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Abstract

Text-3D Scene Retrieval (T3SR) aims to retrieve relevant scenes using linguistic
queries. Although traditional T3SR methods have made significant progress in
capturing fine-grained associations, they implicitly assume that query descriptions
are information-complete. In practical deployments, however, limited by the capa-
bilities of users and models, it is difficult or even impossible to directly obtain a
perfect textual query suiting the entire scene and model, thereby leading to perfor-
mance degradation. To address this issue, we propose a novel Interactive Text-3D
Scene Retrieval Method (IDeal), which promotes the enhancement of the alignment
between texts and 3D scenes through continuous interaction. To achieve this, we
present an Interactive Retrieval Refinement framework (IRR), which employs a
questioner to pose contextually relevant questions to an answerer in successive
rounds that either promote detailed probing or encourage exploratory divergence
within scenes. Upon the iterative responses received from the answerer, IRR adopts
a retriever to perform both feature-level and semantic-level information fusion,
facilitating scene-level interaction and understanding for more precise re-rankings.
To bridge the domain gap between queries and interactive texts, we propose an
Interaction Adaptation Tuning strategy (IAT). IAT mitigates the discriminability
and diversity risks among augmented text features that approximate the interaction
text domain, achieving contrastive domain adaptation for our retriever. Extensive
experimental results on three datasets demonstrate the superiority of IDeal. Code
is available at https://github.com/Yangl1nFeng/IDeal.

1 Introduction

Recent years have witnessed natural language interfaces to embodied intelligence systems [1, 2,
3, 4, 5] become increasingly prevalent in our daily lives. This opens up further opportunities for
natural language-based interaction with intelligent agents, such as a user verbally instructing agents
to perform tasks in a specific scene. Before executing any task, an agent must first retrieve the scene
relevant to the user’s intent. This requirement has spurred recent works on Text-3D Scene Retrieval
(T3SR) [6, 7], which enables the retrieval of 3D point-cloud scenes using linguistic queries. Such
a language-scene alignment capability lays a critical foundation for enabling agents to generalize
across scenes and environments.

Although existing dedicated methods [6] achieve promising performance for T3SR by facilitating
fine-grained query text and scene understanding, such success often relies on the assumption that
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Figure 1: Overview of interactive text-3D scene retrieval. The above gray part illustrates the two
specific challenges, while the below white part shows the illustrations of our interactive framework.

the queries provided are information-complete. However, such an assumption is often violated in
real-world scenarios due to the inherent limitations of text inputs and models, such as incomplete
one-shot descriptions of user intent [8], ambiguous descriptions [6], domain shifts [9], and limited
generalization of the models. As a result, the performance and robustness of the models remain
persistently constrained, and relying solely on limited internal knowledge is insufficient to overcome
this inherent bottleneck.

To break through the bottleneck, recent studies [8, 10, 11] have explored integrating external knowl-
edge from Large Language Models (LLMs) to enhance their understanding and alignment abilities.
However, such approaches typically require prohibitively expensive fine-tuning or retraining of
offline models [10, 12]. Some other attempts [8, 13, 14] have proposed interactive cross-modal
retrieval frameworks that incorporate LLMs and Vision-Language Models (VLMs) to facilitate more
fine-grained understanding and alignment, thereby iteratively evolving the retrieval performance.
Although these methods have demonstrated remarkable effectiveness in image-text matching [8]
and video-text retrieval [15, 16], they still face two tricky challenges in the T3SR setting, as shown
in Figure 1. Firstly, since the scale and complexity of 3D scenes, these methods lack holistic perspec-
tives beyond a localized focus during interaction, e.g., the LLMs tend to focus on the salient objects
in the scene and ignore the fine-grained details at a scene-level perspective, limiting the depth and
breadth of LLM interaction, as demonstrated in Table 1. Secondly, existing retrieval models exhibit
limited generalization ability to biased text domains, limiting their effectiveness in handling realistic
interaction texts that exhibit domain gaps.

