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ABSTRACT

In-context learning (ICL) is a valuable capability exhibited by Transformers pre-
trained on diverse sequence tasks. However, prior studies have observed that ICL
often exhibits a conflict with the model’s inherent in-weight learning (IWL) ca-
pability. In this work, we aim to reconcile ICL and IWL by disentangling the
model’s encoding spaces for context and input samples. To do so, we first pro-
pose a dual-space modeling framework, explicitly modeling a task representation
space via the dual space of the sample representation space. Such a dual-space
structure can be derived from the linear representation hypothesis and, as we the-
oretically prove, is conducive to ICL by representation learning. Furthermore, we
show that the standard Transformer architecture with softmax self-attention is in-
herently limited in realizing this structure. Building on this insight, we introduce
CoQE, a Transformer architecture with separate context-query encoding, to real-
ize the disentanglement between context and sample representations. Through ex-
periments on both regression and classification tasks, we demonstrate that CoQE
not only achieves lower ICL error compared to the standard Transformers, but also
successfully reconciles ICL and IWL under diverse data distributions.

1 INTRODUCTION

In recent years, large-scale models based on the Transformer architecture have demonstrated re-
markable capabilities across language (Brown et al., 2020; Guo et al., 2025), vision (Achiam et al.,
2023; Maaz et al., 2024), and robotics (Driess et al., 2023; Zitkovich et al., 2023). Among these ca-
pabilities, the in-context learning (ICL) ability has drawn increasing attention, as it offers a general
paradigm for task generalization. ICL refers to the capability of a pretrained Transformer model to
solve previously unseen tasks by using demonstration examples in the prompt—without updating its
parameters. In contrast, in-weight learning (IWL) characterizes the conventional ability of a model
to recall the memory stored in weights. An ideal model would seamlessly integrate both capabilities:
relying on memory to handle training tasks, while adapting to new tasks through contextual cues.

However, recent studies suggest that there exists an inherent conflict between ICL and IWL (Park
et al., 2025; Nguyen & Reddy, 2025). This leads to a notable performance degradation when the
demonstration examples deviate from the training distribution (Chan et al., 2025), thereby limit-
ing the generalization ability of ICL. How to eliminate this conflict is thus a valuable question.
Singh et al. (2023; 2025) suggested that their conflict may stem from competition between the two
interwined capabilities for shared model circuits during training. Since ICL can be viewed as a
context-based inference strategy, whereas IWL relies on representations of individual samples, it
implies that the root cause of ICL-IWL conflict lies in the entangled nature of how Transformers
encode context and sample-level information.

In this work, we hypothesize that the conflict between ICL and IWL can be resolved by explicitly
disentangling the encoding processes for context and sample. To this end, we propose a theoretical
framework that introduces a separate encoding space for the context defined as the task represen-
tation space, in contrast with the standard sample representation space. Notably, under the widely
accepted linear representation hypothesis (Mikolov et al., 2013; Nanda et al., 2023; Park et al.,
2024), we show that the relationship between the sample representation space and the task represen-
tation space can be modeled via a dual-space formulation. Building on this framework, we prove the
completeness of a sample representation space under sufficient training tasks, which could facilitate
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task generalization by ICL. Moreover, we formalize the entangled nature of Transformers’ encod-
ing process-standard softmax attention does not support such a dual-space structure, highlighting a
contrast with linear attention mechanisms commonly adopted in recent theoretical analysis.

Motivated by our analysis, we propose a straightforward yet effective architecture, CoQE. Unlike
standard Transformers, CoQE employs separate pathways to encode context and query samples,
aiming to learn the task representation space and sample representation space, respectively. The
final model output is obtained by computing the inner product between elements from the two spaces
according to the Riesz representation theorem. We conduct extensive experiments on both regression
and few-shot classification tasks. Our results show that CoQE not only achieves lower ICL error than
Transformers in both in-distribution and out-of-distribution scenarios, but also robustly reconciles
ICL and IWL, yielding Pareto improvements for both capabilities under diverse data distributions.

2 PRELIMINARIES

In-context learning setup. The basic setup for analyzing ICL was first introduced by Garg et al.
(2022) and has since been widely adopted (Yadlowsky et al., 2023; Pan et al., 2023). Consider
a distribution DX over an input space X ⊆ Rdx , and let F denote a class of functions over a
distribution DF . For each prompt, we first sample a task f ∼ DF , then draw a set of n input-output
pairs {(xi, yi)}ni=1, where xi

i.i.d.∼ DX and yi = f(xi). These sample pairs serve as context. Then,
we independently generate a query input xq ∼ DX . The final prompt is gathered as a sequence:

P =
(
x1, y1, . . . ,xn, yn,xq

)
.

The ICL capability of a pretrained model Mθ refers to its accuracy to produce predictions ŷq =

Mθ(P) for yq = f(xq), without having explicit knowledge of the current task f and without updat-
ing its parameters.

Chan et al. (2022) extend this setting by introducing few-shot image classification tasks. In this
setup, x represents an encoded image, and F , as a set of classifiers, maps X to a finite label set Y .
The ICL capability refers to the model’s ability to correctly classify a query image xq based on the
image-label pairs provided in the context.

Transformer model. A standard single-head self-attention layer (Vaswani et al., 2017) operates
on an input matrix Z ∈ Rde×L, where L is the sequence length and de the embedding dimension.
Let Q = WQZ, K = WKZ, V = WV Z with WQ,WK ∈ Rdk×de and WV ∈ Rdv×de . The
attention output is

SA(Z) = Z +WO V · softmax

(
K⊤Q√
dk

)
,

where WO ∈ Rde×dv and the softmax is applied column-wise. This operation can be applied to
sequences of arbitrary length, and multi-head attention concatenates several such outputs before a
linear projection.

For the theoretical analysis of ICL, the prompt P is typically re-organized into an embedding matrix:

Z =

(
x1 . . . xn xq

y1 . . . yn 0

)
∈ R(dx+1)×(n+1),

where dx is the input feature dimension. Moreover, they often use a linear self-attention variant
(LSA) obtained by removing the softmax and merging parameters:

LSA(Z) = Z +
1

n
WOV ZZ

⊤WKQZ,

where WOV = WOWV ,WKQ = W⊤
KWQ ∈ R(dx+1)×(dx+1) are trainable, and 1/n is a scaling

constant. The model prediction ŷq for the query is taken as the bottom-right entry of LSA(Z).

Dual space. Before formally introducing our dual-space modeling framework, we first present the
general mathematical definition of the dual space.
Definition 2.1 (Dual space). Let V be a finite-dimensional inner product space over a field F (typ-
ically R or C) with inner product ⟨·, ·⟩. The dual space of V , denoted V ∗, is the set of all linear
functionals from V to F:

V ∗ ≜ {f : V → F | f is linear}. (1)
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For every f ∈ V ∗, there exists a unique vector ω ∈ V , called the Riesz representation of f , such
that

f(v) = ⟨ω, v⟩, ∀v ∈ V.

Let {e1, . . . , en} be the basis of V . The dual basis {e1, . . . , en} ⊂ V ∗ is defined by

ei(ej) = δij , 1 ≤ i, j ≤ n,

where δij is the Kronecker delta.

In the following, we will show that this dual-space formulation can be used to model the relationship
between a task representation space and the model’s sample representation space. Moreover, by the
Riesz representation theorem, elements from the two spaces can be composed via inner product.

3 DUAL-SPACE MODELING FRAMEWORK

In this section, we present our main theoretical results, including the dual-space modeling of the
sample representation space and the task representation space, as well as the resulting implications
for the model’s representation learning and generalization error. Then we turn to the ICL setting and
further discuss how LSA and SA behave differently under our proposed framework.

