

000 001 002 003 004 005 RECONCILING IN-CONTEXT AND IN-WEIGHT LEARN- 006 ING: A DUAL-SPACE MODELING PERSPECTIVE 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ABSTRACT

In-context learning (ICL) is a valuable capability exhibited by Transformers pre-trained on diverse sequence tasks. However, prior studies have observed that ICL often exhibits a conflict with the model’s inherent in-weight learning (IWL) capability. In this work, we aim to reconcile ICL and IWL by disentangling the model’s encoding spaces for context and input samples. To do so, we first propose a dual-space modeling framework, explicitly modeling a task representation space via the dual space of the sample representation space. Such a dual-space structure can be derived from the linear representation hypothesis and, as we theoretically prove, is conducive to ICL by representation learning. Furthermore, we show that the standard Transformer architecture with softmax self-attention is inherently limited in realizing this structure. Building on this insight, we introduce CoQE, a Transformer architecture with separate context-query encoding, to realize the disentanglement between context and sample representations. Through experiments on both regression and classification tasks, we demonstrate that CoQE not only achieves lower ICL error compared to the standard Transformers, but also successfully reconciles ICL and IWL under diverse data distributions.

1 INTRODUCTION

In recent years, large-scale models based on the Transformer architecture have demonstrated remarkable capabilities across language (Brown et al., 2020; Guo et al., 2025), vision (Achiam et al., 2023; Maaz et al., 2024), and robotics (Driess et al., 2023; Zitkovich et al., 2023). Among these capabilities, the in-context learning (ICL) ability has drawn increasing attention, as it offers a general paradigm for task generalization. ICL refers to the capability of a pretrained Transformer model to solve previously unseen tasks by using demonstration examples in the prompt—without updating its parameters. In contrast, in-weight learning (IWL) characterizes the conventional ability of a model to recall the memory stored in weights. An ideal model would seamlessly integrate both capabilities: relying on memory to handle training tasks, while adapting to new tasks through contextual cues.

However, recent studies suggest that there exists an inherent conflict between ICL and IWL (Park et al., 2025; Nguyen & Reddy, 2025). This leads to a notable performance degradation when the demonstration examples deviate from the training distribution (Chan et al., 2025), thereby limiting the generalization ability of ICL. How to eliminate this conflict is thus a valuable question. Singh et al. (2023; 2025) suggested that their conflict may stem from competition between the two intertwined capabilities for shared model circuits during training. Since ICL can be viewed as a context-based inference strategy, whereas IWL relies on representations of individual samples, it implies that the root cause of ICL-IWL conflict lies in the entangled nature of how Transformers encode context and sample-level information.

In this work, we hypothesize that the conflict between ICL and IWL can be resolved by explicitly disentangling the encoding processes for context and sample. To this end, we propose a theoretical framework that introduces a separate encoding space for the context defined as the *task representation space*, in contrast with the standard *sample representation space*. Notably, under the widely accepted linear representation hypothesis (Mikolov et al., 2013; Nanda et al., 2023; Park et al., 2024), we show that the relationship between the sample representation space and the task representation space can be modeled via a *dual-space* formulation. Building on this framework, we prove the completeness of a sample representation space under sufficient training tasks, which could facilitate

task generalization by ICL. Moreover, we formalize the entangled nature of Transformers' encoding process-standard softmax attention does not support such a dual-space structure, highlighting a contrast with linear attention mechanisms commonly adopted in recent theoretical analysis.

Motivated by our analysis, we propose a straightforward yet effective architecture, CoQE. Unlike standard Transformers, CoQE employs separate pathways to encode context and query samples, aiming to learn the task representation space and sample representation space, respectively. The final model output is obtained by computing the inner product between elements from the two spaces according to the Riesz representation theorem. We conduct extensive experiments on both regression and few-shot classification tasks. Our results show that CoQE not only achieves lower ICL error than Transformers in both in-distribution and out-of-distribution scenarios, but also robustly reconciles ICL and IWL, yielding Pareto improvements for both capabilities under diverse data distributions.

2 PRELIMINARIES

In-context learning setup. The basic setup for analyzing ICL was first introduced by Garg et al. (2022) and has since been widely adopted (Yadlowsky et al., 2023; Pan et al., 2023). Consider a distribution $\mathcal{D}_{\mathcal{X}}$ over an input space $\mathcal{X} \subseteq \mathbb{R}^{d_x}$, and let \mathcal{F} denote a class of functions over a distribution $\mathcal{D}_{\mathcal{F}}$. For each prompt, we first sample a task $f \sim \mathcal{D}_{\mathcal{F}}$, then draw a set of n input-output pairs $\{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^n$, where $\mathbf{x}_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{D}_{\mathcal{X}}$ and $\mathbf{y}_i = f(\mathbf{x}_i)$. These sample pairs serve as context. Then, we independently generate a query input $\mathbf{x}_q \sim \mathcal{D}_{\mathcal{X}}$. The final prompt is gathered as a sequence:

$$\mathcal{P} = (\mathbf{x}_1, \mathbf{y}_1, \dots, \mathbf{x}_n, \mathbf{y}_n, \mathbf{x}_q).$$

The ICL capability of a pretrained model \mathbb{M}_{θ} refers to its accuracy to produce predictions $\hat{\mathbf{y}}_q = \mathbb{M}_{\theta}(\mathcal{P})$ for $\mathbf{y}_q = f(\mathbf{x}_q)$, without having explicit knowledge of the current task f and without updating its parameters.

Chan et al. (2022) extend this setting by introducing few-shot image classification tasks. In this setup, \mathbf{x} represents an encoded image, and \mathcal{F} , as a set of classifiers, maps \mathcal{X} to a finite label set \mathcal{Y} . The ICL capability refers to the model's ability to correctly classify a query image \mathbf{x}_q based on the image-label pairs provided in the context.

Transformer model. A standard single-head self-attention layer (Vaswani et al., 2017) operates on an input matrix $Z \in \mathbb{R}^{d_e \times L}$, where L is the sequence length and d_e the embedding dimension. Let $Q = W_Q Z$, $K = W_K Z$, $V = W_V Z$ with $W_Q, W_K \in \mathbb{R}^{d_k \times d_e}$ and $W_V \in \mathbb{R}^{d_v \times d_e}$. The attention output is

$$\text{SA}(Z) = Z + W_O V \cdot \text{softmax}\left(\frac{K^T Q}{\sqrt{d_k}}\right),$$

where $W_O \in \mathbb{R}^{d_e \times d_v}$ and the softmax is applied column-wise. This operation can be applied to sequences of arbitrary length, and multi-head attention concatenates several such outputs before a linear projection.

For the theoretical analysis of ICL, the prompt \mathcal{P} is typically re-organized into an embedding matrix:

$$Z = \begin{pmatrix} \mathbf{x}_1 & \dots & \mathbf{x}_n & \mathbf{x}_q \\ \mathbf{y}_1 & \dots & \mathbf{y}_n & 0 \end{pmatrix} \in \mathbb{R}^{(d_x+1) \times (n+1)},$$

where d_x is the input feature dimension. Moreover, they often use a linear self-attention variant (LSA) obtained by removing the softmax and merging parameters:

$$\text{LSA}(Z) = Z + \frac{1}{n} W_O V Z Z^T W_K Q,$$

where $W_O V = W_O W_V$, $W_K Q = W_K^T W_Q \in \mathbb{R}^{(d_x+1) \times (d_x+1)}$ are trainable, and $1/n$ is a scaling constant. The model prediction $\hat{\mathbf{y}}_q$ for the query is taken as the bottom-right entry of $\text{LSA}(Z)$.

Dual space. Before formally introducing our dual-space modeling framework, we first present the general mathematical definition of the dual space.

Definition 2.1 (Dual space). *Let V be a finite-dimensional inner product space over a field \mathbb{F} (typically \mathbb{R} or \mathbb{C}) with inner product $\langle \cdot, \cdot \rangle$. The dual space of V , denoted V^* , is the set of all linear functionals from V to \mathbb{F} :*

$$V^* \triangleq \{f : V \rightarrow \mathbb{F} \mid f \text{ is linear}\}. \quad (1)$$

108 For every $f \in V^*$, there exists a unique vector $\omega \in V$, called the Riesz representation of f , such
 109 that

$$110 \quad f(v) = \langle \omega, v \rangle, \quad \forall v \in V.$$

111 Let $\{e_1, \dots, e_n\}$ be the basis of V . The dual basis $\{e^1, \dots, e^n\} \subset V^*$ is defined by
 112

$$113 \quad e^i(e_j) = \delta_{ij}, \quad 1 \leq i, j \leq n,$$

114 where δ_{ij} is the Kronecker delta.
 115

116 In the following, we will show that this dual-space formulation can be used to model the relationship
 117 between a task representation space and the model’s sample representation space. Moreover, by the
 118 Riesz representation theorem, elements from the two spaces can be composed via inner product.
 119

120 3 DUAL-SPACE MODELING FRAMEWORK

122 In this section, we present our main theoretical results, including the dual-space modeling of the
 123 sample representation space and the task representation space, as well as the resulting implications
 124 for the model’s representation learning and generalization error. Then we turn to the ICL setting and
 125 further discuss how LSA and SA behave differently under our proposed framework.
 126

127 3.1 TASK REPRESENTATION SPACE

129 We begin with the widely acknowledged linear representation hypothesis (Mikolov et al., 2013; Park
 130 et al., 2024), from which we formalize the definition of a linear sample representation space.
 131

132 **Definition 3.1** (Linear sample representation space). *Let $\mathcal{X} \subseteq \mathbb{R}^{d_x}$ denote the input space and \mathcal{Y}
 133 the label set. A linear sample representation space $\mathcal{M} \subseteq \mathbb{R}^d$ is a finite-dimensional inner product
 134 space equipped with a mapping $\phi : \mathcal{X} \rightarrow \mathcal{M}$, such that*

- 135 1. (Learnability) ϕ is parameterized by a model \mathbb{M} and can be learned from data;
- 136 2. (Linear Measurement) In the case of regression with $\mathcal{Y} \subseteq \mathbb{R}$, there exists a linear transfor-
 137 mation ω such that, given any (\mathbf{x}, y) pair, the label can be expressed as

$$138 \quad y = \langle \omega, \phi(\mathbf{x}) \rangle. \quad (2)$$

140 In the case of classification with $\mathcal{Y} = \{0, 1\}$, the label probability is given by

$$141 \quad \text{logit}\mathbb{P}(y = 1 \mid \mathbf{x}) = \langle \omega, \phi(\mathbf{x}) \rangle. \quad (3)$$

143 Definition 3.1 formalizes the notion of a sample representation space under the linear representation
 144 hypothesis in the single-task setting. We then extend to the multi-task case, assuming that there
 145 exists a shared linear sample representation space across tasks. Note that this assumption has been
 146 implicitly embedded in a wide range of theoretical and algorithmic work (Caruana, 1997; Hu et al.,
 147 2023; Zhang et al., 2024b). Based on this assumption, we define the corresponding linear task
 148 transformation space. Without loss of generality, we consider only the regression case.
 149

150 **Definition 3.2** (Linear task transformation space). *Let $\mathcal{F} = \{f : \mathcal{X} \rightarrow \mathbb{R}\}$ denote a task function
 151 space defined over the input space \mathcal{X} . We assume that there exists a sample representation space
 152 $\mathcal{M}_{\mathcal{F}} \subseteq \mathbb{R}^d$, together with a mapping $\phi_{\mathcal{F}}$, such that $\mathcal{M}_{\mathcal{F}}$ is linear with respect to \mathcal{X} and each label
 153 set $\mathcal{Y}_f = \{f(\mathbf{x}) \mid \mathbf{x} \in \mathcal{X}\}$, $\forall f \in \mathcal{F}$. A linear task transformation space is then defined as a linear
 154 functional space $\mathcal{T} = \{t : \mathcal{M}_{\mathcal{F}} \rightarrow \mathbb{R}\}$, equipped with a mapping $\psi : \mathcal{F} \rightarrow \mathcal{T}$ such that for any
 $f \in \mathcal{F}$, $\psi(f) = t$ satisfying*

$$155 \quad f(\mathbf{x}) = t(\phi_{\mathcal{F}}(\mathbf{x})), \quad \forall \mathbf{x} \in \mathcal{X}. \quad (4)$$

157 Building upon this foundation, we next introduce a novel perspective: to model the task transforma-
 158 tion space as the dual space of the sample representation space.
 159

160 **Proposition 3.3** (Task-sample duality). *Let \mathcal{X} be the input space and \mathcal{Y}_f the multiple label sets
 161 corresponding to each task $f \in \mathcal{F}$. Under Definition 3.2, there exists a linear sample representation
 162 space $\mathcal{M}_{\mathcal{F}}$ and a linear task transformation space \mathcal{T} , where \mathcal{T} is the dual space of $\mathcal{M}_{\mathcal{F}}$, i.e. $\mathcal{T} =$
 $\mathcal{M}_{\mathcal{F}}^*$.*

162 **Definition 3.4** (Task representation space). *Under Proposition 3.3, for each task $f \in \mathcal{F}$, $\psi(f) \in \mathcal{T}$ admits a unique Riesz representation ω_f . The task representation space $\mathcal{W}_{\mathcal{F}}$ is defined as the set of all such Riesz representations. Then for any $f \in \mathcal{F}$, we have*

$$165 \quad f(\mathbf{x}) = \langle \omega_f, \phi_{\mathcal{F}}(\mathbf{x}) \rangle, \quad \forall \mathbf{x} \in \mathcal{X}. \quad (5)$$

167 In summary, we map various nonlinear tasks within a multi-task setting to vectors in the task representation space, leveraging the linear representation hypothesis, the dual-space formulation, and the 168 Riesz representation theorem. From the above formulation, we can further define basis representations 169 and basis transformations, along with the relationship between them.