To address the aforementioned challenges, this paper proposes a novel Interactive Text-3D Scene
Retrieval method (IDeal) to conduct continuous interaction between the T3SR models and external
users (e.g., LLMs), achieving the active alignment between text queries and 3D scenes, as depicted
in Figure 1. Our IDeal consists of two components: an Interactive Retrieval Refinement framework
(IRR) and an Interaction Adaptation Tuning strategy (IAT), as illustrated in Figure 2. More specifically,
IRR coordinates three specialized agents (i.e., questioner, answerer, and retriever) to perform multi-
round interaction. First, the questioner adaptively determines whether to continue probing object
details or to pursue divergence by exploring the broader scene, based on the assessment of the
current round’s description. Based on this, it continuously formulates context-relevant questions to
the answerer. After receiving responses, the retriever iteratively integrates information at both the
feature and semantic levels, facilitating comprehensive scene-level understanding for progressively
precise re-rankings. To mitigate the domain shift between training queries and interactive texts,
IAT proposes adapting the retriever toward the interaction text domain. Specifically, IAT leverages
LLMs to generate more realistic augmented texts that closely resemble the interaction text domain.
Subsequently, IAT robustly mitigates the discriminability and diversity theoretical risks in the features
of the augmented texts for domain gap bridging, thereby ensuring an unbiased understanding of the
interaction texts by the retriever. The contributions of this paper are as follows:

• We propose a novel Interactive Text-3D Scene Retrieval Method (IDeal), which actively enhances
alignment between text queries and 3D scenes through ongoing interactions.

• An Interactive Retrieval Refinement framework (IRR) is presented to enable a deep interaction for
comprehensive scene exploration, leading to progressively improved retrieval.

• An Interaction Adaptation Tuning strategy (IAT) is proposed, which facilitates the transfer of the
retriever to the interaction text domain, promoting improved interaction.

• We conduct extensive comparison experiments on text-3D scene datasets. Our IDeal remarkably
outperforms the existing methods, demonstrating its superiority.
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2 Related Work

Cross-Modal Retrieval. Cross-Modal Retrieval (CMR) [17, 18, 19, 20, 21, 22] aims to match
corresponding results across modalities for a given query, bridging the gap caused by modal het-
erogeneity. In recent years, CMR has garnered significant attention in fields such as Image-Text
Retrieval [14, 23, 24, 25], Video-Text Retrieval [26, 27], 2D-3D Retrieval [28, 29], Pointcloud-Text
Matching [6]. The primary challenge of CMR lies in effectively aligning multimodal data. To address
this issue, most existing works could be broadly categorized into two groups: 1) Coarse-grained
retrieval [30, 31, 32] directly maps multimodal data into a shared space, aiming for a more straight-
forward and computationally efficient alignment. 2) Fine-grained retrieval [33, 34] seeks to establish
local associations between fine-grained features across modalities (e.g., regions in images, words
in texts). These local associations are then progressively integrated to form precise cross-modal
correspondences. This paper focuses on a more challenging CMR task, i.e., Text-3D Scene Retrieval,
involving obscure spatial cues and sophisticated 3D scenes (including issues such as viewpoints and
occlusions [35, 36]). Although prior work [6] performs well with comprehensive descriptions, it
struggles with online and blurry queries. To this end, we propose an Interactive T3SR solution that
iteratively incorporates online feedback to achieve more precise and practical scene retrieval.

Interactive Learning. Unlike traditional learning paradigms [6, 37], interactive learning emphasizes
the continuous improvement of a model’s behavior through ongoing interactions with the environment
or users. Specifically, several pioneering works [38, 39] leverage simple forms of user feedback (e.g.,
preferred sample selection and relevance scoring) to iteratively achieve improved training quality or
better satisfy user-specific requirements during testing. With the development of Large Language
Models (LLMs), other studies [8, 40, 41] have begun exploring question-answering interactions
through free-form text dialogue, closely replicating natural human communication. For example,
several methods leverage iterative interactions to continuously refine the retrieval query for better
reranking. Recently, more advanced methods such as PlugIR [13], MERLIN [16], ICL [42], and
LLaVA-ReID [43] have integrated LLMs for context-aware question generation, mining more visual
details. However, these methods cannot be effectively generalized to T3SR due to the differences
in tasks and data domains shown in Figure 1. In this paper, we develop an interactive framework
tailored for T3SR to help the offline models adapt to complex scene perception.

3 Method

3.1 Problem Formulation

Given a text query set T = {ti}nt
i=1 and a 3D scene gallery C = {cj}nc

j=1, where ti and cj represent
i-th text and j-th scene, nt = |T | and nc = |C| means the sample number, and | · | denotes the
volume of set. The purpose of T3SR is to use the text query to match the ideal 3D scenes from the
gallery, where there exists correspondence yi,j ∈ {0, 1}, indicating whether the points are matched
(i.e., yij = 1), or unmatched (i.e., yij = 0). Existing methods [6, 37] typically train an offline model
to achieve encoding of multimodal data, followed by meticulous single-turn retrieval. They assume
that user-provided text queries are information complete, overlooking the practical fact that queries
are often partial, ambiguous, or even exhibit domain shift.

