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ABSTRACT
In recent years, the attention towards One-Shot Federated Learning
(OSFL) has been driven by its capacity to minimize communica-
tion. With the development of the diffusion model (DM), several
methods employ the DM for OSFL, utilizing model parameters, im-
age features, or textual prompts as mediums to transfer the local
client knowledge to the server. However, these mediums often re-
quire public datasets or the uniform feature extractor, significantly
limiting their practicality. In this paper, we propose FedDEO, a
Description-Enhanced One-Shot Federated Learning Method with
DMs, offering a novel exploration of utilizing the DM in OSFL. The
core idea of our method involves training local descriptions on the
clients, serving as the medium to transfer the knowledge of the
distributed clients to the server. Firstly, we train local descriptions
on the client data to capture the characteristics of client distribu-
tions, which are then uploaded to the server. On the server, the
descriptions are used as conditions to guide the DM in generating
synthetic datasets that comply with the distributions of various
clients, enabling the training of the aggregated model. Theoretical
analyses and sufficient quantitation and visualization experiments
on three large-scale real-world datasets demonstrate that through
the training of local descriptions, the server is capable of generating
synthetic datasets with high quality and diversity. Consequently,
with advantages in communication and privacy protection, the ag-
gregated model outperforms compared FL or diffusion-based OSFL
methods and, on some clients, outperforms the performance ceiling
of centralized training.

CCS CONCEPTS
• Computing methodologies→ Computer vision.

KEYWORDS
One-Shot Federated Learning, Diffusion Model

1 INTRODUCTION
Federated Learning (FL) [22] has attracted increasing attention due
to its capability to enable collaborative training across multiple
clients while ensuring the protection of user data within local envi-
ronments. In contrast to centralized training that involves the direct
uploading of client data to the server, FL fundamentally operates
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as a distinctive form of knowledge transfer. In FL, all participat-
ing clients transfer knowledge in their local data to the aggregated
model without sharing the raw local data. Previous extensive works
have aimed to enhance the efficiency of this knowledge transfer,
leading to the development of One-Shot Federated Learning (OSFL).

In OSFL, clients are tasked with using somemediums to transfer
the information about the local distributions to the server within
a single communication round. The traditional OSFL methods pri-
marily utilize two kinds of mediums. Firstly, model parameters
serve as the primary medium. Parameters of generative models
trained on clients are uploaded to the server for generating pseudo-
samples to train the aggregated model [8, 43]. Additionally, distilled
client data [47] can also serve as the medium and be uploaded to
the server for the training of the aggregated model. Indeed, the
practical deployment of these mediums is challenging due to the
difficulty in training generative models and the privacy concerns
and communication associated with uploading data.

In recent years, the development of diffusion models (DMs)
has brought new opportunities for OSFL. There are powerful pre-
trained DMs that learn vast knowledge from large-scale datasets,
allowing them to generate data complying with most of common
distributions as long as suitable condition is provided. Moreover,
impressively, due to the knowledge from the pre-trained DMs, the
trained aggregated model has the potential to outperform the per-
formance ceiling in traditional FL methods, which involves up-
loading all client data to the server for the centralized training of
the aggregated model. This brings significant changes for OSFL.
A small amount of descriptions of the client data distribution are
sufficient to serve as the medium for transferring client knowledge
and guiding the conditional generation on the server.

Some works has already begun to explore how to describe the
distribution of client data. FedDISC [41] utilizes client image fea-
tures. FGL [44] uses textual descriptions of the client data generated
by BLIPv2 [14]. FedCADO [42] employs local classifiers trained on
clients. All these methods have demonstrated the significant poten-
tial of DMs in OSFL. But FedDISC requires the sharing of pre-trained
feature extractors between the server and clients, limiting its prac-
ticality and flexibility. The text descriptions uploaded by FGL may
involve more direct privacy risks, and the classifiers uploaded by
FedCADO typically only provide relatively vague guidance. We
aim to find a more flexible, practical, accurate, and privacy-
protecting description of client data distribution to serve as the
medium for transferring knowledge from the clients. A natural
solution arises: training the local descriptions of the client data and
utilizing them for guiding the image generation on the server.

Based on this idea, in this paper, we introduce a Description-
EnhancedOne-shot Federated learning method with diffusion mod-
els, FedDEO, where we employ a learnable vector as the description
for the client distribution to be the medium of client knowledge.
In brief, our method consists of two main components: client de-
scription training and server image generation. On the clients,

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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we employ the noise-predicting ability of the DMs to train the de-
scriptions of the client data and embeds personalized distribution
information into the descriptions, which are subsequently uploaded
to the server. On the server, we utilize the descriptions uploaded by
each client to guide the server’s pre-trained DM in generating a syn-
thetic dataset that complies with the clients’ distributions, and use
the synthetic dataset to train the aggregated model. Training the
aggregated model based on synthetic datasets means we can flexibly
select the model structure. The guidance provided by descriptions
trained by pre-trained DMs is more accurate, improving the qual-
ity of diffusion generation. These descriptions are merely vectors,
which significantly reduces the communication of the clients, en-
hancing the practicality of the method. Due to the randomness of
the diffusion generation process, it is almost impossible to directly
or indirectly obtain sensitive client privacy information through
the descriptions or the generated samples. The description serves
as the medium that perfectly meets our requirements for flexibility,
practicality, accuracy, and privacy protection.

