∞(x)) = 0, (71)

which implies the desired
pS (∥Gαn(x)−G∞(x)∥ > ε) → 0. (72)

C TOY EXPERIMENT

We validate the qualitative properties of the RDMD method on 2-dimensional Gaussian → Swiss-
roll. In this setting, we explore the effect of varying the regularization coefficient λ on the trained
transport map Gθ. In particular, we study its impact on the transport cost and fitness to the target
distribution pT . In the experiment, both source and target distributions are represented with 5000
independent samples. We use the same small MLP-based architecture from Shi et al. (2024) for all
the networks.

The main results are presented in Figure 6. The standard DMD (λ = 0.0) learns a transport map
with several intersections when demonstrated as the set of lines between the inputs and the outputs.
This observation means that the learned map is not OT, because it is not cycle-monotone (McCann,
1995). Increasing λ yields fewer intersections, which can be used as a proxy evidence of optimality.
At the same time, the generator output distribution becomes farther and farther from the desired
target. The results show the importance of choosing the appropriate λ to obtain a better trade-off
between the two properties. Here, the regularization coefficient λ = 0.2 offers a good trade-off by
having small intersections and producing output distribution close to the target.

D ABLATION OF THE INITIALIZATION PARAMETER

In this section, we further explore the design space of our method by investigating the effect of the
fixed generator input noise parameter σ on the resulting quality. To this end, we take the colored
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Figure 6: Visualization of RDMD mappings on Gaussian → Swissroll with different regularization
coefficients λ.

Figure 7: Left: visualization of the generator initialization at various σ ∈ [0.1, 80.0], where σ is
the noise level parameter residual from the pre-trained diffusion architecture. Right: comparison
of different σ in terms of the quality-faithfulness trade-off. The metrics are obtained by initializing
the generator at the corresponding σ level and training it with the RDMD procedure. Here, λ ∈
{0, 1.0, 2.0, 4.0}. Higher λ corresponds to the lower transport cost values.

version of the MNIST (LeCun, 1998) data set and perform translation between the digits ”2” and
”3” initializing from various σ. We use a small UNet architecture from Gushchin et al. (2024a).

The parameter σ is residual from the pre-trained diffusion architecture and is, therefore, fixed
throughout training and evaluation. However, the target denoiser network tries to convert the ex-
pected noisy input into the corresponding sample from the output distribution. Consequently, one
may expect that at a suitable noise level, the generator may change the input’s details to make them
look appropriate for the target while preserving the original structural properties.

We demonstrate this effect on various noise levels in Figure 7. Here we observe that the small sigmas
lead to the mapping close to the identity, whereas the large sigmas lead to almost constant blurry
images, corresponding to the average ”3” of the data set. However, there is a segment [1.0, 10.0]
of levels that gives a moderate-quality mapping in terms of both faithfulness and realism, which
makes it a suitable initial point. Note that the FID-L2 plot is not monotone at high L2 values due
to the overall poor quality of the generator, i.e. it outputs bad-quality pictures slightly related to the
source. We further investigate optimal σ choice by going through a 2D grid of the hyperparameters
(σ, λ) and aim to see if it is possible to choose the uniform best noise level. In Figure 7 we report
the faithfulness-quality trade-off concerning various σ. We observe that there is almost monotone
dependence on σ on the segment [1.0, 40.0]: here the σ = 1.0 gives almost uniformly best results
in terms of both metrics. Similar results are obtained by the values 5.0, 10.0 which have fair quality
visual results at initialization. Therefore, we conclude that it is best to choose the least parameter σ
among the parameters with appropriate visuals at the initial point.
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E EXPERIMENTAL DETAILS

E.1 GENERAL DETAILS

Metrics measurement. In image-to-image experiments, we measure FID,
√
L2 distance, PSNR,

SSIM and LPIPS. We do not preprocess images before calculating the corresponding metrics (i.e.
we perform measurements on images in [0, 1] range with the original resolution) except LPIPS,
which takes input in [−1, 1]. We use the official LPIPS (Zhang et al., 2018) implementation with
VGG (Simonyan & Zisserman, 2014) backbone. We calculate FID with the script, provided by Kar-
ras et al. (2022). In all pixel-space experiments we use the VE schedule with σt = t and T = 80.0
as in Karras et al. (2022).

