
MATHCONSTRUCT: Challenging LLM Reasoning with Constructive Proofs

Mislav Balunović* 1 2 Jasper Dekoninck* 1 Nikola Jovanović 1 Ivo Petrov 2 Martin Vechev 1

Abstract
While Large Language Models (LLMs) demon-
strate impressive performance in mathematics, ex-
isting math benchmarks come with significant
limitations. Many focus on problems with fixed
ground-truth answers, and are often saturated
due to problem simplicity or the viability of
guessing or memorization. Crucially, they cap-
ture only a narrow subset of relevant math prob-
lems. To address this research gap, we intro-
duce MATHCONSTRUCT, a new benchmark of
126 challenging problems sourced from various
math competitions, which targets constructive
proofs, a widely encountered problem type re-
quiring the construction of mathematical objects
with specific properties. These proofs are par-
ticularly suitable for LLM evaluation, as solu-
tion correctness can be easily verified. Our au-
tomated verifiers also enable MATHCONSTRUCT
to generate problem variations, used to evaluate
robustness. State-of-the-art LLMs solve only 54%
of MATHCONSTRUCT problems, highlighting its
complexity and importance for LLM evaluation.

1. Introduction
Evaluating the mathematical reasoning abilities of Large
Language Models (LLMs) requires high-quality public
benchmarks that accurately measure progress. As shown
in Fig. 1, existing benchmarks, such as MATH (Hendrycks
et al., 2021), are becoming increasingly saturated as state-
of-the-art models improve, highlighting the need for more
challenging evaluation tasks. Many complex mathematical
problems involve proofs, which are a fundamental compo-
nent of advanced reasoning. However, current benchmarks
primarily focus on problems where LLM outputs can be
directly compared to ground truth answers, making them
unsuitable for evaluating proofs. A promising alternative,

*Equal contribution 1Department of Computer Science, ETH
Zurich 2INSAIT, Sofia University "St. Kliment Ohridski". Corre-
spondence to: Mislav Balunović <mislav.balunovic@inf.ethz.ch>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

0%

20%

40%

60%

80%

100%

o3-mini o1 Flash-Thinking R1-70B 3.5-Sonnet

AIME-2024 (86.70%)

MATH (97.30%)

Average Accuracy

Robust Accuracy

Figure 1: Accuracy of LLMs on MATHCONSTRUCT, high-
lighting the difficulty of constructive proofs. We compute
Robust Accuracy by requiring the model to consistently
solve a problem across a set of problem variations.

formalized proof generation, requires LLMs to generate
proofs that can be verified by automated theorem provers
such as Lean (de Moura & Ullrich, 2021). Unfortunately,
even models explicitly fine-tuned for this task struggle to
perform well (Xin et al., 2024). Furthermore, this approach
does not fully leverage the strong natural language reason-
ing capabilities of LLMs. This raises an important question:
Is there a class of proof-based problems that are both chal-
lenging for LLMs and easy to verify for correctness?

Constructive proofs One important class of proofs, com-
monly appearing in real-world applications and advanced
mathematical competitions, involves constructive proofs.
These proofs establish a mathematical result by explicitly
constructing an object—such as a set, matrix, or graph—that
satisfies specific constraints.

For instance, one of the most challenging problems from the
2022 International Mathematical Olympiad (IMO), shown
in Fig. 2 (left), requires constructing an n× n matrix that
maximizes a particular quantity. More generally, disproving
a conjecture often involves constructing a counterexample,
as seen in Cantor’s diagonal argument (Cantor, 1890). Simi-
larly, proving a bound frequently requires constructing an
object that achieves that bound, as in the proof of the Four
Color Theorem (Appel & Haken, 1989).

1

MATHCONSTRUCT

Problem-IMO-2022-C8 (n=4, k=25): Given n = 4, fill the n × n
board with permutation of integers between 1 and n2 such that
there are 25 so-called uphill paths: (i) the first cell in the path is
smaller than all its neighbors, (ii) each subsequent cell in the se-
quence is adjacent to the previous cell, and (iii) the numbers written
in the cells in the sequence are in increasing order.

def verify-IMO-2022-C8(constr):

if dim(constr) != (4, 4):

return False

if set(constr) != {1, ..., 4*4}:

return False

return paths(constr) == 25 ✓

1 2 3 16

9 15 4 5

10 11 14 6

12 13 8 7

LLM construction

LLM

Problem-IMO-2005-C8 (n=6, k=7): Let M = {A1, A2, . . . , An}
be a convex n-gon, n ≥ 4. The coloring is ”best” if it colors some
n − 3 of the diagonals of M green, and some other n − 3 of its
diagonals red, so that no two diagonals of the same color meet inside
M , and its ”score”, the number of intersection points of green and
red diagonals inside M , is maximized. For n = 6 the maximum score
is 7. Find one coloring that achieves this score.

def verify-IMO-2005-C8(constr):

if intersect_same(constr):

return False

if red_green(constr) != (6-3, 6-3):

return False ✗
return intersections(constr) == 7

LLM construction

LLM

Figure 2: Two sample problems from MATHCONSTRUCT, each consisting of a natural language statement and a verifier
function that returns a boolean value indicating the validity of a proposed construction. The ability to easily generate
problem variations (values colored in blue and brown), the complexity of the required constructions, and the difficulty of the
problems make MATHCONSTRUCT well-suited for evaluating LLMs’ reasoning abilities.

Constructive proofs are particularly well-suited for LLM
benchmarking as coming up with valid constructions is often
difficult for humans, and thus likely to also challenge the
models. Yet, verifying if a proposed construction satisfies
the problem constraints is usually straightforward, enabling
the use of automated verifiers to judge model responses.

Our benchmark: MATHCONSTRUCT Leveraging this,
we introduce MATHCONSTRUCT, a new benchmark de-
signed to evaluate LLMs’ reasoning capabilities through
constructive proofs. MATHCONSTRUCT consists of 126
unique problems sourced from olympiad-level mathemat-
ics competitions. Each problem is encoded as a natural
language statement and a corresponding verifier function
that determines the correctness of a proposed construction
(see Sec. 3 for details). In Fig. 2, we illustrate two sample
problems from MATHCONSTRUCT.

Beyond its challenging nature and ease of verification,
MATHCONSTRUCT has several features that make it par-
ticularly valuable for LLM evaluation. Most importantly,
all problem statements are phrased symbolically, enabling
systematic generation of variations that test models’ robust-
ness to small changes in problem parameters. Second, the
required constructions often involve complex mathemati-
cal objects (e.g., matrices, colorings) rather than simple
numerical answers, making guesswork and memorization
less effective. Finally, our rigorous hand-curation process
(detailed in Sec. 3) ensures high problem quality, robustness
against brute-force solutions, and broad coverage across
mathematical domains.

Evaluation In Sec. 4, we evaluate state-of-the-art
LLMs on MATHCONSTRUCT, including GPT-4O and O3-
MINI (Jaech et al., 2024), the GEMINI family (Reid et al.,
2024), and the CLAUDE family (Anthropic, 2024).

By generating variations of each problem, we evaluate
the models on 475 distinct problem instances. Even
with access to code execution, these models struggle with
MATHCONSTRUCT. The best model achieves only 54%
accuracy, as shown in Fig. 1; complete results are pre-
sented in Table 2. We further provide a thorough analysis
of LLMs’ failure modes, and study the impact of different
variations, problem brute-forceability, and data contami-
nation on performance. Our code is available at https:
//github.com/eth-sri/mathconstruct.

Contributions Our key contributions are:

• We propose MATHCONSTRUCT, a benchmark of 126
challenging constructive problems (Sec. 3).

• We conduct a rigorous evaluation of 14 state-of-the-art
LLMs on MATHCONSTRUCT, demonstrating its diffi-
culty and significance for LLM evaluation (Sec. 4.1).

• We provide a detailed analysis of LLM performance
on MATHCONSTRUCT, including the impact of various
factors on model performance (Secs. 4.2–4.5).

2. Related Work
This section reviews related work on mathematical bench-
marking and constructive proofs in machine learning.

Easier math benchmarks Most math benchmarks for
LLMs focus on problems where the final answer is a numer-
ical value or algebraic expression that can be compared with
a fixed ground truth. Among these, early benchmarks such
as GSM8K (Cobbe et al., 2021) and MATH (Hendrycks
et al., 2021) have been saturated by recent models (Jaech
et al., 2024; DeepSeek-AI, 2025). More advanced problem
sets, such as AIME 20241, are more difficult, yet state-of-
the-art models still solve ≈87%.

1See American Invitational Mathematics Examination

2

https://github.com/eth-sri/mathconstruct
https://github.com/eth-sri/mathconstruct
https://artofproblemsolving.com/wiki/index.php/2024_AIME_I

MATHCONSTRUCT

Olympiad-based benchmarks To introduce more com-
plexity, newer benchmarks such as OlympiadBench (He
et al., 2024), Omni-MATH (Gao et al., 2024), and
HARP (Yue et al., 2024) incorporate olympiad-level prob-
lems, including image-based and multilingual problems.
However, these benchmarks still rely on fixed-answer ver-
ification, often using an LLM as a judge for compari-
son. In contrast, MATHCONSTRUCT focuses on construc-
tive proofs rather than verifying predefined answers, pro-
viding a more challenging evaluation of reasoning abili-
ties. This difference in evaluation methodology is high-
lighted in a problem statement that appears both in Omni-
Math and MATHCONSTRUCT. Specifically, in the prob-
lem on the left of Fig. 2, Omni-MATH considers a lower
bound, 2n(n − 1) + 1, as the correct answer, whereas
MATHCONSTRUCT requires models to construct an object
that achieves the lower bound, which is significantly more
challenging in this case.

Private benchmarks Several private benchmarks, such
as FrontierMath (Glazer et al., 2024) and LastExam (Phan
et al., 2025), have recently been introduced. Although Fron-
tierMath includes problems that require more complex ver-
ification methods, the private nature of these benchmarks
prevents large-scale use and makes it difficult to evaluate
the progress of the field as a whole.

Benchmarks with variations None of the above bench-
marks incorporate problem variations, even though their
value has been acknowledged in prior work. In partic-
ular, recent efforts in related domains, such as GSM-
Symbolic (Mirzadeh et al., 2024), Putnam-Axiom (Gulati
et al., 2024), and UTMath (Yang et al., 2024) use symbolic
problem reformulation. MATHCONSTRUCT aims to extend
this line of work by applying variations to problems that
require the construction of complex mathematical objects.

Formal math benchmarks Another category of bench-
marks evaluates formal theorem proving, requiring solutions
in languages such as Lean (de Moura & Ullrich, 2021). Ex-
amples include miniF2F (Zheng et al., 2022), FIMO (Liu
et al., 2023), and PutnamBench (Tsoukalas et al., 2024).
Despite specialized training (Xin et al., 2024), LLMs strug-
gle to solve more than a few problems in this environment,
indicating significant room for improvement.