To demonstrate the validity of FedDEO, on one hand, we conduct
thorough theoretical analyses. We prove the boundedness of the
Kullback-Leibler (KL) divergence between the distribution of the
synthetic data and the distribution of client local data. This provides
theoretical assurance for the server’s generation of synthetic data
that complies with the client distributions. On the other hand, to
further validate the performance of our method, we conduct ex-
tensive quantitation and visualization experiments on three large-
scale real-world datasets, DomainNet [25], OpenImage [13], and
NICO++ [46]. The visualization experiments demonstrate that our
method is capable of generating a synthetic dataset that complies
with the distribution of each client’s data. Moreover, the quality and
diversity of the synthetic dataset are comparable with the original
client datasets. In our quantitation experiments, we explore scenar-
ios with varying numbers of clients, skews in feature distribution
and label distribution among clients, as well as the utilization of
different pre-trained DMs. These quantitation experiments also
demonstrate that the aggregated model trained by FedDEO out-
performs other compared methods, and notably, on NICO++, it
outperforms the ceiling performance of traditional FL frameworks
that involve uploading all client data to the server. Additionally,
we conduct comprehensive quantitation and visualization experi-
ments to demonstrate FedDEO’s performance in terms of privacy
protection, communication, and computational efficiency. All these
findings demonstrate the performance of our method.

In summary, the contributions of this paper are as follows:

• We propose FedDEO, realizing one-shot federated learning
in realistic scenarios and further exploring the potential of
utilizing diffusion models in federated learning.

• We introduce the trained descriptions of the client distribu-
tions as the novel medium for transferring the client knowl-
edge, which perfectly meets the practical requirements for
flexibility, practicality, accuracy, and privacy protection.

• We conduct theoretical analyses, demonstrating the valid-
ity of generating synthetic data complies with client data
distributions conditioned on the local descriptions.

• Extensive quantitative and visual experiments are conducted
to validate the performance of our method, demonstrating

that FedDEO can generate high-quality synthetic datasets
and train the aggregated model that outperforms other com-
pared methods, even the performance ceiling of centralized
training.

2 RELATEDWORK
2.1 Diffusion Model
The DM is first introduced in [33]. The overall framework of cur-
rent DMs occurs in [9]. Subsequent sampling methods, including
DDIM[34] and PNDM [19], further improved the quality and ef-
ficiency of DMs’ generation. [12] and [3] demonstrate excellent
generation results on real images. The stable diffusion based on
LDM [29], which pre-trains on large-scale datasets, has ignited a
trend in the AIGC (Artificial Intelligence Generated Content). One
notable characteristic of stable diffusion is its conditional gener-
ation capability. Given suitable conditions as guidance, such as
image [31, 37, 38, 45], text [11, 24, 26, 32] or the graient of loss func-
tion [3, 5, 39], stable diffusion can generate images complying with
almost any distribution we encounter in our daily lives. The gener-
ated images exhibit remarkable quality and diversity. There are also
some methods [6, 7, 23, 30] that fine-tune the input conditions of
stable diffusion using specific datasets. These methods enable the
conditions to learn the distribution of the used dataset and generate
synthetic data that conforms to the specific distribution. Addition-
ally, DMs possess the ability for compositional generation [4, 20],
allowing them to handle scenarios where multiple conditions are
simultaneously provided as guidance. These lead us to consider the
application of these powerful pre-trained DMs in federated learn-
ing. If we can obtain guidance from clients to guide the pre-trained
DM on the server, we can generate data that comply with client
distributions and address the challenges of OSFL.

2.2 One-Shot Federated Learning
The high communication cost has been one of the major challenges
faced by the classic FedAvg [22] algorithm in federated learning
since its proposal. Some efforts [1, 10, 15] have addressed the non-
iid problem from the perspective of optimizing algorithms to im-
prove communication efficiency. Others [2, 16, 21] have focused
on enhancing the practicality of FedAvg in non-iid scenarios from
a personalized perspective. However, these efforts still encounter
high communication costs. Recently, some works [8, 35, 41, 43, 47]
have focused on one-shot federated learning (OSFL), considering
federated learning within the constraints of a single communica-
tion round. This setting differs from standard federated learning in
that OSFL allows clients to train their local models to converge in
a single round and then send them to the server for aggregation.

