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Abstract

Topic segmentation is critical for obtaining
structured documents and improving down-
stream tasks such as information retrieval. Due
to its ability of automatically exploring clues
of topic shift from abundant labeled data, re-
cent supervised neural models have greatly
promoted the development of long document
topic segmentation, but leaving the deeper re-
lationship between coherence and topic seg-
mentation underexplored. Therefore, this paper
enhances the ability of supervised models to
capture coherence from both logical structure
and semantic similarity perspectives to further
improve the topic segmentation performance,
proposing Topic-aware Sentence Structure
Prediction (TSSP) and Contrastive Seman-
tic Similarity Learning (CSSL). Specifically,
the TSSP task is proposed to force the model
to comprehend structural information by learn-
ing the original relations between adjacent sen-
tences in a disarrayed document, which is con-
structed by jointly disrupting the original doc-
ument at topic and sentence levels. Moreover,
we utilize inter- and intra-topic information to
construct contrastive samples and design the
CSSL objective to ensure that the sentences rep-
resentations in the same topic have higher sim-
ilarity, while those in different topics are less
similar. Extensive experiments show that Long-
former with our approach significantly outper-
forms state-of-the-art (SOTA) methods. Our ap-
proach improves F1 of SOTA by 3.42 (73.74 →
77.16) and improves Pk by 1.11 points (15.0 →
13.89) on WIKI-727K and achieves an average
relative reduction of 4.3% on Pk on WikiSec-
tion. The average relative Pk drop of 8.38% on
two out-of-domain datasets also demonstrates
the robustness of our approach1.

1 Introduction

Topic segmentation aims to automatically segment
the text into non-overlapping topically coherent

1Our code is publicly available at https://github.com/
alibaba-damo-academy/SpokenNLP/

parts (Hearst, 1994). Topic segmentation makes
documents easier to read and understand, and also
plays a key role in many downstream tasks such as
information extraction (Prince and Labadié, 2007;
Shtekh et al., 2018) and document summariza-
tion (Xiao and Carenini, 2019; Liu et al., 2022).
Topic segmentation methods can be categorized
into linear segmentation (Hearst, 1997), which
yields a linear sequence of topic segments, and hier-
archical segmentation (Bayomi and Lawless, 2018;
Hazem et al., 2020), which produces a hierarchical
structure with top-level segments divided into sub-
segments. We focus on linear topic segmentation
in this work, especially for long documents.

Based on the definition of topics, each sentence
in a topic relates to the central idea of the topic,
and topics should be discriminative. Hence, two
adjacent sentences from the same topic are more
similar than those from different topics. Exploring
this idea, prior unsupervised models mainly infer
topic boundaries through computing text similar-
ity (Riedl and Biemann, 2012b; Glavaš et al., 2016)
or exploring topic representation of text (Misra
et al., 2009; Du et al., 2013). Different from the
shallow features carefully designed and used by un-
supervised methods, supervised neural models can
model deeper semantic information and explore
clues of topic shift from labeled data (Badjatiya
et al., 2018; Koshorek et al., 2018). Supervised
models have achieved large gains on topic seg-
mentation through pre-training language models
(PLMs) (e.g., BERT) and fine-tuning on large-scale
supervised datasets (Kenton and Toutanova, 2019;
Lukasik et al., 2020; Zhang et al., 2021; Inan et al.,
2022). Recently, (Arnold et al., 2019; Xing et al.,
2020; Somasundaran et al., 2020; Lo et al., 2021)
improve topic segmentation performance by ex-
plicitly modeling text coherence. However, these
approaches either neglect context modeling beyond
adjacent sentences (Wang et al., 2017), or require
additional label information (Arnold et al., 2019;

https://github.com/alibaba-damo-academy/SpokenNLP/
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Barrow et al., 2020; Lo et al., 2021; Inan et al.,
2022), or impede learning sentence-pair coherence
without considering both coherent and incoherent
pairs (Xing et al., 2020). Moreover, compared
to short documents, topic segmentation becomes
more critical for understanding long documents,
and coherence modeling for long document topic
segmentation is more crucial.