To address these issues, an interactive Text-3D scene retrieval method, i.e., IDeal, is proposed to
bridge the interaction between the retrieval models and external agents, progressively overcoming the
aforementioned query limitations and achieving improved alignment between texts and 3D scenes.
More specifically, IDeal asks question qli (l ∈ {1, · · · , r}) about i-th sample based on the users’
previous response al−1

i (a0i = ti), where r is the upper limit of rounds. Subsequently, the external
agents recall details and answer ali of the target 3D scene cj (yij = 1), forming a dialogue context
Di = {a0i , (q1i , a1i ), · · · (qri , ari )} composed of question-answer pairs (q·i, a

·
i). Both the j-round

response text and 3D scenes are projected into a shared feature space by a trained retrieval model,
which can be: uj

i = fr(a
j
i ;θ) and vi = fr(ci;θ), where θ denotes the learnable parameters.
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Figure 2: (Left) Pipeline of the proposed IDeal. A questioner employs a router to adaptively pose
either probe or divergent questions, which require responses from an answerer. After receiving
iterative responses, a retriever projects the multimodal data into a shared feature space, performing
feature-/semantic-level fusion (Right) to enable progressively precise scene retrieval.

3.2 Interactive Retrieval Refinement Framework

In this section, we introduce the Interactive Retrieval Refinement framework (IRR), which coordinates
three agents (i.e., questioner, answerer, and retriever) to enable iterative interaction. In the following
sections, we will elaborate on them by introducing their interaction process.

3.2.1 Adaptive Questioning

To achieve a deep interaction for T3SR, we present an adaptive questioner, which enables pertinent
questioning to the answerer for both detailed and comprehensive exploration of complex 3D scenes.
Firstly, a question router is employed, which determines the focus of questioning based on the feature
distribution in the shared space. More specifically, the router assesses whether the previous-round
description is informative by computing a Cross-modal Affinity Entropy (E), formulated as:

E(ur−1
i ) = −

∑
j∈Nk(u

r−1
i )

p(ur−1
i ,vj) log p(u

r−1
i ,vj), (1)

where Nk(u
r−1
i ) means the k-nearest-neighbor index of ur−1

i , and affinity probability p(ur−1
i ,vj)

is formulated as:

p(ur−1
i ,vj) =

exp(S(ur−1
i ,vj)/τ)∑

l∈Nk(u
r−1
i ) exp(S(u

r−1
i ,vl)/τ)

, (2)

where S represents the computation of similarity between features, and τ is a temperature parameter.

However, the distribution of scene features extracted by the trained retrieval models is fixed and
inherently non-uniform, with regions of over-density and under-density introducing a structural
density bias [44]. To mitigate the bias, we introduce a Density Compensated Factor for each scene
feature, which is formulated as: ρ(vi) =

1
(1/k)

∑
j∈Nk(vj)

D(vi,vj)+ϵ , where D represents the distance

calculation and ϵ is a minimal constant for numerical stability. Based on this, we try to approximately
correct the original similarity score S(ur−1

i ,vj) by incorporating the Density Compensated Factor
ρ(vi), which could be written as: S̃(u(r−1)

i ,vj) = S(u(r−1)
i ,vj)/

√
ρ(vj). Subsequently, this

corrected similarity is brought back into Equations (1) and (2) to obtain a Density Compensated
Affinity Entropy, denoted as Ẽ . This process approximates a Bayesian Correction leveraging prior
density estimation2, mitigating the impact of the inherent bias in scene feature distribution.

Leveraging the fairer metric Ẽ , our questioner categorize descriptions with Ẽ > β as uninformative,
prompting an LLM to generate questions for detail probe (i.e., Q1) for attribute and spatial relationship
detail refinements within the described area. Conversely, when Ẽ ≤ β, the descriptions are considered
informative, triggering the adopting of questions for diverge exploration (i.e., Q2) that inquire about
object arrangements not previously discussed in the dialogue.

2Please refer to our Supplemental Material for further discussion.
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3.2.2 Iterative Retrieval

After completing the questioning, an LLM is employed to simulate the external user acting as an
answerer to answer the questions, following existing interactive approaches [8, 13]. It receives
multi-round questions and provides responses based on its memory. In this paper, we adopt text
modality to simulate the memory, which better approximates how humans recall information in mind.