The essence of OSFL is that all clients transfer their local knowl-
edge to the server for aggregation through some medium. One
category of work uses model parameters as the medium, such
as DENSE [43], which collects classifiers trained by clients and
uses them to train a generator on the server, followed by using
the generator to produce pseudo-samples for knowledge distilla-
tion. FedCVAE [8] involves training conditional-VAE on clients
and sending the decoders to the server, where the server gener-
ates pseudo-samples through the decoders. Another category of
work uses distilled datasets as the medium; DOSFL [47] distills
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Figure 1: The overall framework of FedDEO, including twomain parts: Client Description Training and Server Image Generation.
Firstly, each client trains local descriptions based on the client data and the pre-trained diffusion model, then uploads them to
the server. Guided by these descriptions, the server utilizes the diffusion model to generate the synthetic dataset that complies
with the various client distributions and trains the aggregated model.

privacy data on clients and sends the distilled data to the server
for aggregation. Additionally, recent efforts have combined pre-
trained DMs with OSFL. FedDISC [41] uses the data features as
the medium, leveraging client data features as conditions for a pre-
trained DM to generate pseudo-samples. Similarly, FGL [44] uses
text prompts as the medium, extracting text prompts of the local
data using BLIPv2 [14] and sending them to the server as conditions
for the DM. FedCADO [42] utilizes classifiers trained on clients
as a medium, using the classifier-guided diffusion to generate the
synthetic dataset and train the aggregated model. In contrast to
these works, we train descriptions on clients as the medium. Com-
pared to FedDISC, FedCADO and FGL, local descriptions can better
capture information about the distribution of client local data and
provide suitable guidance to the server to generate pseudo-samples
that better comply with the client’s data distribution.

3 METHOD
In this section, we elaborate on our method in two parts, including
Client Description Training and Server Image Generation, followed
by the theoretical analyses about the distributions of the synthetic
data and the client local data. The overall framework of FedDEO is
illustrated in Figure 1 and the pseudocode of FedDEO is provided
in the supplementary materials.

3.1 Preliminaries
Notations and Objectives. In this paper, we aim to address the
standard one-shot federated learning setting. Assuming we have
𝑁 client datasets D𝑛, 𝑛 = 1, . . . , 𝑁 , and collectively, these datasets

encompass a total of𝑀 categories. The objective of OSFL is to obtain
a global aggregatedmodelw𝑔 within a single communication round,
minimizing the global objective function:

𝐹 (w) = 1
𝑁

𝑁∑︁
𝑛=1
Ex,𝑦∼D𝑛

[L𝑛 (x, 𝑦,w)], (1)

where 𝑦 ∈ C𝑛 , and C𝑛 represents the set of categories owned by
each client and is a subset of {1, ..., 𝑀}.

From this objective function, it is evident that our goal is to
train an aggregated model that adapts to all client distributions
and exhibits excellent classification performance on the data from
each client. We also assess the model performance in subsequent
experimental sections according to this objective.

An Assumption about Diffusion Model. The pre-trained DM
is a key component of our method. As stated in the Introduction, our
motivation for using pre-trained DM lies in its ability to generate
synthetic data that complies with the client distributions. This is
because the data used in the pre-training process of these DMs
covers almost all common distributions. This motivation implies an
assumption: the DMs we use have been sufficiently pre-trained to
cover the data distribution of the clients. Therefore, regarding the
data distribution 𝑝𝑛 (x) of the client’s local dataset D𝑛 and the data
distribution 𝑝𝜖𝜃 (x) that the DMs 𝜖𝜃 can generate, we can make the
following assumption:

Assumption 1 There exists 𝜆 > 0 such that the Kullback-Leibler
divergence from 𝑝𝑛 (x) to 𝑝𝜖𝜃 (x) is bounded above by 𝜆:

𝐾𝐿(𝑝𝜖𝜃 (x)∥𝑝𝑢 (x)) < 𝜆 (2)
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It’s evident that this assumption is flexible. We don’t strictly
restrict the DM’s distribution 𝑝𝜖𝜃 (x) to entirely cover the client
distributions 𝑝𝑛 (x). Instead, we only require some overlap of the
distributions, as totally non-overlap distributions is unreasonable.
Even if the clients focus on some professional fields, such as medical
images, it is entirely feasible to train the specialized DMs on the
server. Therefore, this is a completely reasonable assumption made
based on a comprehensive consideration of practical scenarios, and
it is also the motivation of our method.

3.2 Client Description Training
Firstly, the server distributes the pre-trained DM 𝜖𝜃 to the clients.
Based on 𝜖𝜃 , the clients train the local descriptions capturing the
characteristics of the client’s data distribution. We first initialize the
local descriptions. Then, we fix the parameters of the pre-trained
DMs and train the local descriptions on the client’s local data.

Description Initialization. For each category 𝑐 within the
client 𝑛, we define a vector d𝑛,𝑐 , 𝑐 ∈ C𝑛 as the description of the
distribution of this category. To ease the training process and con-
sequently lessen the computation on clients, we initialize each
description using the text features 𝑓𝑐 of the name of category 𝑐 ex-
tracted by CLIP [28], which is sent by the server. This initialization
ensures that the descriptions possess the capability to guide the DM
in generating images of the correct category from the beginning.

Image Noising. During training, for each sample x0 ∈ 𝐷𝑛 , we
start by sampling a random Gaussian noise 𝜖 from the standard
Gaussian distribution N(0,I). We randomly sample a timestep 𝑡
from {0, ...,𝑇 }, where 𝑇 is the maximum timestep defined by the
pre-trained DM. Based on 𝑡 , we adjust the intensity of the sampled
Gaussian noise and obtain the noised sample x𝑡 as follows:

x𝑡 =
√
𝑎𝑡x0 +

√
1 − 𝑎𝑡𝜖, (3)

where 𝑎𝑡 is the variance schedule defined by the pre-trained DM
and changes with the timestep 𝑡 .