171 **Definition 3.5** (Basis task representations). *Under Proposition 3.3, let $\{m_1, \dots, m_d\}$ be a basis of 172 the sample representation space $\mathcal{M}_{\mathcal{F}}$, and let $\{t_1, \dots, t_d\}$ be the corresponding dual basis of the 173 task transformation space \mathcal{T} . The basis task representations are defined as the Riesz representations 174 of $\{t_1, \dots, t_d\}$, denoted by $\{\omega_1, \dots, \omega_d\}$, which satisfy*

$$175 \quad \langle \omega_i, m_j \rangle = \delta_{ij}, \quad 1 \leq i, j \leq d. \quad (6)$$

177 Thus, every sample representation $\phi_{\mathcal{F}}(\mathbf{x})$ can decompose uniquely as $\phi_{\mathcal{F}}(\mathbf{x}) = \sum_{i=1}^d \alpha_i(\mathbf{x})m_i$, 178 and every task representation ω_f can decompose uniquely as $\omega_f = \sum_{j=1}^d \beta_j \omega_j$. The output can be 179 given by the bilinear pairing

$$180 \quad \langle \omega_f, \phi_{\mathcal{F}}(\mathbf{x}) \rangle = \sum_{i=1}^d \alpha_i(\mathbf{x})\beta_i.$$

182 Our modeling provides a new insight: in representation learning, defining or identifying a basis for 183 the sample representation space is a common practice, where each basis often corresponds to an 184 independent attribute or concept (e.g., gender, identity). However, a natural question arises: why do 185 certain attributes correspond to basis sample representations, while others do not? Beyond heuristic 186 judgments about attribute importance, our modeling provides a principled explanation: basis sample 187 representations and basis task representations are corresponding and mutually defining. In other 188 words, if an attribute corresponds to a basis sample representation, then it must also correspond to 189 solving a specific basis task.

190 Our next Theorem 3.6 shows that, under the dual-space modeling framework, a sufficient set of 191 tasks guarantees a basis-covering sample representation space. We also provide a generalization 192 error bound under our modeling framework in Theorem 3.7.

193 **Theorem 3.6** (Completeness of basis representations under task traversal). *Under Proposition 3.3, 194 we assume that a learner with sample representation mapping ϕ_{θ} is presented with a task traversal 195 curriculum \mathcal{C} such that: $\text{span}\{t \mid t \in \mathcal{C}\} = \mathcal{T}$. Then, if the learner achieves zero empirical error, 196 the learned representation mapping ϕ_{θ} satisfies: $\text{span}\{\phi_{\theta}(\mathbf{x}) \mid \mathbf{x} \in \mathcal{X}\} = \mathcal{M}_{\mathcal{F}}$; equivalently, each 197 basis sample representation m_i occurs in ϕ_{θ} .*

198 **Theorem 3.7** (Generalization error bound). *Under Proposition 3.3 and Definition 3.4, for any task f 199 represented by ω_f and input \mathbf{x} represented by $\phi_{\mathcal{F}}(\mathbf{x})$, the predictor is $\hat{y} = \langle \omega_f, \phi_{\mathcal{F}}(\mathbf{x}) \rangle$. We assume 200 that (1) $\|\omega_f\|_2 \leq 1, \forall f \in \mathcal{F}$; (2) the feature map is isotropic: for an orthonormal basis $\{m_j\}_{j=1}^d$ 201 of $\mathcal{M}_{\mathcal{F}}$, writing $\phi_{\mathcal{F}}(\mathbf{x}) = \alpha(\mathbf{x}) \in \mathbb{R}^d$, we have $\mathbb{E}[\alpha(\mathbf{x})\alpha(\mathbf{x})^\top] = I_d$; (3) The loss function $\mathcal{L}(\cdot, \cdot)$ 202 is L -Lipschitz in its first argument and bounded by B . Then for any $\delta \in (0, 1)$, with probability at 203 least $1 - \delta$ over n i.i.d. samples $\{(\mathbf{x}_i, y_i)\}_{i=1}^n \sim \mathcal{D}_f$, the following holds simultaneously for all ω_f :*

$$204 \quad \mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{D}_f} [\mathcal{L}(\hat{y}, y)] \leq \frac{1}{n} \sum_{i=1}^n \mathcal{L}(\hat{y}_i, y_i) + 2L\sqrt{\frac{d}{n}} + B\sqrt{\frac{\log(1/\delta)}{2n}}. \quad (7)$$

208 3.2 ICL UNDER DUAL-SPACE MODELING FRAMEWORK

209 In this section, we specialize our modeling framework to the ICL setting, with the goal of 210 formalizing the conflation in how Transformers encode context and samples. We first define the task 211 representation space in ICL, which is induced from the context.

213 **Definition 3.8** (Context-induced task representation in ICL). *In the ICL setting, the task representation 214 can be specified jointly by two components: (1) a context of labeled examples $\mathbf{z}_{1:n} = (\mathbf{z}_1, \dots, \mathbf{z}_n)$ with $\mathbf{z}_i = (\mathbf{x}_i, y_i) \in \mathcal{X} \times \mathcal{Y}$, and (2) a representation mapping $\phi : \mathcal{X} \rightarrow \mathbb{R}^d$. That is*

$$215 \quad \omega_f \triangleq \omega_f(\mathbf{z}_{1:n}, \phi). \quad (8)$$

216 Definition 3.8 formalizes the idea that, in the ICL setting, the task specified by a prompt is deter-
 217 mined by its context portion. Thus, in our dual-space framework, the encoding space of context
 218 serves as the task representation space. We further show that existing theoretical analyses of ICL
 219 based on LSA architectures are fully compatible with our proposed framework, from which we can
 220 derive a closed form of ω_f .

221 **Proposition 3.9** (Closed form of ω_f under simplified LSA). *Consider an LSA layer applied after a
 222 feature encoder $\phi : \mathcal{X} \rightarrow \mathbb{R}^d$ implemented by an MLP. Suppose the LSA projection matrices W_{KQ}
 223 and W_{OA} are initialized such that*

$$224 \quad W_{OV} = \begin{pmatrix} * & * \\ 0_d^\top & 1 \end{pmatrix}, \quad W_{KQ} = \begin{pmatrix} \Theta & 0_d \\ 0_d^\top & * \end{pmatrix}.$$

226 Then the final prediction takes the form $\hat{y} = \langle \omega_f(\mathbf{z}_{1:n}, \phi), \phi(\mathbf{x}_q) \rangle$, where

$$228 \quad \omega_f(\mathbf{z}_{1:n}, \phi) = \frac{1}{n} \sum_{i=1}^n \mathbf{y}_i \Theta^\top \phi(\mathbf{x}_i). \quad (9)$$

231 Proposition 3.9 can explain the effectiveness of LSA simplification in analyzing ICL: it implicitly
 232 performs our dual-space modeling between the task representation space and the sample represen-
 233 tation space. However, we argue that it fails to capture the entanglement of standard Transformers
 234 encoding progress, which use the original, unsimplified SA. As we will show in the next theorem,
 235 SA cannot realize such dual-space modeling.

236 **Theorem 3.10** (Entangled structure under general SA). *For a standard SA model with softmax-
 237 based attention weights, there does NOT exist a pair of ϕ_0 and $\omega_0(\mathbf{z}_{1:n}, \phi_0)$, such that the model
 238 prediction admits the following decomposition:*

$$239 \quad \hat{y}_q = \langle \omega_0(\mathbf{z}_{1:n}, \phi_0), \phi_0(\mathbf{x}_q) \rangle. \quad (10)$$

240 From our dual-space modeling perspective, Theorem 3.10 formalizes the entangled nature of how
 241 Transformers encode context and sample-level information. We posit that this entanglement is the
 242 underlying reason for the observed conflict between ICL and IWL.

244 4 COQE: A TRANSFORMER WITH SEPARATE CONTEXT-QUERY ENCODING

246 We have formalized the entangled nature of standard Transformers encoding progress through a
 247 dual-space modeling framework. To address this limitation, we propose a straightforward yet effec-
 248 tive architectural modification: CoQE, a Transformer with separate **Context-Query Encoding**.

249 The main idea behind CoQE is to disentangle the encoding of context and query: one dedicated
 250 to learning in the task representation space and the other to learning in the sample representation
 251 space. The CoQE model thus consists of two modules: a shared sample encoder ($\mathcal{E}_{\text{sample}}$) and a
 252 dedicated task encoder ($\mathcal{E}_{\text{task}}$), as shown in Figure 1 (b). The sample encoder generates general-
 253 purpose representations for all samples, including the query. We implement it with a token-wise
 254 module, for it should process samples independently without considering context. The task encoder,
 255 on the other hand, operates on the general representations of the context and focuses on producing
 256 the representation of the current task. Thus this module should be contextual and has the capability
 257 to condense sequential information. Finally, the prediction output is obtained by computing the inner
 258 product between the task representation and the query sample representation. Taking the regression
 259 task as an example, the formalization of CoQE output is as follows:

$$260 \quad \hat{y}_q = \langle \mathcal{E}_{\text{task}}(\mathcal{E}_{\text{sample}}(\mathbf{z}_{1:n})), \mathcal{E}_{\text{sample}}(\mathbf{x}_q) \rangle. \quad (11)$$

261 Figure 1 compares the architectures of the Transformer and CoQE. The Transformer also contains
 262 token-wise components like feed-forward networks, and contextual components like multi-head at-
 263 tention modules. When stacked, these modules collectively exhibit contextual behavior, and the final
 264 token output intertwines with the context information in a complex manner during the forward pass.
 265 In contrast, CoQE explicitly separates the contextual and token-wise parts, which are responsible for
 266 learning the task representation space and the sample representation space, respectively. The two
 267 spaces interact through a well-defined inner product according to the Riesz representation theorem.

268 We aim to evaluate our model across regression and few-shot classification tasks. In the following,
 269 we will give the specific implementation of CoQE under both types of tasks. Notably, due to their
 different properties, the task encoder constructs the task representation space in distinct ways.

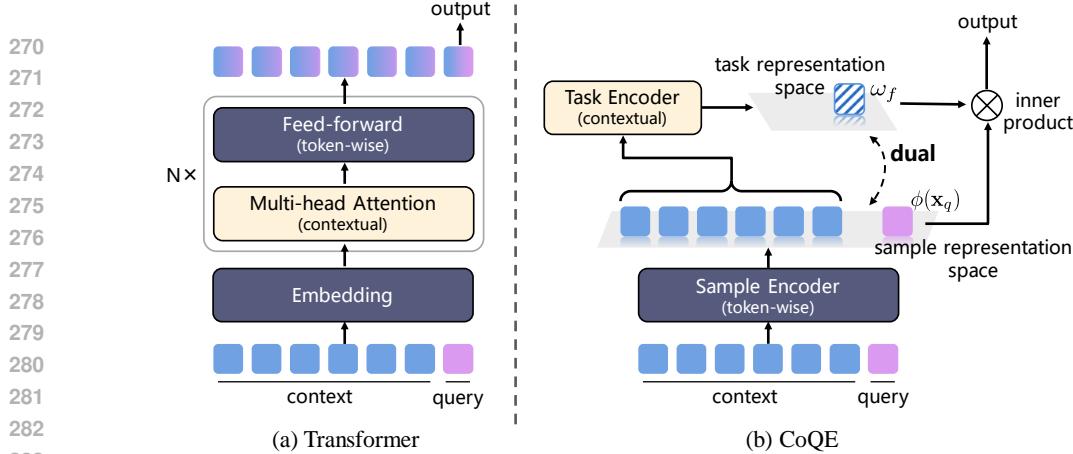


Figure 1: Comparison of Transformer and CoQE architectures.

4.1 IMPLEMENTATION FOR REGRESSION.

We employ a two-layer ReLU network as the sample encoder of CoQE, and a GPT-2-style Transformer as the task encoder. We take the final output token of the task encoder directly as the task representation induced by the context. The regression output is then computed as the inner product between it and the query sample representation. For fair comparison, the baseline Transformer is also equipped with the same two-layer ReLU embedding module.

4.2 IMPLEMENTATION FOR FEW-SHOT CLASSIFICATION.

We use a ResNet to encode images input (Chan et al., 2022), which naturally serves as CoQE’s sample encoder. We set the embedding dimension of the ResNet to 512, ensuring sufficient expressiveness. A fully connected layer follows the ResNet to reduce the token dimension back to 64. The task encoder remains a Transformer, while it constructs the task representation space in a distinct way from regression. A multi-class classification task can be regarded as a collection of sub-tasks that identify each class. Thus, we let it correspond to a set of task representations, each of which is associated with one class. ICL requires producing the task representations corresponding to the classes in the context, whereas IWL requires static memorization of all classes. To construct a task representation set compatible with both, we assign a parameterized vector to each class, representing a static version of its task representation.