In all image-to-image experiments we measure FID between model outputs on the source test data
set and the target train data set. This corresponds to the FID measurement pipeline by Park et al.
(2020).

As for the transport cost
√
L2, we first measure the average squared distance between inputs and

outputs of the generator (without normalizing with respect to the image dimension). After averaging,
we take the square root.

E.2 2D EXPERIMENTS

Architecture. We take the architecture from toy experiments of De Bortoli et al. (2021) for the
diffusion model and the generator. It consists of an input-encoding MLP block, a time-encoding
MLP block, and a decoding MLP block. The input-encoding MLP block consists of 4 hidden layers
with dimensions [16, 32, 32, 32] interspersed by LeakyReLU activations. The time-encoding MLP
consists of a positional encoding layer (Vaswani et al., 2017) and follows the same MLP block
structure as the input encoder. The decoding MLP block consists of 5 hidden layers with dimen-
sions [128, 256, 128, 64, 2] and operates on concatenated time embedding and input embedding each
obtained from their respective encoder. The model contains 88k parameters.

Training Diffusion Model. The diffusion model is trained for 100k iterations with batch size 1024
with Adam optimizer (Kingma & Ba, 2014) with learning rate 10−4.

Training RDMD. Fake denoising network is trained with Adam optimizer with learning rate
10−4. The generator model is trained with a different Adam optimizer with a learning rate of 2·10−5.
We train RDMD for 100k iterations with batch size 1024.

Computational resources. We conduct all of the toy experiments on the CPU. Running 100k
iterations with the batch size 1024 takes approximately 1 hour.

E.3 COLORED MNIST

Architecture. We use the architecture from Gushchin et al. (2024a), which utilizes convolutional
UNet with conditional instance normalization on time embeddings used after each upscaling block
of the decoder. The model produces time embeddings via positional encoding. The model has
approximately 9.9M parameters.

Training Diffusion Model. The diffusion model is trained for 24500 iterations with batch size
8192. We use the Adam optimizer with a learning rate of 4 · 10−3. The model is trained in FP32. It
obtains FID equal to 2.09.

Training RDMD. Fake denoising network is trained with Adam optimizer with a learning rate of
2 · 10−3. The generator model is trained with Adam optimizer with learning rate 5 · 10−5. RDMD
is trained for 7300 iterations with batch size 4096.

Computational resources. We conduct all of the experiments on 2x NVIDIA GeForce RTX 4090
GPUs. Training Diffusion model for 24500 iterations with the batch size 8192 takes approximately
6 hours. Training RDMD for 7300 iterations with batch size 4096 takes approximately 3 hours.
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E.4 AFHQV2-64 EXPERIMENTS

Architecture. We use the SongUNet architecture from EDM (Karras et al., 2022) repository,
which corresponds to DDPM++ network, introduced by Song et al. (2020b), for both Wild and
Cat data sets. The model contains approximately 55M parameters.

Training Diffusion Models. The diffusion models for Wild and Cat sets are trained for 80k and
35k iterations, respectively. We set the batch size to 512 and choose the best checkpoint according
to FID. We use the Adam optimizer with a learning rate of 2 · 10−4. We use a dropout rate equal to
0.25 during the training and the augmentation pipeline from Karras et al. (2022) with a probability
of 0.15. The models are trained in FP32. Training takes approximately 35/15 hours on 4× NVidia
Tesla A100 80GB. The models obtain FID equal to 2.01 (Wild) and 3.5 (Cat).

Training RDMD. In all runs, we initialize the generator from the target diffusion model with
the fixed σ = 1.0. We run 5 models, corresponding to the regularization coefficients λ =
{0.0, 0.02, 0.05, 0.1, 0.2}. All models are trained with the Adam optimizer with a generator’s learn-
ing rate of 5 · 10−5 and a fake diffusion’s learning rate of 10−4. We perform 3 fake score updates
per generator update. We train all models for 30000 generator updates with batch size 256. Training
takes approximately 3 days on 4× NVidia Tesla V100 32GB.