3.1 TASK REPRESENTATION SPACE

We begin with the widely acknowledged linear representation hypothesis (Mikolov et al., 2013; Park
et al., 2024), from which we formalize the definition of a linear sample representation space.

Definition 3.1 (Linear sample representation space). Let X ⊆ Rdx denote the input space and Y
the label set. A linear sample representation space M ⊆ Rd is a finite-dimensional inner product
space equipped with a mapping ϕ : X → M, such that

1. (Learnability) ϕ is parameterized by a model M and can be learned from data;

2. (Linear Measurement) In the case of regression with Y ⊆ R, there exists a linear transfor-
mation ω such that, given any (x, y) pair, the label can be expressed as

y = ⟨ω, ϕ(x)⟩. (2)

In the case of classification with Y = {0, 1}, the label probability is given by

logitP(y = 1 | x) = ⟨ω, ϕ(x)⟩. (3)

Definition 3.1 formalizes the notion of a sample representation space under the linear representation
hypothesis in the single-task setting. We then extend to the multi-task case, assuming that there
exists a shared linear sample representation space across tasks. Note that this assumption has been
implicitly embedded in a wide range of theoretical and algorithmic work (Caruana, 1997; Hu et al.,
2023; Zhang et al., 2024b). Based on this assumption, we define the corresponding linear task
transformation space. Without loss of generality, we consider only the regression case.

Definition 3.2 (Linear task transformation space). Let F = {f : X → R} denote a task function
space defined over the input space X . We assume that there exists a sample representation space
MF ⊆ Rd, together with a mapping ϕF , such that MF is linear with respect to X and each label
set Yf = {f(x) | x ∈ X}, ∀f ∈ F . A linear task transformation space is then defined as a linear
functional space T = {t : MF → R}, equipped with a mapping ψ : F → T such that for any
f ∈ F , ψ(f) = t satisfying

f(x) = t(ϕF (x)), ∀x ∈ X . (4)

Building upon this foundation, we next introduce a novel perspective: to model the task transforma-
tion space as the dual space of the sample representation space.

Proposition 3.3 (Task-sample duality). Let X be the input space and Yf the multiple label sets
corresponding to each task f ∈ F . Under Definition 3.2, there exists a linear sample representation
space MF and a linear task transformation space T , where T is the dual space of MF , i.e. T =
M∗

F .

3
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Definition 3.4 (Task representation space). Under Proposition 3.3, for each task f ∈ F , ψ(f) ∈ T
admits a unique Riesz representation ωf . The task representation space WF is defined as the set of
all such Riesz representations. Then for any f ∈ F , we have

f(x) = ⟨ωf , ϕF (x)⟩, ∀x ∈ X . (5)

In summary, we map various nonlinear tasks within a multi-task setting to vectors in the task repre-
sentation space, leveraging the linear representation hypothesis, the dual-space formulation, and the
Riesz representation theorem. From the above formulation, we can further define basis representa-
tions and basis transformations, along with the relationship between them.
Definition 3.5 (Basis task representations). Under Proposition 3.3, let {m1, . . . ,md} be a basis of
the sample representation space MF , and let {t1, . . . , td} be the corresponding dual basis of the
task transformation space T . The basis task representations are defined as the Riesz representations
of {t1, . . . , td}, denoted by {ω1, . . . , ωd}, which satisfy

⟨ωi,mj⟩ = δij , 1 ≤ i, j ≤ d. (6)

Thus, every sample representation ϕF (x) can decompose uniquely as ϕF (x) =
∑d

i=1 αi(x)mi,

and every task representation ωf can decompose uniquely as ωf =
∑d

j=1 βjωj . The output can be
given by the bilinear pairing

⟨ωf , ϕF (x)⟩ =
d∑

i=1

αi(x)βi.

Our modeling provides a new insight: in representation learning, defining or identifying a basis for
the sample representation space is a common practice, where each basis often corresponds to an
independent attribute or concept (e.g., gender, identity). However, a natural question arises: why do
certain attributes correspond to basis sample representations, while others do not? Beyond heuristic
judgments about attribute importance, our modeling provides a principled explanation: basis sample
representations and basis task representations are corresponding and mutually defining. In other
words, if an attribute corresponds to a basis sample representation, then it must also correspond to
solving a specific basis task.

Our next Theorem 3.6 shows that, under the dual-space modeling framework, a sufficient set of
tasks guarantees a basis-covering sample representation space. We also provide a generalization
error bound under our modeling framework in Theorem 3.7.
Theorem 3.6 (Completeness of basis representations under task traversal). Under Proposition 3.3,
we assume that a learner with sample representation mapping ϕθ is presented with a task traversal
curriculum C such that: span

{
t | t ∈ C

}
= T . Then, if the learner achieves zero empirical error,

the learned representation mapping ϕθ satisfies: span
{
ϕθ(x) | x ∈ X

}
= MF ; equivalently, each

basis sample representation mi occurs in ϕθ.
Theorem 3.7 (Generalization error bound). Under Proposition 3.3 and Definition 3.4, for any task f
represented by ωf and input x represented by ϕF (x), the predictor is ŷ = ⟨ωf , ϕF (x)⟩. We assume
that (1) ∥ωf∥2 ≤ 1,∀f ∈ F; (2) the feature map is isotropic: for an orthonormal basis {mj}dj=1

of MF , writing ϕF (x) = α(x) ∈ Rd, we have E[α(x)α(x)⊤] = Id; (3) The loss function L(·, ·)
is L-Lipschitz in its first argument and bounded by B. Then for any δ ∈ (0, 1), with probability at
least 1− δ over n i.i.d. samples {(xi, yi)}ni=1 ∼ Df , the following holds simultaneously for all ωf :

E(x,y)∼Df

[
L(ŷ, y)

]
≤ 1

n

n∑
i=1

L(ŷi, yi) + 2L

√
d

n
+ B

√
log(1/δ)

2n
. (7)

3.2 ICL UNDER DUAL-SPACE MODELING FRAMEWORK

In this section, we specialize our modeling framework to the ICL setting, with the goal of for-
malizing the conflation in how Transformers encode context and samples. We first define the task
representation space in ICL, which is induced from the context.
Definition 3.8 (Context-induced task representation in ICL). In the ICL setting, the task repre-
sentation can be specified jointly by two components: (1) a context of labeled examples z1:n =
(z1, . . . , zn) with zi = (xi, yi) ∈ X × Y , and (2) a representation mapping ϕ : X → Rd. That is

ωf ≜ ωf (z1:n, ϕ). (8)
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Definition 3.8 formalizes the idea that, in the ICL setting, the task specified by a prompt is deter-
mined by its context portion. Thus, in our dual-space framework, the encoding space of context
serves as the task representation space. We further show that existing theoretical analyses of ICL
based on LSA architectures are fully compatible with our proposed framework, from which we can
derive a closed form of ωf .
Proposition 3.9 (Closed form of ωf under simplified LSA). Consider an LSA layer applied after a
feature encoder ϕ : X → Rd implemented by an MLP. Suppose the LSA projection matrices WKQ

and WOA are initialized such that

WOV =

(
∗ ∗
0⊤d 1

)
, WKQ =

(
Θ 0d
0⊤d ∗

)
.