In each forward pass, the classes appearing in the context are encoded by the task encoder to obtain their corresponding task representations, as illustrated in Figure 2. These dynamic vectors replace the corresponding static class vectors, and modified class vectors are used to compute logits for prediction. The resulting training loss is denoted as \mathcal{L}_{mod} . Additionally, to accelerate the training of the static class vectors, we compute an additional set of logits from the unmodified class vectors during training, with the resulting classification loss denoted as $\mathcal{L}_{\text{orig}}$. These logits are not used during testing. Therefore, the total training loss is $\mathcal{L}_{\text{mod}} + \mathcal{L}_{\text{orig}}$.

During experiments, we observed that \mathcal{L}_{mod} tends to converge to $\mathcal{L}_{\text{orig}}$, which means the task encoder fails to dynamically encode the context over training, and the learning of the task representation space is restricted to the set of static class vectors. It again reflects that the ICL strategy is transient and prone to collapsing into a more stable one, i.e., IWL. To prevent this, we add Gaussian noise to the modified logits during training, with the variance increasing over training steps. The initial

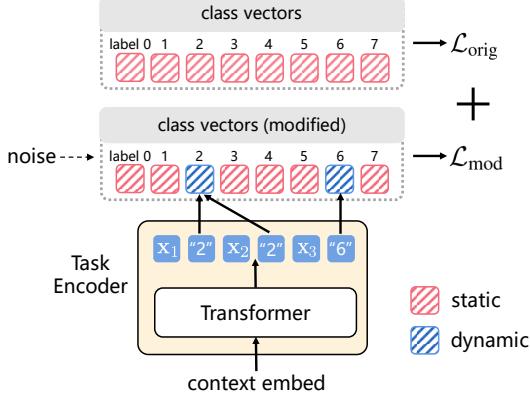


Figure 2: task representation space construction on few-shot classification.

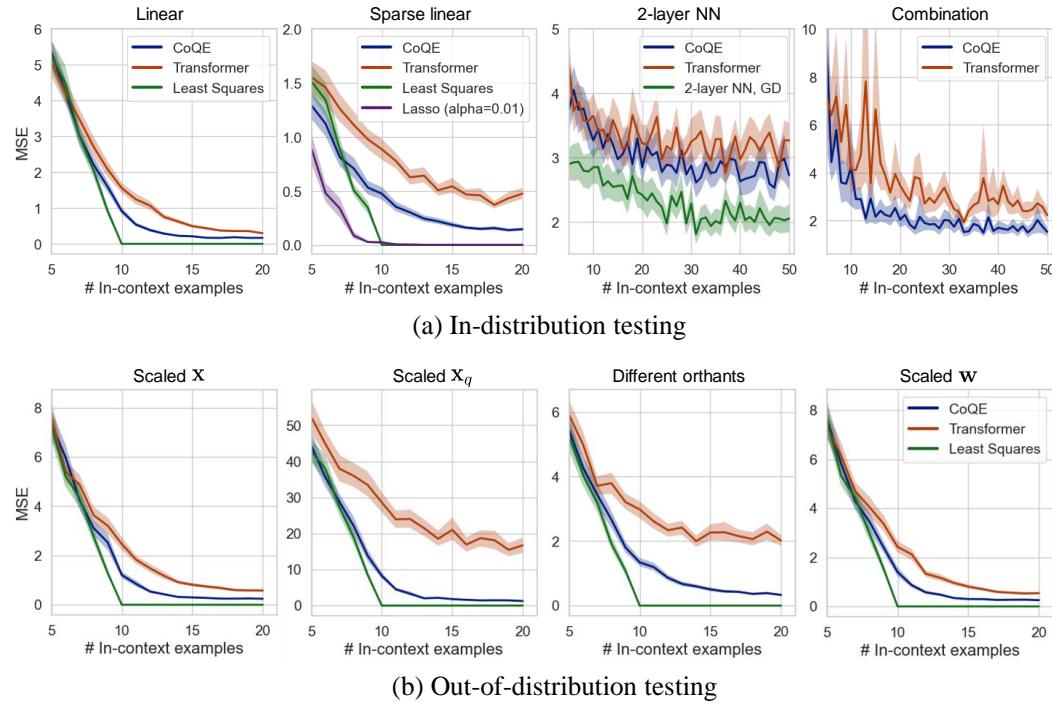


Figure 3: Results of regression. We provide optimal baselines for most evaluation settings.

noise follows $\mathcal{N}(\mu_0, 1)$. This trick can be interpreted as indirectly performing random sampling in the task representation space. Experimental results and further ablation studies are presented later.

5 EXPERIMENTS

In this section, we evaluate the ICL capability, as well as the ICL-IWL compatibility of CoQE across regression and classification tasks. Additional experimental details are provided in Appendix C.

5.1 REGRESSION

Setup. We adopt a general framework for training models to perform ICL over a function class \mathcal{F} . To construct training prompts, we first sample a task function $f \sim \mathcal{D}_{\mathcal{F}}^{\text{train}}$, then draw k i.i.d. inputs $\mathbf{x}_1, \dots, \mathbf{x}_k \sim \mathcal{D}_{\mathcal{X}}^{\text{train}}$. The prompt is formed as $\mathcal{P} = (\mathbf{x}_1, f(\mathbf{x}_1), \dots, \mathbf{x}_k, f(\mathbf{x}_k))$. Let \mathcal{P}^i denotes the prefix containing the first i input-output examples and the $(i+1)$ th input: $\mathcal{P}^i = (\mathbf{x}_1, f(\mathbf{x}_1), \dots, \mathbf{x}_i, f(\mathbf{x}_i), \mathbf{x}_{i+1})$. The training objective of a model \mathbb{M}_{θ} minimizes the expected loss over all possible prefixes:

$$\min_{\theta} \mathbb{E}_{\mathcal{P}} \left[\frac{1}{k} \sum_{i=0}^{k-1} \ell(\mathbb{M}_{\theta}(\mathcal{P}^i), f(\mathbf{x}_{i+1})) \right],$$

where $\ell(\cdot, \cdot)$ is a mean squared error (MSE) loss function. At test time, we first sample a test function $f \sim \mathcal{D}_{\mathcal{F}}^{\text{test}}$, then draw $j \leq k-1$ inputs $\mathbf{x}_1, \dots, \mathbf{x}_j \sim \mathcal{D}_{\mathcal{X}}^{\text{test}}$, and \mathbf{x}_q from $\mathcal{D}_{\text{query}}$ to construct the test prompt: $\mathcal{P}_{\text{test}}^j = (\mathbf{x}_1, f(\mathbf{x}_1), \dots, \mathbf{x}_j, f(\mathbf{x}_j), \mathbf{x}_q)$. We evaluate performance still by measuring the MSE between $\mathbb{M}_{\theta}(\mathcal{P}_{\text{test}}^j)$ and $f(\mathbf{x}_q)$.

To compare our CoQE with the standard Transformer, we consider two major evaluation scenarios: in-distribution (ID) testing and out-of-distribution (OOD) testing. For ID testing, we set $\mathcal{D}_{\mathcal{X}}^{\text{train}} = \mathcal{D}_{\mathcal{X}}^{\text{test}} = \mathcal{D}_{\text{query}}$, and $\mathcal{D}_{\mathcal{F}}^{\text{train}} = \mathcal{D}_{\mathcal{F}}^{\text{test}}$. Specifically, we use the following four classes of functions \mathcal{F} : linear functions, sparse linear functions, two-layer ReLU networks and combination functions. The latter two classes of nonlinear functions allow the model to reduce ICL difficulty by learning task-invariant representations. Through them, we can empirically validate Theorem 3.6, which shows the benefits of dual-space modeling for representation learning. For OOD testing, we consider four different cases of distribution shifts under linear functions. See Appendix C.1 for more setup details.

378 **Results.** In the ID scenario, CoQE consistently achieves lower ICL error than the Transformer
 379 (Figure 3 (a)). For regression on more challenging combination functions, the Transformer exhibits
 380 substantial fluctuations, whereas CoQE attains much smaller error variance. We attribute this to
 381 CoQE’s more effective learning of the sample representation space, and present further results in
 382 Appendix C.1. In the OOD scenario, CoQE also achieves substantially lower error than the Trans-
 383 former across all four tested cases (Figure 3 (b)). Notably, the second case is adapted from Mittal
 384 et al. (2025), who similarly aims to enforce the model to explicitly learn task variables. However,
 385 they found no improvement in OOD performance, contrary to our results. This indicates that sim-
 386 ply introducing task variables is insufficient and highlights the value of our proposed dual-space
 387 modeling and corresponding architecture design.

388 389 5.2 FEW-SHOT CLASSIFICATION

390 **Setup.** To evaluate ICL and IWL abilities un-
 391 der various conditions, we construct prompt se-
 392 quences that each consists of eight image-label
 393 pairs followed by a query image (Chan et al.,
 394 2022). The training objective minimizes the
 395 cross-entropy loss between the model’s predic-
 396 tion and the correct label for the query image.

397 Training sequences have two key properties
 398 that affect the tradeoff between ICL and IWL:
 399 burstiness and Zipfian exponent. In bursty se-
 400 quences, three out of the eight image-label pairs
 401 in the context share the same class as the query
 402 sample. This setup allows the model to infer
 403 the correct label based on context alone, which
 404 has been found to incentivize ICL while sup-
 405 pressing IWL (Chan et al., 2022). To avoid
 406 repetition biases, bursty sequences additionally
 407 include three image-label pairs from a distinct
 408 distractor class. P_{bursty} denotes the proportion
 409 of bursty sequences in the training set, while the rest are generated via random sampling. The sec-
 410 ond factor is the Zipfian exponent, which controls the frequency distribution of different classes.
 411 Under the Zipfian distribution, the class probability is defined as $p(R = r) \propto 1/r^\alpha$, where R is
 412 the rank of the class, and α is the Zipfian exponent. When $\alpha = 0$, the distribution becomes uni-
 413 form. Chan et al. (2022) observe that when $\alpha = 1$, a *sweet spot* emerges, where the model reaches
 414 a tradeoff for both ICL and IWL. During training, we keep image-label mappings fixed.

415 Test sequences are divided into two kinds, corresponding respectively to the evaluation of ICL and
 416 IWL capability. For ICL, we use sequences with four images from each of two classes unseen in
 417 training, and we set the class labels to either 0 or 1 randomly for each sequence. Accuracy on this
 418 evaluator is measured across 0 and 1 as possible outputs, and chance-level accuracy is 50%. As these
 419 labels are not associated with these images during training, the only way to achieve above-chance
 420 accuracy is to refer back to the context. For IWL, we use sequences where none of the context
 421 images come from the same class as the query, but all of the image-label mappings are the same as
 422 during training. In this case, ICL is not useful, as there are no matching images in context, so the
 423 model must rely on mappings stored in weights. See Appendix C.2 for more setup details.

424 **Model size also affects the ICL-IWL tradeoff.** Before evaluating the algorithmic performance,
 425 we make a new finding that model size also strongly affects the ICL-IWL tradeoff in standard Trans-
 426 formers, beyond data distribution factors like burstiness and Zipfian exponent. Specifically, we ex-
 427 amine the number of Transformer layers L and the embedding dimension of the ResNet E . We
 428 observe that, under the same conditions, a 12-layer Transformer exhibits stronger ICL but weaker
 429 IWL compared to a 4-layer Transformer. We suppose that this is due to the Transformer’s inductive
 430 bias toward attending to context, compared to just memorizing context-irrelevant sample infor-
 431 mation. Another interesting finding is that increasing the ResNet embedding dimension from 64 to 512
 432 nearly eliminates the model’s ICL ability while substantially enhancing IWL. Notably, we connect
 433 a fully connected layer after the ResNet to reduce the dimension back to 64 before inputting to the

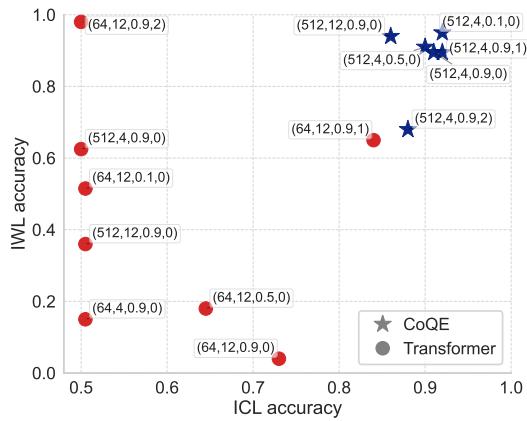


Figure 4: Results under different settings of factors. The annotations in the figure indicate the settings: $(E, L, P_{\text{bursty}}, \alpha)$.

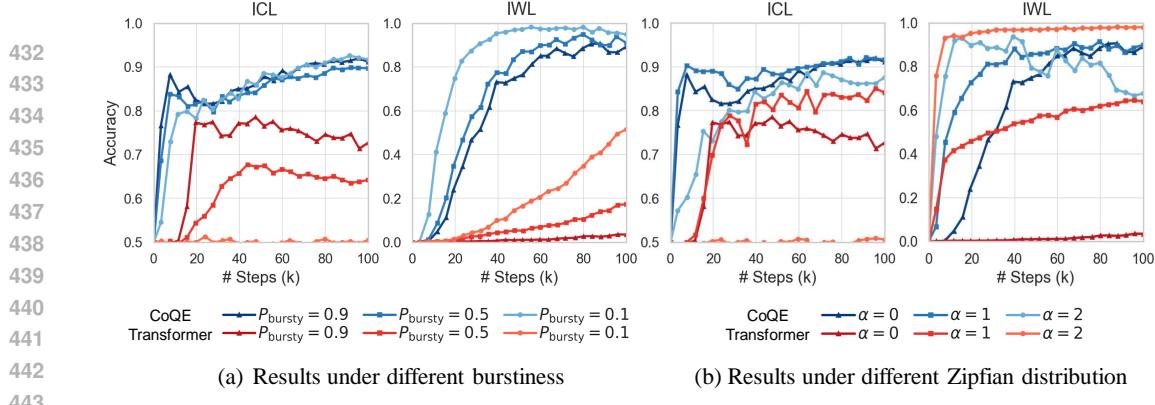


Figure 5: Learning curves under different data distribution factors.