ILVR hyperparameters. The only hyperparameter of ILVR is the downsampling factor N for
the low-pass filter, which determines whether guidance would be conducted on coarser or finer
information. nsteps denotes the number of sampling steps. All metrics in Figures 3, 8 and 9 for
ILVR are obtained on the following hyperparameter grid: N = [2, 4, 8, 16, 32], nsteps = 18. We
exclude runs with the same statistical significance and achieving FID higher than 30.0. The images
in Figures 12, 13 and the results in Table 2 are obtained with hyperparameters (N = 16, nsteps = 18)
for both Wild → Cat and Cat → Wild translation problems.

SDEdit hyperparameters. The only hyperparameter of SDEdit is the noise level σ, which acts
as a starting point for sampling. The higher the noise level, the closer the sampling procedure is
to unconditional generation. The smaller the noise values, the more features are carried over to the
target domain at the expense of generation quality. nsteps denotes the number of sampling steps.
All metrics in Figures 3, 8 and 9 for SDEdit are obtained on the following hyperparameter grid:
σ = [1, 2, 3, 5, 7, 10, 15, 20, 40], nsteps = 18. We exclude runs with the same statistical significance
and achieving FID higher than 30.0. The images in Figures 12, 13 and the results in Table 2 are
obtained with hyperparameters (σ = 7, nsteps = 18) for both Wild → Cat and Cat → Wild translation
problems.

EGSDE hyperparameters. EGSDE sampling hyperparameters include the initial noise level σ at
which the source image is perturbed, and the downsampling factor N for the low-pass filter. nsteps
denotes the number of sampling steps. The method also has parameters which regulate the guidance
weight of domain-specific energy term λs and domain-independent energy term λi. We take them
by default being equal to λs = 500.0 and λi = 2.0 as in the original EGSDE paper Zhao et al.
(2022). All metrics in Figures 3, 8 and 9 for EGSDE are obtained on the following hyperparameter
grid: σ = [2, 3.4241, 7, 10, 20], N = [8, 16], nsteps = 18. Here, σ = 3.4241 corresponds to the
time step T = 500 from the original DDPM formulation. We exclude runs with the same statistical
significance and achieving FID higher than 30.0. The images in Figures 12, 13 and the results in
Table 2 are obtained with hyperparameters (σ = 7, N = 16, nsteps = 18) for Wild → Cat and
(σ = 10, N = 16, nsteps = 18) for Cat → Wild.

DDIB and CycleDiffusion hyperparameters. We run encoding and decoding in DDIB with the
deterministic EDM sampler (2nd order Heun solver) with 18 steps (35 + 35 = 70 function evaluations
in total).

All metrics in Figures 3, 8 and 9 for CycleDiffusion model are obtained with encoding step
Tes = [20, 30, 40, 50, 60, 70, 80] in DDIM schedule with η = 0.7 and 100 steps, which results
in Tes + Tes neural function evaluations needed for encoding the source image with the source do-
main network and decoding with the target domain network via DDIM ancestral sampling. The
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images in Figures 12, 13 and the results in Table 2 are obtained with hyperparameter Tes = 70 for
both Cat → Wild and Wild → Cat translation problems.

ASBM hyperparameters. We follow the experimental setup suggested by Gushchin et al.
(2024b). We set the starting coupling as the Mini-Batch Optimal Transport. We use the 0-th outer
iteration and perform 1000000 generator gradient updates to ”pretrain” the processes. The next 5
outer iterations perform 40000 generator gradient updates each. Training Markovian projections
consists of training the transitional density networks via the DD-GAN (Xiao et al., 2022). The num-
ber of transition (inner) steps N is equal to 3. Generator to Discriminator optimization steps ratio
is 1-to-1. Both the generator and the discriminator are trained with the Adam optimizer. The learn-
ing rate for the generator is 1.25 · 10−4 and for the discriminator is 1.6 · 10−4 and the batch size
is equal to 32. Exponential Moving Average is applied to generator’s weight during training with
decay equal to 0.999.