Logical reasoning benchmarks Orthogonally, a large
body of work evaluates logical reasoning in LLMs on log-
ical puzzles and satisfiability problems (Gui et al., 2024;
Mittal et al., 2024; Ma et al., 2024), many of which are
NP-Hard (Fan et al., 2024). Examples include puzzles such
as the knapsack problem and Sudoku. These tasks primarily
test algorithmic problem-solving rather than mathematical
reasoning. Furthermore, the problems are often well-known,

making them susceptible to memorization. While most prob-
lems in MATHCONSTRUCT are also NP-Hard, they ensure
tractability for human solvers using pen and paper, as they
originate from real mathematics competitions. This makes
MATHCONSTRUCT a more direct evaluation of reasoning
ability in mathematical contexts.

Constructions with machine learning Machine learning
has also been previously applied to mathematical object
construction and pattern discovery. Wagner (2021) use re-
inforcement learning to find counterexamples that disprove
conjectures in graph theory. Other works leverage neural
networks for combinatorial optimization (Bello et al., 2017;
Gasse et al., 2019). More broadly, machine learning has
been used to identify relationships between mathematical
objects, as seen in Davies et al. (2021) and Davila (2024).

3. MATHCONSTRUCT

Constructive proofs are a powerful tool for mathematicians,
but turning these into a benchmark for evaluating the rea-
soning abilities of LLMs requires significant effort. In
this section, we describe our approach for the creation of
a reliable benchmark of difficult constructive proof prob-
lems, detailing the key steps: problem selection (Sec. 3.1),
problem encoding (Sec. 3.2), and post-hoc problem review
(Sec. 3.3). Further details on the development process are
given in App. A.

3.1. Problem Selection

As a first step in the creation of MATHCONSTRUCT, our
team consisting of students with significant experience with
math competitions preselected a preliminary set of construc-
tive proof problems. To ensure quality, the problems were
exclusively sourced from reputable high-level mathematics
competitions, including high-school olympiads, undergradu-
ate contests, and national high-school competitions. In total,
our team read around 3500 problems from archives of 20
different competitions, selecting 158 possible problems that
met our relevance and quality criteria.

Problem selection criteria Our criteria were as follows:

• Difficult construction: For MATHCONSTRUCT to be
future-proof and pose a challenge to current and future
models, obtaining the required construction should in-
volve non-trivial reasoning, and constitute the majority
of the official solution to the competition problem.

• Complex objects: To further ensure difficulty and re-
duce the probability of lucky guessing the answer, the
required object should be non-trivial, i.e., the space of
possible constructions should be large. In particular,
we generally avoid problems where the result of the
construction is a single integer.

3

MATHCONSTRUCT

Symbolic problem statement P
problem = "Find an n× n matrix of
rank ≤ 3 with zeros on the main diagonal
and positive reals off the diagonal."

Concrete parameters θ
parameters = {"n": 10}

Verification function Vθ

def verify(construction):
if dim(construction) != (n, n):

return 0, "Wrong dimensions"
if any(construction[i][i] != 0):

return 0, "Non-zero diagonal"
if any(construction[i][j] <= 0):

return 0, "Off-diagonal <= 0"
if matrix_rank(construction) > 3:

return 0, "Rank > 3"
return 1, "Correct"

Variation generator
def generate_variation():

return {"n": random.randint(6, 15)}

Formatting instructions
format = "Present your construction as a
matrix in LaTeX enclosed in \boxed{}"

Figure 3: A problem encoding consisting of a symbolic
problem statement P , concrete parameters θ, and a verifica-
tion function Vθ. We also implement a variation generator,
and provide formatting instructions for the construction.

• Tractable verification: On the other hand, the verifi-
cation function must be straightforward to implement
relative to the problem difficulty, and feasible to run.

• Variations: To distinguish genuine reasoning from
memorization or lucky guessing, we prioritize prob-
lems that allow for multiple variations by altering pa-
rameters. In Sec. 4 we introduce robust accuracy, re-
quiring models to solve multiple variations to be con-
sidered successful on a given problem. Since a human
who knows the general solution can solve each varia-
tion trivially, this criterion ensures that the model has a
similar level of understanding.

Adapting different problem types The most common
problems in MATHCONSTRUCT are Any-problems, which
ask for any object satisfying the given constraints. How-
ever, several other problem types can be adapted to fit our
criteria. For example, Inf -problems originally ask for a
proof that there are infinitely many objects that satisfy the
given constraints—these often require coming up with an
infinite solution class, whose knowledge can be demon-
strated by producing k fitting constructions for k → ∞.
Similar reasoning holds for All-problems, which ask for all

objects satisfying some constraints. Finally, Max-problems
originally ask for the maximum (or minimum) value of a
function of an object. Often, these are solved by first prov-
ing a lower (resp. upper) bound and then constructing an
object that achieves this bound. If the second part is suf-
ficiently difficult, these problems are good candidates for
MATHCONSTRUCT. Importantly, when adapting problems
to become constructive proofs, we confirm that the quality
and difficulty criteria above hold, even after the necessary
problem modifications.

3.2. Math Construction Problems

We now discuss the formalization of construction problems
and their encoding into a format that can be used for pro-
grammatic evaluation.

Definition 3.1 (Construction Problem). A construction
problem is a tuple (P, θ, Vθ) where P is a symbolic prob-
lem statement in natural language, θ are concrete parameters
that replace symbolic variables in the problem statement,
and Vθ : O → {0, 1} is a verification function that takes an
object and checks whether it satisfies the constraints of the
problem. A valid solution or a constructive proof for this
problem is any object o ∈ O such that Vθ(o) = 1.

Each problem is encoded as a single Python file, containing
all of its components P, θ, and Vθ. Additionally, the file
includes a variation generator function which generates a
set of variations of the problem by plugging in different
values for the parameters θ, and formatting instructions that
instruct the model to output the solution in a specific format.

An example of an encoded MATHCONSTRUCT problem is
given in Fig. 3. Here, the problem statement is P =“Find
an n× n matrix. . . ”, the parameters are θ = {n : 10}, and
the verification function is given by

Vθ(M) = rank(M) ≤ 3∧Mi,i = 0∧ (i = j ∨Mi,j > 0).

When solving the problem, the model is given a concretized
problem statement obtained by replacing the parameters in
the problem statement P with concrete parameter values
θ. Similar to human contestants, the model does not have
access to the verification function Vθ.

We now further discuss each of the problem components.

Symbolic problem statement While many problems are
originally stated with concrete values, they can often be
generalized to obtain a symbolic problem statement P . We
do this for every problem where it is possible, replacing
concrete values with symbolic parameters θ, allowing us
to plug in different values for the parameter. For example,
any positive integer can replace parameter n in the problem
statement in Fig. 3.

4

MATHCONSTRUCT

Verification In our implementation, the verification func-
tion Vθ takes a construction and returns a tuple (c, f) where
c is a boolean indicating whether the construction satisfies
the constraints of the problem, and f is a detailed feedback
string that when c = false explains why the construction
is incorrect. For example, in the problem in Fig. 3, the
verification function checks that the matrix has the correct
dimensions, the diagonal is zero, the off-diagonal elements
are positive, and the rank is at most 3. We use the feedback
strings during our review process for manual quality checks
(see Sec. 3.3). Following the criteria from Sec. 3.1, we see
that despite the significant difficulty of the problem in Fig. 3,
the verification function is simple to implement and run, and
the feedback is straightforward to understand.

Variations Given a problem, humans can typically find
a general solution that works for all parameter values. For
example, to solve the problem in Fig. 3 (and the majority of
our problems), one can find a general procedure that works
for any n. Most popular benchmarks (Hendrycks et al.,
2021; Gao et al., 2024; He et al., 2024) do not have symbolic
variations, meaning it is difficult to evaluate whether the
model can generalize to similar problems or simply guessed
the answer. Instead, we create a number of variations for
each problem, allowing us to study the robustness of the
model to changes in the problem parameters.

Definition 3.2 (Problem Variations). Problem variations are
a set of construction problems that share the same symbolic
problem statement P and verification function Vθ, but have
different problem parameters θ1, θ2, . . . , θk.

Formatting and parsing Since the mathematical objects
involved in constructive proofs have a wide variety of types,
we also provide formatting instructions for each problem
which can be used to prompt the model to output the solution
in a specific format. Furthermore, we create a specialized
parser, detailed in App. B, that can parse arbitrary combi-
nations of lists, matrices, and LATEX objects from natural
language solutions. By default, models evaluated on our
benchmark receive detailed feedback from our parser, al-
lowing them to correct their solutions over multiple rounds,
which reduces the risk of syntax errors.

3.3. Problem Review

We performed a review of MATHCONSTRUCT problems, in
each stage discarding problems that did not meet our quality
criteria and revising those that could be improved.

Manual quality checks First, each problem author was
tasked with implementing a generic solution function that
computes valid constructions for the problem. Additionally,
extensive unit tests were implemented to check each prob-
lem’s verification and solution functions, ensuring correct

Table 1: Summary of MATHCONSTRUCT constructive proof
problems by their category and type.

Category
Type

Any- All- Inf- Max- Σ

Combinatorics 19 6 1 18 44
Algebra 11 5 1 7 24

Number Theory 26 7 15 6 54
Geometry 4 0 0 0 4

Σ 61 18 17 31 126

implementation. Next, each author was asked to ensure that
their problem is solvable by a human using pen and paper,
to ensure that we are testing reasoning, and not merely cal-
culation skills. We remark that some of our problems may
include more calculation than typical in human competi-
tions (e.g., writing the complete n × n matrix instead of
simply describing it)—however, this step is trivial once the
correct insight for the problem is found. Finally, in a peer
review process, each problem was reviewed by at least one
other team member, checking that the problem statement is
sound and clear, that the verification function is feasible and
returns informative feedback in case of errors, and that the
problem is sufficiently challenging and of high quality.

Automated quality checks Complementing manual re-
view, we also implemented automated checks. First, we
verified that all problems are solvable by an LLM when
explicitly given the solution. This verifies that the format-
ting instructions are unambiguous and that our parser and
verifier are error-free. Second, we flagged for additional
review all problems where our solution is longer than 4000
characters, as LLMs should not be significantly hampered
by the difficulty of outputting large amounts of text. Finally,
we implemented a code agent that flags problems that are
solvable using a brute-force approach, as we want to ensure
that each problem is only solvable via genuine reasoning.

Final set of problems Most issues above were resolved by
revising the problem statement or the set of variations. Dis-
carding the 32 problems that had unresolvable issues, we ar-
rived at a final set of 126 problems in MATHCONSTRUCT—
a detailed overview of our sources and the number of prob-
lems per source is given in App. C.

In Table 1 we summarize MATHCONSTRUCT across differ-
ent problem categories (e.g., Combinatorics) and types, as
introduced above (e.g., Any-problems). We see that the prob-
lems are well-distributed across categories, and that around
half of the problems are Any-problems, the type that most
closely illustrates constructive proofs. The other half was
obtained by adapting other problem types to fit our criteria.