Coherence plays a key role in understanding
both logical structures and text semantics. Con-
sequently, to enhance coherence modeling in super-
vised topic segmentation methods, we propose two
auxiliary coherence-related tasks, namely, Topic-
aware Sentence Structure Prediction (TSSP)
and Contrastive Semantic Similarity Learning
(CSSL). We create disordered incoherent docu-
ments, then the TSSP task utilizes these documents
and enhances learning sentence-pair structure infor-
mation. The CSSL task regulates sentence repre-
sentations and ensures sentences in the same topic
have higher semantic similarity while sentences
in different topics are less similar. Experimental
results demonstrate that both TSSP and CSSL im-
prove topic segmentation performance and their
combination achieves further gains. Moreover, per-
formance gains on out-of-domain data from the
proposed approaches demonstrate that they also
significantly improve generalizability of the model.

Large Language Models such as ChatGPT 2 have
achieved impressive performance on a wide variety
of NLP tasks. We adopt the prompts proposed
by Fan and Jiang (2023) and evaluate ChatGPT on
the WIKI-50 dataset (Koshorek et al., 2018). We
find ChatGPT performs considerably worse than
fine-tuning BERT-sized PLMs on long document
topic segmentation (as shown in Appendix A).

Our contributions can be summarized as follows.

• We investigate supervised topic segmentation on
long documents and confirm the necessity of ex-
ploiting longer context information.

• We propose two novel auxiliary tasks TSSP and
CSSL for coherence modeling from the perspec-
tives of both logical structure and semantic sim-
ilarity, thereby improving the performance of
topic segmentation.

• Our proposed approaches set new state-of-the-
art (SOTA) performance on topic segmentation
benchmarks, including long documents. Abla-
tion study shows that both new tasks effectively

2https://chat.openai.com

improve topic segmentation performance and
they also improve generalizability of the model.

2 Related Work

2.1 Topic Segmentation Models

Both unsupervised and supervised approaches have
been proposed before to solve topic segmenta-
tion. Unsupervised methods typically design fea-
tures based on the assumption that segments in
the same topic are more coherent than those that
belong to different topics, such as lexical cohe-
sion (Hearst, 1997; Choi, 2000; Riedl and Bie-
mann, 2012b), topic models (Misra et al., 2009;
Riedl and Biemann, 2012a; Jameel and Lam, 2013;
Du et al., 2013) and semantic embedding (Glavaš
et al., 2016; Solbiati et al., 2021; Xing and Carenini,
2021). In contrast, supervised models can achieve
more precise predictions by automatically min-
ing clues of topic shift from large amounts of la-
beled data, either by classification on the pairs of
sentences or chunks (Wang et al., 2017; Lukasik
et al., 2020) or sequence labeling on the whole
input sequence (Koshorek et al., 2018; Badjatiya
et al., 2018; Xing et al., 2020; Zhang et al., 2021).
However, the memory consumption and efficiency
of neural models such as BERT (Kenton and
Toutanova, 2019) can be limiting factors for model-
ing long documents as their length increases. Some
approaches (Arnold et al., 2019; Lukasik et al.,
2020; Lo et al., 2021; Somasundaran et al., 2020)
use hierarchical modeling from tokens to sentences,
while others (Somasundaran et al., 2020; Zhang
et al., 2021) use sliding windows to reduce resource
consumption. However, both directions of methods
may not be adequate for capturing the full context
of long documents, which is critical for accurate
topic segmentation.

2.2 Coherence Modeling

The NLP community has developed models for
comprehending text coherence and tasks to mea-
sure their effectiveness, such as predicting the co-
herence score of documents (Barzilay and Lap-
ata, 2008), predicting the position where the re-
moved sentence was originally located (Elsner and
Charniak, 2011) and restoring out-of-order sen-
tences (Logeswaran et al., 2018; Chowdhury et al.,
2021). Some researchers have aimed to improve
topic segmentation models by explicitly modeling
text coherence. However, all of prior works con-
sider coherence modeling for topic segmenta-
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tion only from a single perspective. For exam-
ple, Wang et al. (2017) ranked sentence pairs based
on their semantic coherence to segment documents
within the Learning-to-Rank framework, but they
did not consider contextual information beyond two
sentences. CATS (Somasundaran et al., 2020) cre-
ated corrupted text by randomly shuffling or replac-
ing sentences to force the model to produce a higher
coherence score for the correct document than for
its corrupt counterpart. However the fluency of the
constructed document is too low so that the seman-
tic information is basically lost. Xing et al. (2020)
proposed to add the Consecutive Sentence-pair Co-
herence (CSC) task by computing the cosine simi-
larity as coherence score. But no more incoherent
sentence pairs are considered in CSC, except for
those located at segment boundaries. Other meth-
ods (Arnold et al., 2019; Barrow et al., 2020; Lo
et al., 2021; Inan et al., 2022) have used topic la-
bels to constrain sentence representations within
the same topic, but they require additional topic
label information. In contrast to these works, our
work is the first to consider topical coherence as
both text semantic similarity and logical struc-
ture (flow) of sentences.