DIOTM hyperparameters. We follow the experimental settings suggested by Choi et al. (2024)
and use the code attached as the supplementary material to the ICLR 2025 submission to run the
experiments. The method has two main hyperparameters α, which regularizes the cost between the
input and output of the transport map, and λ, which controls the intensity of HJB regularization and
is important for the training stability. We set α = 0.0005 and λ = 10. We use the Adam optimizer
with learning rate 10−4 and betas (0, 0.9) and train the method for 60K iterations with batch size
equal to 64. The cosine schedule is used to gradually decrease the learning rate to 5 · 10−5. We
obtain the best results on the 30K-th iteration and use the checkpoints from it for our evaluations.

E.5 CELEBA EXPERIMENTS

Architecture. We use the DhariwalUNet architecture from EDM (Karras et al., 2022) repository,
which corresponds to the ADM network, introduced by Dhariwal & Nichol (2021), for both Male
and Female data sets. The only difference is that we use 128 model channels instead of the original
192. The model contains approximately 130M parameters.

Training Diffusion Model. The diffusion models for Male and Female are both trained for 340k
iterations. We set the batch size to 256 and choose the best checkpoint according to FID. We use
the Adam optimizer with a learning rate of 1 · 10−4. We use a dropout rate equal to 0.05 during
the training and the augmentation pipeline from Karras et al. (2022) with a probability of 0.1. At
training, we sample log σ from the standard normal distribution, which corresponds to parameters
(Pmean = 0.0, Pstd = 1.0) from Karras et al. (2022). The models are trained in FP16. Training takes
approximately 7 days on 8× NVidia Tesla A100 80GB. The models obtain FID equal to 3.57 (Male)
and 3.17 (Female).

Training RDMD. In all runs, we initialize the generator from the target diffusion model with
the fixed σ = 3.0. We run 3 models, corresponding to the regularization coefficients λ =
{0.0, 0.05, 0.075}. All models are trained with the Adam optimizer with a generator’s learning
rate of 5 · 10−5 and fake diffusion’s learning rate of 1 · 10−4. We perform 3 fake score updates
per generator update. We train all models for 40000 iterations with batch size 256. Training takes
approximately 3.5 days on 8× NVidia Tesla A100 80GB.

ILVR hyperparameters. The only hyperparameter of ILVR is the downsampling factor N for
the low-pass filter, which determines whether guidance would be conducted on coarser or finer
information. nsteps denotes the number of sampling steps. All metrics in Figures 10 and 11 for
ILVR are obtained on the following hyperparameter grid: N = [2, 4, 8, 16, 32, 64], nsteps = 18. We
exclude runs with the same statistical significance and achieving FID higher than 30.0. The images
in Figures 14, 15 and the results in Table 2 are obtained with hyperparameters (N = 32, nsteps = 18)
for both Male → Female and Female → Male translation problems.

SDEdit hyperparameters. The only hyperparameter of SDEdit is the noise level σ, which acts
as a starting point for sampling. The higher the noise level, the closer the sampling procedure is
to unconditional generation. The smaller the noise values, the more features are carried over to the
target domain at the expense of generation quality. nsteps denotes the number of sampling steps.
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All metrics in Figures 10 and 11 for SDEdit are obtained on the following hyperparameter grid:
σ = [1, 2, 3, 3.4241, 5, 7, 10, 15, 20, 40], nsteps = 18. Here, σ = 3.4241 corresponds to the time
step T = 500 from the original DDPM formulation. We exclude runs with the same statistical
significance and achieving FID higher than 30.0. The images in Figures 14, 15 and the results in
Table 2 are obtained with hyperparameters (σ = 20, nsteps = 18) for both Male → Female and
Female → Male translation problems.