Then the final prediction takes the form ŷ = ⟨ωf (z1:n, ϕ), ϕ(xq)⟩, where

ωf (z1:n, ϕ) =
1

n

n∑
i=1

yiΘ
⊤ϕ(xi). (9)

Proposition 3.9 can explain the effectiveness of LSA simplification in analyzing ICL: it implicitly
performs our dual-space modeling between the task representation space and the sample represen-
tation space. However, we argue that it fails to capture the entanglement of standard Transformers
encoding progress, which use the original, unsimplified SA. As we will show in the next theorem,
SA cannot realize such dual-space modeling.
Theorem 3.10 (Entangled structure under general SA). For a standard SA model with softmax-
based attention weights, there does NOT exist a pair of ϕ0 and ω0(z1:n, ϕ0), such that the model
prediction admits the following decomposition:

ŷq = ⟨ω0(z1:n, ϕ0), ϕ0(xq)⟩. (10)

From our dual-space modeling perspective, Theorem 3.10 formalizes the entangled nature of how
Transformers encode context and sample-level information. We posit that this entanglement is the
underlying reason for the observed conflict between ICL and IWL.

4 COQE: A TRANSFORMER WITH SEPARATE CONTEXT-QUERY ENCODING

We have formalized the entangled nature of standard Transformers encoding progress through a
dual-space modeling framework. To address this limitation, we propose a straightforward yet effec-
tive architectural modification: CoQE, a Transformer with separate Context-Query Encoding.

The main idea behind CoQE is to disentangle the encoding of context and query: one dedicated
to learning in the task representation space and the other to learning in the sample representation
space. The CoQE model thus consists of two modules: a shared sample encoder (Esample) and a
dedicated task encoder (Etask), as shown in Figure 1 (b). The sample encoder generates general-
purpose representations for all samples, including the query. We implement it with a token-wise
module, for it should process samples independently without considering context. The task encoder,
on the other hand, operates on the general representations of the context and focuses on producing
the representation of the current task. Thus this module should be contextual and has the capability
to condense sequential information. Finally, the prediction output is obtained by computing the inner
product between the task representation and the query sample representation. Taking the regression
task as an example, the formalization of CoQE output is as follows:

ŷq = ⟨ Etask ( Esample(z1:n) ), Esample(xq) ⟩. (11)
Figure 1 compares the architectures of the Transformer and CoQE. The Transformer also contains
token-wise components like feed-forward networks, and contextual components like multi-head at-
tention modules. When stacked, these modules collectively exhibit contextual behavior, and the final
token output intertwines with the context information in a complex manner during the forward pass.
In contrast, CoQE explicitly separates the contextual and token-wise parts, which are responsible for
learning the task representation space and the sample representation space, respectively. The two
spaces interact through a well-defined inner product according to the Riesz representation theorem.

We aim to evaluate our model across regression and few-shot classification tasks. In the following,
we will give the specific implementation of CoQE under both types of tasks. Notably, due to their
different properties, the task encoder constructs the task representation space in distinct ways.

5
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Sample Encoder 
(token-wise)

Task Encoder
(contextual)

context query

task representation 
space

inner 
product

output

dual

sample representation 
space

(b) CoQE

Feed-forward
(token-wise)

context query

Multi-head Attention 
(contextual)

N×

output

(a) Transformer

Embedding

Figure 1: Comparison of Transformer and CoQE architectures.

4.1 IMPLEMENTATION FOR REGRESSION.

We employ a two-layer ReLU network as the sample encoder of CoQE, and a GPT-2–style Trans-
former as the task encoder. We take the final output token of the task encoder directly as the task
representation induced by the context. The regression output is then computed as the inner product
between it and the query sample representation. For fair comparison, the baseline Transformer is
also equipped with the same two-layer ReLU embedding module.

4.2 IMPLEMENTATION FOR FEW-SHOT CLASSIFICATION.

Transformer

class vectors (modified)

label 0 1 2 3 4 5 6 7

“2” “2” “6”

context embed

Task 
Encoder

class vectors

label 0 1 2 3 4 5 6 7

static

dynamic

noise

Figure 2: task representation space construction
on few-shot classification.

We use a ResNet to encode images input (Chan
et al., 2022), which naturally serves as CoQE’s
sample encoder. We set the embedding dimen-
sion of the ResNet to 512, ensuring sufficient
expressiveness. A fully connected layer follows
the ResNet to reduce the token dimension back
to 64. The task encoder remains a Transformer,
while it constructs the task representation space
in a distinct way from regression. A multi-class
classification task can be regarded as a collec-
tion of sub-tasks that identify each class. Thus,
we let it correspond to a set of task represen-
tations, each of which is associated with one
class. ICL requires producing the task represen-
tations corresponding to the classes in the con-
text, whereas IWL requires static memorization
of all classes. To construct a task representation
set compatible with both, we assign a parameterized vector to each class, representing a static ver-
sion of its task representation.

In each forward pass, the classes appearing in the context are encoded by the task encoder to obtain
their corresponding task representations, as illustrated in Figure 2. These dynamic vectors replace
the corresponding static class vectors, and modified class vectors are used to compute logits for
prediction. The resulting training loss is denoted as Lmod. Additionally, to accelerate the training
of the static class vectors, we compute an additional set of logits from the unmodified class vectors
during training, with the resulting classification loss denoted as Lorig. These logits are not used
during testing. Therefore, the total training loss is Lmod + Lorig.

During experiments, we observed that Lmod tends to converge to Lorig, which means the task encoder
fails to dynamically encode the context over training, and the learning of the task representation
space is restricted to the set of static class vectors. It again reflects that the ICL strategy is transient
and prone to collapsing into a more stable one, i.e., IWL. To prevent this, we add Gaussian noise
to the modified logits during training, with the variance increasing over training steps. The initial

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a) In-distribution testing

Linear Sparse linear 2-layer NN Combination

(b) Out-of-distribution testing

Scaled ScaledScaled Different orthants

Figure 3: Results of regression. We provide optimal baselines for most evaluation settings.

noise follows N (µ0, 1). This trick can be interpreted as indirectly performing random sampling in
the task representation space. Experimental results and further ablation studies are presented later.

5 EXPERIMENTS

In this section, we evaluate the ICL capability, as well as the ICL-IWL compatibility of CoQE across
regression and classification tasks. Additional experimental details are provided in Appendix C.

5.1 REGRESSION

Setup. We adopt a general framework for training models to perform ICL over a function class
F . To construct training prompts, we first sample a task function f ∼ Dtrain

F , then draw k
i.i.d. inputs x1, . . . ,xk ∼ Dtrain

X . The prompt is formed as P = (x1, f(x1), . . . ,xk, f(xk)).
Let Pi denotes the prefix containing the first i input-output examples and the (i + 1)th input:
Pi = (x1, f(x1), . . . ,xi, f(xi),xi+1). The training objective of a model Mθ minimizes the ex-
pected loss over all possible prefixes:

min
θ

EP

[
1

k

k−1∑
i=0

ℓ
(
Mθ(Pi), f(xi+1)

)]
,

where ℓ(·, ·) is a mean squared error (MSE) loss function. At test time, we first sample a test function
f ∼ Dtest

F , then draw j ≤ k − 1 inputs x1, . . . ,xj ∼ Dtest
X , and xq from Dquery to construct the test

prompt: Pj
test = (x1, f(x1), . . . ,xj , f(xj),xq). We evaluate performance still by measuring the

MSE between Mθ(Pj
test) and f(xq).