Description Training. After obtaining x𝑡 , we use the descrip-
tion d𝑛,𝑐 as a condition for 𝜖𝜃 to predict the noise 𝜖 within x𝑡 and
employ Mean Squared Error (MSE) Loss to compute the difference
between the predicted noise 𝜖𝜃 (x𝑡 , 𝑡 |d𝑛,𝑐 )) and the actual added
noise 𝜖 . During this process, we fix all parameters of the pre-trained
DM 𝝐𝜃 and solely use the backpropagation to train the description
d𝑛,𝑐 . Therefore, the loss function used during the training of the
description is as follows:

L(x𝑡 , d𝑛,𝑐 , 𝑡) = L𝑀𝑆𝐸 (𝜖, 𝜖𝜃 (x𝑡 , 𝑡 |d𝑛,𝑐 )) (4)

After 𝑆 epochs of training, the description can capture the charac-
teristic of the client distributions and become proficient in guiding
the pre-trained DM to effectively denoise the noise-added images.
Therefore, during server image generation, with these uploaded de-
scriptions, the DM can denoise the randomly sampled initial noise
as x𝑇 and generates high-quality synthetic images that comply with
the client distributions guided by the trained descriptions.

3.3 Server Image Generation
Upon receiving the local descriptions {d𝑛,𝑐 } from client𝑛, the server
utilizes these local descriptions to guide the pre-trained DM in
generating samples that comply with the data distribution of the
client 𝑛 and trains the aggregated model.

Image Generation. Firstly, we sample the random initial noise
x𝑇 from N(0,I) as the start for denoising. Through multiple iter-
ations of the timestep 𝑡 = {𝑇, ..., 0}, we denoise x𝑇 to obtain the
realistic sample x0. Specifically, to further ensure that the generated
images possess accurate semantic information for the specified cat-
egory, we use compositional diffusion using the text feature 𝑓𝑐 of
the specified category 𝑐 and the local description d𝑛,𝑐 capturing the
personalized distribution of category 𝑐 on client 𝑛. At each timestep
𝑡 , we employ both 𝑓𝑐 and d𝑛,𝑐 as conditions for the compositional
DM. These two conditions are separately inputted into the DM
for noise prediction. And the predicted noises are accumulated,
resulting in the final predicted noise as follows:

𝜖𝜃 (x𝑡 , 𝑡 |𝑓𝑐 , d𝑛,𝑐 ) = 𝜖𝜃 (x𝑡 , 𝑡 |d𝑛,𝑐 ) + 𝜖𝜃 (x𝑡 , 𝑡 |𝑓𝑐 ) (5)

After obtaining 𝜖𝜃 (x𝑡 |𝑓𝑐 , d𝑛,𝑐 ), we denoise the current timestep’s
sample x𝑡 to x𝑡−1 according to the following formula:

x𝑡−1 =
√
𝛼𝑡−1

(x𝑡 − √
1 − 𝛼𝑡𝜖𝜃 (x𝑡 |𝑓𝑐 , d𝑛,𝑐 )√

𝛼𝑡

)
+
√︃
1 − 𝛼𝑡−1 − 𝜎2𝑡 𝜖𝜃 (x𝑡 |𝑓𝑐 , d𝑛,𝑐 ) + 𝜎𝑡 𝜺𝑡 , (6)

where 𝛼𝑡 and 𝜎𝑡 are pre-defined by the pre-trained DM, and 𝜺𝑡 is
random noise sampled from N(0,I) at each timestep 𝑡 . After mul-
tiple iterations, the randomly sampled initial noise x𝑇 is denoised
into the realistic image x0. We can define x0 as x̂𝑛,𝑐𝑖

and incorporate
it into the synthetic dataset {x̂𝑛,𝑐

𝑖
}, 𝑖 = {1, ..., 𝑅}, where 𝑛 and 𝑐 is

the client index and the category. And 𝑅 represents the number of
images generated for each category of each client, which is set to
30 in most of our experiments.

Aggregated Model Training. After multiple generations, we
obtain the synthetic dataset {x̂𝑛,𝑐

𝑖
}. Each image in {x̂𝑛,𝑐

𝑖
} has its

pseudo-label 𝑐 , thus allowing us to directly train the aggregated
model w𝑔 using cross-entropy loss:

L𝑎𝑔𝑔 (x̂𝑛,𝑐𝑖
, 𝑐) =L𝐶𝐸 (x̂𝑛,𝑐𝑖

, 𝑦𝑘𝑖 ,w𝑔) (7)

According to the loss function in Eq. 7, we train until conver-
gence to obtain the final aggregated model. A question arises: How
is the performance of the aggregated model we trained? Has it
learned the local knowledge from the clients? We conduct the sub-
sequent theoretical analysis as well as extensive quantitation and
visualization experiments to answer this question.