EGSDE hyperparameters. EGSDE sampling hyperparameters include the initial noise level σ at
which the source image is perturbed, and the downsampling factor N for the low-pass filter. nsteps
denotes the number of sampling steps. The method also has parameters which regulate the guidance
weight of domain-specific energy term λs and domain-independent energy term λi. We take them
by default being equal to λs = 500.0 and λi = 2.0 as in the original EGSDE paper Zhao et al.
(2022). All metrics in Figures 10 and 11 for EGSDE are obtained on the following hyperparameter
grid: σ = [2, 3.4241, 7, 10, 20], N = [16, 32], nsteps = 18. Here, σ = 3.4241 corresponds to the
time step T = 500 from the original DDPM formulation. We exclude runs with the same statistical
significance and achieving FID higher than 30.0. The images in Figures 14, 15 and the results in
Table 2 are obtained with hyperparameters (σ = 20, N = 32, nsteps = 18) for both Male → Female
and Female → Male translation problems.

DDIB and CycleDiffusion hyperparameters. We run encoding and decoding in DDIB with the
deterministic EDM sampler (2nd order Heun solver) with 18 steps (35 + 35 = 70 function evaluations
in total).

All metrics in Figures 10 and 11 for CycleDiffusion model are obtained with encoding step
Tes = [20, 30, 40, 50, 60, 70, 80] in DDIM schedule with η = 1.0 and 100 steps, which results
in Tes + Tes neural function evaluations needed for encoding the source image with the source do-
main network and decoding with the target domain network via DDIM ancestral sampling. The
images in Figures 14, 15 and the results in Table 2 are obtained with hyperparameter Tes = 80 for
Male → Female and Tes = 70 for Female → Male.

ASBM hyperparameters. We follow the experimental setup suggested by Gushchin et al.
(2024b). We set the starting coupling as the Mini-Batch Optimal Transport. We use the 0-th outer
iteration and perform 1000000 generator gradient updates to ”pretrain” the processes. The next 5
outer iterations perform 40000 generator gradient updates each. Training Markovian projections
consists of training the transitional density networks via the DD-GAN (Xiao et al., 2022). The num-
ber of transition (inner) steps N is equal to 3. Generator to Discriminator optimization steps ratio
is 1-to-1. Both the generator and the discriminator are trained with the Adam optimizer. The learn-
ing rate for the generator is 1.25 · 10−4 and for the discriminator is 1.6 · 10−4 and the batch size
is equal to 32. Exponential Moving Average is applied to generator’s weight during training with
decay equal to 0.9999.

DIOTM hyperparameters. We follow the experimental settings suggested by Choi et al. (2024)
and use the code attached as the supplementary material to the ICLR 2025 submission to run the
experiments. The method has two main hyperparameters α, which regularizes the cost between the
input and output of the transport map, and λ, which controls the intensity of HJB regularization and
is important for the training stability. We set α = 0.001 and λ = 10. We use the Adam optimizer
with learning rate 10−4 and betas (0, 0.9) and train the method for 100K iterations with batch size
equal to 64. The cosine schedule is used to gradually decrease the learning rate to 5 · 10−5. We
obtain the best results on the 70K-th iteration and use the checkpoints from it for our evaluations.

E.6 IMAGENET EXPERIMENTS

Experimental Setup. In the ImageNet experiment, we train one model to perform translation be-
tween any pair of ImageNet classes. Theoretically, one could directly train the model to translate
between any pairs of classes, but many of them are not particularly meaningful (e.g. translating dogs
into cars) and may harm model’s performance. To this end, we construct a constrained dataset, in
which each input class is translated into 20 visually nearest classes. We choose the nearest classes by
performing zero-shot classification of input class pictures with CLIP (Radford et al., 2021). Specif-
ically, we take 20 of the most probable classes according to the probability vector obtained by
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averaging CLIP’s classification outputs for 5 input images (see examples of nearest classes in Ap-
pendix E.6). We note that this limitation of the dataset does not necessarily harm the model’s
performance for translation between any pairs of classes. To this end, we validate its high-quality
results on out-of-domain pairs of classes in Figures 16, 17, 18, 19, 20 in Appendix F.3.