To compare our CoQE with the standard Transformer, we consider two major evaluation scenarios:
in-distribution (ID) testing and out-of-distribution (OOD) testing. For ID testing, we set Dtrain

X =
Dtest

X = Dquery, and Dtrain
F = Dtest

F . Specifically, we use the following four classes of functions F :
linear functions, sparse linear functions, two-layer ReLU networks and combination functions. The
latter two classes of nonlinear functions allow the model to reduce ICL difficulty by learning task-
invariant representations. Through them, we can empirically validate Theorem 3.6, which shows
the benefits of dual-space modeling for representation learning. For OOD testing, we consider four
different cases of distribution shifts under linear functions. See Appendix C.1 for more setup details.
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Results. In the ID scenario, CoQE consistently achieves lower ICL error than the Transformer
(Figure 3 (a)). For regression on more challenging combination functions, the Transformer exhibits
substantial fluctuations, whereas CoQE attains much smaller error variance. We attribute this to
CoQE’s more effective learning of the sample representation space, and present further results in
Appendix C.1. In the OOD scenario, CoQE also achieves substantially lower error than the Trans-
former across all four tested cases (Figure 3 (b)). Notably, the second case is adapted from Mittal
et al. (2025), who similarly aims to enforce the model to explicitly learn task variables. However,
they found no improvement in OOD performance, contrary to our results. This indicates that sim-
ply introducing task variables is insufficient and highlights the value of our proposed dual-space
modeling and corresponding architecture design.

5.2 FEW-SHOT CLASSIFICATION
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Figure 4: Results under different settings of fac-
tors. The annotations in the figure indicate the set-
tings: (E, L, Pbursty, α).

Setup. To evaluate ICL and IWL abilities un-
der various conditions, we construct prompt se-
quences that each consists of eight image-label
pairs followed by a query image (Chan et al.,
2022). The training objective minimizes the
cross-entropy loss between the model’s predic-
tion and the correct label for the query image.

Training sequences have two key properties
that affect the tradeoff between ICL and IWL:
burstiness and Zipfian exponent. In bursty se-
quences, three out of the eight image-label pairs
in the context share the same class as the query
sample. This setup allows the model to infer
the correct label based on context alone, which
has been found to incentivize ICL while sup-
pressing IWL (Chan et al., 2022). To avoid
repetition biases, bursty sequences additionally
include three image-label pairs from a distinct
distractor class. Pbursty denotes the proportion
of bursty sequences in the training set, while the rest are generated via random sampling. The sec-
ond factor is the Zipfian exponent, which controls the frequency distribution of different classes.
Under the Zipfian distribution, the class probability is defined as p(R = r) ∝ 1/rα, where R is
the rank of the class, and α is the Zipfian exponent. When α = 0, the distribution becomes uni-
form. Chan et al. (2022) observe that when α = 1, a sweet spot emerges, where the model reaches
a tradeoff for both ICL and IWL. During training, we keep image-label mappings fixed.

Test sequences are divided into two kinds, corresponding respectively to the evaluation of ICL and
IWL capability. For ICL, we use sequences with four images from each of two classes unseen in
training, and we set the class labels to either 0 or 1 randomly for each sequence. Accuracy on this
evaluator is measured across 0 and 1 as possible outputs, and chance-level accuracy is 50%. As these
labels are not associated with these images during training, the only way to achieve above-chance
accuracy is to refer back to the context. For IWL, we use sequences where none of the context
images come from the same class as the query, but all of the image-label mappings are the same as
during training. In this case, ICL is not useful, as there are no matching images in context, so the
model must rely on mappings stored in weights. See Appendix C.2 for more setup details.

Model size also affects the ICL-IWL tradeoff. Before evaluating the algorithmic performance,
we make a new finding that model size also strongly affects the ICL-IWL tradeoff in standard Trans-
formers, beyond data distribution factors like burstiness and Zipfian exponent. Specifically, we ex-
amine the number of Transformer layers L and the embedding dimension of the ResNet E. We
observe that, under the same conditions, a 12-layer Transformer exhibits stronger ICL but weaker
IWL compared to a 4-layer Transformer. We suppose that this is due to the Transformer’s inductive
bias toward attending to context, compared to just memorizing context-irrelevant sample informa-
tion. Another interesting finding is that increasing the ResNet embedding dimension from 64 to 512
nearly eliminates the model’s ICL ability while substantially enhancing IWL. Notably, we connect
a fully connected layer after the ResNet to reduce the dimension back to 64 before inputting to the
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(a) Results under different burstiness (b) Results under different Zipfian distribution

CoQE

Transformer

CoQE

Transformer

Figure 5: Learning curves under different data distribution factors.

Transformer, ensuring that the latter’s role remains unchanged. We speculate that the larger ResNet
increases the expressivity of individual tokens, and when a single token is sufficiently expressive to
solve the task, the model tends to ignore the context. This is consistent with Singh et al. (2023)’s ob-
servation that applying ℓ2 regularization to the ResNet can bias the tradeoff toward ICL. Our finding
further highlights the complex intertwining between ICL and IWL in standard Transformers.

Results. Figure 4 presents the ICL and IWL accuracies of Transformers and CoQE under various
factors after 100k training steps. The Transformers fluctuate between ICL and IWL capabilities
across different conditions, whereas our models robustly occupy the upper-right region, indicating a
Pareto improvement in both abilities. Figure 5 shows the learning curves under different values of
Pbursty and Zipfian exponent. We could observe that CoQE’s ICL accuracy rises rapidly at the begin-
ning, but declines slightly between 10k and 30k steps. This behavior aligns with prior findings on

Table 1: Results under differ-
ent noise levels.

ICL IWL

Noise-free 55.12 99.62
µ0 = 3 81.91 95.31
µ0 = 5 91.15 89.30
µ0 = 7 88.22 77.70
µ0 = 9 86.01 72.62

ICL strategy: it emerges quickly and then gradually fades (Singh
et al., 2023). However, under our algorithm, the model quickly
restrains this fading trend and continues to recover steadily. We also
discuss the issue of parameter scale, as presented in Appendix C.2.

Ablation study. We study the effect of Gaussian noise on the
model performance, as shown in Table 1. Without any noise,
the model’s ICL ability ultimately yields entirely to IWL. When
µ0 = 5, the model achieves maximal ICL performance while re-
taining high IWL capability. This is the default noise magnitude
used in our experiments. See Appendix C.2 for more details.

6 DISCUSSION

In this section, we briefly discuss three issues of concern. Firstly, why do large language models
not exhibit a clear imbalance between ICL and IWL? Piantadosi (2014) showed that a Zipfian
distribution of α = 1 closely approximates the empirical distribution of natural language, which
serves as a sweet spot for the tradeoff between ICL and IWL (Chan et al., 2022). On the other
hand, Chan et al. (2025) pointed out that LLMs still face conflicts between ICL and IWL in some
scenarios. Secondly, why is it important to reconcile ICL and IWL under diverse conditions?
Because with the growing demand of multimodal large models (e.g., VLMs, VLAs) for increas-
ingly diverse data distributions, as well as the emergence of new model architectures, relying on the
fortunate coincidence of natural language data distributions is far from sufficient to ensure robust
performance. Thirdly, how can our algorithm scale to larger models and other tasks? The core
of our method can be abstracted as blockwise processing of the input sequence into a context part
and a query part, thereby learning two spaces of different semantic significance. In more general
scenarios, the query may not be limited to the last token but could instead be the user’s explicit
question (Chen et al., 2025; Zong et al., 2025). Therefore, the notion of a sample may also need to
go beyond a single token and be redefined as a sequence-level sample, which we leave for future
work. For typical ICL scenarios where the context provides concrete demonstration examples, we
argue that our algorithm could facilitate the model’s ICL performance. When the context consists
of more general information such as historical cues or task instructions, it can still be beneficial by
helping the model distill relevant information. For pretrained LLMs under the current architecture,
our algorithm can be implemented by adding an auxiliary branch for context processing.
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A RELATED WORK