Upon receiving the response descriptions from the answerer, we construct a retriever that can be
seamlessly integrated with existing cross-modal models [37, 45], enabling iterative scene retrieval.
It can obtain the scene retrieval predictions for any given text within the shared feature space.
Specifically, given a text feature ui, the prediction can be formulated as:

p̂(ui) = [p̂(ui,v1), p̂(ui,v2), . . . , p̂(ui,vnc
)]
⊤
, (3)

where p̂(ui,vj) = exp(S(ui,vj))/
∑nc

l=1 exp(S(ui,vl)) denotes the probability that the i-th text
retrieves the j-th scene. Accordingly, our retriever first utilizes the initial query to compute an initial
retrieval prediction p̂1(ui). Subsequently, the feature-level and semantic-level fusion of interactive
responses is conducted to achieve more precise scene retrieval.

For the fusion of interactive response feature, on one hand, considering responses to Q1 are re-
finements of the previous-round descriptions, we apply a weighted linear fusion to incorporate
supplementary information. This strategy enables the preservation of core semantic cues from previ-
ous rounds while emphasizing newly introduced details: uj

i = αuj
i + (1− α)uj−1

i , where qji ∈ Q1,
α is a trade-off weight. On the other hand, benefiting from Q2, the other response features and the
aforementioned fused features capture variations across different regions of the scene. To fuse them
into a comprehensive feature, inspired by [46], we model their distribution around the target scene by
encapsulating them within a minimum enclosing hypersphere:

(o∗
i , R

∗
i ) = arg min

oi,Ri

{
Ri : u

j
io

⊤
i ≤ Ri, ∀j

}
, (4)

where o∗
i and R∗

i are the center and radius of the hypersphere, respectively. Based on this, features
near the hypersphere boundary are grouped into a boundary set U1

i , while the remainder constitute the
central set U2

i . To balance fusion robustness and feature discrimination, potentially noisy boundary
features in U1

i are aggregated at the hypersphere center and averaged with cleaner features in U2
i to

yield the final fused response feature: ūi =
1
2

(
o∗
i +

1
|U2

i |
∑

uj
i∈U2

i
uj
i

)
. This fused feature is then

input into Equation (3) to obtain an interactive feature prediction p̂2(ūi).

However, the aforementioned feature-level fusion can not fully capture the holistic semantics of the
responses. To address this limitation, we leverage an LLM to reconstruct the 3D scene from all re-
sponses in textual space. More specifically, inspired by Chain-of-Thought (CoT) [47], we decompose
this process into object extraction and scene reconstruction for a more stable and comprehensive
scene summary. The LLM first identifies the scene objects across multi-round responses and then
summarizes an object-centric scene reconstruction text. Finally, the texts are encoded into feature si,
from which a interactive semantic prediction p̂3(si) is computed using Equation (3).

Finally, the initial and interactive predictions are combined through weighted fusion to obtain the
final scene retrieval prediction as follows:

p̂c(ui) = λ1p̂1(ui) + λ2p̂2(ūi) + λ3p̂3(si), (5)

where p̂c(ui) is the final retrieval prediction, λ1, λ2, and λ3 are trade-off parameters. Benefiting
from the adaptive questioning and the comprehensive retrieval information fusion, our IDeal can
alleviate the limitations of initial queries through progressive interaction.

3.3 Interaction Adaptation Tuning

Although IRR can exploit interactions to promote retrieval quality, the limited text domain of the
retriever remains a bottleneck that restricts further performance improvements. To overcome this
limitation, we propose an Interaction Adaptation Tuning strategy (IAT), which enhances texts to
approximate the domain of interaction texts.

We begin by integrating information and descriptions of the same scenes from the training data to
construct simulated memory for text augmentation. Following IRR, we first provide a training-data-
based answerer (i.e., an LLM) with the constructed memory and initial queries. We then simulate the
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IRR interaction process by iteratively posing a fixed number of Q1 and Q2 questions. The response
descriptions yield augmented texts that closely approximate the interaction scenario.

After obtaining the enriched augmented texts, inspired by the contrastive domain adaptation
paradigm [48, 49], we try to minimize the theoretical risk R(θ) associated with our retriever among
the augmented text features, as formulated below. It facilitates model adaptation of the retriever to
the augmented text domain without requiring access to its implementation details.

R(θ) = Rdis(θ) +Rdiv(θ) = EŨ
[(
−EŨ+

{
S(ũ+

i , ũi)
})

+
(
EŨ−

{
S(ũ−

i , ũi)
})]

, (6)

where the two components Rdis(θ) and Rdiv(θ) respectively reflect discriminability and diversity
risks, E denotes expectation, EŨ is taken with respect to the distribution for the target domain features
(i.e., augmented text features Ũ = {ũi}nt

i=1), and Ũ+ and Ũ− is the distribution for the corresponding
positive features ũ+

i and negative features ũ−
i , respectively.