3.4 Theoretical Analysis
From Eq. 7, it can be seen that the performance of the trained aggre-
gated model is entirely determined by the quality of the synthetic
dataset. As mentioned in the Introduction, the performance of the
aggregated model trained by FedDEO has the potential to surpass
the performance ceiling of centralized training, involving uploading
all client local data into the server and train the aggregated model.
Therefore, we use the client local datasets to evaluate the quality of
the synthetic dataset. The comparison between the distribution of
synthetic data and the distribution of client local data is necessary.
Based on Assumption 1, we have the following theorem:

Theorem 1 For the distribution of client data 𝑝𝑛 (x) and the condi-
tional distribution 𝑝𝜖𝜃 (x|d) of the DM 𝜖𝜃 conditioned the description
d trained on the clients, we have:
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OpenImage DomainNet
client0 client1 client2 client3 client4 client5 average clipart infograph painting quickdraw real sketch average

Ceiling 49.88 50.56 57.89 59.96 66.53 51.38 56.03 47.48 19.64 45.24 12.31 59.79 42.35 36.89
FedAvg 42.48 47.24 47.01 51.28 61.87 45.47 49.22 37.96 12.55 34.41 5.93 51.33 32.37 29.09
FedDF 43.26 44.98 52.54 56.71 62.89 48.37 51.45 38.09 13.68 35.48 7.32 53.83 34.69 30.51
FedProx 44.99 48.83 49.25 56.68 61.23 46.07 51.17 38.24 12.46 37.29 6.26 54.88 35.76 30.81
FedDyn 46.93 46.08 52.44 54.67 62.84 47.73 51.78 40.12 14.77 36.59 7.73 54.85 34.81 31.47

Prompts Only 32.91 33.24 41.72 45.02 49.85 35.97 39.78 31.80 11.61 31.14 4.13 61.53 31.44 28.60
FedDISC 47.42 49.65 54.73 53.41 60.74 52.81 53.12 43.89 14.84 38.38 8.35 56.19 36.82 33.07
FGL 48.21 49.16 54.98 55.47 63.14 49.32 53.38 41.81 15.30 40.67 8.79 57.58 39.54 33.94

FedCADO 48.99 51.66 55.59 52.80 62.41 58.86 55.05 44.25 17.51 38.74 9.43 57.31 38.44 34.28
FedDEO 51.08 52.53 61.22 62.18 67.31 56.68 58.50 46.77 18.28 43.97 10.73 60.64 41.45 36.08

Common NICO++ Unique NICO++
autumn dim grass outdoor rock water average client0 client1 client2 client3 client4 client5 average

Ceiling 62.66 54.07 64.89 63.04 61.08 54.63 60.06 79.16 81.51 76.04 72.91 79.16 79.29 78.01
FedAvg 52.51 40.45 57.21 51.59 49.31 43.56 49.11 67.31 74.73 69.01 64.37 73.07 67.87 69.39
FedDF 50.44 39.62 57.42 52.91 51.61 44.76 49.46 69.79 78.90 69.53 66.01 74.86 70.80 71.64
FedProx 53.49 42.41 58.84 53.08 53.67 45.42 51.15 70.46 75.30 70.87 67.67 72.84 71.51 71.44
FedDyn 54.38 43.20 57.56 52.63 52.86 46.76 51.23 71.23 74.98 69.68 68.13 73.63 70.61 71.37

Prompts Only 50.49 38.10 54.53 49.39 49.12 41.58 47.20 69.79 69.14 69.32 59.89 67.83 66.42 67.06
FedDISC 56.82 51.43 59.45 56.17 52.32 45.64 53.64 74.32 73.47 71.25 66.79 75.28 70.06 71.86
FedCADO 54.63 49.21 58.13 54.75 54.64 47.03 53.06 75.13 73.30 70.31 68.88 73.60 72.51 72.28

FGL 57.25 49.35 61.81 58.42 54.29 47.62 54.79 74.62 79.43 71.26 68.65 76.37 74.31 74.10
FedDEO 71.03 58.02 73.33 68.53 68.16 63.04 67.01 81.25 86.19 82.94 79.94 83.85 80.27 82.40

Table 1: The performances of the compared methods on OpenImage, DomainNet, and NICO++ under the non-IID feature
distribution skew, where the italicized texts represent the performance ceiling of centralized training used as a reference, and
bold texts represent the best performance of the compared methods.

𝐾𝐿(𝑝𝑛 (x)∥𝑝𝜖𝜃 (x|d)) =
∫

𝑝𝑛 (x) log
𝑝𝑛 (x)𝑝𝜖𝜃 (d)
𝑝𝜖𝜃 (d|x)𝑝𝜖𝜃 (x)

𝑑x

< 𝜆 + E(log 𝑝𝜖𝜃 (d)) −
∫

𝑝𝑛 (x) log𝑝𝜖𝜃 (d|x)𝑑x (8)

The proof of Theorem 1 is detailed in the supplementary materi-
als. From it, we can observe that the KL divergence between the
conditional distribution 𝑝𝜖𝜃 (x|d), which is also the distribution of
the synthetic data, and the distribution of client’s local data 𝑝𝑛 (x)
is bounded above. Furthermore, we can split this upper bound
into three terms: 𝜆, E(log 𝑝𝜖𝜃 (d)), and −

∫
𝑝𝑛 (x) log𝑝𝜖𝜃 (d|x)𝑑x.