Transformer, ensuring that the latter’s role remains unchanged. We speculate that the larger ResNet increases the expressivity of individual tokens, and when a single token is sufficiently expressive to solve the task, the model tends to ignore the context. This is consistent with Singh et al. (2023)’s observation that applying ℓ_2 regularization to the ResNet can bias the tradeoff toward ICL. Our finding further highlights the complex intertwining between ICL and IWL in standard Transformers.

Results. Figure 4 presents the ICL and IWL accuracies of Transformers and CoQE under various factors after 100k training steps. The Transformers fluctuate between ICL and IWL capabilities across different conditions, whereas our models robustly occupy the upper-right region, indicating a Pareto improvement in both abilities. Figure 5 shows the learning curves under different values of P_{bursty} and Zipfian exponent. We could observe that CoQE’s ICL accuracy rises rapidly at the beginning, but declines slightly between 10k and 30k steps. This behavior aligns with prior findings on ICL strategy: it emerges quickly and then gradually fades (Singh et al., 2023). However, under our algorithm, the model quickly restrains this fading trend and continues to recover steadily. We also discuss the issue of parameter scale, as presented in Appendix C.2.

Ablation study. We study the effect of Gaussian noise on the model performance, as shown in Table 1. Without any noise, the model’s ICL ability ultimately yields entirely to IWL. When $\mu_0 = 5$, the model achieves maximal ICL performance while retaining high IWL capability. This is the default noise magnitude used in our experiments. See Appendix C.2 for more details.

Table 1: Results under different noise levels.

	ICL	IWL
Noise-free	55.12	99.62
$\mu_0 = 3$	81.91	95.31
$\mu_0 = 5$	91.15	89.30
$\mu_0 = 7$	88.22	77.70
$\mu_0 = 9$	86.01	72.62

6 DISCUSSION

In this section, we briefly discuss three issues of concern. **Firstly, why do large language models not exhibit a clear imbalance between ICL and IWL?** Piantadosi (2014) showed that a Zipfian distribution of $\alpha = 1$ closely approximates the empirical distribution of natural language, which serves as a sweet spot for the tradeoff between ICL and IWL (Chan et al., 2022). On the other hand, Chan et al. (2025) pointed out that LLMs still face conflicts between ICL and IWL in some scenarios. **Secondly, why is it important to reconcile ICL and IWL under diverse conditions?** Because with the growing demand of multimodal large models (e.g., VLMs, VLAs) for increasingly diverse data distributions, as well as the emergence of new model architectures, relying on the fortunate coincidence of natural language data distributions is far from sufficient to ensure robust performance. **Thirdly, how can our algorithm scale to larger models and other tasks?** The core of our method can be abstracted as blockwise processing of the input sequence into a context part and a query part, thereby learning two spaces of different semantic significance. In more general scenarios, the query may not be limited to the last token but could instead be the user’s explicit question (Chen et al., 2025; Zong et al., 2025). Therefore, the notion of a sample may also need to go beyond a single token and be redefined as a sequence-level sample, which we leave for future work. For typical ICL scenarios where the context provides concrete demonstration examples, we argue that our algorithm could facilitate the model’s ICL performance. When the context consists of more general information such as historical cues or task instructions, it can still be beneficial by helping the model distill relevant information. For pretrained LLMs under the current architecture, our algorithm can be implemented by adding an auxiliary branch for context processing.

486 ETHICS STATEMENT
487488 Our study does not involve human participants, sensitive data, or any foreseeable negative societal
489 impact. Hence, it does not raise ethical concerns related to the ICLR Code of Ethics.
490491 REPRODUCIBILITY STATEMENT
492493 We have taken measures to ensure the reproducibility of our work. Theoretical results are accom-
494 panied by detailed proofs in Appendix B. Experimental setups and implementation details are fully
495 described in Section 5 and Appendix C. We also provide the source code in the supplementary
496 material, which is based on the repositories of Garg et al. (2022) and Chan et al. (2022).
497498 REFERENCES
499500 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
501 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
502 report. *arXiv preprint arXiv:2303.08774*, 2023.503 Kartik Ahuja and David Lopez-Paz. A closer look at in-context learning under distribution shifts.
504 *arXiv preprint arXiv:2305.16704*, 2023.
505506 Trenton Bricken, Rylan Schaeffer, Bruno Olshausen, and Gabriel Kreiman. Emergence of sparse
507 representations from noise. In *International Conference on Machine Learning*, pp. 3148–3191.
508 PMLR, 2023.509 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
510 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
511 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.512 Dake Bu, Wei Huang, Andi Han, Atsushi Nitanda, Qingfu Zhang, Hau-San Wong, and Taiji Suzuki.
513 Provable in-context vector arithmetic via retrieving task concepts. In *Forty-second International*
514 *Conference on Machine Learning*, 2025.515 Rich Caruana. Multitask learning. *Machine learning*, 28(1):41–75, 1997.516 Bryan Chan, Xinyi Chen, András György, and Dale Schuurmans. Toward understanding in-context
517 vs. in-weight learning. In *The Thirteenth International Conference on Learning Representations*,
518 2025.519 Stephanie Chan, Adam Santoro, Andrew Lampinen, Jane Wang, Aaditya Singh, Pierre Richemond,
520 James McClelland, and Felix Hill. Data distributional properties drive emergent in-context learn-
521 ing in transformers. *Advances in neural information processing systems*, 35:18878–18891, 2022.522 Siyu Chen, Heejune Sheen, Tianhao Wang, and Zhuoran Yang. Unveiling induction heads: Pro-
523 vable training dynamics and feature learning in transformers. In *Advances in Neural Information*
524 *Processing Systems*, volume 37, pp. 66479–66567. Curran Associates, Inc., 2024.525 Wentong Chen, Yankai Lin, ZhenHao Zhou, HongYun Huang, Yantao Jia, Zhao Cao, and Ji-Rong
526 Wen. Iclevl: Evaluating in-context learning ability of large language models. In *Proceedings of*
527 *the 31st International Conference on Computational Linguistics*, pp. 10398–10422, 2025.528 Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-
529 coders find highly interpretable features in language models. *arXiv preprint arXiv:2309.08600*,
530 2023.531 Fahim Dalvi, Abdul Rafee Khan, Firoj Alam, Nadir Durrani, Jia Xu, and Hassan Sajjad. Discovering
532 latent concepts learned in bert. In *International Conference on Learning Representations*, 2022.533 Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
534 Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: an embodied multi-
535 modal language model. In *Proceedings of the 40th International Conference on Machine Learn-
536 ing*, pp. 8469–8488, 2023.

540 Ying Fan, Steve Yadlowsky, Dimitris Papailiopoulos, and Kangwook Lee. Transformers can learn
 541 meta-skills for task generalization in in-context learning. In *NeurIPS 2024 Workshop on Compo-*
 542 *national Learning: Perspectives, Methods, and Paths Forward*, 2024.

543

544 Shivam Garg, Dimitris Tsipras, Percy Liang, and Gregory Valiant. What can transformers learn in-
 545 context? A case study of simple function classes. In *Advances in Neural Information Processing*
 546 *Systems*, 2022. URL <https://openreview.net/forum?id=f1NZJ2eOet>.

547

548 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 549 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 550 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

551

552 Tianyu Guo, Wei Hu, Song Mei, Huan Wang, Caiming Xiong, Silvio Savarese, and Yu Bai. How do
 553 transformers learn in-context beyond simple functions? a case study on learning with representa-
 554 tions. In *The Twelfth International Conference on Learning Representations*, 2024.

555

556 Wes Gurnee and Max Tegmark. Language models represent space and time. In *The Twelfth Inter-
 557 national Conference on Learning Representations*, 2024.

558

559 Seungwook Han, Jinyeop Song, Jeff Gore, and Pulkit Agrawal. Emergence and effectiveness of task
 560 vectors in in-context learning: An encoder decoder perspective. In *Forty-second International
 561 Conference on Machine Learning*, 2025.

562

563 Roe Hendel, Mor Geva, and Amir Globerson. In-context learning creates task vectors. In *Findings
 564 of the Association for Computational Linguistics: EMNLP 2023*, pp. 9318–9333, 2023.

565

566 Yihan Hu, Jiazhi Yang, Li Chen, Keyu Li, Chonghao Sima, Xizhou Zhu, Sqi Chai, Senyao Du,
 567 Tianwei Lin, Wenhui Wang, et al. Planning-oriented autonomous driving. In *Proceedings of the
 568 IEEE/CVF conference on computer vision and pattern recognition*, pp. 17853–17862, 2023.

569

570 Ruomin Huang and Rong Ge. Task descriptors help transformers learn linear models in-context.
 571 In *ICML 2024 Workshop on In-Context Learning*, 2024. URL [https://openreview.net/
 572 forum?id=4SfCI1DJhr](https://openreview.net/forum?id=4SfCI1DJhr).

573

574 Juno Kim and Taiji Suzuki. Transformers learn nonlinear features in context: Nonconvex mean-
 575 field dynamics on the attention landscape. In *International Conference on Machine Learning*, pp.
 576 24527–24561. PMLR, 2024.

577

578 Jannik Kossen, Yarin Gal, and Tom Rainforth. In-context learning learns label relationships but is
 579 not conventional learning. In *The Twelfth International Conference on Learning Representations*,
 580 2024. URL <https://openreview.net/forum?id=YP1A7bgd5y>.

581

582 Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B. Tenenbaum. Human-level concept learning
 583 through probabilistic program induction. *Science*, 350(6266):1332–1338, 2015.

584

585 Yuchen Li, Yuanzhi Li, and Andrej Risteski. How do transformers learn topic structure: Towards
 586 a mechanistic understanding. In *Proceedings of the 40th International Conference on Machine
 587 Learning*, pp. 19689–19729, 2023.

588

589 Haodong Liang, Krishna Balasubramanian, and Lifeng Lai. Transformers handle endogeneity in
 590 in-context linear regression. In *The Thirteenth International Conference on Learning Represen-
 591 tations*, 2025.

592

593 Muhammad Maaz, Hanooma Rasheed, Salman Khan, and Fahad Khan. Video-chatgpt: Towards
 594 detailed video understanding via large vision and language models. In *Proceedings of the 62nd
 595 Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
 596 12585–12602, 2024.

597

598 Samuel Marks and Max Tegmark. The geometry of truth: Emergent linear structure in large language
 599 model representations of true/false datasets. In *First Conference on Language Modeling*, 2024.
 600 URL <https://openreview.net/forum?id=aaajyHYjjsk>.

594 Jack Merullo, Carsten Eickhoff, and Ellie Pavlick. Language models implement simple word2vec-
 595 style vector arithmetic. In *Proceedings of the 2024 Conference of the North American Chapter of*
 596 *the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long*
 597 *Papers)*, pp. 5030–5047, 2024.

598 Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space
 599 word representations. In *Proceedings of the 2013 conference of the north american chapter of the*
 600 *association for computational linguistics: Human language technologies*, pp. 746–751, 2013.

601 Sarthak Mittal, Eric Elmoznino, Leo Gagnon, Sangnie Bhardwaj, Guillaume Lajoie, and Dhanya
 602 Sridhar. Does learning the right latent variables necessarily improve in-context learning? In
 603 *Forty-second International Conference on Machine Learning*, 2025.

604 Neel Nanda, Andrew Lee, and Martin Wattenberg. Emergent linear representations in world models
 605 of self-supervised sequence models. *EMNLP 2023*, pp. 16, 2023.

606 Alex Nguyen and Gautam Reddy. Differential learning kinetics govern the transition from memo-
 607 rization to generalization during in-context learning. In *The Thirteenth International Conference*
 608 *on Learning Representations*, 2025.

609 Eshaan Nichani, Alex Damian, and Jason D Lee. How transformers learn causal structure with
 610 gradient descent. In *Proceedings of the 41st International Conference on Machine Learning*, pp.
 611 38018–38070, 2024.

612 Kazusato Oko, Yujin Song, Taiji Suzuki, and Denny Wu. Pretrained transformer efficiently learns
 613 low-dimensional target functions in-context. In *The Thirty-eighth Annual Conference on Neu-*
 614 *ral Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=uHcG5Y6fdB>.

615 Jane Pan, Tianyu Gao, Howard Chen, and Danqi Chen. What in-context learning "learns" in-context:
 616 Disentangling task recognition and task learning. In *The 61st Annual Meeting Of The Association*
 617 *For Computational Linguistics*, 2023.

618 Madhur Panwar, Kabir Ahuja, and Navin Goyal. In-context learning through the bayesian prism. In
 619 *The Twelfth International Conference on Learning Representations*, 2024.

620 Core Francisco Park, Ekdeep Singh Lubana, and Hidenori Tanaka. Competition dynamics shape al-
 621 gorithmic phases of in-context learning. In *The Thirteenth International Conference on Learning*
 622 *Representations*, 2025.