On the one hand, minimizing the discriminability risk Rdis(θ) requires encouraging the augmented
text features to align closely with those belonging to the same scenes. However, the scale and
complexity of scenes often lead to substantial variability even among features corresponding to the
same scenes. This introduces significant uncertainty in the selection of positive samples, complicating
the risk optimization process.3 To handle this, we adopt the corresponding 3D scene features as
substitutes for the text features to construct positive pairs. This is based on the assumption that the
scene features encoded by the well-trained model are more stably located near the center of the
corresponding description distribution. Finally, we mitigate the aforementioned discriminability risk
Rdis(θ) by minimizing a negative log-based proxy loss term Ldis, which could be written as follows:

Ldis = −
b∑

i=1

nc∑
j=1

yij logS(ũi,vj), (7)

where b is the size of the mini-batch. On the other hand, motivated by [50], we attempt to approximate
the minimization of the divergence risk Rdiv(θ) by minimizing its upper bound, i.e.,

sup (Rdiv(θ)) ∼
{
Eũ−∼Ũ−

(
S(ũ, ũ−)

)
;Vũ−∼Ũ−

(
S(ũ, ũ−)

)}
, (8)

where sup(·) means the upper bound and V is the variance. We can obviously see that the divergence
risk is affected by the mean and variance of the selected negative samples. Yet existing methods [48]
usually treat others within the same mini-batch as negative samples for contrastive learning, thereby
minimizing the expectation term. Due to the stochasticity of mini-batch sampling, similar samples
may be mistakenly chosen as negatives, which increases the variance of negative samples, enlarging
the upper bound of the divergence risk.

To tackle it, we propose a weighted complementary contrastive loss as a surrogate objective to achieve
divergence risk optimization more robustly, which can be formulated as:

Ldiv =

b∑
i=1

b∑
j ̸=i

exp (−max (0,S(ũi, ũj)− γ))︸ ︷︷ ︸
Weighting term

log (1− S(ũi, ũj))︸ ︷︷ ︸
Complementary contrastive term

, (9)

where γ is a threshold, above which samples are assigned lower weights. Minimizing the complemen-
tary contrastive term optimizes the expectation over negative pairs, while the weighting component
can mitigate the impact of high-variance false-negative samples.

Finally, we combine both terms to obtain our loss for domain adaptation tuning, as follows:

L = λLdis + (1− λ)Ldiv, (10)

where λ is a hyperparameter to control the contribution of each component. Minimizing this proxy
loss facilitates the reduction of domain adaptation risk, thereby enabling the retriever to better adapt
to the domain of interaction text.

3The analysis can be found in our Supplemental Material.
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Table 1: Performance comparison on ScanRefer, Nr3D, and Sr3D in terms of R@1, R@5, R@10,
and their sum (Rsum). † denotes the use of coarse-grained descriptions as memory.

Methods ScanRefer Nr3D Sr3D
R@1 R@5 R@10 Rsum R@1 R@5 R@10 Rsum R@1 R@5 R@10 Rsum

w/ coarse-grained descriptions:
VSE∞ (CVPR’21) 9.7 33.1 50.2 93.0 5.8 21.5 32.5 59.8 5.5 18.9 27.4 51.8
CHAN (CVPR’23) 9.4 32.3 52.1 93.8 7.5 15.0 32.1 54.6 5.4 21.3 34.8 61.5
HREM (CVPR’23) 10.2 34.0 51.4 95.6 7.3 18.1 31.9 57.3 5.4 21.9 33.6 60.9
CRCL (NeurIPS’23) 10.3 32.4 49.8 92.5 8.1 22.5 33.2 63.8 4.9 19.5 31.9 56.3
RoMa (TMM’25) 11.4 34.8 54.4 100.6 6.5 24.8 37.6 68.9 7.8 27.3 39.3 74.4
IDeal 16.0 42.7 59.8 118.5 11.7 34.8 50.4 96.9 10.3 30.2 48.5 89.0
w/ fine-grained descriptions:
ChatIR† (NeurIPS’23) 21.8 55.4 73.1 150.3 15.6 40.3 58.1 114.0 12.1 35.9 50.3 98.3
Rewrite† (ICMR’24) 17.4 47.0 63.7 128.1 17.1 31.4 45.8 94.3 12.4 28.1 40.4 80.9
MERLIN† (EMNLP’24) 31.1 68.8 83.8 183.7 21.8 55.0 71.8 148.6 14.2 42.0 60.3 116.5
BASELINE: IR† 29.9 68.0 83.3 181.2 18.0 51.6 60.2 129.8 14.6 39.2 55.3 109.1
BASELINE SUM† 34.4 69.5 85.1 189.0 22.5 55.2 67.5 145.2 16.4 41.5 62.1 120.0