E(log 𝑝𝜖𝜃 (d)) is a constant independent of the sample x. 𝜆 is de-
fined in Assumption 1 and represents the upper bound of the KL
divergence between 𝑝𝑛 (x) and the unconditional distribution of the
DM 𝑝𝜖𝜃 (x), which means the overlap between the distribution of
the client local data and the pre-trained data of the DM. Meanwhile,∫
𝑝𝑛 (x) log 𝑝𝜖𝜃 (d|x)𝑑x is the log-likelihood between the descrip-

tion d and the client distribution, representing the information of
the client distribution contained by the trained description, which
has been maximized during the training process of the descriptions.

From the above analysis, we have two conclusions: 1) the quality
of the synthetic dataset is related to the used pre-trained DM, which
aligns well with the intuition. 2) locally trained descriptions can
indeed learn information about the client local distribution and
effectively guide the DM to generate high-quality synthetic datasets.
These conclusions regarding the quality of the synthetic dataset, and
the performance of the aggregated model are further demonstrated
in the subsequent experimental section.

4 EXPERIMENTS
4.1 Experimental Settings
Dataset. We conduct experiments on three datasets: Domain-
Net [25], OpenImage [13] and NICO++ [46]. We use DomainNet
to simulate style differences within the same category, OpenImage
to simulate subcategories’ differences within super-categories, and
NICO++ to simulate differences in background and specific object
attributes. All datasets consist of large-scale real-world images with
the resolution of 224x224 pixels. DomainNet comprises six do-
mains: clipart, infograph, painting, quickdraw, real, and sketch. Each
domain has 345 categories. Following the partition in FedDISC [41],
we select 20 super-categories of OpenImage with 6 subcategories
in each super-category according to the hierarchy of categories
provided by OpenImage.NICO++ involves 60 categories, with each
category having six common domains shared across categories
(autumn, dim, grass, outdoor, rock, water) and six unique domains
specific to each category. These two scenarios are respectively
referred to as the Unique NICO++ (NICO++_U) and Common
NICO++ (NICO++_C) datasets. It is worth noticing that despite
each data domain having its own textual description, only the cat-
egory names are used as textual information for all generations,
which is more practical. For more detailed information regarding
the dataset, please refer to the supplementary materials.

Client Partition. To validate FedDEO under two scenarios of
non-IID data distributions: Feature Distribution Skew and Label
Distribution Skew, we partition the clients differently. To simulate
Feature Distribution Skew, we set up six clients for each dataset.
Each client possesses the same set of categories but with completely
different data domains. To simulate Label Distribution Skew, we
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divide the 60 categories of Common NICO++ and Unique NICO++
into six clients. Each client possesses all six data domains of 10
different categories. For all client partitions, there is no overlap
between the data of different clients. Due to space limitations, for
detailed client partition, including the number of images in each
client dataset and experiments related to the total number of clients,
please refer to the supplementary materials.

Compared Methods. We compare our method with nine other
methods, which can be divided into three major categories: 1) Ceil-
ing. The performance ceiling of traditional FL methods is central-
ized training, involving the uploading of all client local data for the
training of the aggregated model. 2) Traditional FL methods with
multiple rounds of communications: FedAvg [22], FedDF [18],
FedProx [15], FedDyn [1]. All of them have 20 rounds of commu-
nications. Following standard experimental settings, each round
involves one epoch of training on each client. And we use Ima-
geNet as the additional public data for distillation in FedDF. 3)
Diffusion-based OSFL methods: FedDISC [41], FedCADO [42],
FGL [44] and Prompts Only. Although FedDISC is designed for
semi-supervised FL scenarios, we remove the pseudo labeling pro-
cess of FedDISC and directly utilize the true labels of client images.
Another point to notice is the Prompts Only, where the server
does not use the uploaded local descriptions from clients at all but
only uses the text prompts of category names in the server image
generation. It’s worth noticing that some mentioned OSFL methods
such as DENSE[43] and FedCVAE [8] is not used as the compared
methods because of the difficulty in training generative models
until convergence in the high-resolution realistic image scenarios
we selected. For more details about our experimental settings and
implementation, please refer to the supplementary materials.

4.2 Main Results
In Table 1 and Table 2, we present the performance of our method
under two non-IID scenarios, feature distribution skew and label
distribution skew. Several observations can be made:

• Ourmethod demonstrates significantly superior performance
on all used datasets, surpassing other compared methods and
even the performance ceiling on OpenImage and NICO++,
demonstrating the potential of utilizing DMs in FL.

• The reason for the better performance on OpenImage and
NICO++ lies in the fact that these two datasets primarily
consist of realistic images, and their distributions are closer
to the distributions of the used DM. This also corroborates
our theoretical analysis and the better performance on the
real domain of DomainNet.