623 Kiho Park, Yo Joong Choe, and Victor Veitch. The linear representation hypothesis and the geom-
 624 etry of large language models. In *Proceedings of the 41st International Conference on Machine*
 625 *Learning*, volume 235, pp. 39643–39666, 2024.

626 Steven T Piantadosi. Zipf's word frequency law in natural language: A critical review and future
 627 directions. *Psychonomic bulletin & review*, 21(5):1112–1130, 2014.

628 Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language under-
 629 standing by generative pre-training. *OpenAI blog*, 2018.

630 Gautam Reddy. The mechanistic basis of data dependence and abrupt learning in an in-context
 631 classification task. In *The Twelfth International Conference on Learning Representations*, 2024.

632 Aaditya Singh, Stephanie Chan, Ted Moskovitz, Erin Grant, Andrew Saxe, and Felix Hill. The
 633 transient nature of emergent in-context learning in transformers. *Advances in neural information*
 634 *processing systems*, 36:27801–27819, 2023.

635 Aaditya K Singh, Ted Moskovitz, Sara Dragutinović, Felix Hill, Stephanie CY Chan, and Andrew M
 636 Saxe. Strategy competition explains the emergence and transience of in-context learning. In *Forty-*
 637 *second International Conference on Machine Learning*, 2025.

638 Yuandong Tian, Yiping Wang, Beidi Chen, and Simon S Du. Scan and snap: Understanding train-
 639 ing dynamics and token composition in 1-layer transformer. In *Advances in Neural Information*
 640 *Processing Systems*, volume 36, pp. 71911–71947, 2023.

648 Eric Todd, Millicent Li, Arnab Sen Sharma, Aaron Mueller, Byron C Wallace, and David Bau.
 649 Function vectors in large language models. In *The Twelfth International Conference on Learning*
 650 *Representations*, 2024. URL <https://openreview.net/forum?id=AwyxtyMwaG>.

651

652 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 653 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Infor-*
 654 *mation Processing Systems*, volume 30, 2017.

655 Qixun Wang, Yifei Wang, Yisen Wang, and Xianghua Ying. Can in-context learning really gen-
 656 eralize to out-of-distribution tasks? In *The Thirteenth International Conference on Learning*
 657 *Representations*, 2025. URL <https://openreview.net/forum?id=INe4otjryz>.

658

659 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
 660 Pierrick Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art
 661 natural language processing. *EMNLP 2020*, pp. 38, 2020.

662

663 Jingfeng Wu, Difan Zou, Zixiang Chen, Vladimir Braverman, Quanquan Gu, and Peter Bartlett.
 664 How many pretraining tasks are needed for in-context learning of linear regression? In *The*
 665 *Twelfth International Conference on Learning Representations*, 2024.

666

667 Zheyang Xiong, Ziyang Cai, John Cooper, Albert Ge, Vasilis Papageorgiou, Zack Sifakis, Angeliki
 668 Giannou, Ziqian Lin, Liu Yang, Saurabh Agarwal, et al. Everything everywhere all at once: Llms
 669 can in-context learn multiple tasks in superposition. In *Forty-second International Conference on*
 670 *Machine Learning*, 2025.

671

672 Steve Yadlowsky, Lyric Doshi, and Nilesh Tripuraneni. Pretraining data mixtures enable narrow
 673 model selection capabilities in transformer models. *arXiv preprint arXiv:2311.00871*, 2023.

674

675 Liu Yang, Ziqian Lin, Kangwook Lee, Dimitris Papailiopoulos, and Robert Nowak. Task vectors in
 676 in-context learning: Emergence, formation, and benefit. *arXiv preprint arXiv:2501.09240*, 2025.

677

678 Naimeng Ye, Hanming Yang, Andrew Siah, and Hongseok Namkoong. Pre-training and in-context
 679 learning is bayesian inference a la de finetti. *arXiv preprint arXiv: 2408.03307*, 2024.

680

681 Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of language models: Part 2.1,
 682 grade-school math and the hidden reasoning process. In *The Thirteenth International Conference*
 683 *on Learning Representations*, 2025.

684

685 Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
 686 *Journal of Machine Learning Research*, 25(49):1–55, 2024a.

687

688 Tianren Zhang, Chujie Zhao, Guanyu Chen, Yizhou Jiang, and Feng Chen. Feature contamination:
 689 Neural networks learn uncorrelated features and fail to generalize. In *International Conference*
 690 *on Machine Learning*, pp. 60446–60495. PMLR, 2024b.

691

692 Tianren Zhang, Guanyu Chen, and Feng Chen. When do neural networks learn world models? In
 693 *Forty-second International Conference on Machine Learning*, 2025a.

694

695 Yufeng Zhang, Fengzhuo Zhang, Zhuoran Yang, and Zhaoran Wang. What and how does in-
 696 context learning learn? bayesian model averaging, parameterization, and generalization. In *The*
 697 *28th International Conference on Artificial Intelligence and Statistics*, 2025b. URL <https://openreview.net/forum?id=B50OF0Fc60>.

698

699 Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,
 700 Stefan Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer web knowledge
 701 to robotic control. In *CoRL*, 2023.

702

703 Yongshuo Zong, Ondrej Bohdal, and Timothy M Hospedales. Vi-ic1 bench: The devil in the de-
 704 tails of multimodal in-context learning. In *The Thirteenth International Conference on Learning*
 705 *Representations*, 2025.

702 A RELATED WORK

704 **Theoretical Investigations on ICL Mechanisms.** Recent theoretical work has examined how
 705 Transformers perform ICL across various scenarios (Zhang et al., 2024a; Li et al., 2023; Tian et al.,
 706 2023; Nichani et al., 2024; Chen et al., 2024; Wu et al., 2024; Huang & Ge, 2024; Oko et al., 2024;
 707 Liang et al., 2025). These studies typically analyze simplified architectures such as linear self-
 708 attention or query-key-combined formulations. Bu et al. (2025) extends the theoretical analysis to
 709 nonlinear transformers incorporating LayerNorm, though retaining linear self-attention mechanisms.
 710 Some other studies (Zhang et al., 2025b; Ye et al., 2024) conduct analyses from the perspective of
 711 Bayesian model averaging, but they likewise rely on unrealistic assumptions that distort Transformer
 712 architectures for kernel regression. In this paper, we demonstrate the validity of the linear attention
 713 simplification as a special case consistent with our dual-space modeling, while also showing that
 714 the standard softmax self-attention does not support such modeling. The latter serves as the starting
 715 point for our improved architectural design.

716 **Empirical Investigations on ICL Mechanisms.** Garg et al. (2022) firstly demonstrated that
 717 Transformer-based ICL can generalize effectively to out-of-distribution (OOD) tasks, leading to
 718 a surge of interest in exploring its generalization behavior (Ahuja & Lopez-Paz, 2023; Kossen et al.,
 719 2024; Pan et al., 2023; Fan et al., 2024). Xiong et al. (2025) showed that LLMs can perform different
 720 ICL functions during a single inference, while Yadlowsky et al. (2023) and Wang et al. (2025)
 721 revealed that Transformers often face challenges when generalizing to unseen functions. Another
 722 line of studies focuses on the function reference capability of Transformers underlying their ICL
 723 performance. Some work has shown that LLM can implicitly encode task vectors during ICL (Hendel
 724 et al., 2023; Todd et al., 2024; Guo et al., 2024; Yang et al., 2025; Han et al., 2025). Mittal et al.
 725 (2025) enforced the explicit task variables learning by introducing a bottleneck to the Transformer,
 726 yet found no improvement in OOD performance of ICL, contrary to our results. This indicates that
 727 simply introducing task variables is insufficient and highlights the value of our proposed modeling
 728 of task representation space, along with corresponding architecture design.

729 **Relationship between ICL and IWL.** Beyond investigations on the ICL mechanisms, some studies
 730 have found that ICL is not a guaranteed and stable capability of Transformers; rather, it competes
 731 with the model’s inherent in-weight learning (IWL) ability, which relies on information stored in the
 732 weights (Chan et al., 2022; Singh et al., 2023; Reddy, 2024; Panwar et al., 2024). Chan et al. (2022)
 733 examined the impact of different training data distributions on both abilities, finding that burstiness
 734 and skewed distributions significantly affect their tradeoff. Only when the training data follows a
 735 certain distribution can both abilities coexist. Singh et al. (2023) further confirmed the transient
 736 nature of ICL, observing that it always fades after emerging and gives way to IWL. They hypothesize
 737 that this phenomenon arises from the competition between the two strategies for the shared model
 738 circuits. Nguyen & Reddy (2025) on the other hand, attributes this to the different relative learning
 739 rates of ICL and IWL, and conducted an analysis on a simplified one-layer transformer model. Chan
 740 et al. (2025) proposed a simple theoretical model, which is a linear combination of an in-weight
 741 learner and an in-context learner. Singh et al. (2025) empirically discovered a more complex coop-
 742 etition relationship between ICL and IWL. However, to date, no work has truly resolved the challenge
 743 of achieving robust coexistence between ICL and IWL.

744 **Linearization in Latent Space.** Beyond task-specific vectors, a line of work has examined how
 745 large models internally encode a variety of abstract concepts as linear vectors in latent space, giving
 746 rise to the commonly accepted *linear representation hypothesis* (Mikolov et al., 2013; Nanda et al.,
 747 2023; Park et al., 2024). Several studies have shown that concepts such as truthfulness (Marks &
 748 Tegmark, 2024), time and space (Gurnee & Tegmark, 2024), and other semantic properties (Dalvi
 749 et al., 2022; Merullo et al., 2024; Ye et al., 2025) can emerge in the model’s latent space, using
 750 linear probes as the primary tool. Additionally, larger models tend to yield more disentangled and
 751 interpretable internal representations (Bricken et al., 2023; Cunningham et al., 2023), and this can
 752 be regarded as evidence of the emergence of a world model within large scale networks (Zhang
 753 et al., 2025a). In this work, we propose the concept of a linear task representation space, grounded
 754 in the linear representational hypothesis. This modeling aligns with empirical observations of task
 755 vectors, and further serves as a theoretical extension and utilization of linearization in the model’s
 latent space.

756 **B PROOFS OF THEORETICAL RESULTS**
 757

758 **B.1 PROOF OF PROPOSITION 3.3**
 759

760 For ease of presentation, we first restate the proposition and then introduce its proof.

761 **Proposition B.1** (Task-sample duality). *Let \mathcal{X} be the input space and \mathcal{Y}_f the multiple label sets
 762 corresponding to each task $f \in \mathcal{F}$. Under Definition 3.2, there exists a linear sample representation
 763 space $\mathcal{M}_{\mathcal{F}}$ and a linear task transformation space \mathcal{T} , where \mathcal{T} is the dual space of $\mathcal{M}_{\mathcal{F}}$, i.e. $\mathcal{T} =$
 764 $\mathcal{M}_{\mathcal{F}}^*$.*

765 *Proof.* To prove the proposition, we must show that the linear task transformation space \mathcal{T} is equivalent
 766 to the dual space of the linear sample representation space $\mathcal{M}_{\mathcal{F}}$, denoted as $\mathcal{M}_{\mathcal{F}}^*$. The proof
 767 proceeds by demonstrating mutual inclusion: (1) $\mathcal{T} \subseteq \mathcal{M}_{\mathcal{F}}^*$ and (2) $\mathcal{M}_{\mathcal{F}}^* \subseteq \mathcal{T}$.

768 **Step 1: Proof of $\mathcal{T} \subseteq \mathcal{M}_{\mathcal{F}}^*$.** Let t be an arbitrary element in the task transformation space \mathcal{T} .
 769 According to Definition 3.2, t is a linear function such that

$$770 \quad t(m) = \langle \omega_t, m \rangle, \quad \forall m \in \mathcal{M}_{\mathcal{F}}.$$

771 Since t is a linear functional on $\mathcal{M}_{\mathcal{F}}$, it is by definition an element of $\mathcal{M}_{\mathcal{F}}^*$. As t was an arbitrary
 772 element of \mathcal{T} , it follows that every element in \mathcal{T} corresponds to a unique linear functional in $\mathcal{M}_{\mathcal{F}}^*$.
 773 Thus, we have established that $\mathcal{T} \subseteq \mathcal{M}_{\mathcal{F}}^*$.