3 Methodology

In this section, we first describe our baseline model
for topic segmentation (Section 3.1), then intro-
duce our proposed Topic-aware Sentence Structure
Prediction (TSSP) module (Section 3.2) and Con-
trastive Semantic Similarity Learning (CSSL) mod-
ule (Section 3.3). Figure 1 illustrates the overall
architecture of our topic segmentation model.

3.1 Baseline Model for Topic Segmentation
Our supervised baseline model formulates topic
segmentation as a sentence-level sequence labeling
task (Zhang et al., 2021)). Given a document repre-
sented as a sequence of sentences [s1, s2, s3, ..., sn]
(where n is the number of sentences), the model
predicts binary labels [y1, y2, ..., yn−1] correspond-
ing to each sentence except for the last sentence,
where yi = 1, i ∈ {1, · · · , n − 1} means si is the
last sentence of a topic and 0 means not.

Following prior works (Somasundaran et al.,
2020; Zhang et al., 2021), we prepend a special
token BOS before each sentence and the updated
sentence is shown in Eq. 1, where ti,1 is BOS and
|si| is the number of tokens in si.

s′i = [ti,1, ti,2, ..., ti,|si|+1] (1)
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Figure 1: The overall architecture of our model. si is
i-th sentence in document d. d

′
is the augmented data

we construct corresponding to document d (Section 3.2).
TS denotes Topic Segmentation, TSSP denotes Topic-
aware Sentence Structure Prediction (Section 3.2) and
CSSL denotes Contrastive Semantic Similarity Learning
(Section 3.3). Lts, Ltssp and Lcssl denote the losses we
describe in Section 3.

The token sequence for the document is embedded
through the embedding layer and then fed into the
encoder to obtain its contextual representations.
We take the representation of each BOS hi as the
sentence representation, as shown in Eq. 4. Then
we apply a softmax binary classifier g as in Eq. 3
on top of hi to compute the topic segmentation
probability p of each sentence. We use the standard
binary cross-entropy loss function as in Eq. 2 to
train the model.

Lts = −
n−1∑
i=1

[yi ln pi + (1−yi) ln(1−pi)] (2)

pi = g(hi) (3)

hi = Encoder(ti,1) (4)

3.2 Topic-aware Sentence Structure
Prediction

Learning sentence representations that reflect inter-
sentence coherence (inter-sentence relations) is crit-
ical for topic segmentation. Several tasks have been
proposed in prior works for modeling sentence-pair
relations. The Next Sentence Prediction (NSP) task
in BERT (Kenton and Toutanova, 2019) predicts
whether two segments appear consecutively in the
same document or come from different documents,
hence it fuses topic prediction and coherence pre-
diction in one task. In order to better model inter-
sentence coherence, the Binary Sentence Ordering
(BSO) task in ALBERT (Lan et al., 2019) con-
structs input as two consecutive segments from the
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Figure 2: The process of constructing the augmented
document (the bottom line) from the original document
(the top line). si denotes i-th sentence of the document.
The sentences with the same colors are in the same
topic. Sentences in light purple are topics from another
document.

same document but 50% of the time their order is re-
versed. The ternary Sentence Structural Objective
(SSO) in StructBERT (Wang et al., 2019) further
increases the task difficulty of BSO by adding a
class of sentence pairs from different documents.

All these tasks for learning inter-sentence co-
herence have not explored topic structures. Dif-
ferent from them, we propose a Topic-aware Sen-
tence Structure Prediction (TSSP) task to help
the model learn sentence representations with struc-
tural information that explore topic structures and
hence are more suitable for topic segmentation.

Data Augmentation We tailor data augmenta-
tion techniques for topic segmentation. As depicted
in the right half of Figure 1, we create an aug-
mented document d

′
from the original document

d and feed d
′

into the shared encoder after the em-
bedding layer to enhance inter-sentence coherence
modeling. Different from the auxiliary coherence
modeling approach proposed by Somasundaran
et al. (2020) which merely forces the model to
predict a lower coherence for the corrupted docu-
ment than for the original document, we simultane-
ously perturb d at both topic and sentence levels,
constructing the augmented document to force the
model to learn topic-aware inter-sentence structure
information. Hence, our task is more challeng-
ing and the learned sentence representations are
more suitable for topic segmentation. Figure 2 il-
lustrates the process of constructing an augmented
document. We first shuffle topics within the doc-

ument, then randomly replace some topics with
topics from other documents to increase diversity.
Specifically, for a randomly selected subset of p1
percent of the documents, we replace each topic
in them with a topic snippet from other documents
with a probability of p2 and keep the same with the
probability of 1− p2. The default values of p1 and
p2 are both 0.5. Finally, we shuffle the sentences in
each topic to further increase the difficulty of the
TSSP task.