5

MATHCONSTRUCT

4. Experimental Evaluation
We evaluate a diverse set of LLMs on MATHCONSTRUCT
across various settings. We present our main results on rea-
soning models (Sec. 4.1), results with code agents (Sec. 4.2),
error analysis of common failures (Sec. 4.3), effects of con-
tamination (Sec. 4.4), and robustness of the models to varia-
tions (Sec. 4.5). For readability, we adopt shortened names
for some models. You can find this and other details of the
experimental setup in App. D.

4.1. Main Results

We evaluate 14 state-of-the-art models on our benchmark
and summarize the results in Table 2, which expands on
Fig. 1. Each model is tasked with solving the problems in
MATHCONSTRUCT while adhering to specific formatting
guidelines for their responses (see App. F for details). To
ensure correct parsing, models receive two rounds of feed-
back from the parser, allowing them to refine their answers.
Additional experiments on the use of feedback from the
verification function are provided in App. E.2.

We report two key metrics: average accuracy, which first
computes accuracy over all variations of a problem and
then averages these values across all problems, and robust
accuracy, which considers a problem solved only if all
its variations are answered correctly. The latter metric re-
flects a stricter evaluation, analogous to how a human who
solves the general form of a problem can solve all instanti-
ations. Additionally, we provide the total cost of running
each model on the benchmark, measured in USD.

Results Among all models, O3-MINI performs best,
achieving 53.8% accuracy and 34.9% robust accuracy, out-
performing the second-best model, O1, by a 12% margin.
Among non-reasoning models, FLASH leads with 11.3%
accuracy and 3.2% robust accuracy, significantly ahead of
other non-reasoning models.

Despite O1’s impressive performance, it incurs a high cost,
requiring USD 443.3 to complete the benchmark— three
times the combined cost of all other models. In contrast,
GEMINI models are currently free (at a limited rate), making
them a more cost-effective alternative.

Notably, all models struggle with solving every variation
of a problem, as reflected in the robust accuracy scores,
which are approximately half of the average accuracy values.
This highlights the difference between human and model
performance, as humans can often solve all variations of a
problem once they have solved the problem.

4.2. Alternative Evaluation Settings

We explore alternative evaluation settings on our benchmark
and analyze their effects.

Table 2: Main results of our evaluation. We measure cost in
USD, and report both average and robust accuracy in %.

Model Avg Robust Cost

LLAMA-3.1-405B 3.17 1.59 1.99
GPT-4O-MINI 3.77 1.59 0.32
LLAMA-3.3-70B 3.77 1.59 0.67
3.5-HAIKU 3.37 1.59 1.37
GPT-4O 3.57 0.79 4.62
3.5-SONNET 4.17 0.79 4.80
QWEN2.5-72B 6.35 1.59 2.24
FLASH 11.57 3.17 N/A

QWQ 13.89 7.14 8.34
R1-LLAMA-70B 19.51 7.94 15.23
O1-MINI 25.46 10.32 51.49
FLASH-THINKING 27.05 11.11 N/A
O1 41.34 23.02 434.08
O3-MINI 53.77 34.92 71.14

100 101

Cost

4%

8%

12%

16%
A

cc
ur

ac
y

Flash*

3.5-Sonnet

Qwen-2.5-72B

GPT-4o

3.5-Haiku

Llama-3.3-70B

Figure 4: Cost and accuracy of models with or without code
execution. Future cost of FLASH is estimated (now free).

Code agents We first evaluate the performance of models
with access to a Python interpreter. Specifically, each model
can execute Python code up to four times per problem to
generate solutions, verify reasoning steps, or perform cal-
culations. The output of each execution is fed back to the
model, allowing it to iteratively refine its reasoning. Fig. 4
shows how accuracy and cost change when models are al-
lowed to execute code. Compared to their base performance
from Table 2, both accuracy and cost increase significantly.
Most models roughly double their accuracy, at the expense
of a fivefold increase in cost. Notably, 3.5-SONNET im-
proves from 5% to 15.3% accuracy. FLASH still achieves
the highest accuracy in this setting, reaching 17.5%.

Brute-force solutions Some problems in our benchmark
are susceptible to brute-force methods, as identified during
our review process (Sec. 3.3). To evaluate this, we tested
brute-force agents and adjusted problems that allowed triv-
ial brute-force solutions. We considered two brute-force

6

MATHCONSTRUCT

Correct Incorrect Format Reject No Solution Unparseable
Error Type

0%

10%

20%

30%

40%

50% o3-mini (before)

o3-mini (after)

QwQ (before)

QwQ (after)

Figure 5: Error types of models before and after parser feedback.

Table 3: Accuracy of Brute-Force on MATHCONSTRUCT.

BRUTE BRUTE+INFER

Model Avg Robust Avg Robust

GPT-4O 6.35 0.79 10.78 3.17
3.5-SONNET 8.13 1.59 16.67 5.56

approaches: pure brute-force, where the model is explicitly
instructed to generate a brute-force solution, and brute-force
inference, where the model is encouraged to solve smaller
instances in a brute-force manner and then generalize its
findings to solve the full problem. To facilitate the latter
strategy, we allow the model to refine its solution up to 3
times, using feedback from our parser to adapt its strategy.

Table 3 presents results for these brute-force agents on
the final version of our benchmark. The pure brute-force
method (BRUTE) achieves less than 8% accuracy. A man-
ual review indicates that most correct solutions either in-
volve non-trivial reasoning steps or arise from luck. In
contrast, the brute-force inference agent (BRUTE+INFER)
performs significantly better, reaching up to 16.7% accu-
racy—surpassing the code agent from Sec. 4.2. This agent
frequently discovers patterns by generalizing from smaller
instances, effectively solving problems in a more structured
manner. As a result, we did not remove problems that this
method solved, as they demonstrate meaningful reasoning
rather than brute-force execution.

4.3. Error Analysis
By leveraging the detailed feedback given by our parser and
verification methods (described in Sec. 3.2), we conducted
a detailed error analysis of the models. Specifically, we
categorized the errors into the following types: unparseable,
where the model output could not be parsed, no solution,
where the model does not provide a solution, reject, where
the model rejects the question’s premise and states there
is no solution, format, where the output did not correctly
follow the formatting instructions, and incorrect, where the
solution does not satisfy the problem constraints.

Fig. 5 illustrates the distribution of error types for both O3-
MINI and QWQ before and after parser feedback. A key ob-
servation is that O3-MINI frequently produces unparseable
answers, but significantly benefits from parser feedback.
When reprompted, O3-MINI successfully incorporates the
feedback, leading to a notable accuracy improvement of
+15%. This suggests that as mathematical benchmarks
increase in complexity, models should be systematically
provided with parser feedback to ensure their capabilities
are accurately evaluated.

Both models frequently fail to provide a solution in their ini-
tial attempts, either by omitting the \boxed environment
or getting stuck. However, in many cases, parser feedback
enables the models to correct these mistakes by trying again
or making an educated guess. Interestingly, QWQ exhibits
a distinct failure pattern: in 10% of its errors, it explicitly
rejects the premise of the question, asserting that no solu-
tion exists in its final answer. Moreover, unlike O3-MINI,
QWQ does not improve its parseability after receiving feed-
back, highlighting its inability to understand and follow
instructions. In App. E.3, we additionally perform a case
study comparing two models, O1 and FLASH-THINKING,
on several problems where O1 demonstrates stronger pattern
recognition capabilities, while FLASH-THINKING does not
recognize patterns and resorts to exhaustive search.

4.4. Contamination Analysis

We further investigate the impact of data contamination on
performance, which is particularly important since olympiad
problems are commonly included in training datasets. As-
sessing contamination is crucial for verifying both the reli-
ability of benchmark results. Given the modifications and
variations we introduced to the problems, we expect mini-
mal contamination. To confirm this, we follow Dekoninck
et al. (2024) and compare model performance on the origi-
nal benchmark against a rephrased version, where problem
statements have been rewritten by GPT-4O.

7

MATHCONSTRUCT

0% 10% 20% 30%

Reference Performance

0%

10%

20%

30%

A
ct

ua
l

P
er

fo
rm

an
ce

Equal
Performance

Figure 6: Contamination analysis of models on the bench-
mark and its rephrased equivalent.

0 1000 2000 3000 4000

String Length of the Gold Solution

0%

25%

50%

75%

100%

A
cc

ur
ac

y

Gold

Flash-Thinking

3.5-Sonnet (Brute)

Figure 7: The effect of problem variations on accuracy.

In Fig. 6, we present the results for all models except O1,
which was excluded due to cost constraints. We find that
model performance on the rephrased benchmark closely
matches performance on the original, suggesting minimal
contamination. However, O1-MINI exhibits a small but no-
ticeable deviation. Using bootstrapping, we estimate the
2σ confidence interval of this deviation to be 4.7 ± 3.2%,
which is small, but statistically significant. This suggests
that O1-MINI may slightly underperform in real-world sce-
narios compared to its benchmark results. Nevertheless, the
effect does not alter its ranking among the evaluated models.

4.5. Effect of Problem Variations

Finally, to investigate the impact of problem variations
on model performance, we test the robustness of FLASH-
THINKING against a range of extreme variations. Specif-
ically, we select 10 problems where the model performs
reasonably well and evaluate its accuracy on 24 vari-
ations of each. These variations purposefully include
both trivially small cases and impractically large ones—
scenarios intentionally excluded from the default version
of MATHCONSTRUCT. For reference, we also include
3.5-SONNET (BRUTE), the brute-forcing agent introduced
in Sec. 4.2. As a proxy for variant difficulty, we define
variant size as the string length of our (GOLD) solution.

In Fig. 7 we show the accuracy of each model on these varia-
tions, grouped by their size. As expected, the GOLD solution
always achieves 100% accuracy. This reflects the perfor-
mance of a human contestant who has solved the problem in
its general form and can apply that solution to any variation.
The brute-force agent is only successful on very small vari-
ations, where the problem often degenerates into a trivial
form. For example, setting n = 2 in the problem in Fig. 3
requires a 2 × 2 matrix of rank ≤ 3, which holds for any
2× 2 matrix. This illustrates the importance of our problem

review process (Sec. 3.3), where variants with this behavior
were generally excluded from MATHCONSTRUCT.

The FLASH-THINKING results follow a similar pattern: it
achieves nearly 100% on trivial variations but struggles with
larger ones. As variant size increases, accuracy declines
due to the need to generate long responses and perform
operations on large numbers, both of which increase the risk
of errors. As noted in Sec. 3.3, our problem review process
included a step where we manually reviewed variant size and
aimed to keep it within a reasonable range (see App. C for
a histogram of original problem variant sizes and App. E.1
for the distribution of model output tokens). Within this
range, FLASH-THINKING is fairly consistent, implying well-
balanced variant difficulty in MATHCONSTRUCT.