We take 256 × 256 class-conditional LDM (Rombach et al., 2022) as the pre-trained target score
and use it as initialization for both the generator and the fake score. We use classifier-free guidance
scale of 3.0 for the target score during training.

Architecture. We use the pre-trained class-conditional LDM-4 Rombach et al. (2022) model with
approximately 400M parameters. It operates in the latent space of LDM-VQ-4 model of dimension
64× 64× 3. It achieves FID=3.6 with classifier-free guidance scale of 1.5.

Table 6: Examples of source-target pairs used for training in ImageNet Experiments

Source class Top-20 neighbouring target classes
orange lemon, grocery store, butternut squash, fig, jackfruit, spaghetti squash,

custard apple, mixing bowl, bell pepper, pomegranate, acorn squash,
Granny Smith, honeycomb, web site, screwdriver, tennis ball, bram-
bling, shopping basket, Petri dish, ping-pong ball

ladybug leaf beetle, leafhopper, long-horned beetle, dung beetle, weevil, ground
beetle, rhinoceros beetle, bee, American coot, tick, garden spider,
hermit crab, snail, tiger beetle, harvestman, ant, lacewing, European
gallinule, African grey, barn spider

volcano mountain tent, geyser, Great Pyrenees, alp, mountain bike, promontory,
orange, cliff, radio telescope, jacamar, catamaran, caldron, indri, water
ouzel, fire screen, web site, barrow, torch, breakwater, valley

giant panda guinea pig, indri, sloth bear, gibbon, three-toed sloth, lesser panda,
French bulldog, colobus, siamang, American black bear, dogsled, bad-
ger, skunk, chow, tusker, Border collie, black-footed ferret, capuchin,
brown bear, howler monkey

golf ball croquet ball, ping-pong ball, soccer ball, honeycomb, tennis ball, rugby
ball, hand blower, earthstar, thimble, bottlecap, mushroom, measuring
cup, projectile, tiger, swing, agaric, buckeye, acorn, stinkhorn, racket

Training RDMD. We initialize the generator from the pre-trained LDM with the fixed t = 241,
which is the closest discrete timestep to the VE σ = 1.0. We use the class embedding of the
generator and the fake score for conditioning on the target class. We do not add the class embedding
for the source class. We set the regularization coefficient λ = 0.02 and train the model with the
Adam optimizer with a generator’s learning rate of 5 · 10−5 and fake diffusion’s learning rate of
1 · 10−4. We perform one fake score update per generator update. We train the model for 6000
iterations with batch size 256. Training takes 1 day on 2× NVidia Tesla A100 80GB.

We use the original LDM schedule

βt =

(√
βmin +

T − t

T
(
√
βmax −

√
βmin)

)2

, (73)

labeled as ”linear” with βmin = 0.0015 and βmax = 0.0195 and T = 1000. We train the fake score
on Lsimple Ho et al. (2020) in the noise prediction parameterization. During training of the generator,
we first sample VE σ from the standard LogNormal distribution, then convert it into α = 1/(1+σ2)

and find the time step t with the closest αt =
∏t

s=1(1− βs).

DDIB hyperparameters We run encoding in DDIB with the deterministic 100-step DDIM Song
et al. (2020a) without classifier-free guidance (with unconditional guidance scale equal to 1.0). We
run DDIB with decoding (unconditional) classifier-free guidance scale in {1.0, 1.5, 2.0}. We use the
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hyperparameter choice of Wu & De la Torre (2023) and report the run with the best d-CLIP score,
achieved with the guidance scale of 1.5.

CycleDiffusion hyperparameters We run CycleDiffusion with a grid of hyperparameters. As in
DDIB, we choose the decoding unconditional guidance scale between {1.5, 2.0, 2.5}. We choose
the encoding step Tes in [60, 70, 80, 90] in DDIM schedule with η = 0.1 and 100 steps, which
results in 3Tes neural function evaluations due to the use of classifier-free guidance. We use the
hyperparameter choice of Wu & De la Torre (2023) and report the run with the best d-CLIP score,
achieved with the guidance scale of 2.5 and Tes = 80.