Sentence-pair Relations After constructing the
augmented document d

′
, we define the TSSP task

as an auxiliary objective to assist the model to cap-
ture inter-sentence coherence, by learning the orig-
inal structural relations between adjacent sentence
pair a and b in the augmented incoherent document
d
′
. We define three types of sentence-pair relations.

The first type (label 0) is when a and b belong to
different topics, indicating a topic shift. The sec-
ond type (label 1) is when a and b are in the same
topic and b is the next sentence of a. The third type
(label 2) is when a and b belong to the same topic
but b is not the next sentence of a. For example, the
sequence of sentences in Figure 2 will be assigned
with the TSSP labels as [1, 0, 2, 2, 0, 1, 2, 2]. We
use ỹ = [ỹ0, ỹ1, ỹ2] to represent the one-hot encod-
ing of the TSSP labels, where ỹj = 1, j ∈ {0, 1, 2}
if the sentence pair belongs to the j-th category;
otherwise, ỹj = 0. For the TSSP task, we use the
cross entropy loss function defined in Eq. 5, where
˜yi,j denotes the label of the i-th sentence pair, and
˜pi,j denotes the probability of the i-th sentence pair

belonging to the j-th category.

Ltssp = −
n−1∑
i=1

2∑
j=0

˜yi,j ln( ˜pi,j) (5)

3.3 Contrastive Semantic Similarity Learning

We assume that two sentences or segments from the
same topic are inherently more coherent than those
from different topics. Therefore, the motivation of
our Contrastive Semantic Similarity Learning
(CSSL) module is to adjust the sentence represen-
tation learning to grasp the relative high and low
coherence relationship. Different from (Xing et al.,
2020) which only calculates the cosine similarity
of two adjacent sentences, our CSSL takes into ac-
count both similar and dissimilar sentence pairs to
improve sentence representation learning.
Construct Positive and Negative Samples The
upper left part of Figure 1 illustrates how CSSL



leverages contrastive learning to regulate sentence
representations, which in turn influences the pre-
dictions of topic segmentation. To construct posi-
tive and negative sample pairs in the contrastive
learning framework, prior works in NLP pro-
pose several data augmentation techniques such
as word deletion and substitution (Wu et al., 2020),
dropout (Gao et al., 2021), and adversarial at-
tack (Yan et al., 2021). However, different from
prior works that synthesize positive and negative
pairs, we explore natural positive and negative
pairs for topic segmentation, as two sentences or
segments from the same topic are inherently more
coherent than those from different topics. Accord-
ingly, regarding each sentence in the document as
the anchor sentence, we choose k1 sentences in the
same topic to constitute positive pairs and k2 sen-
tences from different topics as negative pairs based
on the ordering of the distance of a sentence from
the anchor sentence, starting from the nearest to the
farthest. Recently, Gao et al. (2023) proposes a con-
trastive learning method for unsupervised topic seg-
mentation. However, in their unsupervised method,
similar and dissimilar sample pairs could be noisy
due to lack of ground truth topic labels, which
would not occur in our supervised settings.

Loss Function As illustrated in Figure 1, we uti-
lize the following loss function to train our model
and learn contrastive semantic representations of
inter-topic and intra-topic sentences. k1 and k2
are hyperparameters that determine the number of
sentences used to form positive and negative pairs,
respectively. For each sentence representation hi,
h+i,j denotes the j-th similar sentence in the same
topic as sentence i, while h−i,j denotes the j-th dis-
similar sentence in a different topic from sentence
i. We select sentences to form sentence pairs based
on their distances to the anchor sentence, from clos-
est to farthest. The objective of our loss function is
to bring semantically similar neighbors closer and
push away negative sentence pairs, as in Eq. 6. τ
in Eq. 8 is a temperature hyper-parameter to scale
the cosine similarity of two vectors, with a default
value 0.1. In future work, in order to avoid pushing
away sentence pairs in different topics but covering
similar topical semantics, we plan to consider refin-
ing the loss, such as assigning loss weights based
on their semantic similarity.