5. Conclusion
In this work, we introduced MATHCONSTRUCT, a novel
benchmark designed to evaluate the mathematical reason-
ing of LLMs through constructive proofs. Unlike existing
benchmarks, MATHCONSTRUCT uniquely combines the
challenge of constructing valid mathematical objects with
the ease of their correctness verification, creating a chal-
lenging set of tasks for LLM evaluation. Starting from 126
curated problems, we generated 475 instances by systemati-
cally varying key parameters in the original problem state-
ments. Our extensive evaluation of 14 LLMs on these tasks
revealed that even the most advanced models struggle signif-
icantly with these tasks. Overall, we believe that by focusing
on construction problems, MATHCONSTRUCT pushes the
boundaries of mathematical reasoning benchmarks, offering
a valuable resource for driving future advancements.

8

MATHCONSTRUCT

Impact Statement
MATHCONSTRUCT has the potential to significantly im-
pact the field of AI and mathematics. By providing a chal-
lenging benchmark of constructive proofs, it can help re-
searchers and practitioners evaluate the reasoning capabil-
ities of LLMs and guide the development of more robust
models. Furthermore, our benchmark is the first step to-
wards evaluating LLMs on a broader range of math prob-
lems, which can lead to more comprehensive evaluations
and subsequent improvements in model performance.

References
Fasthtml, 2025. URL https://www.fastht.ml/.

Anthropic, A. Claude 3.5 sonnet model card addendum.
Claude-3.5 Model Card, 3:6, 2024.

Appel, K. I. and Haken, W. Every planar map is four
colorable, volume 98. American Mathematical Soc.,
1989.

Bello, I., Pham, H., Le, Q. V., Norouzi, M., and Bengio,
S. Neural combinatorial optimization with reinforcement
learning. In ICLR (Workshop). OpenReview.net, 2017.

Cantor, G. Ueber eine elementare frage der man-
nigfaltigketislehre. Jahresbericht der Deutschen
Mathematiker-Vereinigung, 1:72–78, 1890.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training verifiers to solve
math word problems. CoRR, abs/2110.14168, 2021.

Davies, A., Velickovic, P., Buesing, L., Blackwell, S.,
Zheng, D., Tomasev, N., Tanburn, R., Battaglia, P. W.,
Blundell, C., Juhász, A., Lackenby, M., Williamson, G.,
Hassabis, D., and Kohli, P. Advancing mathematics by
guiding human intuition with AI. Nat., 600(7887):70–74,
2021.

Davila, R. Artificial intelligence and machine learning gen-
erated conjectures with txgraffiti. CoRR, abs/2407.02731,
2024.

de Moura, L. and Ullrich, S. The lean 4 theorem prover and
programming language. In CADE, volume 12699 of Lec-
ture Notes in Computer Science, pp. 625–635. Springer,
2021.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capa-
bility in llms via reinforcement learning. arXiv preprint
arXiv:2501.12948, 2025.

Dekoninck, J., Müller, M. N., and Vechev, M. T. Con-
stat: Performance-based contamination detection in large

language models. CoRR, abs/2405.16281, 2024. doi:
10.48550/ARXIV.2405.16281. URL https://doi.
org/10.48550/arXiv.2405.16281.

Fan, L., Hua, W., Li, L., Ling, H., and Zhang, Y. Nphard-
eval: Dynamic benchmark on reasoning ability of large
language models via complexity classes. In ACL (1), pp.
4092–4114. Association for Computational Linguistics,
2024.

Gao, B., Song, F., Yang, Z., Cai, Z., Miao, Y., Dong, Q., Li,
L., Ma, C., Chen, L., Xu, R., Tang, Z., Wang, B., Zan, D.,
Quan, S., Zhang, G., Sha, L., Zhang, Y., Ren, X., Liu, T.,
and Chang, B. Omni-math: A universal olympiad level
mathematic benchmark for large language models. CoRR,
abs/2410.07985, 2024.

Gasse, M., Chételat, D., Ferroni, N., Charlin, L., and Lodi,
A. Exact combinatorial optimization with graph convo-
lutional neural networks. In NeurIPS, pp. 15554–15566,
2019.

Glazer, E., Erdil, E., Besiroglu, T., Chicharro, D., Chen,
E., Gunning, A., Olsson, C. F., Denain, J., Ho, A.,
de Oliveira Santos, E., Järviniemi, O., Barnett, M., San-
dler, R., Vrzala, M., Sevilla, J., Ren, Q., Pratt, E., Levine,
L., Barkley, G., Stewart, N., Grechuk, B., Grechuk, T.,
Enugandla, S. V., and Wildon, M. Frontiermath: A bench-
mark for evaluating advanced mathematical reasoning in
AI. arXiv, 2024.

Gui, J., Liu, Y., Cheng, J., Gu, X., Liu, X., Wang, H., Dong,
Y., Tang, J., and Huang, M. Logicgame: Benchmarking
rule-based reasoning abilities of large language models.
CoRR, abs/2408.15778, 2024.

Gulati, A., Miranda, B., Chen, E., Xia, E., Fronsdal,
K., de Moraes Dumont, B., and Koyejo, S. Putnam-
AXIOM: A functional and static benchmark for measur-
ing higher level mathematical reasoning. In The 4th Work-
shop on Mathematical Reasoning and AI at NeurIPS’24,
2024. URL https://openreview.net/forum?
id=YXnwlZe0yf.

He, C., Luo, R., Bai, Y., Hu, S., Thai, Z. L., Shen, J., Hu,
J., Han, X., Huang, Y., Zhang, Y., Liu, J., Qi, L., Liu, Z.,
and Sun, M. Olympiadbench: A challenging benchmark
for promoting AGI with olympiad-level bilingual multi-
modal scientific problems. In ACL (1), pp. 3828–3850.
Association for Computational Linguistics, 2024.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring
mathematical problem solving with the MATH dataset.
In NeurIPS Datasets and Benchmarks, 2021.

9

https://www.fastht.ml/
https://doi.org/10.48550/arXiv.2405.16281
https://doi.org/10.48550/arXiv.2405.16281
https://openreview.net/forum?id=YXnwlZe0yf
https://openreview.net/forum?id=YXnwlZe0yf

MATHCONSTRUCT

Jaech, A., Kalai, A., Lerer, A., Richardson, A., El-Kishky,
A., Low, A., Helyar, A., Madry, A., Beutel, A., Car-
ney, A., et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Liu, C., Shen, J., Xin, H., Liu, Z., Yuan, Y., Wang, H., Ju,
W., Zheng, C., Yin, Y., Li, L., Zhang, M., and Liu, Q.
FIMO: A challenge formal dataset for automated theorem
proving. CoRR, abs/2309.04295, 2023.

Ma, K., Du, X., Wang, Y., Zhang, H., Wen, Z., Qu, X.,
Yang, J., Liu, J., Liu, M., Yue, X., Huang, W., and
Zhang, G. Kor-bench: Benchmarking language mod-
els on knowledge-orthogonal reasoning tasks. CoRR,
abs/2410.06526, 2024.

Mirzadeh, S., Alizadeh, K., Shahrokhi, H., Tuzel, O., Ben-
gio, S., and Farajtabar, M. Gsm-symbolic: Understand-
ing the limitations of mathematical reasoning in large
language models. CoRR, abs/2410.05229, 2024.

Mittal, C., Kartik, K., Mausam, and Singla, P. Puzzlebench:
Can llms solve challenging first-order combinatorial rea-
soning problems? CoRR, abs/2402.02611, 2024.

Phan, L., Gatti, A., Han, Z., Li, N., Hu, J., Zhang, H., Shi,
S., Choi, M., Agrawal, A., Chopra, A., Khoja, A., Kim,
R., Hausenloy, J., Zhang, O., et al. Humanity’s last exam.
arXiv, 2025.

Reid, M., Savinov, N., Teplyashin, D., Lepikhin, D., Lilli-
crap, T. P., Alayrac, J., Soricut, R., Lazaridou, A., Firat,
O., Schrittwieser, J., Antonoglou, I., Anil, R., Borgeaud,
S., Dai, A. M., Millican, K., Dyer, E., Glaese, M.,
Sottiaux, T., Lee, B., Viola, F., Reynolds, M., Xu, Y.,
Molloy, J., Chen, J., Isard, M., Barham, P., Hennigan,
T., McIlroy, R., Johnson, M., Schalkwyk, J., Collins,
E., Rutherford, E., Moreira, E., Ayoub, K., Goel, M.,
Meyer, C., Thornton, G., Yang, Z., Michalewski, H., Ab-
bas, Z., Schucher, N., Anand, A., Ives, R., Keeling, J.,
Lenc, K., Haykal, S., Shakeri, S., Shyam, P., Chowd-
hery, A., Ring, R., Spencer, S., Sezener, E., and et al.
Gemini 1.5: Unlocking multimodal understanding across
millions of tokens of context. CoRR, abs/2403.05530,
2024. doi: 10.48550/ARXIV.2403.05530. URL https:
//doi.org/10.48550/arXiv.2403.05530.

Tsoukalas, G., Lee, J., Jennings, J., Xin, J., Ding, M., Jen-
nings, M., Thakur, A., and Chaudhuri, S. Putnambench:
Evaluating neural theorem-provers on the putnam mathe-
matical competition. CoRR, abs/2407.11214, 2024.

Wagner, A. Z. Constructions in combinatorics via neural
networks. CoRR, abs/2104.14516, 2021.

Xin, H., Guo, D., Shao, Z., Ren, Z., Zhu, Q., Liu, B., Ruan,
C., Li, W., and Liang, X. Deepseek-prover: Advancing

theorem proving in llms through large-scale synthetic
data. CoRR, abs/2405.14333, 2024.

Yang, B., Yang, Q., and Liu, R. Utmath: Math evaluation
with unit test via reasoning-to-coding thoughts. CoRR,
abs/2411.07240, 2024.

Yue, A. S., Madaan, L., Moskovitz, T., Strouse, D., and
Singh, A. K. HARP: A challenging human-annotated
math reasoning benchmark. CoRR, abs/2412.08819,
2024.

Zheng, K., Han, J. M., and Polu, S. minif2f: a cross-system
benchmark for formal olympiad-level mathematics. In
ICLR. OpenReview.net, 2022.

10

https://doi.org/10.48550/arXiv.2403.05530
https://doi.org/10.48550/arXiv.2403.05530

MATHCONSTRUCT

A. Dataset Development Workflow
Here we describe our workflow for developing the MATHCONSTRUCT benchmark, elaborating on the details presented in
the main text (Sec. 3).

Problem selection The first part of our workflow described in Sec. 3.1 is the selection of suitable problems from existing
competitions. We assigned particular competitions (possibly splitting by year) to different members of our team, and each
member selected problems from the assigned competitions according to the criteria described in Sec. 3.1. Overall we
examined around 3500 problems from 20 different competitions. However, many of these problems were immediately
discarded as they do not contain a constructive component (e.g., almost all geometry problems). Overall, this phase yielded
at least 158 problems. Note that sometimes this step involved rephrasing the problem statement to make it more suitable for
our benchmark.