IDeal† 37.8 71.8 86.4 196.0 26.4 62.7 78.7 167.8 20.2 43.1 63.1 126.4

4 Experiments

4.1 Experimental Setting

Datasets, baselines, and evaluation metrics: We adopt the ScanNet 3D scene set along with several
description sets (i.e., ScanRefer [51], Nr3D [52], Sr3D [52], and SceneDepict-3D2T [6]) to conduct
experiments, where ScanRefer, Nr3D, and Sr3D are employed as query sets, and SceneDepict-3D2T
is employed to simulate fine-grained memory. To verify the superiority of our IDeal, we introduce
eleven comparative baseline methods: five conventional offline cross-modal matching methods (i.e.,
VSE∞ [45], CHAN [53], HREM [54], CRCL [37], and RoMa [6]), three interactive cross-modal
retrieval methods (i.e., ChatIR [8], Rewrite [41], and MERLIN [16]), and two additional strong
interactive baselines (IR and SUM). More specifically, the Iterative Reranking (IR) involves multi-
round interaction, where the results are iteratively re-ranked based on the response of each round.
The Summary reranking (SUM) also involves interaction, but ultimately aggregates all answers into a
comprehensive description for matching.

Table 2: Performance comparison on ScanRefer and Nr3D
in terms of R@1, R@5, R@10, and their sum. +IDeal
indicates plugging the model into our IDeal. † denotes the
use of fine-grained descriptions as memory.

Methods ScanRefer Nr3D
R@1 R@5 R@10 Rsum R@1 R@5 R@10 Rsum

VSE∞ 9.7 33.1 50.2 93.0 5.8 21.5 32.5 59.8
+IDeal 13.3 38.9 57.6 109.8 8.7 27.5 42.1 78.3

VSE∞† 14.9 42.3 61.5 118.7 16.4 47.5 55.2 119.1
+IDeal† 35.8 70.6 85.0 191.4 21.2 52.1 68.4 141.7

CRCL 10.3 32.4 49.8 92.5 8.1 22.5 33.2 63.8
+IDeal 13.4 35.5 56.1 105.0 7.4 25.4 38.3 71.1

CRCL† 17.5 45.1 58.3 120.9 13.4 44.5 51.5 109.4
+IDeal† 31.7 66.9 83.5 182.1 15.8 50.4 64.4 130.6

RoMa 9.7 33.1 50.2 93.0 8.3 27.9 37.2 73.4
+IDeal 16.0 42.7 59.8 118.5 11.7 34.8 50.4 96.9

RoMa† 16.7 44.8 61.6 123.1 17.4 48.5 57.5 123.4
+IDeal† 37.8 71.8 86.4 196.0 25.4 60.7 75.7 161.8

In addition, we follow [55, 56] to re-
port R@1, R@5, R@10, and their
summation (Rsum) as the evaluation
metrics. Due to the space limitation,
more details of datasets, prompts, and
additional experiments are provided
in the Supplemental Material.

Implementation details: All meth-
ods are implemented in PyTorch and
carried out on GeForce RTX 3090
GPUs. We adhere to the experimen-
tal settings of [6] for all method im-
plementations. We adopt widely-used
DGCNN [57] and BERT [58] to ob-
tain fine-grained features for 3D point
clouds and texts, respectively. To im-
plement interaction, we explore two
approaches to constructing memory:
1) Coarse-grained description: We leverage an LLM to generate rich expansions of queries, serving
as memory without introducing any additional information leakage. 2) Fine-grained description:
In line with existing interactive methods [43, 13], we simulate the user’s memory in real-world
scenarios using fine-grained scene descriptions, albeit with access to partial additional information.
In our experiments, we utilize Qwen-7B-Instruct [59] as our investigated LLM for the interaction
experiments.
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4.2 Comparison on Text-3D Scene Retrieval

Table 1 presents a comparison between our IDeal and conventional and interactive cross-modal
matching methods under two memory settings. Table 2 further demonstrates the performance gains
brought by integrating our interactive framework into conventional single-round methods. These
results could yield the following observations: 1) Even without additional fine-grained information,
our IDeal achieves competitive performance, highlighting its ability to uncover complementary
information implicitly embedded in the queries, gradually alleviating inherent query limitations. 2)
Compared to existing interactive methods, our IDeal also achieves superior performance with access
to fine-grained descriptions. This demonstrates that our interactive questioning and retrieval strategies
enable an ongoing understanding of user requirements and support a comprehensive interpretation of
complex scenes. 3) Our IDeal can be seamlessly integrated into conventional cross-modal retrieval
methods and yields substantial performance gains under both memory settings. This suggests
that, beyond equipping offline models with interactive capabilities, IDeal empowers them to more
effectively comprehend complex descriptions through interaction.