• Compared to Prompts Only, without the guidance of the
trained local descriptions, the DM tends to generate more
realistic images, with the specific style or subcategory of the
generated images being entirely randomly determined, mak-
ing it challenging to adapt to the personalized local distribu-
tion of each client except for the real domain of DoomainNet.

• Compared to other diffusion-based OSFL methods, FedDEO
demonstrates more stable results, indicating that the local
descriptions sufficiently trained on the clients can provide
more precise guidance for the generation, thereby producing
higher-quality synthetic datasets.

DomainNet
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Infograph

Painting

Quickdraw

DomainNet
Bird
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Infograph

Painting

Quickdraw

SketchSketch
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Bed
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Musical 

Instrument

Drum
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Accordion
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Figure 2: The visualization of generated samples on Domain-
Net and OpenImage.

The visualization experiments in Figure 2, Figure 3, and other visual
experiments in the supplementary materials clearly demonstrate
that FedDEO is capable of generating synthetic dataset that com-
plies with different client distributions when there are differences
in style, subcategory, or background among clients, while being
semantically correct. The synthetic datasets exhibit high quality
and diversity, which is comparable to the client local datasets, un-
derscoring the superior performance of FedDEO.

4.3 Ablation Experiments
To further demonstrate the performance of the proposed method,
we conduct sufficient ablation experiments, thoroughly discussing
the impacts of hyperparameters and other settings in our method,
including the number of images in the synthetic dataset, the number
of training epochs for the local descriptions, the used pre-trained
DMs, the number of the clients, and more. Due to space limita-
tions, we present partial experimental results and discussions here.
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Common NICO++ Unique NICO++
client0 client1 client2 client3 client4 client5 average client0 client1 client2 client3 client4 client5 average

Ceiling 50.24 54.36 63.35 64.82 61.99 65.09 59.98 74.02 78.9 79.68 74.47 77.34 77.47 76.98
FedAvg 18.23 27.79 36.32 52.42 37.96 39.24 35.32 34.96 58.98 38.41 63.41 45.44 59.76 50.16
FedDF 31.40 32.22 43.73 45.19 36.01 43.08 38.60 51.85 52.34 55.85 52.47 54.42 59.24 54.36
FedProx 37.31 35.95 42.78 48.92 41.07 47.53 42.26 54.55 60.51 54.05 58.34 55.69 57.78 56.82
FedDyn 36.83 37.85 45.21 51.38 42.74 44.36 43.06 55.29 59.71 56.68 61.74 48.99 61.31 57.28

Prompts Only 38.64 45.55 53.08 54.72 50.19 59.91 50.34 67.38 71.88 67.70 64.19 63.41 63.28 66.30
FedDISC 50.75 51.64 60.79 58.33 55.41 57.28 55.70 71.89 73.20 70.51 70.02 75.62 69.82 71.84
FGL 45.34 51.41 60.44 59.65 58.87 62.33 56.34 69.51 74.59 71.36 69.41 69.65 71.42 70.99

FedCADO 58.98 46.53 60.93 57.45 53.92 54.32 55.35 73.30 71.48 68.97 69.71 72.91 65.49 70.31
FedDEO 53.69 56.46 66.32 66.57 62.26 70.81 62.68 76.58 80.42 81.19 75.75 80.38 78.94 78.87

Table 2: The performances of the compared methods on OpenImage, DomainNet, and NICO++ under the non-IID label
distribution skew, where the italicized texts represent the performance ceiling of centralized training used as a reference, and
bold texts represent the best performance of the compared methods.

For more ablation experiments and detailed experimental settings,
please refer to the supplementary materials. The Number of Im-
ages. The number of images in the synthetic dataset is one of the
key factors influencing the performance of our method. The total
number of images in the dataset is determined by the number of
images generated under the guidance of each local description,
defined as 𝑅 in the method section. Due to time limitations, we
conduct relevant ablation experiments on the first 90 categories
of DomainNet, and the experimental results are presented in Ta-
ble 3. From the table, we can observe that as 𝑅 increases, there is
indeed a noticeable improvement in the performance of the trained
aggregated model. Additionally, it is worth noticing that the rate of
performance improvement does not significantly slow down when
the number of images increases from 30 to 50, proving the diversity
of the synthetic dataset.

The Epochs for Training Descriptions. The number of train-
ing epochs for local descriptions, defined as 𝑆 in the method section,
directly influence the characteristics of the client distributions cap-
tured by the local descriptions, thereby influencing the quality of
the synthetic dataset and the upper bound mentioned in Theorem 1.
Due to time limitations, we conduct relevant ablation experiments
on the first 90 categories of DomainNet, and the experimental re-
sults are presented in Table 4. From the table, it can be observed
that with the increase of 𝑆 , the performance of the aggregated
model shows a stable improvement. Additionally, when the descrip-
tions are trained for only one epoch, they barely learn the stylistic
information of the client distribution, hence only showing good
performance on the real domain. This indicates the crucial role of
the local descriptions in guiding the server image generation.