Problem encoding The second part of our workflow relates to formalizing the problems and encoding them into a format
that can be used for evaluation, as discussed in Sec. 3.2. Each problem is encoded in a single Python file, into an object of
type Problem. The first part of the object is a configuration that contains metadata about the problem such as the problem
statement, formatting instructions for presenting the solution, the parameters, the source of the problem, parameters of the
original version of the problem, and the original solution. Additionally, the configuration contains a list of tags that describe
the type of the problem and its relationship to the original version (is it simplified, generalized, etc.). In Fig. 8 we show an
example of this configuration for the problem from the IMC 2012 competition mentioned earlier in the paper in Sec. 3.2.

1 config = ProblemConfig(
2 name=Problem.get_name(__file__),
3 statement=PROBLEM_TEMPLATE,
4 formatting_instructions=get_matrix_template(),
5 parameters=["n"],
6 source="IMC 2012 P2",
7 original_parameters={"n": 7},
8 original_solution=get_solution(7),
9 problem_url="imc-math.org.uk/imc2012/IMC2012-day1-questions.pdf",

10 solution_url="imc-math.org.uk/imc2012/IMC2012-day1-solutions.pdf",
11 tags=[Tag.ALGEBRA, Tag.FIND_MAX_MIN, Tag.IS_SIMPLIFIED],
12)

Figure 8: Problem configuration for the problem from the IMC 2012 competition

The second important component of the problem is the encoding of the verification function Vθ as a Python function that
receives a proposed solution and checks whether it satisfies the constraints of the problem. In Fig. 9, we show an example of
this function from the same problem. The function returns a tuple of: a boolean value indicating whether the solution is
correct, a feedback string explaining why the solution is incorrect, and a tag indicating the type of the error.

Finally, the problem contains a generation function that generates a set of variations of the problem by plugging in different
values for the parameters θ. We show an implementation of this function for the same problem below in Fig. 10. For this
problem, the generation function simply returns an integer sampled uniformly at random from a given interval.

Once the problem is fully encoded, we also include a variety of unit tests. These unit tests typically ensure that our official
solution to the problem is correct (namely, that it satisfies the verification function). Ideally, the unit tests also test that
wrong solutions are rejected by the verification function, but it is generally hard to cover all possible wrong solutions.

Problem review The final step of the workflow is reviewing the problems, as described in Sec. 3.3. The key part of this
workflow is our application for data analysis, which is shown in Fig. 11.

The application shows for each problem and for each variation the following information: problem statement, formatting
instructions, our ground truth solution, and interaction with the model. The interaction with the model shows responses from
the model, feedback from our parser (checking whether solution can be extracted from the model response, see App. B), and
the final result of the verification function (correct or incorrect). We developed the application using FastHTML (fas, 2025).

11

MATHCONSTRUCT

1 def check(self, x: list[list[float]]):
2 if len(x) != self.n:
3 return False, f"The number of rows is not n ({self.n}).",
4 CheckerTag.INCORRECT_LENGTH
5 if any(len(row) != self.n for row in x):
6 return False, f"The number of columns is not n ({self.n}).",
7 CheckerTag.INCORRECT_LENGTH
8 if any(x[i][i] != 0 for i in range(self.n)):
9 return False, f"Some diagonal elements are not zero.",

10 CheckerTag.INCORRECT_SOLUTION
11 for i in range(self.n):
12 for j in range(self.n):
13 if x[i][j] <= 0:
14 return False,
15 f"Some off-diagonal elements are not positive.",
16 CheckerTag.INCORRECT_SOLUTION
17 rank = np.linalg.matrix_rank(x)
18 if rank > 3:
19 return False, f"The rank is {rank}, which is greater than 3.",
20 CheckerTag.INCORRECT_SOLUTION
21 return True, "OK", CheckerTag.CORRECT

Figure 9: Implementation of the verification function for the problem from the IMC 2012 competition

1 def generate() -> "Problem_IMC_2012_2":
2 n = random.randint(6, 20)
3 return Problem_IMC_2012_2(n)

Figure 10: Implementation of the variation generator for the problem from the IMC 2012 competition

The application generally allows us to quickly review the problems and to identify problems that are not suitable for our
benchmark. For example, by investigating responses from the model, we identified issues with our problem statement or
formatting instructions. Additionally, an important part of the review was identifying issues with our parsing of the LLM
solutions in cases where it was correct, but provided in a format that our parser was not able to understand.

B. Parser Details
The parser is designed to parse as many outputs as possible while still enabling specific feedback to the model in case of
errors. We give a high-level overview of the implementation here, and refer to the code repository for the full implementation.

The model solution always appears in a boxed environment, which is the only part of the model output that is parsed. If no
boxed environment is found in the model solution, the parser throws the following error:

No \boxed content found in solution. Final solution needs to be encased in \boxed{}.

The input is then sanitized by removing any extraneous characters, common sequences for formatting brackets (like \left and
\right), and other common formatting characters.

The parser differentiates between five primitive types (Integers, Floats, Fractions, Strings, and LaTeX Expressions), and two
composite types (Lists and Matrices). The correct primitive type is automatically extracted from the model solution. By
verifying any primitive type that gets extracted from the model solution matches this primitive type, we can ensure that
the model has correctly formatted its solution. For instance, one of the most common errors is the use of ". . . " in a model
solution. If a parser encounters this string anywhere in the solution for a primitive type that is different than Strings, it will
return the following error:

Expected a primitive int/float/parseable LaTeX expression, but got ’\dots’

Note that the same error will occur even if the dots appears anywhere in a matrix or list.

12

MATHCONSTRUCT

Figure 11: Screenshot of our web application for data analysis

For composite types, the parser recursively parses the contents of the boxed environment. Lists are parsed by splitting the
contents of the boxed environment by commas, newlines or & characters. We recursively extract the first element of the list.
To prevent splitting on the wrong character, we check if the extracted first element is a valid primitive, list, or matrix. If not,
the first element expands to the next comma, newline, or & character and we repeat the process.

Matrices are parsed by checking for any LATEX environment that contains an array or matrix. Results are then extracted by
splitting the matrix by ’\\’ and parsing each row as a List.

Finally, we found that a lot of the models add unnecessary brackets in their solutions (e.g., writing ’((1,2,3))’ to represent
’1,2,3’). To prevent this from causing errors in the verifier, we automatically extract the expected list depth from the verifier’s
solution and match this depth with the model’s solution. If the model’s solution has an unexpected depth that can not be
easily converted, the parser will return the following error:

Failed to match correct depth {depth} for ’{parsed_answer}’

This entire procedure was then tested using a variety of model outputs in unit tests to ensure that the parser can handle a
wide range of model outputs. Furthermore, in a lot of our model runs, we manually verified the parser’s output to ensure that
it was working correctly. This gives us high confidence that model performance does not depend on the parser’s behavior.

C. Additional Benchmark Details
In Table 4, we provide a summary of the MATHCONSTRUCT benchmark, including the number of problems from each
source. In Fig. 12, we show a histogram of the length of the problem solutions in the benchmark. We note that there is one
problem with a string length over the required limit of 4000 characters, but this solution can be more succinctly expressed in
LATEX, which is supported by our parser.

13

MATHCONSTRUCT

Table 4: Summary of MATHCONSTRUCT problems by source.

Source #Problems Source Description

bmo-shortlist 6 Balkan Mathematical Olympiad (+Shortlists)
bulgarian 7 Bulgarian Competitions (National, MO, IFYM)

bxmo 5 Benelux Mathematical Olympiad
croatian 7 Croatian Competitions (MO)

dutch 7 Dutch Competitions (MO)
emc 5 European Mathematical Cup
imc 4 International Mathematics Competition for University Students

imo-shortlist 29 International Mathematical Olympiad (+Shortlists)
jbmo-shortlist 10 Junior Balkan Mathematical Olympiad (+Shortlists)

konhauser 9 Konhauser Problemfest
misc 2 Misc (Baltic MO, Flanders MO, IMO Prep Handouts)

putnam 4 William Lowell Putnam Mathematical Competition
serbian 4 Serbian Competitions (MO, IMO Team Selection Test, Regionals)

swiss 11 Swiss Competitions (MO, IMO Team Selection Test)
tot 2 Tournament of Towns

usamo 8 USA Mathematical Olympiad
usamts 6 USA Mathematical Talent Search

MATHCONSTRUCT 126

D. Experimental Details
In this section, we describe in further detail how we performed all our experiments and evaluation.

D.1. Experimental Setup

Model Names For readability, we adopt shortened names for some models throughout this section. Specifically, we
refer to GEMINI-2.0-FLASH-EXP as FLASH and GEMINI-2.0-FLASH-THINKING-EXP as FLASH-THINKING. Similarly,
CLAUDE-3.5-SONNET and CLAUDE-3.5-HAIKU are denoted as 3.5-SONNET and 3.5-HAIKU, respectively.

Inference Inference of the models was done through API calls to the appropriate model. For the LLAMA and QWEN
models we used the Together API. For all other models, we used the API of the corresponding model provider. The total
cost of these experiments are reported in Table 2. Each model was queried with a temperature of 1 and nucleus sampling
with parameter top_p = 0.9. We use a maximum output length of 16000 tokens, except for the O1 model family and for
FLASH-THINKING, where we increased this to respectively 32000 and unlimited number of tokens.

Code execution To safely execute untrusted LLM code, we conducted all experiments within a lightweight Docker
container. Any generated code was executed on a single core of an Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz with
1GB of RAM. The coding agents operated in an isolated environment without network access, restricted to using only the
standard Python libraries along with numpy, scipy, and sympy libraries.

Problem setup For our experiments, we selected 126 problems, each paired with an original variation, which was kept
identical to the original when possible. In cases where this was not feasible, we chose a variation that was sufficiently
challenging and met the criteria outlined in Sec. 3.1 and Sec. 3.3. This resulted in a total of 475 variations, all of which were
used to conduct our evaluation.

Run setup For each experiment, we used the prompts outlined in App. F and provided the respective formatting instructions,
with examples shown in App. D.2. We distinguish between the Chain-of-Thought (CoT) solver and multiple coding agents
in our execution process.

In the CoT experiments, after receiving the model’s response, we parse the expression inside the boxed environment, if

14

MATHCONSTRUCT

101 102 103

String length model solution

0

5

10

15

20

25

#
of

P
ro

bl
em

s

Figure 12: Histogram of the length of the problem solutions in the benchmark.

present. If our parser detects a formatting issue or no response is found, the model is reprompted up to two times to provide a
valid construction with detailed feedback. Specifically, the parser provides the model with the error in the following format:

The solution parser encountered the following error:
{error}
Please format your reply accurately.
{Repetition of the formatting instructions}

For the coding models, we execute any code block appearing in the model output with a time limit of 1 minute for the
general coding model and 2 minutes for the brute-force agents. If the code runs successfully, we report the output to the
model. If not, we provide the model with an error trace. Both appear to the model in the following format:

Code Output:
‘‘‘{output}‘‘‘

We do not allow the brute-force agent to correct mistakes or adapt their strategy after the output is returned. This is to
prevent the model from coming up with clever, non brute-force solutions. For the coding and brute-force inference agents,
we allow them to correct mistakes and adapt their strategy after the output is returned. They are then reprompted to continue
reasoning. We provide parser feedback up to two times per solution, allowing no more than four code attempts. Finally, we
ask for a final response containing the boxed solution, and parse it as described earlier.