Lcssl = −
n∑

i=1

log(licssl) (6)

licssl =

k1∑
j=1

esim(hi,h
+
i,j)

k1∑
j=1

esim(hi,h
+
i,j)+

k2∑
j=1

esim(hi,h
−
i,j)

(7)

sim(x1, x2) =
xT1 x2

∥x1∥ · ∥x2∥
/τ (8)

Combining Eq. 2, 5 and 6, we form the final loss
function of our topic segmentation model as Eq. 9,
where α1 and α2 are hyper-parameters used to ad-
just the loss weights.

Ltotal = Lts + α1Ltssp + α2Lcssl (9)

Dataset Docs #Topics #Sentences #Tokens
WIKI-727K 727,746 6.18 52.65 1356
WikiSection 23,129 6.98 57.69 1321
WIKI-50 50 7.68 61.40 1544
Elements 118 7.71 23.81 1654

Table 1: Statistics of the Intra-domain and Out-of-
domain datasets. #X denotes the average number of
X per document.

4 Experiments

4.1 Experimental Setup
Datasets We conduct two sets of experiments to
evaluate the effectiveness of our method, includ-
ing intra-domain and out-of-domain settings. The
details of the datasets are summarized in Table 1.
Intra-domain Datasets We use WIKI-
727K (Koshorek et al., 2018) and English
WikiSection (Arnold et al., 2019), which are
widely used as benchmarks to evaluate the text
segmentation performance of models. WIKI-727K
is a large corpus with segmentation annotations,
created by leveraging the manual structures of
about 727K Wikipedia pages and automatically
organizing them into sections. WikiSection
consists of 38K English and German Wikipedia
articles from the domains of disease and city, with
the topic labeled for each section of the text. We
use en_city and en_disease throughout the paper
to denote the English subsets of disease and city
domains, and use WikiSection to represent the
collection of these two subsets. Each section is
divided into sentences using the PUNKT tokenizer
of the NLTK library3. Additionally, we utilize
the newline information in WikiSection to only
predict whether sentences with line breaks are

3https://www.nltk.org/
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Model en_city en_disease
F1 ↑ Pk ↓ WD ↓ F1 ↑ Pk ↓ WD ↓

SEC>T+bloom (Arnold et al., 2019) 71.6 14.4 - 56.6 26.8 -
S-LSTM (Barrow et al., 2020) 76.1 9.1 - 59.3 20.0 -
BiLSTM+BERT (Xing et al., 2020) - 9.3 - - 21.1 -
Transformer2BERT (Lo et al., 2021) - 9.1 - - 18.8 -
Tipster (Gong et al., 2022) 79.8 8.3 - 62.2 14.2
PEN-NS (Xia et al., 2022) 80.0 8.0 - - - -
Naive LongT5-Base-DS (Inan et al., 2022) - 8.2 - - 33.5 -
Naive LongT5-Base-SS (Inan et al., 2022) 73.1 9.2 - 38.8 24.8 -
BERT-Base 78.99 8.94 11.34 67.34 19.69 24.83
+TSSP+CSSL (ours) 80.16 8.22 10.19 68.26 18.29 22.06
BigBird-Base 80.49 8.21 10.24 70.61 16.73 20.44
+TSSP+CSSL (ours) 81.89 7.71 9.70 72.14 16.62 20.55
LongformerSim 79.75 9.85 11.75 66.66 19.60 22.74
Longformer-Base 82.190.20 7.760.13 9.740.08 72.290.31 16.660.44 20.620.79
+CATS (Somasundaran et al., 2020)† 82.30 7.84 9.80 72.00 16.21 19.95
+CSC (Xing et al., 2020)† 82.40 7.74 9.69 72.84 16.18 19.74
+TSSP (ours) 83.12 7.39 9.31 73.74 16.03 19.71
+CSSL (ours) 82.67 7.57 9.54 73.07 15.88 19.25
+TSSP+CSSL (ours) 83.19∗0.03 7.38∗0.05 9.29∗0.06 74.17∗0.14 15.44∗0.45 19.05∗0.58
Pre-trained LongT5-Base-DS (Inan et al., 2022) - 6.8 - - 15.3 -
Pre-trained LongT5-Base-SS (Inan et al., 2022) 82.3 7.1 - 68.3 15.0 -
Pre-trained Longformer-Base 84.70 6.83 8.52 76.02 14.15 17.28
+TSSP+CSSL (ours) 85.14 6.48 8.26 77.33 13.66 16.70