774 **Step 2: Proof of $\mathcal{M}_{\mathcal{F}}^* \subseteq \mathcal{T}$.** Conversely, let t' be an arbitrary linear functional in the dual space
 775 $\mathcal{M}_{\mathcal{F}}^*$. By Definition 3.1, $\mathcal{M}_{\mathcal{F}}$ is a finite-dimensional inner product space. By the Riesz representation
 776 theorem, for any linear functional $t' \in \mathcal{M}_{\mathcal{F}}^*$, there exists a unique vector, let's call it $\omega_{t'} \in \mathcal{M}_{\mathcal{F}}$,
 777 such that for all $m \in \mathcal{M}_{\mathcal{F}}$:

$$778 \quad t'(m) = \langle \omega_{t'}, m \rangle.$$

779 Now, let us define a function $f_{t'} : \mathcal{X} \rightarrow \mathbb{R}$ using this functional t' :

$$780 \quad f_{t'}(\mathbf{x}) = t'(\phi_{\mathcal{F}}(\mathbf{x})) = \langle \omega_{t'}, \phi_{\mathcal{F}}(\mathbf{x}) \rangle.$$

781 This function $f_{t'}$ has the exact mathematical form of a task function as specified in Definition 3.2.
 782 Therefore, $f_{t'}$ can be considered a valid task belonging to the task function space \mathcal{F} . Definition 3.2
 783 states that for any such task $f_{t'} \in \mathcal{F}$, there exists a unique linear task representation vector, which
 784 we denote ω_f , that represents it. This means:

$$785 \quad f_{t'}(\mathbf{x}) = \langle \omega_f, \phi_{\mathcal{F}}(\mathbf{x}) \rangle.$$

786 By equating the two expressions for $f_{t'}(\mathbf{x})$, we obtain:

$$787 \quad \langle \omega_{t'}, \phi_{\mathcal{F}}(\mathbf{x}) \rangle = \langle \omega_f, \phi_{\mathcal{F}}(\mathbf{x}) \rangle, \quad \forall \mathbf{x} \in \mathcal{X}$$

788 This implies that $\langle \omega_{t'} - \omega_f, m \rangle = 0$ for all m in the image of $\phi_{\mathcal{F}}$. Since the sample representation
 789 space $\mathcal{M}_{\mathcal{F}}$ is spanned by the image of $\phi_{\mathcal{F}}$, this condition holds for all $m \in \mathcal{M}_{\mathcal{F}}$. The only vector
 790 orthogonal to every vector in an inner product space is the zero vector. Therefore:

$$791 \quad \langle \omega_{t'} - \omega_f, m \rangle = 0 \implies \omega_{t'} = \omega_f.$$

792 Since ω_f corresponds to an element of \mathcal{T} , it follows that $\omega_{t'}$ is also corresponds to an element of \mathcal{T} ,
 793 and thus $t' \in \mathcal{T}$. As our choice of t' was arbitrary, we have shown that every linear functional in
 794 $\mathcal{M}_{\mathcal{F}}^*$ corresponds to an element in \mathcal{T} . Thus, we have established that $\mathcal{M}_{\mathcal{F}}^* \subseteq \mathcal{T}$. \square

802 **B.2 PROOF OF THEOREM 3.6**
 803

804 For ease of presentation, we first restate the theorem and then introduce its proof.

805 **Theorem B.2** (Completeness of basis representations under task traversal). *Under Proposition 3.3,
 806 we assume that a learner with sample representation mapping ϕ_{θ} is presented with a task traversal
 807 curriculum \mathcal{C} such that: $\text{span}\{t \mid t \in \mathcal{C}\} = \mathcal{T}$. Then, if the learner achieves zero empirical error,
 808 the learned representation mapping ϕ_{θ} satisfies: $\text{span}\{\phi_{\theta}(\mathbf{x}) \mid \mathbf{x} \in \mathcal{X}\} = \mathcal{M}_{\mathcal{F}}$; equivalently, each
 809 basis sample representation m_i occurs in ϕ_{θ} .*

810 *Proof.* By Proposition 3.3, fix a basis $\{m_i\}_{i=1}^d$ of \mathcal{M}_F and its dual basis $\{t_i\}_{i=1}^d \subset \mathcal{T}$, satisfying
 811 $t_i(m_j) = \langle \omega_i, m_j \rangle = \delta_{ij}$. For any $m \in \mathcal{M}_F$ write the unique decomposition $m = \sum_{i=1}^d \alpha_i(m) m_i$
 812 and for any $t \in \mathcal{T}$ write $t = \sum_{i=1}^d \beta_i(t) t_i$. The bilinear pairing then reduces to
 813

$$814 \quad 815 \quad t(m) = \sum_{i=1}^d \alpha_i(m) \beta_i(t). \quad (12)$$

816 Let $\phi_F : \mathcal{X} \rightarrow \mathcal{M}_F$ denote the sample representation guaranteed by Definition 3.2, and define the
 817 coordinate vectors
 818

$$819 \quad \alpha^\theta(\mathbf{x}) \triangleq (\alpha_1(\phi_\theta(\mathbf{x})), \dots, \alpha_d(\phi_\theta(\mathbf{x}))) \in \mathbb{R}^d, \quad \alpha^*(\mathbf{x}) \triangleq (\alpha_1(\phi_F(\mathbf{x})), \dots, \alpha_d(\phi_F(\mathbf{x}))) \in \mathbb{R}^d.$$

820 Zero empirical error on every curriculum task $t \in \mathcal{C}$ means
 821

$$822 \quad t(\phi_\theta(\mathbf{x})) = t(\phi_F(\mathbf{x})) \quad \text{for all } t \in \mathcal{C} \text{ and all training } \mathbf{x}.$$

823 By linearity of Equation 12 this equality holds for any linear combination of curriculum tasks; hence
 824 it holds for all $t \in \text{span}(\mathcal{C}) = \mathcal{T}$:
 825

$$826 \quad t(\phi_\theta(\mathbf{x})) = t(\phi_F(\mathbf{x})), \quad \forall t \in \mathcal{T}. \quad (13)$$

827 Take in Equation 13 the particular choice $t = t_i$ (the i -th dual basis functional). Using $t_i(m) =$
 828 $\alpha_i(m)$ from Equation 12, we obtain for every \mathbf{x} and every $i \in [d]$,

$$829 \quad \alpha_i(\phi_\theta(\mathbf{x})) = t_i(\phi_\theta(\mathbf{x})) = t_i(\phi_F(\mathbf{x})) = \alpha_i(\phi_F(\mathbf{x})).$$

830 Thus $\alpha^\theta(\mathbf{x}) = \alpha^*(\mathbf{x})$ pointwise for all (training) \mathbf{x} . Consequently $\phi_\theta(\mathbf{x})$ and $\phi_F(\mathbf{x})$ have identical
 831 coordinates in the basis $\{m_i\}_{i=1}^d$ for all \mathbf{x} , so
 832

$$833 \quad \text{span}\{\phi_\theta(\mathbf{x}) \mid \mathbf{x} \in \mathcal{X}\} = \text{span}\{\phi_F(\mathbf{x}) \mid \mathbf{x} \in \mathcal{X}\}.$$

834 Without loss of generality, take $\mathcal{M}_F = \text{span}\{\phi_F(\mathbf{x}) \mid \mathbf{x} \in \mathcal{X}\}$. Therefore $\text{span}\{\phi_\theta(\mathbf{x}) \mid \mathbf{x} \in \mathcal{X}\} =$
 835 \mathcal{M}_F , proving the first claim.
 836

837 Finally, since $\{m_i\}_{i=1}^d$ is a basis of \mathcal{M}_F , for each i there exists some \mathbf{x} with $\alpha_i(\phi_F(\mathbf{x})) \neq 0$; by the
 838 coordinate equality above, $\alpha_i(\phi_\theta(\mathbf{x})) \neq 0$ for the same \mathbf{x} . Hence each basis sample representation
 839 m_i occurs in ϕ_θ . \square

840 B.3 PROOF OF THEOREM 3.7

842 For ease of presentation, we first restate the theorem and then introduce its proof.
 843

844 **Theorem B.3** (Generalization error bound). *Under Proposition 3.3 and Definition 3.4, for any task f
 845 represented by ω_f and input \mathbf{x} represented by $\phi_F(\mathbf{x})$, the predictor is $\hat{y} = \langle \omega_f, \phi_F(\mathbf{x}) \rangle$. We assume
 846 that (1) $\|\omega_f\|_2 \leq 1, \forall f \in \mathcal{F}$; (2) the feature map is isotropic: for an orthonormal basis $\{m_j\}_{j=1}^d$
 847 of \mathcal{M}_F , writing $\phi_F(\mathbf{x}) = \alpha(\mathbf{x}) \in \mathbb{R}^d$, we have $\mathbb{E}[\alpha(\mathbf{x})\alpha(\mathbf{x})^\top] = I_d$; (3) The loss function $\mathcal{L}(\cdot, \cdot)$
 848 is L -Lipschitz in its first argument and bounded by B . Then for any $\delta \in (0, 1)$, with probability at
 849 least $1 - \delta$ over n i.i.d. samples $\{(\mathbf{x}_i, y_i)\}_{i=1}^n \sim \mathcal{D}_f$, the following holds simultaneously for all ω_f :*

$$850 \quad 851 \quad \mathbb{E}_{(\mathbf{x}, y) \sim \mathcal{D}_f} [\mathcal{L}(\hat{y}, y)] \leq \frac{1}{n} \sum_{i=1}^n \mathcal{L}(\hat{y}_i, y_i) + 2L\sqrt{\frac{d}{n}} + B\sqrt{\frac{\log(1/\delta)}{2n}}. \quad (14)$$

853 *Proof.* Let $\mathcal{H} := \{h(\mathbf{x}) = \langle \omega_f, \phi_F(\mathbf{x}) \rangle : \|\omega_f\|_2 \leq 1\}$ and $\mathcal{G} := \{(\mathbf{x}, y) \mapsto \mathcal{L}(\hat{y}, y) : \omega_f \in$
 854 $\mathcal{H}, \|\omega_f\|_2 \leq 1\}$. By the standard uniform deviation bound via (empirical) Rademacher complexity,
 855 for any $\delta \in (0, 1)$, with probability at least $1 - \delta$ over the sample,
 856

$$857 \quad 858 \quad \forall g \in \mathcal{G} : \mathbb{E}[g] \leq \frac{1}{n} \sum_{i=1}^n g(\mathbf{x}_i, y_i) + 2\hat{\mathfrak{R}}_n(\mathcal{G}) + B\sqrt{\frac{\log(1/\delta)}{2n}}, \quad (15)$$

859 where $\hat{\mathfrak{R}}_n(\mathcal{G}) := \mathbb{E}_\sigma \left[\sup_{g \in \mathcal{G}} \frac{1}{n} \sum_{i=1}^n \sigma_i g(\mathbf{x}_i, y_i) \right]$ and σ_i are i.i.d. Rademacher signs. By the vector-
 860 contraction inequality, because $\mathcal{L}(\cdot, \cdot)$ is L -Lipschitz,
 861

$$862 \quad 863 \quad \hat{\mathfrak{R}}_n(\mathcal{G}) \leq L\hat{\mathfrak{R}}_n(\mathcal{H}), \quad \hat{\mathfrak{R}}_n(\mathcal{H}) := \mathbb{E}_\sigma \left[\sup_{\|\omega_f\| \leq 1} \frac{1}{n} \sum_{i=1}^n \sigma_i \langle \omega_f, \phi_F(\mathbf{x}_i) \rangle \right]. \quad (16)$$

864 For any fixed sample $S = \{\mathbf{x}_i\}_{i=1}^n$,
 865

$$866 \hat{\mathfrak{R}}_n(\mathcal{H}) = \frac{1}{n} \mathbb{E}_\sigma \left\| \sum_{i=1}^n \sigma_i \phi_{\mathcal{F}}(\mathbf{x}_i) \right\|_2 \leq \frac{1}{n} \sqrt{\mathbb{E}_\sigma \left\| \sum_{i=1}^n \sigma_i \phi_{\mathcal{F}}(\mathbf{x}_i) \right\|_2^2} = \frac{1}{n} \sqrt{\sum_{i=1}^n \|\phi_{\mathcal{F}}(\mathbf{x}_i)\|_2^2}.$$

870 Writing $\phi_{\mathcal{F}}(\mathbf{x}_i) = \alpha(\mathbf{x}_i) \in \mathbb{R}^d$ in the fixed orthonormal basis $\{m_j\}_{j=1}^d$, we have $\|\phi_{\mathcal{F}}(\mathbf{x}_i)\|_2^2 =$
 871 $\|\alpha(\mathbf{x}_i)\|_2^2$ and, by isotropy, $\mathbb{E}\|\alpha(\mathbf{x})\|_2^2 = \text{tr}(\mathbb{E}[\alpha(\mathbf{x})\alpha(\mathbf{x})^\top]) = d$. Hence

$$873 \hat{\mathfrak{R}}_n(\mathcal{H}) \leq \sqrt{\frac{d}{n}}. \quad (17)$$

875 Combining the Equations 15 16 17 yields that, with probability at least $1 - \delta$, for all ω_f with
 876 $\|\omega_f\| \leq 1$,
 877

$$878 \mathbb{E}_{(\mathbf{x}, \mathbf{y}) \sim \mathcal{D}_f} [\mathcal{L}(\hat{\mathbf{y}}, \mathbf{y})] \leq \frac{1}{n} \sum_{i=1}^n \mathcal{L}(\hat{\mathbf{y}}_i, \mathbf{y}_i) + 2L\sqrt{\frac{d}{n}} + B\sqrt{\frac{\log(1/\delta)}{2n}}.$$

881 This is the desired inequality, and it holds simultaneously for all tasks f (equivalently, all ω_f with
 882 $\|\omega_f\| \leq 1$) by the same uniform bound. \square
 883

884 B.4 PROOF OF PROPOSITION 3.9

886 For ease of presentation, we first restate the proposition and then introduce its proof.

887 **Proposition B.4** (Closed form of ω_f under simplified LSA). *Consider an LSA layer applied after a
 888 feature encoder $\phi : \mathcal{X} \rightarrow \mathbb{R}^d$ implemented by an MLP. Suppose the LSA projection matrices W_{KQ}
 889 and W_{OA} are initialized such that*

$$891 W_{OV} = \begin{pmatrix} * & * \\ 0_d^\top & 1 \end{pmatrix}, \quad W_{KQ} = \begin{pmatrix} \Theta & 0_d \\ 0_d^\top & * \end{pmatrix}.$$

894 Then the final prediction takes the form $\hat{\mathbf{y}} = \langle \omega_f(\mathbf{z}_{1:n}, \phi), \phi(\mathbf{x}_q) \rangle$, where

$$896 \omega_f(\mathbf{z}_{1:n}, \phi) = \frac{1}{n} \sum_{i=1}^n \mathbf{y}_i \Theta^\top \phi(\mathbf{x}_i). \quad (18)$$

899 *Proof.* According to Kim & Suzuki (2024), under the conditions of Proposition 3.9, the expression
 900 of $\hat{\mathbf{y}}$ is given as follows:

$$901 \hat{\mathbf{y}} = \frac{1}{n} \sum_{i=1}^n \mathbf{y}_i \phi(\mathbf{x}_i)^\top \Theta \phi(\mathbf{x}_q). \quad (19)$$

904 Hence, Proposition 3.9 is readily proved. \square
 905

908 B.5 PROOF OF THEOREM 3.10

909 For ease of presentation, we first restate the theorem and then introduce its proof.

911 **Theorem B.5** (Entangled structure under general SA). *For a standard SA model with softmax-based
 912 attention weights, there does NOT exist a pair of ϕ_0 and $\omega_0(\mathbf{z}_{1:n}, \phi_0)$, such that the model prediction
 913 admits the following decomposition:*

$$914 \hat{\mathbf{y}}_q = \langle \omega_0(\mathbf{z}_{1:n}, \phi_0), \phi_0(\mathbf{x}_q) \rangle. \quad (20)$$

916 *Proof.* We argue by contradiction. Assume there exists a finite-dimensional feature map ϕ_0 and a
 917 context-only coefficient vector $\omega_0(\mathbf{z}_{1:n}, \phi_0)$ such that the identity holds for all contexts and queries.