E.7 TEXT DETOXIFICATION EXPERIMENTS

Experimental Setup. Although the dataset provides parallel data, we deliberately frame the task
as unpaired to test a more challenging and realistic scenario. Consequently, our generator is trained
exclusively on toxic sentences from the source domain and distribution matching signal from the
target domain, without access to pairs. We employ Cosmos (Meshchaninov et al., 2025) as the
foundational latent text diffusion model and train it on the conditional generation problem given the
class label indicating whether a sentence is toxic or non-toxic. This model is used as the backbone
for two-sided baselines (CycleDiff and DDIB). We also train text-conditional Cosmos† model on
the paired dataset. In case of RDMD, we fix the non-toxic label and use this as our target DM and
initialize the generator in the same way. As a cost function between the sequences of input and output
latents, we use the length-averaged cost c(x,y) = ∥ 1

L

∑L
i=1 xi − 1

L

∑L
i=1 yi∥2, which ignores

singular latent perturbations and enforces similar semantic content between inputs and outputs. We
set the regularization coefficient λ to 0.5.

Metrics. For text detoxification experiments, we use the following metrics, proposed in (Lo-
gacheva et al., 2022):

• Perplexity (ppl ↓): Measures the fluency of the generated text. Lower is better.

• BLEU ↑: Measures the similarity to a ground-truth non-toxic reference, indicating content
preservation.

• Style Accuracy (STA) ↑: The probability that the generated text is non-toxic, as deter-
mined by a style classifier.

• Similarity (Sim) ↑: The semantic similarity between the generated text and the original
toxic input, measured by cosine similarity of sentence embeddings.

• Fluency (Flu.) ↑: Grammatical correctness and readability, as evaluated by a separate
model.

• J-score ↑: A holistic metric combining Style Accuracy, Similarity, and Fluency.

F ADDITIONAL COMPARISONS

F.1 AFHQV2 EXPERIMENTS

We perform an additional visual comparison between the methods on 64×64 Cat ↔ Wild translation
problems. To this end, we choose 8 random pictures from the source test data sets and report the
corresponding outputs of RDMD and the baselines in Figure 12 and Figure 13. Here, we take RDMD
with λ = 0.1 for both translation problems. As for the baselines, we choose the hyperparameters
(see Appendix E.4) with the closest FID to RDMD as it was done in Table 2.

In Section 4.1 we compare the faithfulness-realism tradeoff achieved by RDMD and the baselines.
In Figure 3 we report tradeoff in terms of FID and LPIPS for both translation problems. For the
sake of completeness, in Figure 8 and Figure 9 we report trade-off in terms of 4 faithfulness metrics:√
L2, LPIPS, PSNR and SSIM. Qualitatively, we still see that our method beats all the baselines

given at least moderate requirements on faithfulness.
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F.2 CELEBA EXPERIMENTS

We perform an additional visual comparison between the methods on 128 × 128 Male ↔ Female
translation problems. To this end, we choose 8 random pictures from the source test data sets and
report the corresponding outputs of RDMD and the baselines in Figure 14 and Figure 15. Here, we
take RDMD with λ = 0.075 for both translation problems. As for the baselines, we choose the
hyperparameters (see Appendix E.5) with the closest FID to RDMD as it was done in Table 2.

For the sake of completeness, in Figure 10 and Figure 11 we report faithfulness-realism trade-off
curves for the CelebA experiments in terms of 4 faithfulness metrics:

√
L2, LPIPS, PSNR and

SSIM. Qualitatively, we still see that our method beats all the baselines given at least moderate
requirements on faithfulness.

F.3 IMAGENET SAMPLES

In this section, we further verify applicability of RDMD in the multiclass translation.