4.3 Ablation Study

Table 3: Ablation studies for components of our
IDeal on ScanRefer. RSum is the sum of R@1,
R@5, R@10. w/o stands for without use.

Configurations ScanRefer
R@1 R@5 R@10 Rsum

Questioner w/o Q1 36.0 71.2 86.7 193.9
w/o Q2 26.3 61.5 77.3 165.1

Retriever
w/o p̂1(ui) 35.2 70.1 86.5 191.8
w/o p̂2(ūi) 28.1 63.3 80.6 172.0
w/o p̂3(si) 31.8 67.8 84.2 183.8
w/o CoT 35.7 71.5 85.9 193.1

Adaptation
w/o IAT 16.6 48.4 64.4 129.4
w/o Ldis 34.9 69.5 84.4 188.8
w/o Ldiv 35.1 69.4 84.1 191.7

Full IDeal 37.8 71.8 86.4 196.0

In this section, we conduct an ablation study to
evaluate the contribution of each proposed compo-
nent to our IDeal. Specifically, we first ablate the
router in the questioner, restricting it to ask either
Q1 or Q2 continuously. In addition, we remove
each of the three retrieval prediction strategies, and
we examine removing CoT prompting in the re-
construction in the proposed retriever. Finally, we
investigate the effect of not using the IAT strategy
for domain adaptation and sequentially ablate its
two loss terms. The results in Table 3 lead to the
following observation: 1) Removing or replacing
any component from IDeal results in performance
degradation, highlighting the contribution of each
component. Specifically, the adaptive questions
generated by our questioner facilitate a meticulous
and comprehensive understanding of scenes. The various feature aggregation strategies in the retriever
contribute to precise scene matching. 2) Removing or substituting IAT components consistently leads
to performance degradation, underscoring the necessity of text domain alignment and adaptation risk
minimization in our IAT.
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Figure 3: PTM performance in terms of R@1 versus different values of the parameters of our IDeal
on ScanRefer. (a) and (b) display α, λ1, λ2, and λ3 in our retriever. (c) shows k and β in our
questioner. (d) shows λ and γ in IAT.

4.4 Parameter Analysis

To evaluate the sensitivity of our IDeal to different hyperparameter settings, we plot the retrieval
performance versus different values on ScanRefer, as shown in Figure 3. The experimental results
lead to the following observation: 1) For our retriever, tuning greater weights to interactive and
reconstruction predictions helps achieve a well-balanced trade-off that fully leverages the interactive
responses. Additionally, a higher feature fusion weight (e.g., α = 0.75) represents a emphasis on
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Figure 4: Performance (R@1) versus rounds on two datasets. Round 0 indicates the setting without
interaction. The green and purple bars represent the cases with coarse-grained and fine-grained
memory descriptions, respectively. The lighter bars indicate no performance gain.

the integration of discriminative features from the refined descriptions, leading to more effective
interaction feature fusion. 2) For our proposed questioner, using reasonable and moderate settings of
k and β (e.g., k = 20, β = 2.0) enables accurate identification of informative descriptions, thereby
supporting reasonable decisions on question types in the next round. 3) During domain adaptation
tuning, a relatively wide range of λ and γ values in IAT (i.e., λ ∈ [0.2, 0.5] and γ ∈ [0.1, 0.8]) ensures
effective contrastive adaptation and mitigates the impact of false negatives.

Case 3 Initial Query Ground TruthOurs Merlin
Round 1 Answer

Round 2 Answer

Round 5 Answer

Round 1 Answer
Round 2 Answer

Round 4 Answer

there is a large 
painting on the 
wall . there is a 

chair at the end 
of the table 
close to the
painting. we are talking about the other
chair that is close to the trash can to the
right side of the painting . it is brown

and wooden . [Rank 4]

this is a description of the scene where
a brown wooden chair is near the gray
trash can to the right of the painting.

it is also mentioned that there is a
gray trash can to the right of the table.
there is a brown chair at the end of

the table as well. additionally, there
are several matching chairs with
brown leather surrounding the table…

… there is a rectangular refrigerator,
Next to fridge, there is a black
square TV…

… the brown wooden chair is near the 
trash can to the right of the painting, 
with some empty space between them

[Rank 2]

[Rank 1]

[Rank 1]

The large painting on the wall
appears to be representational
rather than abstract, as it depicts a

realistic scene. Besides the table
and chairs already described... The
color scheme of the room seems to

consist mainly of neutral tones such
as browns, grays, and blacks.