4.4 Limitations and Discussions
To more comprehensively demonstrate both the practicality and
the limitations of the proposed method, we conduct discussions
regarding three issues here: communication costs, computation
costs, and the privacy concerns.

Communication Costs. The communication costs include both
upload communication and download communication. We discuss
these two parts separately.
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Figure 3: The visualization of generated samples on NICO++.

In the table 5, we demonstrate the upload communication costs
for all compared methods. FedAvg, FedDF, FedProx, and FedDyn
have similar communication costs, which are not repeated in the
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DomainNet
clipart infograph painting quickdraw real sketch average

𝑅=10 55.16 21.95 45.61 12.64 67.41 39.32 40.43
𝑅=30 57.87 25.33 48.03 13.07 69.81 42.76 42.82
𝑅=50 60.64 27.85 50.96 13.62 71.75 45.81 45.11

Table 3: The influence of the number of images.

DomainNet
clipart infograph painting quickdraw real sketch average

𝑆=1 42.1 16.28 43.71 8.56 68.47 33.55 35.44
𝑆=10 57.87 25.33 48.03 13.07 69.81 42.76 42.82
𝑆=20 59.46 28.62 51.67 14.11 70.25 45.31 44.90

Table 4: The influence of the epochs for training descriptions

Uploaded Parameters (M)
FedAvg Ceiling FedCADO FedDISC FedDEO

20 × 11.69 = 233.8 270.95 11.69 4.23 3.54
Table 5: Comparison about the communication costs.

table. Prompts Only does not involve any communication costs,
so it is not included. FGL is also not included in the comparison
because the length of the text prompts generated in FGL is highly
random. From table 5, It can be observed that FedDEO, with the least
upload communication costs, is capable of training the aggregated
model with better performance. This indicates the locally trained
descriptions can more accurately convey client knowledge and
efficiently guide the image generation on the server.

Regarding the download communication, it is undeniable that
FedDEO does not have a significant advantage due to the need
for clients to download DM to train local descriptions. However,
we must point out that, on one hand, most FL methods based on
base models, including diffusion-based OSFL methods such as Fed-
DISC, FGL, and various federated fine-tuning methods [27, 36, 40],
require downloading the base model to the clients, resulting in addi-
tional download communication. On the other hand, some existing
works [17] focus on the use of DM on mobile devices. FedDEO is
fully compatible with these methods and can effectively reduce the
download communication. Therefore, the download communica-
tion of FedDEO is entirely acceptable.

Computation Costs. The computation costs include the com-
putation costs on the client and the server. Since FedDEO fixes
all parameters of the DM and only trains the local descriptions,
the client computation costs of FedDEO is comparable to various
federated fine-tuning methods [27, 36, 40], making it entirely ac-
ceptable. Additionally, with the same number of generated images,
the computation cost on the server is identical to other diffusion-
based OSFL methods. Therefore, although the computation cost
poses some limitations, it does not significantly compromise the
practicality of our method.

Privacy Concerns. Essentially, the local descriptions trained on
the clients is a kind of model parameters, which is widely used in FL
methods. Additionally, due to the low upload communication of Fed-
DEO, where privacy leakage mainly occurs, FedDEO exhibits lower
risk compared to other FL methods. To further validate FedDEO’s

Original Client Image Synthetic Dataset

Figure 4: The visualization of privacy-sensitive information-
related categories.

performance in privacy protection, we conducted sufficient quan-
titative and visual experiments. We select some categories from
OpenImage and DomainNet that may contain privacy-sensitive
information, such as faces, license plates, books, etc. We train de-
scriptions separately on images of these categories and generate
synthetic datasets. The visualization results are shown in Figure 4.
It can be observed that the synthetic datasets only share similar
styles and identical semantics with the original client datasets. It is
almost impossible to extract specific privacy-sensitive information
from the descriptions, which aiming to characterize the overall
distribution. Furthermore, we conduct more quantitation and vi-
sualization experiments, including overall comparisons between
the synthetic dataset and client local datasets, as well as whether
encryption of descriptions can be achieved through noise addition
to the uploaded descriptions, etc. Due to space limitations, please
refer to the supplementary materials for more detailed experimental
settings and results about privacy issues.

5 CONCLUSIONS
In this paper, we propose FedDEO, which employs local descriptions
trained on the clients as the medium to transfer distributed client
knowledge to the server. Utilizing the powerful DM, the descrip-
tions serves as conditions in generating the synthetic datasets that
compiles with various client distributions, enabling the training
of aggregated model. Theoretical analyses prove that the local de-
scriptions can efficiently reduce the upper bound of KL divergence
between the synthetic datasets and the client datasets, providing
the theoretical foundation for other diffusion-based OSFL methods.
Sufficient quantitation and visualization experiments on three large-
scale real-world datasets demonstrate the performance of FedDEO.
With advantages in communication and privacy protection, the
trained aggregated model outperforms all compared methods and
has the potential to outperform the performance ceiling of cen-
tralized training. As a novel exploration in diffusion-based OSFL,
FedDEO further elucidates the significant potential of utilizing dif-
fusion models and other foundation models in federated learning.
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