D.2. Formatting Instructions

We differentiate between 4 main types of formats that we require from a model for verification of the solutions. This
includes:

• A single primitive object, i.e., an integer.

• A list/set of primitives, i.e., a tuple or a sequence.

• A matrix containing primitives, i.e., a board or a table.

• A symbolic template for any LATEX expression, most generally fractions.

For each of these, we present a generic formatting template that we tweak for problems that do not fit the template.

Primitive template:
Output the answer as an <integer/string> inside of $\boxed{...}$.
For example, $\boxed{123}$.

15

MATHCONSTRUCT

List template:
Output the answer as a comma separated list
inside of $\boxed{...}$. For example, $\boxed{1, 2, 3}$.

Matrix template:
Output the answer between \verb|\begin{array}{...}| and
\verb|\end{array}| inside of $\boxed{...}$. For example,
$\boxed{\begin{array}{ccc}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9
\end{array}}$.

Symbolic template (for fractions):
Output the answer as a fraction inside of $\boxed{...}$.
For example $\boxed{\frac{1}{2}}$.

16

MATHCONSTRUCT

E. Additional Experiments
E.1. Analysis of Output Tokens

o1-mini o1 Flash-Thinking
Model Name

102

103

104

105

106

#
of

O
ut

pu
t

T
ok

en
s

Figure 13: Distribution of the number of output tokens.

10000 20000 30000 40000 50000
Output Tokens

0%

20%

40%

60%

80%

100%

A
cc

ur
ac

y

o1-mini

o1

Flash-Thinking

Figure 14: Correctness per number of output tokens.

Reasoning models typically produce large amount of output tokens to arrive at the final solution. In this analysis, we take
the three best performing models from our experiments (O1, FLASH-THINKING, and O1-MINI), and compare the number of
output tokens that they produce when evaluating on our benchmark, as well as their accuracy for each amount of tokens.

First, in Fig. 13, we show the distribution of the number of output tokens for all models. We can observe that FLASH-
THINKING produces the largest amount of output tokens, even going over 100k tokens for some problems. Overall, O1
generally produces less tokens and has higher accuracy.

When looking at the correctness for each number of output tokens, as shown in Fig. 14, we can observe that for FLASH-
THINKING and O1-MINI the accuracy steadily decreases with larger number of output tokens. However, FLASH-THINKING
still produces some percentage of correct solutions even for 50k tokens. Interestingly, we can observe that O1 has 40%
accuracy with around 40k output tokens. Recall that models receive feedback from the parser when their solution is not
formatted correctly, and they have a chance to fix it. This bump in accuracy comes from the samples where O1 was able to
correct its solution after the initial round of feedback.

E.2. Verification Feedback

Writing correct verifiers is a challenging task, but might be easier for LLMs than writing correct solutions. In this case, the
LLM could potentially leverage its verifier to check the correctness of its solution, making it possible to use the verifier as a
feedback mechanism. While initial experimentation indicated that LLMs were not able to write correct verifiers, we can still
obtain an upper bound on the performance of such an agentic framework by using the ground-truth verifiers. Since these
verifiers were written to return very detailed feedback about the specific mistakes made by the model, we can use them to
provide feedback to the model in addition to the parser feedback already provided.

We ran this experiment on O3-MINI, the best performing model in our evaluation. Using ground-truth verifiers, the model
achieved 65.07% instead of 53.77% by using parser feedback alone. While a significant improvement, the assumption of
access to ground-truth verifiers is unrealistic, especially given the difficulty of writing correct verifiers.

E.3. Case Study Comparing FLASH-THINKING and O1

In this case study, we qualitatively compare the outputs of FLASH-THINKING and O1 on problems from the IMO Shortlist.

17

MATHCONSTRUCT

IMO Shortlist 2001 C5 In our main results we observe that FLASH-THINKING fails to solve any variation, while O1
solves this problem correctly for 3/4 variations. First, looking at the FLASH-THINKING reasoning trace we can observe
that it tries to exhaustively search for solutions, and makes mistakes in the casework. On the other hand, O1 immediately
recognizes that the problem asks something very similar to self-describing numbers (those where digit i is the number of
times that i appears in the number). It can recall all such numbers, and solve the problem for smaller n. Interestingly, for
larger n = 17 exactly the same construction works, but O1 fails to find it, possibly because typical examples on the internet
contain only digits.

Prompt

Find 10 finite sequences (x0, x1, . . . , xn) such that for every j, 0 ≤ j ≤ n, xj equals the number of
times j appears in the sequence.
Format your reply as follows:

Output the sequences as comma-separated tuples inside of ... , \eg (1, 2), (1, 2, 3), (1, 1, 1, 1, 0) .

FLASH-THINKING

Let (x0, x1, . . . , xn) be a finite sequence such
that for every j, 0 ≤ j ≤ n, xj is the
number of times j appears in the sequence.
The length of the sequence is n + 1. The
indices are 0, 1, . . . , n.
... Let's consider small values of n.
...
List of solutions found: (1, 0), (2, 0, 0),
(3, 0, 0, 0), (4, 0, 0, 0, 0), ...
Let's verify these 10 solutions.

1. (1, 0). x0 = 1, x1 = 0. #0's = 1, #1's =
0. Correct.
2. (2, 0, 0). x0 = 2, x1 = 0, x2 = 0. #0's = 2,
#1's = 0, #2's = 0. Correct.

...

Check if (2, 0, 2, 0) is valid. n = 3.
(x0, x1, x2, x3) = (2, 0, 2, 0). x0 = 2. Number of 0
's in (2, 0, 2, 0) is 2. Correct.x1 = 0. Number
of 1's in (2, 0, 2, 0) is 0. Correct.x2 = 2.
Number of 2's in (2, 0, 2, 0) is 2. Correct.
x3 = 0. Number of 3's in (2, 0, 2, 0) is 0.
Correct.
So (2, 0, 2, 0) is a solution.
...
Final answer will be these 10 tuples.

Output: (1, 0), (2, 0, 0), (3, 0, 0, 0), (4, 0, 0, 0, 0), ...

..., (9, 0, 0, 0, 0, 0, 0, 0, 0, 0), (2, 0, 2, 0) .

Parsed Answer - Incorrect

[[1, 0], [2, 0, 0], [3, 0, 0, 0], [4, 0, 0,
0, 0], [5, 0, 0, 0, 0, 0], [6, 0, 0, 0, 0,
0, 0], ..., [2, 0, 2, 0]]

Parsecheck Details

INCORRECT_SOLUTION: Sequence [1, 0] has 1
occurrences of 1, should be 0

O1

A convenient way to produce such "self-
describing" sequences is via the well-
known self-describing numbers 1210, 2020,
21200, 3211000, and so on. Interpreting
each digit as an entry x0, x1, ..., xn in
the sequence, one finds that xj counts
precisely how many times j appears. Here
are 10 explicit examples:
(1, 2, 1, 0) · (2, 0, 2, 0) · (2, 1, 2, 0,
0) · (3, 2, 1, 1, 0, 0, 0) · (4, 2, 1, 0,
1, 0, 0, 0) · (5, 2, 1, 0, 0, 1, 0, 0, 0)
· (6, 2, 1, 0, 0, 0, 1, 0, 0, 0) · (7, 2,
1, 0, 0, 0, 0, 1, 0, 0, 0) · (8, 2, 1, 0,
0, 0, 0, 0, 1, 0, 0, 0) · (9, 2, 1, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0)\n\nIn boxed form
, they can be written as:\n

(1, 2, 1, 0), (2, 0, 2, 0), (2, 1, 2, 0, 0), (3, 2, 1, 1, 0, 0, 0),

(4, 2, 1, 0, 1, 0, 0, 0), (5, 2, 1, 0, 0, 1, 0, 0, 0),

(6, 2, 1, 0, 0, 0, 1, 0, 0, 0), (7, 2, 1, 0, 0, 0, 0, 1, 0, 0, 0),

(8, 2, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0),

(9, 2, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0) .

Parsed Answer - Correct

[[1, 2, 1, 0], [2, 0, 2, 0], [2, 1, 2, 0,
0], [3, 2, 1, 1, 0, 0, 0], [4, 2, 1, 0,
1, 0, 0, 0], [5, 2, 1, 0, 0, 1, 0, 0, 0],
[6, 2, 1, 0, 0, 0, 1, 0, 0, 0], [7, 2,
1, 0, 0, 0, 0, 1, 0, 0, 0], [8, 2, 1, 0,
0, 0, 0, 0, 1, 0, 0, 0], [9, 2, 1, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0]]

18

MATHCONSTRUCT

Interestingly, in one of the other attempts, FLASH-THINKING decides to search for exactly these sequences online, but
comes up with the wrong results and eventually fails to solve the problem:

“Searching for “self-referential sequence” or “autological sequence”.

“Counting sequence”.

Consider the sequence starting with “How many 0s, 1s, 2s, 3s, ... are there in
this sentence?”

Wikipedia: Self-referential numeric sequence.

Solutions listed

n=1: None

n=2: None

n=3: (1,2,1,0), (2,0,2,0

n=4: (2,1,2,0,0), (3,2,1,1,0), (4,0,0,0,0)

n=5: (2,1,2,0,0,0), (3,1,2,0,0,0),”

19

MATHCONSTRUCT

IMO Shortlist 2014 N2 Another interesting case is the IMO Shortlist 2014 N2. Here FLASH-THINKING fails to solve
any variation, while O1 solves all variations. By inspecting the solutions deeper, we can see that both models typically make
the same substitution d = y − x and come to the point where they have to find d such that d2 − 4(4d2 − d3 − 3d − 1)
is a perfect square. Then, both models start plugging in small values of d, but given initial sequence of small solutions
6, 12, 20, 30, ..., O1 recognizes that the solutions are the pronic numbers n(n+ 1), and finds the solution for all variations.
On the other hand, FLASH-THINKING fails to find the pattern, and is not able to find the general solution.

Prompt

Find 32 distinct pairs (x, y) of positive integers such that x < y and
3
√

7x2 − 13xy + 7y2 = |x − y| + 1.
Format your reply as follows:

Output a comma-separated list of pairs (x, y), inside of ... , for example (2, 3), (5, 6) .