918 **Step 1: From SA equations to a ratio of exponentials in \mathbf{x}_q .** Let the sequence length be $L =$
 919 $n+1$. Stack token embeddings as $Z = [\mathbf{z}_1, \dots, \mathbf{z}_n, \mathbf{z}_q] \in \mathbb{R}^{d_v \times L}$. A single-head self-attention (SA)
 920 layer computes

$$921 \quad Q = W_Q Z, \quad K = W_K Z, \quad V = W_V Z,$$

922 with $Q, K \in \mathbb{R}^{d_k \times L}$, $V \in \mathbb{R}^{d_v \times L}$. Denote the i -th key/value columns by $k_i := K_{:,i} = W_K \mathbf{z}_i$,
 923 $v_i := V_{:,i} = W_V \mathbf{z}_i$, and the query column at position q by $q := Q_{:,L} = W_Q \mathbf{z}_q$. The attention
 924 weights for the query position form a probability vector $\alpha(q) \in \Delta^n$ with coordinates
 925

$$926 \quad \alpha_i(q) = \frac{\exp(\langle k_i, q \rangle / \sqrt{d_k})}{\sum_{j=1}^L \exp(\langle k_j, q \rangle / \sqrt{d_k})}, \quad i = 1, \dots, L. \quad (21)$$

929 In the theoretical analysis of ICL, it is common to set $\mathbf{z}_q = [\mathbf{x}_q, 0]$. Without loss of generality, we
 930 assume that the query token embedding depends affinely on the input feature $\mathbf{x}_q \in \mathbb{R}^{d_x}$:

$$932 \quad \mathbf{z}_q = E_x \mathbf{x}_q + r_q,$$

934 where $E_x \in \mathbb{R}^{d_v \times d_x}$ is a fixed embedding matrix and $r_q \in \mathbb{R}^d$ could collect position encodings and
 935 other context-independent parts at position q . Then the query vector is also affine in \mathbf{x}_q :

$$936 \quad q = W_Q \mathbf{z}_q = W_Q E_x \mathbf{x}_q + W_Q r_q = U \mathbf{x}_q + u_0,$$

938 with $U := W_Q E_x \in \mathbb{R}^{d_k \times d_x}$ and $u_0 := W_Q r_q \in \mathbb{R}^{d_k}$. Plugging $q = U \mathbf{x}_q + u_0$ into the logits in
 939 Equation 21 yields, for each key i ,

$$941 \quad \frac{\langle k_i, q \rangle}{\sqrt{d_k}} = \frac{\langle k_i, U \mathbf{x}_q \rangle}{\sqrt{d_k}} + \frac{\langle k_i, u_0 \rangle}{\sqrt{d_k}} = a_i^\top \mathbf{x}_q + b_i(\mathbf{z}),$$

943 where we define the (query–input) slope and the (context) offset by

$$945 \quad a_i := \frac{U^\top k_i}{\sqrt{d_k}} \in \mathbb{R}^{d_x}, \quad b_i(\mathbf{z}) := \frac{\langle k_i, u_0 \rangle}{\sqrt{d_k}} \in \mathbb{R}.$$

947 Hence, for a fixed context $\mathbf{z}_{1:n}$ (which fixes all k_i and u_0), the attention weights are *softmax of affine*
 948 *functions of \mathbf{x}_q* :

$$950 \quad \alpha_i(\mathbf{x}_q; \mathbf{z}) = \frac{\exp(a_i^\top \mathbf{x}_q + b_i(\mathbf{z}))}{\sum_{j=1}^L \exp(a_j^\top \mathbf{x}_q + b_j(\mathbf{z}))}, \quad i = 1, \dots, L. \quad (22)$$

953 The SA output at the query position is $h_q = \mathbf{z}_q + W_O \sum_{i=1}^L \alpha_i(\mathbf{x}_q; \mathbf{z}) v_i$. For a fixed linear
 954 predictor $w \in \mathbb{R}^d$ (or equivalently choosing a fixed output coordinate), the scalar prediction is
 955

$$956 \quad \hat{y}_q(\mathbf{x}_q) = w^\top h_q = \underbrace{w^\top \mathbf{z}_q}_{\text{affine in } \mathbf{x}_q} + \sum_{i=1}^L \underbrace{(w^\top W_O v_i)}_{:= \gamma_i(\mathbf{z})} \alpha_i(\mathbf{x}_q; \mathbf{z}). \quad (23)$$

960 If we choose w orthogonal to $\text{Im}(E_x)$ (always possible unless $E_x = 0$), then $w^\top \mathbf{z}_q = w^\top (E_x \mathbf{x}_q +$
 961 $r_q) = w^\top r_q$ is a context-only constant; denote $c(\mathbf{z}) := w^\top r_q$. With $\gamma(\mathbf{z}) := (\gamma_1(\mathbf{z}), \dots, \gamma_L(\mathbf{z}))^\top$,
 962 Equation 23 simplifies to

$$963 \quad \hat{y}_q(\mathbf{x}_q) = c(\mathbf{z}) + \gamma(\mathbf{z})^\top \alpha(\mathbf{x}_q; \mathbf{z}), \quad (24)$$

964 where $\alpha(\cdot; \mathbf{z})$ is given by the ratio-of-exponentials form in Equation 22. This exhibits the claimed
 965 dependence of \hat{y}_q on \mathbf{x}_q through a softmax over affine functions of \mathbf{x}_q .

967 **Step 2: A two-key reduction yields a linearly independent logistic family.** Specialize to $d_x = 1$
 968 and one context keys ($n = 1$) with $a_1 \neq a_2$. Choose W_O, V so that $c(\mathbf{z}) \equiv 0$ and $\gamma_1(\mathbf{z}) = 1, \gamma_2(\mathbf{z}) = 0$. Then Equation 24 reduces to
 970

$$971 \quad \hat{y}_q(\mathbf{x}_q) = \frac{\exp(a_1 \mathbf{x}_q + b_1(\mathbf{z}))}{\exp(a_1 \mathbf{x}_q + b_1(\mathbf{z})) + \exp(a_2 \mathbf{x}_q + b_2(\mathbf{z}))} = \frac{1}{1 + t(\mathbf{z}) e^{-a \mathbf{x}_q}},$$

972 where $a := a_1 - a_2 \neq 0$ and $t(z) := \exp(b_2(z) - b_1(z)) > 0$. As the context varies, $t(z)$ can take
 973 arbitrarily many distinct positive values, so SA realizes the one-parameter family of functions
 974

$$975 \quad \mathcal{F} = \left\{ f_t(\mathbf{x}) := \frac{1}{1 + te^{-ax}} : t > 0 \right\}.$$

977 Fix distinct $t_1, \dots, t_m > 0$. Suppose there exist scalars $\lambda_1, \dots, \lambda_m$ with $\sum_{i=1}^m \lambda_i f_{t_i}(\mathbf{x}) \equiv 0$ for
 978 all $\mathbf{x} \in \mathbb{R}$. Multiplying both sides by $\prod_{i=1}^m (1 + t_i e^{-ax})$ and letting $s = e^{-ax}$ gives the polynomial
 979 identity

$$980 \quad \sum_{i=1}^m \lambda_i \prod_{j \neq i} (1 + t_j s) \equiv 0 \quad \text{for all } s > 0.$$

982 A polynomial that vanishes on an infinite set is identically zero; hence the identity holds for all
 983 $s \in \mathbb{R}$. Evaluating at $s = -1/t_k$ yields
 984

$$985 \quad \lambda_k \prod_{j \neq k} \left(1 - \frac{t_j}{t_k} \right) = 0.$$

987 Since the t_i are distinct, each product is nonzero, forcing $\lambda_k = 0$ for all k . Thus f_{t_1}, \dots, f_{t_m} are
 988 linearly independent. Consequently, the linear span of \mathcal{F} is infinite-dimensional.
 989

990 **Step 3: Contradiction with any finite-dimensional bilinear decomposition.** If the bilinear de-
 991 composition $\hat{y}_q(\mathbf{x}_q) = \langle \omega_0(\mathbf{z}), \phi_0(\mathbf{x}_q) \rangle$ held with a *fixed* feature map $\phi_0 : \mathbb{R} \rightarrow \mathbb{R}^d$ (independent
 992 of the context), then for all contexts the functions $\mathbf{x}_q \mapsto \hat{y}_q(\mathbf{x}_q)$ would lie in the d -dimensional
 993 linear span of the coordinate functions of ϕ_0 . However, Step 2 shows that by varying the context,
 994 SA realizes an infinite set \mathcal{F} of pairwise linearly independent functions in \mathbf{x} , which cannot be con-
 995 tained in any finite-dimensional linear subspace. This contradiction rules out the existence of such
 996 (ϕ_0, ω_0) . \square
 997

998 C EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

1000 In this part of the appendix, we provide detailed descriptions of the experiments in the main text and
 1001 include additional experimental results.
 1002

1003 C.1 REGRESSION

1005 **Setup details.** We consider two major evaluation scenarios for regression: in-distribution (ID)
 1006 testing and out-of-distribution (OOD) testing. In the ID scenario, we set $\mathcal{D}_{\mathcal{X}}^{\text{train}} = \mathcal{D}_{\mathcal{X}}^{\text{test}} = \mathcal{D}_{\text{query}}$, and
 1007 $\mathcal{D}_{\mathcal{F}}^{\text{train}} = \mathcal{D}_{\mathcal{F}}^{\text{test}}$. Specifically, we use the following four classes of functions \mathcal{F} :

- 1009 • Linear functions: $\mathcal{F} = \{f \mid f(\mathbf{x}) = \mathbf{w}^\top \mathbf{x}, \mathbf{w} \in \mathbb{R}^d\}$, where $d = 10$. We sample
 1010 $\mathbf{x}_1, \dots, \mathbf{x}_j, \mathbf{x}_q$ and \mathbf{w} independently from the isotropic Gaussian distribution $\mathcal{N}(0, I_d)$,
 1011 then compute $f(\mathbf{x}_i) = \mathbf{w}^\top \mathbf{x}_i$ to construct the prompt. In this setting we use the least
 1012 squares estimator as the optimal baseline.
- 1013 • Sparse linear functions: $\mathcal{F} = \{f \mid f(\mathbf{x}) = \mathbf{w}^\top \mathbf{x}, \mathbf{w} \in \mathbb{R}^d, \|\mathbf{w}\|_0 \leq s\}$, where $d = 10$ and
 1014 $s = 3$. We also sample $\mathbf{x}_1, \dots, \mathbf{x}_j, \mathbf{x}_q$ and \mathbf{w} independently from $\mathcal{N}(0, I_d)$, and then zero
 1015 out all but s coordinates of \mathbf{w} uniformly at random. We use the least squares estimator and
 1016 Lasso, which leverages sparsity with an ℓ_1 -norm regularizer as baselines.
- 1017 • Two-layer ReLU neural networks: $\mathcal{F} = \{f \mid f(\mathbf{x}) = \sum_{i=1}^h a_i \sigma(\mathbf{w}_i^\top \mathbf{x}), a_i \in \mathbb{R}, \mathbf{w}_i \in\$
 1018 $\mathbb{R}^d\}$, where $\sigma(z) = \max\{0, z\}$ is the ReLU activation function, and $d = 5, h = 10$. We
 1019 sample \mathbf{x}_i s and \mathbf{x}_q from $\mathcal{N}(0, I_d)$, along with network parameters a_i s from $\mathcal{N}(0, 2/h)$. We
 1020 sample \mathbf{w}_i s from $\mathcal{N}(0, I_d)$, and share them across all tasks in \mathcal{F} . The baseline is a two-layer
 1021 neural network of the same architecture trained on in-context examples using Adam.
- 1022 • Combination functions: $\mathcal{F} = \{f \mid f(\mathbf{x}) = \mathbf{w}^\top \Phi(\mathbf{x}), \mathbf{w} \in \mathbb{R}^5\}$, where Φ
 1023 is an element-wise combination function. For $\mathbf{x} = [x_1, x_2, x_3, x_4, x_5]$, $\Phi(\mathbf{x}) =$
 1024 $[|x_1|, x_2^2, x_3^3, \cos(\pi x_4), e^{0.2 x_5}]^\top$. We sample \mathbf{x}_i s, \mathbf{x}_q and \mathbf{w} from $\mathcal{N}(0, I_5)$ inde-
 1025 pendently. In this setting, there is no naturally optimal baseline, so we compare only with the
 Transformer.