Theoretical Investigations on ICL Mechanisms. Recent theoretical work has examined how
Transformers perform ICL across various scenarios (Zhang et al., 2024a; Li et al., 2023; Tian et al.,
2023; Nichani et al., 2024; Chen et al., 2024; Wu et al., 2024; Huang & Ge, 2024; Oko et al., 2024;
Liang et al., 2025). These studies typically analyze simplified architectures such as linear self-
attention or query-key-combined formulations. Bu et al. (2025) extends the theoretical analysis to
nonlinear transformers incorporating LayerNorm, though retaining linear self-attention mechanisms.
Some other studies (Zhang et al., 2025b; Ye et al., 2024) conduct analyses from the perspective of
Bayesian model averaging, but they likewise rely on unrealistic assumptions that distort Transformer
architectures for kernel regression. In this paper, we demonstrate the validity of the linear attention
simplification as a special case consistent with our dual-space modeling, while also showing that
the standard softmax self-attention does not support such modeling. The latter serves as the starting
point for our improved architectural design.

Empirical Investigations on ICL Mechanisms. Garg et al. (2022) firstly demonstrated that
Transformer-based ICL can generalize effectively to out-of-distribution (OOD) tasks, leading to
a surge of interest in exploring its generalization behavior (Ahuja & Lopez-Paz, 2023; Kossen et al.,
2024; Pan et al., 2023; Fan et al., 2024). Xiong et al. (2025) showed that LLMs can perform differ-
ent ICL functions during a single inference, while Yadlowsky et al. (2023) and Wang et al. (2025)
revealed that Transformers often face challenges when generalizing to unseen functions. Another
line of studies focuses on the function reference capability of Transformers underlying their ICL
performance. Some work has shown that LLM can implicitly encode task vectors during ICL (Hen-
del et al., 2023; Todd et al., 2024; Guo et al., 2024; Yang et al., 2025; Han et al., 2025). Mittal et al.
(2025) enforced the explicit task variables learning by introducing a bottleneck to the Transformer,
yet found no improvement in OOD performance of ICL, contrary to our results. This indicates that
simply introducing task variables is insufficient and highlights the value of our proposed modeling
of task representation space, along with corresponding architecture design.

Relationship between ICL and IWL. Beyond investigations on the ICL mechanisms, some stud-
ies have found that ICL is not a guaranteed and stable capability of Transformers; rather, it competes
with the model’s inherent in-weight learning (IWL) ability, which relies on information stored in the
weights (Chan et al., 2022; Singh et al., 2023; Reddy, 2024; Panwar et al., 2024). Chan et al. (2022)
examined the impact of different training data distributions on both abilities, finding that burstiness
and skewed distributions significantly affect their tradeoff. Only when the training data follows a
certain distribution can both abilities coexist. Singh et al. (2023) further confirmed the transient na-
ture of ICL, observing that it always fades after emerging and gives way to IWL. They hypothesize
that this phenomenon arises from the competition between the two strategies for the shared model
circuits. Nguyen & Reddy (2025) on the other hand, attributes this to the different relative learning
rates of ICL and IWL, and conducted an analysis on a simplified one-layer transformer model. Chan
et al. (2025) proposed a simple theoretical model, which is a linear combination of an in-weight
learner and an in-context learner. Singh et al. (2025) empirically discovered a more complex coope-
tition relationship between ICL and IWL. However, to date, no work has truly resolved the challenge
of achieving robust coexistence between ICL and IWL.

Linearization in Latent Space. Beyond task-specific vectors, a line of work has examined how
large models internally encode a variety of abstract concepts as linear vectors in latent space, giving
rise to the commonly accepted linear representation hypothesis (Mikolov et al., 2013; Nanda et al.,
2023; Park et al., 2024). Several studies have shown that concepts such as truthfulness (Marks &
Tegmark, 2024), time and space (Gurnee & Tegmark, 2024), and other semantic properties (Dalvi
et al., 2022; Merullo et al., 2024; Ye et al., 2025) can emerge in the model’s latent space, using
linear probes as the primary tool. Additionally, larger models tend to yield more disentangled and
interpretable internal representations (Bricken et al., 2023; Cunningham et al., 2023), and this can
be regarded as evidence of the emergence of a world model within large scale networks (Zhang
et al., 2025a). In this work, we propose the concept of a linear task representation space, grounded
in the linear representational hypothesis. This modeling aligns with empirical observations of task
vectors, and further serves as a theoretical extension and utilization of linearization in the model’s
latent space.
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B PROOFS OF THEORETICAL RESULTS

B.1 PROOF OF PROPOSITION 3.3

For ease of presentation, we first restate the proposition and then introduce its proof.
Proposition B.1 (Task-sample duality). Let X be the input space and Yf the multiple label sets
corresponding to each task f ∈ F . Under Definition 3.2, there exists a linear sample representation
space MF and a linear task transformation space T , where T is the dual space of MF , i.e. T =
M∗

F .

Proof. To prove the proposition, we must show that the linear task transformation space T is equiv-
alent to the dual space of the linear sample representation space MF , denoted as M∗

F . The proof
proceeds by demonstrating mutual inclusion: (1) T ⊆ M∗

F and (2) M∗
F ⊆ T .

Step 1: Proof of T ⊆ M∗
F . Let t be an arbitrary element in the task transformation space T .

According to Definition 3.2, t is a linear function such that

t(m) = ⟨ωt,m⟩, ∀m ∈ MF .

Since t is a linear functional on MF , it is by definition an element of M∗
F . As t was an arbitrary

element of T , it follows that every element in T corresponds to a unique linear functional in M∗
F .

Thus, we have established that T ⊆ M∗
F .

Step 2: Proof of M∗
F ⊆ T . Conversely, let t′ be an arbitrary linear functional in the dual space

M∗
F . By Definition 3.1, MF is a finite-dimensional inner product space. By the Riesz representa-

tion theorem, for any linear functional t′ ∈ M∗
F , there exists a unique vector, let’s call it ωt′ ∈ MF ,

such that for all m ∈ MF :
t′(m) = ⟨ωt′ ,m⟩.

Now, let us define a function ft′ : X → R using this functional t′:

ft′(x) = t′(ϕF (x)) = ⟨ωt′ , ϕF (x)⟩.

This function ft′ has the exact mathematical form of a task function as specified in Definition 3.2.
Therefore, ft′ can be considered a valid task belonging to the task function space F . Definition 3.2
states that for any such task ft′ ∈ F , there exists a unique linear task representation vector, which
we denote ωf , that represents it. This means:

ft′(x) = ⟨ωf , ϕF (x)⟩.

By equating the two expressions for ft′(x), we obtain:

⟨ωt′ , ϕF (x)⟩ = ⟨ωf , ϕF (x)⟩, ∀x ∈ X

This implies that ⟨ωt′ − ωf ,m⟩ = 0 for all m in the image of ϕF . Since the sample representation
space MF is spanned by the image of ϕF , this condition holds for all m ∈ MF . The only vector
orthogonal to every vector in an inner product space is the zero vector. Therefore:

⟨ωt′ − ωf ,m⟩ = 0 =⇒ ωt′ = ωf .

Since ωf corresponds to an element of T , it follows that ωt′ is also corresponds to an element of T ,
and thus t′ ∈ T . As our choice of t′ was arbitrary, we have shown that every linear functional in
M∗

F corresponds to an element in T . Thus, we have established that M∗
F ⊆ T .