FLASH-THINKING

Let the given equation be
3
√

7x2 − 13xy + 7y2 = |x − y| + 1.
Since x < y, we have |x − y| = y − x. So the
equation becomes
3
√

7x2 − 13xy + 7y2 = y − x + 1.
Let y − x = k. Since x < y are positive
integers, k = y − x must be a positive
integer. Then y = x + k. Substituting
y = x + k into the equation, we get
3
√

7x2 − 13x(x + k) + 7(x + k)2 = k + 1.
...
Rearranging the equation as a quadratic
equation in x, we have
x2 + kx + (7k2 − (k + 1)3) = 0.
x2 + kx + (7k2 − (k3 + 3k2 + 3k + 1)) = 0.
x2 + kx + (7k2 − k3 − 3k2 − 3k − 1) = 0.
x2 + kx + (−k3 + 4k2 − 3k − 1) = 0.We use the
quadratic formula to solve for x:

x =
−k±

√
k2−4(−k3+4k2−3k−1)

2 =

x =
−k±

√
4k3−15k2+12k+4

2 . For x to be a
positive integer, we need the discriminant
D = 4k3 − 15k2 + 12k + 4 to be a perfect
square, and −k ±

√
D to be a positive even

integer.
...
We have solutions for k = 6, 20, 30, 90, 1000.
Let's list pairs (x, y).k = 6: (7, 13)k = 20:
(71, 91)k = 30: (139, 169)k = 90: (791, 881)
k = 1000: (31063, 32063)Look at k sequence:
6, 20, 30, 90, 1000. Ratios: 20/6 ≈ 3.33,
30/20 = 1.5, 90/30 = 3, 1000/90 ≈ 11.1.
...
We can generate more pairs by increasing k
by a factor of 3 or 10. ...
Let's take first 25 pairs based on k values:
k=6, 20, 30, 90, 300, 900, 1000, 3000,
9000, ... Output first 25 pairs in format (
x, y)...

(7, 13), (71, 91), (139, 169), (791, 881), ...

Parsed Answer - Incorrect

[[7, 13], [71, 91], [139, 169], [791, 881],
[5014, 5314], [84755, 85655], ...]

Parsecheck Details

INCORRECT_SOLUTION: Cube root of 27274396
is not an integer

O1

A convenient way to see that there are
infinitely many solutions - and to list
the first 32 of them - is to set
d = y − x > 0, so that the equation

(7x2 − 13xy + 7y2)
1
3 = |x − y| + 1 becomes

(7x2 − 13x(x + d) + 7(x + d)2)
1
3 = d + 1.

1. Rewrite the left-hand side in terms of
x and d. Since y = x + d,

7x2 − 13x(x + d) + 7(x + d)2 =
7x2 − 13x2 − 13xd + 7(x2 + 2xd + d2) =
(7x2 − 13x2 + 7x2) + (−13xd + 14xd) + 7d2 =
x2 + xd + 7d2.
2. The equation then is
x2 + xd + 7d2 = (d + 1)3 = d3 + 3d2 + 3d + 1.
Rearrange to get
x2 + xd + 4d2 − d3 − 3d − 1 = 0.
3. View that as a quadratic in x:
x2 + dx + (4d2 − d3 − 3d − 1) = 0. For x to
be an integer, its discriminant
∆ = d2 − 4(4d2 − d3 − 3d − 1) must be a
perfect square. One finds that ∆ is a
perfect square precisely when d takes the
values d = 6, 12, 20, 30, 42, 56, 72, 90, . . .,
which turn out to be d = (n + 1)(n + 2).
4. Solving for x in terms of n. Set
d(n) = (n + 1)(n + 2). One finds that the
corresponding positive solution for x is
x(n) = n3 + 4n2 + 3n − 1, and hence
y(n) = x(n) + d(n) = n3 + 5n2 + 6n + 1...

Below are the first 32 such pairs (i.e.,
n = 1 through n = 32). In each pair, x <
y as required. · n=1: (7, 13) · n=2: (29,
41) · n=3: (71, 91) · n=4: (139, 169) ,...
Putting them all together:

(7, 13), (29, 41), (71, 91), (139, 169), . . .

Parsed Answer - Correct

[[7, 13], [29, 41], [71, 91], [139, 169],
[239, 281], [377, 433], [559, 631],
[791, 881], [1079, 1189], [1429, 1561],
...]

20

MATHCONSTRUCT

F. Prompts
In this section, we outline the various prompting methods used for the different evaluations we conducted, along with
example solutions for each evaluation

F.1. Chain-of-Thought Solver

For our main results, presented in Table 2, we use a direct approach where each model is asked to solve the problem. We
further give instructions for the precise way in which the answer should be formatted.

Prompt

Show that for a = 8, there exists a natural number that has the number a (the sequence of digits
that constitute a) at its beginning, and which decreases a times when a is moved from its
beginning to its end (any number of zeros that appear in the beginning of the number obtained
in this way are to be removed). Find an example.

Format your reply as follows:

Output the answer as an integer inside of For example 123 .

O1

A concise way to find such an integer N (starting with the digit "8") is to note that "moving
the first digit 8 to the end" can be described by the decimal-rotation formula:
Let N have d digits and begin with 8. Write N = 8 × 10d−1 + R, where R < 10(d − 1).
Moving the first digit (8) to the end yields the new integer (in base-10) \n
RotateLeft(N) = 10R + 8. The problem's condition says this new integer must be N

8 , that is,

10R + 8 = (8 × 10(d − 1) + R)/8. Clearing denominators gives 80R + 64 = 8 × 10d−1 + R

79R = 8 × 10d−1 − 64

R = (8 × 10d−1 − 64)/79.
Hence, one needs 8 × 10d−1 − 64 to be divisible by 79, i.e. 10d−1 ≡ 8(mod79). A small search
shows the smallest solution occurs for d − 1 = 12, so d = 13. Plugging d = 13 into the formula
produces R = (8 × 1012 − 64)/79 = 101265822784 and thus N = 8 × 1012 + R = 8101265822784. It can be
checked directly that moving the leading "8" to the end of 8101265822784 gives 1012658227848,

which is exactly N/8. An explicit example is therefore 8101265822784, i.e. 8101265822784 .

Parsed Answer - Correct

8101265822784

21

MATHCONSTRUCT

F.2. Coding Agent

The coding agents are allowed to run any code they deem necessary. We give instructions on how this can be done, as below:

Prompt

Let n ≥ 2 be an integer. Consider an n × n chessboard divided into n2 unit squares.
We call a configuration of n rooks on this board *happy* if every row and every column contains
exactly one rook.
For n = 22 and k = 5, find a happy configuration of rooks such that there is no k × k square
without a rook on any of its k2 unit squares.

Format your reply as follows:
Output a comma-separated list of 1-based rook indices (so (1, 1) is the top left corner of the

board) inside of ... , for example ((1, 1), (4, 5), (1, 6)) .

FLASH

Okay, I understand the problem. We need to find a happy configuration of 22 rooks on a 22x22
chessboard such that no 5x5 square is empty of rooks. A happy configuration means there's
exactly one rook in each row and each column. This is equivalent to a permutation of the
numbers from 1 to 22. The condition that no 5x5 square is empty is the crucial constraint. A
simple permutation like (1, 1), (2, 2), ..., (22, 22) would not satisfy this condition. If we
place the rooks on the main diagonal, then any 5x5 subgrid along the diagonal has no rooks in
the upper-right 4x4 corner or the bottom-left 4x4 corner, so it does not work. To ensure no 5x5
square is empty, we need to spread the rooks out somewhat evenly. A good starting point might
be to place the rooks on the main diagonal and then offset each rook by a certain amount.
Consider placing rooks at (i, a * i mod n + 1) for a constant a.
Let's try with a=1. The rooks are at (i, i). This doesn't work.
Let's try a=2. (i, 2*i mod 22 + 1)
Let's try a=3. (i, 3*i mod 22 + 1).
Let's try the configuration where the i-th rook is at position (i, 3ipmod22 + 1), where the
indices are 1-based. This is guaranteed to have one rook per row. We need to check if there is
one rook per column. If we map ito3ipmod22, this map is a permutation since 3 and 22 are coprime.
Hence this is a valid rook configuration.
Now we need to see if there's a 5x5 subgrid with no rooks. I will generate the configuration
for n = 22 using a = 3 and then visually check whether it might work.
```python
n = 22
a = 3
rooks = []
for i in range(1, n + 1):

col = (a * i) \% n + 1
rooks.append((i, col))

print(rooks)

def check_5x5_empty(rooks, n):
for r in range(1, n - 4 + 1):

for c in range(1, n - 4 + 1):
empty = True
for row in range(r, r + 5):

for col in range(c, c + 5):
if (row, col) in rooks:

empty = False
break

if not empty:
break

if empty:
print(f"5x5 empty square found at ({r}, {c})")
return False

return True

print(check_5x5_empty(rooks, n))```

User

Code Output:
```[(1, 4), (2, 7), (3, 10), (4, 13), (5, 16), (6, 19), (7, 22), (8, 3), (9, 6), (10, 9), (11,
12), (12, 15), (13, 18), (14, 21), (15, 2), (16, 5), (17, 8), (18, 11), (19, 14), (20, 17), (21,
20), (22, 1)]
5x5 empty square found at (1, 17)
False

22

MATHCONSTRUCT

FLASH

Okay, the code output shows that the configuration with a = 3 doesn't work. It found a 5x5 empty
square. Let's try a = 7.

```python
n = 22
a = 7
rooks = []
for i in range(1, n + 1):

col = (a * i) \% n + 1
rooks.append((i, col))

print(rooks)

def check_5x5_empty(rooks, n):
for r in range(1, n - 4 + 1):

for c in range(1, n - 4 + 1):
empty = True
for row in range(r, r + 5):

for col in range(c, c + 5):
if (row, col) in rooks:

empty = False
break

if not empty:
break

if empty:
print(f"5x5 empty square found at ({r}, {c})")
return False

return True

print(check_5x5_empty(rooks, n))```

User

Code Output:
```[(1, 8), (2, 15), (3, 22), (4, 7), (5, 14), (6, 21), (7, 6), (8, 13), (9, 20), (10, 5), (11,
12), (12, 19), (13, 4), (14, 11), (15, 18), (16, 3), (17, 10), (18, 17), (19, 2), (20, 9), (21,
16), (22, 1)]
5x5 empty square found at (1, 1)
False

FLASH

Okay, a = 7 also doesn't work. Let's try a = 9.
```python
n = 22
a = 9
rooks = []
for i in range(1, n + 1):

col = (a * i) \% n + 1
rooks.append((i, col))

print(rooks)

def check_5x5_empty(rooks, n):
for r in range(1, n - 4 + 1):

for c in range(1, n - 4 + 1):
empty = True
for row in range(r, r + 5):

for col in range(c, c + 5):
if (row, col) in rooks:

empty = False
break

if not empty:
break

if empty:
print(f"5x5 empty square found at ({r}, {c})")
return False

return True

print(check_5x5_empty(rooks, n))```

23



MATHCONSTRUCT

User

Code Output:
```[(1, 10), (2, 19), (3, 6), (4, 15), (5, 2), (6, 11), (7, 20), (8, 7), (9, 16), (10, 3), (11,
12), (12, 21), (13, 8), (14, 17), (15, 4), (16, 13), (17, 22), (18, 9), (19, 18), (20, 5), (21,
14), (22, 1)]
True

FLASH

Okay, the code output shows that the configuration with a = 9 works!
The rook positions are: (1, 10), (2, 19), (3, 6), (4, 15), (5, 2), (6, 11), (7, 20), (8, 7), (9,
16), (10, 3), (11, 12), (12, 21), (13, 8), (14, 17), (15, 4), (16, 13), (17, 22), (18, 9), (19,
18), (20, 5), (21, 14), (22, 1).
Final Answer: The happy configuration of rooks is \\boxed{((1, 10), (2, 19), (3, 6), (4, 15),
(5, 2), (6, 11), (7, 20), (8, 7), (9, 16), (10, 3), (11, 12), (12, 21), (13, 8), (14, 17), (15,
4), (16, 13), (17, 22), (18, 9), (19, 18), (20, 5), (21, 14), (22, 1))}.