First, we choose several pairs of classes, which were not present in the training dataset, but are
somewhat meaningful to perform translation between. Specifically, we choose Orange→Goldfish,
Ladybug→Strawberry, Giant Panda → Totem Pole, Volcano → Totem Pole and Volcano → Water
Jug and report translation examples in Figures 16, 17, 18, 19, 20. Among them, Figure 16 and
Figure 17 show that RDMD succeeds in translating between objects of different nature that are,
however, similar in shape and color. Figure 18 demonstrates ¡¡stylization¿¿ of an object. Finally,
Figures 19 and 20 demonstrate RDMD’s successful applicability even in case of extremal mismatch
between the domains. Specifically, it preserves such characterizing traits of the target domain as the
refraction of light that passes through the water jug.

Finally, in Figures 21, 22, 23, 24 we present examples of all-to-all translation between all pairs of
classes in a benchmark.
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Figure 8: Comparison of RDMD with the baselines on 64 × 64 AFHQv2 Wild → Cat translation
problem. The figure demonstrates the tradeoff between generation quality (FID↓) and the difference
between the input and output (L2↓, LPIPS↓, PSNR↑, SSIM↑). RDMD gives an overall better trade-
off given fairly strict requirements on the transport cost. In the cases of PSNR and SSIM, the y-axis
is swapped for the sake of identical readability with the first plot (left is better, low is better).
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Figure 9: Comparison of RDMD with the baselines on 64 × 64 AFHQv2 Cat → Wild translation
problem. The figure demonstrates the tradeoff between generation quality (FID↓) and the difference
between the input and output (L2↓, LPIPS↓, PSNR↑, SSIM↑). RDMD gives an overall better trade-
off given fairly strict requirements on the transport cost. In the cases of PSNR and SSIM, the y-axis
is swapped for the sake of identical readability with the first plot (left is better, low is better).
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Figure 10: Comparison of RDMD with the baselines on 128 × 128 CelebA Male → Female trans-
lation problem. The figure demonstrates the tradeoff between generation quality (FID↓) and the
difference between the input and output (L2↓, LPIPS↓, PSNR↑, SSIM↑). RDMD achieves an over-
all better quality given fairly strict requirements on the transport cost. In the cases of PSNR and
SSIM, the y-axis is swapped for the sake of identical readability with the first plot (left is better, low
is better).
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Figure 11: Comparison of RDMD with the baselines on 128 × 128 CelebA Female → Male trans-
lation problem. The figure demonstrates the tradeoff between generation quality (FID↓) and the
difference between the input and output (L2↓, LPIPS↓, PSNR↑, SSIM↑). RDMD achieves an over-
all better quality given fairly strict requirements on the transport cost. In the cases of PSNR and
SSIM, the y-axis is swapped for the sake of identical readability with the first plot (left is better, low
is better).
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Figure 12: Visual comparison of RDMD with the baselines on 64 × 64 AFHQv2 Wild → Cat
translation problem. Source images are chosen randomly from the test data set.
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Figure 13: Visual comparison of RDMD with the baselines on 64 × 64 AFHQv2 Cat → Wild
translation problem. Source images are chosen randomly from the test data set.
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Figure 14: Visual comparison of RDMD with the baselines on 128 × 128 CelebA Male → Female
translation problem. Source images are chosen randomly from the test data set.
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Figure 15: Visual comparison of RDMD with the baselines on 128 × 128 CelebA Female → Male
translation problem. Source images are chosen randomly from the test data set.

Figure 16: Example of RDMD ImageNet Orange → Goldfish Translation
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Figure 17: Example of RDMD ImageNet Ladybug → Strawberry Translation

Figure 18: Example of RDMD ImageNet Giant Panda → Totem Pole Translation

Figure 19: Example of RDMD ImageNet Volcano → Totem Pole Translation

Figure 20: Example of RDMD ImageNet Volcano → Water Jug Translation
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Figure 21: RDMD translation between all pairs of Animal classes.

Figure 22: RDMD translation between all pairs of Birds classes.
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Figure 23: RDMD translation between all pairs of Fish classes.

Figure 24: RDMD translation between all pairs of Insects classes.
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