B.2 PROOF OF THEOREM 3.6

For ease of presentation, we first restate the theorem and then introduce its proof.
Theorem B.2 (Completeness of basis representations under task traversal). Under Proposition 3.3,
we assume that a learner with sample representation mapping ϕθ is presented with a task traversal
curriculum C such that: span

{
t | t ∈ C

}
= T . Then, if the learner achieves zero empirical error,

the learned representation mapping ϕθ satisfies: span
{
ϕθ(x) | x ∈ X

}
= MF ; equivalently, each

basis sample representation mi occurs in ϕθ.
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Proof. By Proposition 3.3, fix a basis {mi}di=1 of MF and its dual basis {ti}di=1 ⊂ T , satisfying
ti(mj) = ⟨ωi,mj⟩ = δij . For any m ∈ MF write the unique decomposition m =

∑d
i=1 αi(m)mi

and for any t ∈ T write t =
∑d

i=1 βi(t) ti. The bilinear pairing then reduces to

t(m) =

d∑
i=1

αi(m)βi(t). (12)

Let ϕF : X → MF denote the sample representation guaranteed by Definition 3.2, and define the
coordinate vectors

αθ(x) ≜ (α1(ϕθ(x)), . . . , αd(ϕθ(x))) ∈ Rd, α∗(x) ≜ (α1(ϕF (x)), . . . , αd(ϕF (x))) ∈ Rd.

Zero empirical error on every curriculum task t ∈ C means

t(ϕθ(x)) = t(ϕF (x)) for all t ∈ C and all training x.

By linearity of Equation 12 this equality holds for any linear combination of curriculum tasks; hence
it holds for all t ∈ span(C) = T :

t(ϕθ(x)) = t(ϕF (x)), ∀ t ∈ T . (13)

Take in Equation 13 the particular choice t = ti (the i-th dual basis functional). Using ti(m) =
αi(m) from Equation 12, we obtain for every x and every i ∈ [d],

αi(ϕθ(x)) = ti(ϕθ(x)) = ti(ϕF (x)) = αi(ϕF (x)).

Thus αθ(x) = α∗(x) pointwise for all (training) x. Consequently ϕθ(x) and ϕF (x) have identical
coordinates in the basis {mi}di=1 for all x, so

span{ϕθ(x) | x ∈ X} = span{ϕF (x) | x ∈ X}.
Without loss of generality, take MF = span{ϕF (x) | x ∈ X}. Therefore span{ϕθ(x) | x ∈ X} =
MF , proving the first claim.

Finally, since {mi}di=1 is a basis of MF , for each i there exists some x with αi(ϕF (x)) ̸= 0; by the
coordinate equality above, αi(ϕθ(x)) ̸= 0 for the same x. Hence each basis sample representation
mi occurs in ϕθ.

B.3 PROOF OF THEOREM 3.7

For ease of presentation, we first restate the theorem and then introduce its proof.
Theorem B.3 (Generalization error bound). Under Proposition 3.3 and Definition 3.4, for any task f
represented by ωf and input x represented by ϕF (x), the predictor is ŷ = ⟨ωf , ϕF (x)⟩. We assume
that (1) ∥ωf∥2 ≤ 1,∀f ∈ F; (2) the feature map is isotropic: for an orthonormal basis {mj}dj=1

of MF , writing ϕF (x) = α(x) ∈ Rd, we have E[α(x)α(x)⊤] = Id; (3) The loss function L(·, ·)
is L-Lipschitz in its first argument and bounded by B. Then for any δ ∈ (0, 1), with probability at
least 1− δ over n i.i.d. samples {(xi, yi)}ni=1 ∼ Df , the following holds simultaneously for all ωf :

E(x,y)∼Df

[
L(ŷ, y)

]
≤ 1

n

n∑
i=1

L(ŷi, yi) + 2L

√
d

n
+ B

√
log(1/δ)

2n
. (14)

Proof. Let H := {h(x) = ⟨ωf , ϕF (x)⟩ : ∥ωf∥2 ≤ 1} and G := { (x, y) 7→ L(ŷ, y) : ωf ∈
T , ∥ωf∥2 ≤ 1 }. By the standard uniform deviation bound via (empirical) Rademacher complexity,
for any δ ∈ (0, 1), with probability at least 1− δ over the sample,

∀g ∈ G : E[g] ≤ 1

n

n∑
i=1

g(xi, yi) + 2 R̂n(G) + B

√
log(1/δ)

2n
, (15)

where R̂n(G) :=Eσ

[
supg∈G

1
n

∑n
i=1 σig(xi, yi)

]
and σi are i.i.d. Rademacher signs. By the vector-

contraction inequality, because L(·, ·) is L–Lipschitz,

R̂n(G) ≤ L R̂n(H), R̂n(H) := Eσ

[
sup

∥ωf∥≤1

1

n

n∑
i=1

σi⟨ωf , ϕF (xi)⟩

]
. (16)
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For any fixed sample S = {xi}ni=1,

R̂n(H) =
1

n
Eσ

∥∥∥ n∑
i=1

σiϕF (xi)
∥∥∥
2
≤ 1

n

√√√√Eσ

∥∥∥ n∑
i=1

σiϕF (xi)
∥∥∥2
2
=

1

n

√√√√ n∑
i=1

∥ϕF (xi)∥22.

Writing ϕF (xi) = α(xi) ∈ Rd in the fixed orthonormal basis {mj}dj=1, we have ∥ϕF (xi)∥22 =

∥α(xi)∥22 and, by isotropy, E∥α(x)∥22 = tr
(
E[α(x)α(x)⊤]

)
= d. Hence

R̂n(H) ≤
√
d

n
. (17)

Combining the Equations 15 16 17 yields that, with probability at least 1 − δ, for all ωf with
∥ωf∥ ≤ 1,

E(x,y)∼Df
[L(ŷ, y)] ≤ 1

n

n∑
i=1

L(ŷi, yi) + 2L

√
d

n
+ B

√
log(1/δ)

2n
.

This is the desired inequality, and it holds simultaneously for all tasks f (equivalently, all ωf with
∥ωf∥ ≤ 1) by the same uniform bound.

B.4 PROOF OF PROPOSITION 3.9

For ease of presentation, we first restate the proposition and then introduce its proof.

Proposition B.4 (Closed form of ωf under simplified LSA). Consider an LSA layer applied after a
feature encoder ϕ : X → Rd implemented by an MLP. Suppose the LSA projection matrices WKQ

and WOA are initialized such that

WOV =

(
∗ ∗
0⊤d 1

)
, WKQ =

(
Θ 0d
0⊤d ∗

)
.

Then the final prediction takes the form ŷ = ⟨ωf (z1:n, ϕ), ϕ(xq)⟩, where

ωf (z1:n, ϕ) =
1

n

n∑
i=1

yiΘ
⊤ϕ(xi). (18)

Proof. According to Kim & Suzuki (2024), under the conditions of Proposition 3.9, the expression
of ŷ is given as follows:

ŷ =
1

n

n∑
i=1

yiϕ(xi)
⊤Θϕ(xq). (19)

Hence, Proposition 3.9 is readily proved.

B.5 PROOF OF THEOREM 3.10

For ease of presentation, we first restate the theorem and then introduce its proof.

Theorem B.5 (Entangled structure under general SA). For a standard SA model with softmax-based
attention weights, there does NOT exist a pair of ϕ0 and ω0(z1:n, ϕ0), such that the model prediction
admits the following decomposition:

ŷq = ⟨ω0(z1:n, ϕ0), ϕ0(xq)⟩. (20)

Proof. We argue by contradiction. Assume there exists a finite-dimensional feature map ϕ0 and a
context-only coefficient vector ω0(z1:n, ϕ0) such that the identity holds for all contexts and queries.