Parsed Answer - Correct

[[1, 10], [2, 19], [3, 6], [4, 15], [5, 2], [6, 11], [7, 20], [8, 7], [9, 16], [10, 3], [11,
12], [12, 21], [13, 8], [14, 17], [15, 4], [16, 13], [17, 22], [18, 9], [19, 18], [20, 5], [21,
14], [22, 1]]

F.3. Bruteforce Solver

For the brute-force approach, the models are asked to generate a single block of code that naively creates a solution satisfies
the problem’s constraints. Only one attempt to produce the code is permitted.

System

You are an expert mathematician that solves problems using a brute-force approach. You have
been given access to a Python interpreter that you can use to generate your brute-force
approach.
Make sure to abide by the following rules:

1. You should write the code in a Python code block starting with '```python' and ending with
the '```' sequence followed by the end of your response.

2. The code should be a brute-force solution without optimizations. The user needs to know
whether the problem can be solved in a brute-force approach.
3. After you have written your code, you can immediately stop your output. The user will
execute your code and give you the results. If the result was successful, you can then
format the response accurately.
4. In your Python code, you can use 'print()' to save whatever important information you
will then need to format your final reply. The user will then execute your code in a Python
environment.
5. Your code will run for two minutes. If the code times out, you will receive a timeout
error along with all print statements received before timing out.
6. Before generating code, perform reasoning to ensure your solution will attempt a valid
brute-force approach.
7. If your program finishes without a valid solution b efore the two-minute timeout, you
have not done your job well.

User

Given n = 27, find a sequence of distinct real numbers x1, . . . , xn such that each of the sets
{x1, x2, x3}, {x2, x3, x4}, . . . , {xn−2, xn−1, xn}, {xn−1, xn, x1}, and {xn, x1, x2} forms a 3-term arithmetic
progression when arranged in increasing order.

3.5-SONNET

Let me reason about this problem:
1) We need to find 27 distinct numbers where each consecutive triplet forms an arithmetic
sequence when sorted
2) The triplets wrap around, meaning the last two numbers connect with the first ones
3) A brute-force approach would be to:

- Start with some small initial values

24

MATHCONSTRUCT

- Incrementally try values that satisfy each consecutive triplet
- Keep track of used values to ensure distinctness
- Check if it wraps around correctly

4) For a brute-force solution, let's:
- Start with small initial values (x\u2081, x\u2082)
- For each next value, ensure it can form an AP with previous two when sorted
- Use reasonable bounds to limit search space
- Check for distinctness

Let me write code to search for such a sequence:

```python
def is_arithmetic_when_sorted(a, b, c):

nums = sorted([a, b, c])
return abs((nums[1] - nums[0]) - (nums[2] - nums[1])) < 1e-10

def check_sequence(seq):
n = len(seq)
for i in range(n):

if not is_arithmetic_when_sorted(seq[i], seq[(i+1)\%n], seq[(i+2)\%n]):
return False

# Check distinctness
return len(set(seq)) == len(seq)

def find_sequence(n=27):
def extend_sequence(current_seq):

if len(current_seq) == n:
if check_sequence(current_seq):

print(','.join(map(str, current_seq)))
return True

return False

prev1, prev2 = current_seq[-2:]

# Try values that could potentially form arithmetic sequence
used = set(current_seq)

# Try different possibilities for next value
for multiplier in range(-10, 11):

# Try extending based on arithmetic patterns
candidates = [

2 * prev2 - prev1 + multiplier, # Continue AP in one direction
2 * prev1 - prev2 + multiplier, # Continue AP in other direction
(prev1 + prev2)/2 + multiplier # Middle value

]
for next_val in candidates:

if next_val not in used and -100 <= next_val <= 100:
if is_arithmetic_when_sorted(prev1, prev2, next_val):

if extend_sequence(current_seq + [next_val]):
return True

return False

# Try different starting values
for start in range(-5, 6):

for second in range(-5, 6):
if start != second:

if extend_sequence([start, second]):
return find_sequence() ```

User

Code Output:
```-5,-4,-6,-8,-10,-12,-14,-16,-18,-20,-22,-24,-26,-28,-30,-32,-34,-33,-35,-31,-27,-23,-19,-15,
-11,-7,-3```
This was the last time your code can be executed. From now on, you will not be able to execute
code.

3.5-SONNET

Based on the output, I can now provide the solution.

−5,−4,−6,−8,−10,−12,−14,−16,−18,−20,−22,−24,−26,−28,−30,−32,−34,−33,−35,−31,−27,−23,−19,−15,

−11,−7,−3

This sequence satisfies all the required conditions:
1. It contains 27 distinct numbers

25

MATHCONSTRUCT

2. Each consecutive triplet forms an arithmetic sequence when arranged in increasing order
3. The wrap-around condition is also satisfied (the last two numbers with the first, and the
last number with the first two)

Parsed Answer - Correct

[-5, -4, -6, -8, -10, -12, -14, -16, -18, -20, -22, -24, -26, -28, -30, -32, -34, -33, -35, -31,
-27, -23, -19, -15, -11, -7, -3]

F.4. Brute+Infer Solver

Unlike the pure brute-force solver, the brute-force inference agent is allowed to explore solutions with smaller parameters
as to generalize the pattern. It is allowed up to two feedback rounds to explore settings and test different strategies. The
interaction below demonstrates how a model, in this case GPT-4o, can adapt its naive brute-force approach into a more
effective algorithm by combining logical reasoning with a programmatic solution.

System

You are an expert mathematician that solves problems using a brute-force approach and logical
inference. You approach mathematical problems by first solving them in a brute-force manner for
smaller cases if necessary and then generalizing your findings to solve the problem itself. In
order to solve the problem, you need to progress in a series of steps. In each step, you can
execute a Python code block to test your current idea.

Make sure to abide by the following rules:

1. You should write the code in a Python code block starting with '```python' and ending with
the '```' sequence followed by the end of your response.
2. Try to solve the problem in a brute-force manner for smaller cases (or for the case
itself if possible) and then generalize your findings to solve the problem itself. Try to
find patterns, relationships, or properties that can help you solve the problem.
3. After you have written your code, you can stop your output. The user will execute your
code and give you the results. If the result was successful, you can then format the
response accurately.
4. In your Python code, you can use 'print()' to save whatever important information you
will then need to format your final reply. The user will then execute your code in a Python
environment.

User

A divisor d of a positive integer n is said to be a close divisor of n if
√
60 < d < 2

√
60\Find a

positive integer with exactly 60 close divisors.

Format your reply as follows:

Output the answer as an integer inside of For example 123 .\Your answer can contain
mathematical operations using valid LaTeX notation.

GPT-4O

To solve this problem, we need to find a positive integer n such that the number of its
divisors d satisfying

√
n < d < 2

√
n is exactly 60. \\Let's break down the problem:

1. **Range of Divisors**: We need to consider divisors within the range
√
n < d < 2

√
n.

2. **Counting Divisors**: We will have to ensure that there are exactly 60 divisors in this
range
3. **Choosing n**: We must select n such that this condition is satisfied.\end{itemize}

To find such an n, we can explore integers for small values and see if they satisfy the
condition. Let's attempt to brute-force this for a smaller test case first, by examining
possible candidates for n.

```
import math # Function to calculate the number of close divisors

def count_close_divisors(n):
sqrt_n = math.sqrt(n)
close_divisors = [d for d in range(1, n + 1) if n \% d == 0 and sqrt_n < d < 2 * sqrt_n]

26



MATHCONSTRUCT

return len(close_divisors) # Brute-force search for the integer n
target_close_divisors = 60
for n in range(1, 10**6):

if count_close_divisors(n) == target_close_divisors:
print(n)\\
break\\

```

This code attempts to find the smallest n with exactly 60 close divisors by iterating over
possible n values, counting their close divisors, and stopping when the target number of
close divisors is reached.
You can run the code to see the result.

User

Code Output:\\```TimeOutError: exceeded 120.0 seconds timeout.```\\

GPT-4O

To address the timeout issue, we should focus on optimizing our approach instead of brute-
forcing through all integers. Let's use the properties of divisors to narrow down our search.

Understanding the Divisors

For a number n, the total number of divisors is determined by its prime factorization. If
n = p

a1
1 p

a2
2 · · · pak

k , then the number of divisors d(n) is given by:
d(n) = (a_1 + 1)(a_2 + 1) \cdots (a_k + 1)

Range for Close Divisors

We want to find numbers whose divisors satisfy
√
n < d < 2

√
n. If n has d(n) total divisors,

the close divisors lie around the middle of its divisor list. If we need exactly 60 close
divisors, it is reasonable to consider numbers with larger total divisors count and check
their properties.

Revised Approach

We will:
1. Consider numbers with high total divisors.
2. Use combinations of small primes to achieve a high number of total divisors.
3. Calculate close divisors for these numbers efficiently.

Let's try an approach using a more structured exploration of numbers with significant
numbers of divisors:
```python
import math
from sympy import primefactors

# Function to calculate all divisors of n
def divisors(n):\

divs = []
for i in range(1, int(math.sqrt(n)) + 1):

if n \% i == 0:
divs.append(i)
if i != n // i:

divs.append(n // i)
return sorted(divs)

# Optimized search for n
def find_integer_with_60_close_divisors():

primes = [2, 3, 5, 7, 11, 13]
max_divisors = 0
best_n = 0
# Iterate over some product of primes raised to powers
for a1 in range(1, 5):

for a2 in range(1, 5):
for a3 in range(1, 5):

for a4 in range(1, 5):
for a5 in range(1, 5):

for a6 in range(1, 5):
n = (primes[0]**a1) * (primes[1]**a2) * (primes[2]**a3) * (primes[3]**
a4) * (primes[4]**a5) * (primes[5]**a6)
divs = divisors(n)
sqrt_n = math.sqrt(n)

27



MATHCONSTRUCT

close_divs = [d for d in divs if sqrt_n < d < 2 * sqrt_n]
if len(close_divs) == 60:

return n
result = find_integer_with_60_close_divisors()
print(result)
```

In this approach, we use combinations of the first few small primes raised to small powers
to efficiently search for n. Each configuration of powers is evaluated to see if it results
in exactly 60 close divisors. You can run this code to find n.

User

Code Output: 6985199471250

GPT-4O

The code has successfully found a positive integer with exactly 60 close divisors.

Therefore, the positive integer we are looking for is 6985199471250

28