[Rank 5] The second chair … painting… first 
chair. Table… round trashcan… 

Round 5 Answer

The round trashcan… table.  the 
second chair …

The round trashcan.  table… the 
surrounding of second chair …

[Rank 4]

[Rank 4]

[Rank 4]

Case 1 Case 2
Initial Query

Round 1 Answer

Initial Query

Round 2 Answer

this is a computer monitor with two others to the left and right. it
is surrounded by additional monitors in front and diagonally.
there are screens placed side by side providing ample workspace.

there seem to be more screens angled forward to offer better
visibility …

this is a computer monitor with two others to the left and right.
there appears to be other monitors also in front of it and
diagonally.

[Rank 16]

[Rank 4]

this is a long brown/plain table. it is situated near a single chair
which is very close to the wall. the single chair is placed right by
the wall. there is no indication of any windows or doors being

adjacent to the table or chair. the lengthy beige unadorned
surface (table) stands alongside the solitary stool.

a long brown table. it is located near a single chair which is very
close to the wall.

[Rank 8]

[Rank 23]

Figure 5: Case illustrations of interactive cross-modal scene matching process of IDeal on ScanRefer.
Cases 1–2 and 3 are with coarse-grained and fine-grained memory descriptions, respectively.

4.5 Visualization Analysis

To provide a comprehensive analysis of IDeal, we conduct a series of visualization experiments.
Specifically, we first present the changes in retrieval performance of IDeal across multiple rounds of
interaction, as shown in Figure 4, to analyze the incremental gains brought by each interaction. In
addition, we visualize several representative cases, as illustrated in Figure 5. The observations can
be drawn from the results: 1) Interaction consistently improves performance over the first several
rounds (five rounds with fine-grained and three rounds with coarse-grained descriptions). Although
redundant interactions may inevitably cause performance to saturate or even slightly degrade due
to LLM hallucinations or excessively long texts, these results indicate that a reasonable number of
interaction steps can effectively enhance the query and improve retrieval performance. 2) Under
the setting with coarse-grained memory texts, IDeal can infer and decompose object attributes and
relationships within the queries through interaction, leading to improved retrieval performance.
Moreover, with the integration of fine-grained memory, IDeal leverages targeted and switchable
questioning to elicit informative responses, continually improving retrieval precision. In contrast,
MERLIN [16] frequently generates redundant descriptions confined to local details of scenes.

5 Conclusion

In this paper, we propose a novel Interactive Text-3D Scene Retrieval Method, namely IDeal, to
address the Text-3D Scene Retrieval (T3SR). Our IDeal integrates two components: the Interac-
tive Retrieval Refinement Framework (IRR) and the Interaction Adaptation Tuning strategy (IAT).
Specifically, IRR continuously conducts adaptive questioning and comprehensive response fusion,
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enabling holistic exploration of 3D scenes for more precise retrieval. IAT performs contrastive
domain adaptation for the retriever toward realistic texts, overcoming the performance bottleneck
during interaction. Extensive experiments demonstrate the superiority of our IDeal in T3SR task.

Limitations and Potential Impact Statement: Although our work has taken the initial step forward
in interactive T3SR, there are some limitations and potential impacts that should be acknowledged.
First, the performance of the methods is relatively low. Second, we employ LLMs, and more stable
and unbiased LLMs and interaction approaches merit further exploration in the future.
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is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The Analysis and proof are provided in the supplementary material.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The implementation and training details are clearly described for reproduction
in our main paper and supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The code will be released publicly after in-peer review.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experiment settings are clearly presented in the paper and supplementary
material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars are not reported because it would be too computationally expensive
for experiments involving LLMs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The compute resources are reported in the experiment settings.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics
in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The broader impacts are discussed with the limitations.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: All datasets and models used in this paper are publicly available.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Proper citations are provided throughout the document and the licenses will be
included with the code when it is released.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The document will accompany the code upon its release.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We have fully disclosed the details of the use of the adopted LLMs in our
supplementary material.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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