17
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Step 1: From SA equations to a ratio of exponentials in xq . Let the sequence length be L =
n+1. Stack token embeddings as Z = [z1, . . . , zn, zq] ∈ Rd×L. A single-head self-attention (SA)
layer computes

Q =WQZ, K =WKZ, V =WV Z,

with Q,K ∈ Rdk×L, V ∈ Rdv×L. Denote the i-th key/value columns by ki := K:i = WKzi,
vi := V:i = WV zi, and the query column at position q by q := Q:L = WQzq . The attention
weights for the query position form a probability vector α(q) ∈ ∆n with coordinates

αi(q) =
exp

(
⟨ki, q⟩/

√
dk

)∑L
j=1 exp

(
⟨kj , q⟩/

√
dk

), i = 1, . . . , L. (21)

In the theoretical analysis of ICL, it is common to set zq = [xq, 0]. Without loss of generality, we
assume that the query token embedding depends affinely on the input feature xq ∈ Rdx :

zq = Exxq + rq,

where Ex ∈ Rd×dx is a fixed embedding matrix and rq ∈ Rd could collect position encodings and
other context-independent parts at position q. Then the query vector is also affine in xq:

q = WQzq = WQEx xq +WQrq = Uxq + u0,

with U := WQEx ∈ Rdk×dx and u0 := WQrq ∈ Rdk . Plugging q = Uxq + u0 into the logits in
Equation 21 yields, for each key i,

⟨ki, q⟩√
dk

=
⟨ki, Uxq⟩√

dk
+

⟨ki, u0⟩√
dk

= a⊤i xq + bi(z),

where we define the (query–input) slope and the (context) offset by

ai :=
U⊤ki√
dk

∈ Rdx , bi(z) :=
⟨ki, u0⟩√

dk
∈ R.

Hence, for a fixed context z1:n (which fixes all ki and u0), the attention weights are softmax of affine
functions of xq:

αi(xq; z) =
exp

(
a⊤i xq + bi(z)

)∑L
j=1 exp

(
a⊤j xq + bj(z)

), i = 1, . . . , L. (22)

The SA output at the query position is hq = zq + WO

∑L
i=1 αi(xq; z) vi. For a fixed linear

predictor w ∈ Rd (or equivalently choosing a fixed output coordinate), the scalar prediction is

ŷq(xq) = w⊤hq = w⊤zq︸ ︷︷ ︸
affine in xq

+

L∑
i=1

(
w⊤WOvi

)︸ ︷︷ ︸
:= γi(z)

αi(xq; z). (23)

If we choose w orthogonal to Im(Ex) (always possible unless Ex = 0), then w⊤zq = w⊤(Exxq +
rq) = w⊤rq is a context-only constant; denote c(z) := w⊤rq . With γ(z) := (γ1(z), . . . , γL(z))

⊤,
Equation 23 simplifies to

ŷq(xq) = c(z) + γ(z)⊤α(xq; z), (24)

where α(·; z) is given by the ratio-of-exponentials form in Equation 22. This exhibits the claimed
dependence of ŷq on xq through a softmax over affine functions of xq .

Step 2: A two-key reduction yields a linearly independent logistic family. Specialize to dx = 1
and one context keys (n = 1) with a1 ̸= a2. ChooseWO, V so that c(z) ≡ 0 and γ1(z) = 1, γ2(z) =
0. Then Equation 24 reduces to

ŷq(xq) =
exp(a1xq + b1(z))

exp(a1xq + b1(z)) + exp(a2xq + b2(z))
=

1

1 + t(z) e−axq
,
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where a := a1 − a2 ̸= 0 and t(z) := exp
(
b2(z)− b1(z)

)
> 0. As the context varies, t(z) can take

arbitrarily many distinct positive values, so SA realizes the one-parameter family of functions

F =
{
ft(x) :=

1

1 + te−ax : t > 0
}
.

Fix distinct t1, . . . , tm > 0. Suppose there exist scalars λ1, . . . , λm with
∑m

i=1 λifti(x) ≡ 0 for
all x ∈ R. Multiplying both sides by

∏m
i=1(1 + tie

−ax) and letting s = e−ax gives the polynomial
identity

m∑
i=1

λi
∏
j ̸=i

(1 + tjs) ≡ 0 for all s > 0.

A polynomial that vanishes on an infinite set is identically zero; hence the identity holds for all
s ∈ R. Evaluating at s = −1/tk yields

λk
∏
j ̸=k

(
1− tj

tk

)
= 0.

Since the ti are distinct, each product is nonzero, forcing λk = 0 for all k. Thus ft1 , . . . , ftm are
linearly independent. Consequently, the linear span of F is infinite-dimensional.

Step 3: Contradiction with any finite-dimensional bilinear decomposition. If the bilinear de-
composition ŷq(xq) = ⟨ω0(z), ϕ0(xq)⟩ held with a fixed feature map ϕ0 : R → Rd (independent
of the context), then for all contexts the functions xq 7→ ŷq(xq) would lie in the d-dimensional
linear span of the coordinate functions of ϕ0. However, Step 2 shows that by varying the context,
SA realizes an infinite set F of pairwise linearly independent functions in x, which cannot be con-
tained in any finite-dimensional linear subspace. This contradiction rules out the existence of such
(ϕ0, ω0).

C EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

In this part of the appendix, we provide detailed descriptions of the experiments in the main text and
include additional experimental results.

C.1 REGRESSION

Setup details. We consider two major evaluation scenarios for regression: in-distribution (ID)
testing and out-of-distribution (OOD) testing. In the ID scenario, we set Dtrain

X = Dtest
X = Dquery, and

Dtrain
F = Dtest

F . Specifically, we use the following four classes of functions F :

• Linear functions: F = {f | f(x) = w⊤x, w ∈ Rd}, where d = 10. We sample
x1, . . . ,xj ,xq and w independently from the isotropic Gaussian distribution N (0, Id),
then compute f(xi) = w⊤xi to construct the prompt. In this setting we use the least
squares estimator as the optimal baseline.

• Sparse linear functions: F = {f | f(x) = w⊤x, w ∈ Rd, ∥w∥0 ≤ s}, where d = 10 and
s = 3. We also sample x1, . . . ,xj ,xq and w independently from N (0, Id), and then zero
out all but s coordinates of w uniformly at random. We use the least squares estimator and
Lasso, which leverages sparsity with an ℓ1-norm regularizer as baselines.

• Two-layer ReLU neural networks: F = {f | f(x) =
∑h

i=1 ai σ(w⊤
i x), ai ∈ R, wi ∈

Rd}, where σ(z) = max{0, z} is the ReLU activation function, and d = 5, h = 10. We
sample xis and xq from N (0, Id), along with network parameters ais from N (0, 2/h). We
sample wis from N (0, Id), and share them across all tasks in F . The baseline is a two-layer
neural network of the same architecture trained on in-context examples using Adam.

• Combination functions: F = {f | f(x) = w⊤Φ(x), w ∈ R5}, where Φ
is an element-wise combination function. For x = [ x1, x2, x3, x4, x5 ], Φ(x) =
[ |x1|, x2

2, x33, cos(πx4), e0.2 x5 ]⊤. We sample xis, xq and w from N (0, I5) indepen-
dently. In this setting, there is no naturally optimal baseline, so we compare only with the
Transformer.
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Figure 6: The 5-dimensional sample representation space learned by CoQE for the combination
functions.