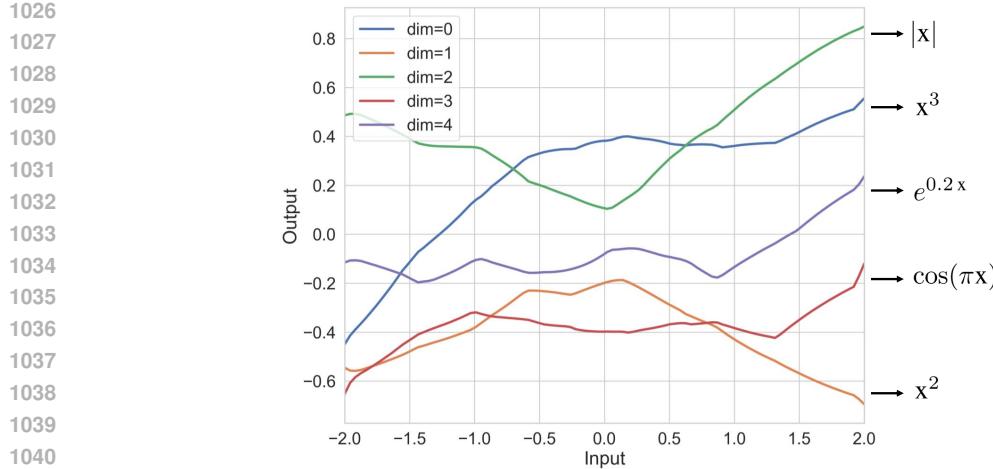


Figure 6: The 5-dimensional sample representation space learned by CoQE for the combination functions.

The latter two classes of nonlinear functions allow the model to reduce ICL difficulty through representation learning, by learning task-invariant w_i s or Φ .

In the OOD scenario, we consider four different cases of distributional shifts under linear functions.

- $\mathcal{D}_{\mathcal{X}}^{\text{train}} \neq \mathcal{D}_{\mathcal{X}}^{\text{test}} = \mathcal{D}_{\text{query}}$. We consider the setting where the prompt inputs \mathbf{x}_i s' scale between training and testing is different. We scale them by a factor of 0.8 or 1.2.
- $\mathcal{D}_{\mathcal{X}}^{\text{train}} = \mathcal{D}_{\mathcal{X}}^{\text{test}} \neq \mathcal{D}_{\text{query}}$. We sample the context examples from the same distribution as at training time, but sample \mathbf{x}_q from a Gaussian distribution with 3× higher standard deviation.
- $\mathcal{D}_{\mathcal{X}}^{\text{test}} \neq \mathcal{D}_{\mathcal{X}}^{\text{train}} = \mathcal{D}_{\text{query}}$. We fix the sign of each coordinate to be randomly positive or negative for all prompt inputs \mathbf{x}_i s, and draw \mathbf{x}_q from $\mathcal{N}(0, I)$ as before.
- $\mathcal{D}_{\mathcal{F}}^{\text{train}} \neq \mathcal{D}_{\mathcal{F}}^{\text{test}}$. We consider scaling the weight vector by a factor of 0.8 or 1.2, to capture shifts of task functions.

Through the above diverse evaluation settings, we comprehensively demonstrate that CoQE consistently exhibits stronger ICL capability than a standard Transformer of comparable size on regression tasks.

Implementation details. We use Transformer architectures from the GPT-2 family (Radford et al., 2018) as implemented by HuggingFace (Wolf et al., 2020). Specifically, the Transformer baseline we use is configured with an embedding dimension of 64, 3 layers, and 2 attention heads, resulting in a total of 0.2M parameters. The task encoder of CoQE uses the exact same Transformer configuration. The representation encoder of CoQE consists of a two-layer ReLU network, implemented as a linear projection, followed by a ReLU activation, a LayerNorm, and a second linear layer. For fair comparison, the baseline Transformer's embedding module uses the exact same two-layer ReLU network. During training across the four classes of functions, we use a batch size of 64 and a learning rate of $5e-5$. For the three tasks except combination functions, models are trained for 1×10^5 steps, while the combination task is trained for 2×10^5 steps due to its increased difficulty. All experiments are conducted on an NVIDIA RTX 4090 GPU.

Additional results on representation learning. Our Theorem 3.6 shows that under the dual-space modeling framework, a sufficient set of tasks guarantees a basis-covering sample representation space that the model learns. For empirical validation, we design the task type of two-layer ReLU networks and combination functions, whose different task functions share a common sample representation space in their construction. Figure 3 (a) shows that CoQE indeed achieves a smaller ICL

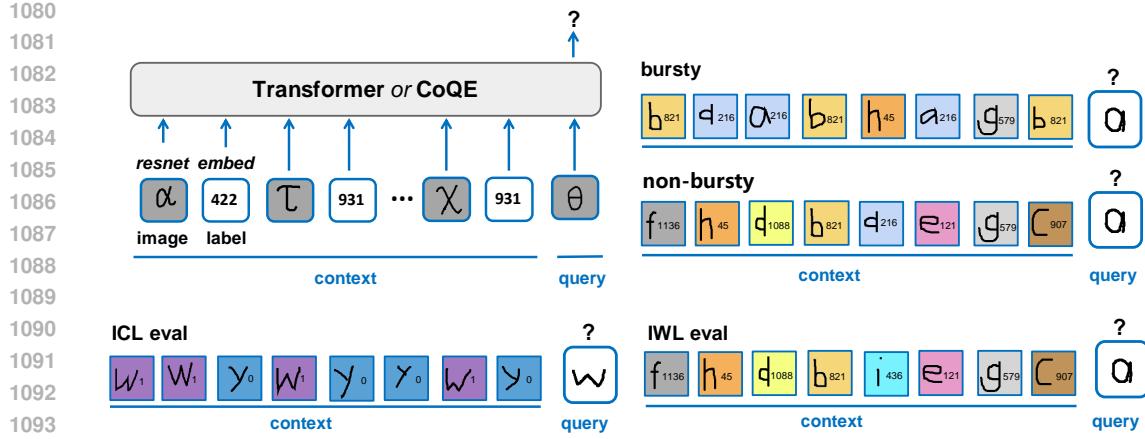


Figure 7: Illustration of the experimental setup for the few-shot classification.

error on these tasks. Furthermore, under the combination functions task, we set the sample representation space dimension of CoQE to 5, matching that of Φ , and directly visualize the 5-dimensional sample representation space learned by CoQE after training (Figure 6). From the figure, we can observe that the five dimensions appear to differentiate in a manner close to the respective transformations of the five dimensions of Φ . Although, due to the equivalence of sample representation spaces under linear transformations, i.e., $f = \mathbf{w}^\top \Phi(\mathbf{x}) = \mathbf{w}^\top H^{-1} \cdot H\Phi(\mathbf{x})$ where H denotes an arbitrary invertible matrix, it is essentially impossible for the model to learn Φ with perfectly identical scale and shape. The current differentiation can be regarded as another empirical proof of Theorem 3.6 that our dual-modeling could facilitate learning of the basis-covering sample representation space.

C.2 FEW-SHOT CLASSIFICATION

Setup details. To evaluate ICL and IWL abilities under various conditions, we use a synthetic few-shot classification task based on the Omniglot dataset (Lake et al., 2015). The dataset contains 1,623 character classes, each with 20 samples. Figure 7 provides an illustration of the experimental setup for the few-shot classification, including the overall pipeline, sequences for training, and sequences for testing.

Implementation details. In our experiments, we employ ResNets of two sizes (with embedding dimensions $E = 64$ and $E = 512$) to encode images. Both architectures consist of four groups, each containing two residual blocks. The difference lies in the embedding dimensions of each group: for the $E = 64$ ResNet, the four groups produce embeddings of sizes 16, 32, 32, and 64, respectively; for the $E = 512$ ResNet, the sizes are 64, 128, 256, and 512. Although a fully connected layer is appended to the $E = 512$ ResNet to project the final embedding dimension back to 64 before feeding it into the Transformer, it clearly possesses a much stronger capacity for extracting visual sample representations. As a result, the resulting embedding tokens are more expressive. For CoQE, we find that the $E = 64$ ResNet is insufficient for the sample encoder, and therefore adopt the $E = 512$ variant. We also employ two Transformer configurations with different layers: $L = 4$ and $L = 12$. Both variants use an embedding dimension of 64 and 8 attention heads. We have shown that CoQE with only an $L = 4$ Transformer in the task encoder, can match the ICL and IWL performance of an $L = 12$ Transformer. In our experiments, a baseline Transformer with $E = 64$ and $L = 12$ contains approximately 0.9M parameters, while CoQE with $E = 512$ and $L = 4$ has 2.0M parameters.

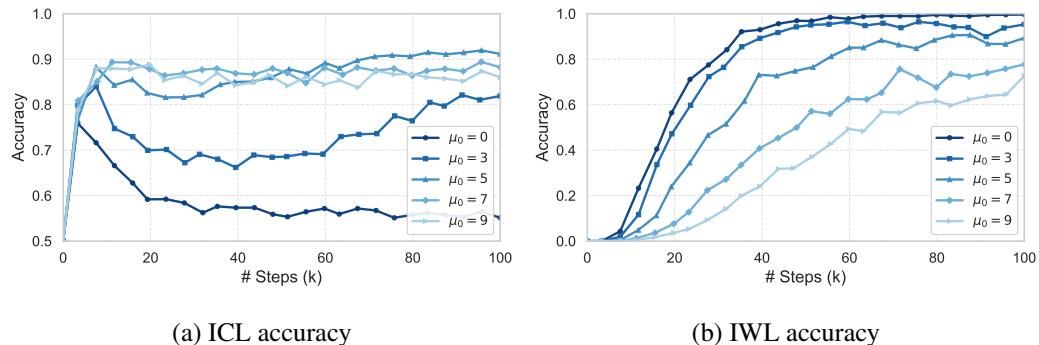
When training CoQE, we add Gaussian noise to the modified logits to prevent the task encoder’s output from collapsing to a static vector. Specifically, the initial noise is sampled from $\mathcal{N}(\mu_0, 1)$, and both the mean and standard deviation are incremented by 1 every 10^4 training steps. During training of baseline Transformers and CoQE, we use a batch size of 24, a learning rate of $1e - 4$, and train for 1×10^5 steps. All experiments are conducted on $8 \times$ NVIDIA V100 GPUs.

1134 Table 2: Comparison of model configurations and performance with $P_{\text{bursty}} = 0.9$ and $\alpha = 1$.
1135

Model	E	L	#Param	ICL	IWL
Transformer	64	12	0.9M	84.12	64.02
CoQE	256	4	1.0M	89.55	82.02
CoQE	512	4	2.0M	91.71	89.94

1142 **Additional results on parameter scale.** As shown above, the only Transformer that can achieve a
1143 tradeoff of ICL and IWL has the configurations $E = 64$ and $L = 12$, under the data distribution with
1144 $P_{\text{bursty}} = 0.9$ and $\alpha = 1$. CoQE with $E = 512$ and $L = 4$ achieves significantly better performance
1145 than the standard Transformer with $E = 64$ and $L = 12$ under all training data distributions, but
1146 with a larger number of parameters. To demonstrate the effectiveness of our method under the same
1147 parameter scale as the Transformer, we consider CoQE with $E = 256$ and $L = 4$. Specifically, the
1148 embedding sizes of its four ResNet groups are 64, 128, 128, 256, resulting in a total model size of
1149 1.0M parameters. Under the data distribution of the sweep spot, the results are shown in Table 2.
1150 It's obvious that, under the same parameter scale, CoQE still exhibits significantly superior ICL and
1151 IWL performance.

1152 **Ablation study.** We present the training curves of CoQE under different levels of noise (Figure
1153 8). It is evident that, in the absence of noise, the model's ICL capability rapidly decays after an
1154 initial emergence, accompanied by a similarly rapid increase in IWL performance. Although this
1155 observation is not made under a standard Transformer model, we hypothesize that the underlying
1156 phenomenon extends beyond model architecture, reflecting the intrinsic properties of the two strate-
1157 gies. ICL is a lightweight, dynamic strategy, whereas IWL is more training-intensive but ultimately
1158 more stable. In standard Transformers, where the two strategies are difficult to co-exist, training
1159 often leads to a transition from ICL to IWL. In contrast, CoQE enables robust coexistence of both
1160 strategies through explicit modeling and learning of the task representation space, as well as the use
1161 of Gaussian noise to isolate the task-transformations associated with each strategy.

1174 Figure 8: Learning curves under different noise levels
11751177

D THE USE OF LARGE LANGUAGE MODELS

1179 In this work, we employed LLMs in a limited capacity to support writing and presentation. Specifi-
1180 cally, we used an LLM to help with grammar correction, linguistic polishing, as well as typesetting
1181 tables in the appropriate style. All core research contributions were entirely carried out by the au-
1182 thors without LLM involvement.