The latter two classes of nonlinear functions allow the model to reduce ICL difficulty through rep-
resentation learning, by learning task-invariant wis or Φ.

In the OOD scenario, we consider four different cases of distributional shifts under linear functions.

• Dtrain
X ̸= Dtest

X = Dquery. We consider the setting where the prompt inputs xis’ scale between
training and testing is different. We scale them by a factor of 0.8 or 1.2.

• Dtrain
X = Dtest

X ̸= Dquery. We sample the context examples from the same distribution
as at training time, but sample xq from a Gaussian distribution with 3× higher standard
deviation.

• Dtest
X ̸= Dtrain

X = Dquery. We fix the sign of each coordinate to be randomly positive or
negative for all prompt inputs xis, and draw xq from N (0, I) as before.

• Dtrain
F ̸= Dtest

F . We consider scaling the weight vector by a factor of 0.8 or 1.2, to capture
shifts of task functions.

Through the above diverse evaluation settings, we comprehensively demonstrate that CoQE consis-
tently exhibits stronger ICL capability than a standard Transformer of comparable size on regression
tasks.

Implementation details. We use Transformer architectures from the GPT-2 family (Radford et al.,
2018) as implemented by HuggingFace (Wolf et al., 2020). Specifically, the Transformer baseline
we use is configured with an embedding dimension of 64, 3 layers, and 2 attention heads, resulting
in a total of 0.2M parameters. The task encoder of CoQE uses the exact same Transformer configu-
ration. The representation encoder of CoQE consists of a two-layer ReLU network, implemented as
a linear projection, followed by a ReLU activation, a LayerNorm, and a second linear layer. For fair
comparison, the baseline Transformer’s embedding module uses the exact same two-layer ReLU
network. During training across the four classes of functions, we use a batch size of 64 and a learn-
ing rate of 5e − 5. For the three tasks except combination functions, models are trained for 1× 105

steps, while the combination task is trained for 2 × 105 steps due to its increased difficulty. All
experiments are conducted on an NVIDIA RTX 4090 GPU.

Additional results on representation learning. Our Theorem 3.6 shows that under the dual-space
modeling framework, a sufficient set of tasks guarantees a basis-covering sample representation
space that the model learns. For empirical validation, we design the task type of two-layer ReLU
networks and combination functions, whose different task functions share a common sample repre-
sentation space in their construction. Figure 3 (a) shows that CoQE indeed achieves a smaller ICL
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Figure 7: Illustration of the experimental setup for the few-shot classification.

error on these tasks. Furthermore, under the combination functions task, we set the sample represen-
tation space dimension of CoQE to 5, matching that of Φ, and directly visualize the 5-dimensional
sample representation space learned by CoQE after training (Figure 6). From the figure, we can
observe that the five dimensions appear to differentiate in a manner close to the respective trans-
formations of the five dimensions of Φ. Although, due to the equivalence of sample representation
spaces under linear transformations, i.e., f = w⊤Φ(x) = w⊤H−1 ·HΦ(x) whereH denotes an ar-
bitrary invertible matrix, it is essentially impossible for the model to learn Φ with perfectly identical
scale and shape. The current differentiation can be regarded as another empirical proof of Theo-
rem 3.6 that our dual-modeling could facilitate learning of the basis-covering sample representation
space.

C.2 FEW-SHOT CLASSIFICATION

Setup details. To evaluate ICL and IWL abilities under various conditions, we use a synthetic few-
shot classification task based on the Omniglot dataset (Lake et al., 2015). The dataset contains 1, 623
character classes, each with 20 samples. Figure 7 provides an illustration of the experimental setup
for the few-shot classification, including the overall pipeline, sequences for training, and sequences
for testing.

Implementation details. In our experiments, we employ ResNets of two sizes (with embedding
dimensionsE = 64 andE = 512) to encode images. Both architectures consist of four groups, each
containing two residual blocks. The difference lies in the embedding dimensions of each group: for
the E = 64 ResNet, the four groups produce embeddings of sizes 16, 32, 32, and 64, respectively;
for the E = 512 ResNet, the sizes are 64, 128, 256, and 512. Although a fully connected layer is
appended to theE = 512 ResNet to project the final embedding dimension back to 64 before feeding
it into the Transformer, it clearly possesses a much stronger capacity for extracting visual sample
representations. As a result, the resulting embedding tokens are more expressive. For CoQE, we
find that the E = 64 ResNet is insufficient for the sample encoder, and therefore adopt the E = 512
variant. We also employ two Transformer configurations with different layers: L = 4 and L = 12.
Both variants use an embedding dimension of 64 and 8 attention heads. We have shown that CoQE
with only an L = 4 Transformer in the task encoder, can match the ICL and IWL performance of an
L = 12 Transformer. In our experiments, a baseline Transformer with E = 64 and L = 12 contains
approximately 0.9M parameters, while CoQE with E = 512 and L = 4 has 2.0M parameters.

When training CoQE, we add Gaussian noise to the modified logits to prevent the task encoder’s
output from collapsing to a static vector. Specifically, the initial noise is sampled from N (µ0, 1),
and both the mean and standard deviation are incremented by 1 every 104 training steps. During
training of baseline Transformers and CoQE, we use a batch size of 24, a learning rate of 1e − 4,
and train for 1× 105 steps. All experiments are conducted on 8× NVIDIA V100 GPUs.
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Table 2: Comparison of model configurations and performance with Pbursty = 0.9 and α = 1.

Model E L #Param ICL IWL

Transformer 64 12 0.9M 84.12 64.02
CoQE 256 4 1.0M 89.55 82.02
CoQE 512 4 2.0M 91.71 89.94

Additional results on parameter scale. As shown above, the only Transformer that can achieve a
tradeoff of ICL and IWL has the configurationsE = 64 and L = 12, under the data distribution with
Pbursty = 0.9 and α = 1. CoQE with E = 512 and L = 4 achieves significantly better performance
than the standard Transformer with E = 64 and L = 12 under all training data distributions, but
with a larger number of parameters. To demonstrate the effectiveness of our method under the same
parameter scale as the Transformer, we consider CoQE with E = 256 and L = 4. Specifically, the
embedding sizes of its four ResNet groups are 64, 128, 128, 256, resulting in a total model size of
1.0M parameters. Under the data distribution of the sweep spot, the results are shown in Table 2.
It’s obvious that, under the same parameter scale, CoQE still exhibits significantly superior ICL and
IWL performance.

Ablation study. We present the training curves of CoQE under different levels of noise (Fig-
ure 8). It is evident that, in the absence of noise, the model’s ICL capability rapidly decays after an
initial emergence, accompanied by a similarly rapid increase in IWL performance. Although this
observation is not made under a standard Transformer model, we hypothesize that the underlying
phenomenon extends beyond model architecture, reflecting the intrinsic properties of the two strate-
gies. ICL is a lightweight, dynamic strategy, whereas IWL is more training-intensive but ultimately
more stable. In standard Transformers, where the two strategies are difficult to co-exist, training
often leads to a transition from ICL to IWL. In contrast, CoQE enables robust coexistence of both
strategies through explicit modeling and learning of the task representation space, as well as the use
of Gaussian noise to isolate the task-transformations associated with each strategy.
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Figure 8: Learning curves under different noise levels

D THE USE OF LARGE LANGUAGE MODELS

In this work, we employed LLMs in a limited capacity to support writing and presentation. Specifi-
cally, we used an LLM to help with grammar correction, linguistic polishing, as well as typesetting
tables in the appropriate style. All core research contributions were entirely carried out by the au-
thors without LLM involvement.
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