Table 2: Performance of baselines and w/ our methods on en_city and en_disease test sets of WikiSection.
LongformerSim denotes Longformer-Base that uses cosine similarity of neighbor sentences as the predictor. Pre-
trained Longformer-Base denotes further pre-training Longformer-Base with WIKI-727K training set and then
fine-tuning with WikiSection training set. † denotes training Longformer-Base with the corresponding auxiliary
task described in Section 2.2. Max sequence length for BigBird-Base and Longformer-Base is 2048. x and y in
xy denote mean and standard deviation from three runs with different random seeds. ∗ indicates the gains from
+TSSP+CSSL over Longformer-Base are statistically significant with p < 0.05.

topic boundaries, which is beneficial to alleviate
the class imbalance problem.
Out-of-domain Datasets Following prior
work (Xing et al., 2020), to evaluate the domain
transfer capability of our model, we fine-tune
the model on the training set of WiKiSection
dataset (union of en_city and en_disease) due
to its distinct domain characteristics. Then we
evaluate its performance on two other datasets,
including WIKI-50 (Koshorek et al., 2018) and
Elements (Chen et al., 2009), which have different
domain distributions from WikiSection. Specifi-
cally, WIKI-50 consists of 50 samples randomly
selected from Wikipedia, while Elements consists
of 118 samples which are also extracted from
Wikipedia but focuses on chemical elements.
Evaluation Metrics Following prior works, we
use three standard evaluation metrics for topic seg-
mentation, namely, positive F1, Pk (Beeferman
et al., 1999), and WindowDiff (WD) (Pevzner and
Hearst, 2002) 4. To simplify notations, we use
F1 and WD throughout the paper to denote posi-

4We use https://segeval.readthedocs.io/ to com-
pute Pk and WD

tive F1 and WindowDiff. F1 is calculated based on
precision and recall of correctly predicted topic seg-
mentation boundaries. The Pk metric is introduced
to address some limitations of positive F1, such as
the inherent trade-off between precision and recall
as well as its insensitivity to near-misses. WD is
proposed by Pevzner and Hearst (2002) as a supple-
ment to Pk to avoid being sensitive to variations in
segment size distribution and over-penalizing near-
misses. By default, the window size for both Pk

and WD is equal to half the average length of ac-
tual segments. Lower Pk and WD scores indicate
better algorithm performance.

Baseline Models Although Transformer (Vaswani
et al., 2017) has become the SOTA architecture for
sequence modeling on a wide variety of NLP tasks
and transformer-based PLMs such as BERT (De-
vlin et al., 2019) become dominant in NLP, the
core self-attention mechanism has quadratic time
and memory complexity to the input sequence
length (Vaswani et al., 2017), limiting the max se-
quence length during pre-training (e.g., 512 for
BERT) for a balance between performance and
memory usage. As shown in Table 1, the avg. num-

https://segeval.readthedocs.io/


ber of tokens per document of each dataset exceeds
512 and hence these datasets contain long docu-
ments. We tailor the backbone model selection
for long documents. Prior models using BERT-
like PLMs for topic segmentation either truncate
long documents into the max sequence length or
use a sliding window. These approaches may de-
grade performance due to losing contextual infor-
mation. Consequently, we first evaluate BERT-
Base (Devlin et al., 2019) and several competitive
efficient transformers on the WikiSection dataset,
including BigBird-Base (Zaheer et al., 2020) and
Longformer-Base (Beltagy et al., 2020). As shown
in Table 2, Longformer-Base achieves 82.19 and
72.29 F1, greatly outperforming BERT-Base (78.99
and 67.34 F1) by (+3.2, +4.95) F1 and BigBird-
Base (80.49 and 70.61 F1). Hence we select
Longformer-Base as the encoder for the main ex-
periments. To compare with our coherence-related
auxiliary tasks, we evaluate Longformer-Base on
WikiSection with the prior auxiliary CATS or CSC
task in Section 2.2. In addition, following Inan et al.
(2022), we evaluate the pre-trained settings where
we first pre-train Longformer on WIKI-727K and
then fine-tune on WikiSection. Under the domain
transfer setting, we cite the results in (Xing et al.,
2020). Note that all the baselines we include for
comparisons are well-established and exhibit top
performances on these benchmarks.
Implementation Details To investigate the efficacy
of exploring longer context for topic segmentation,
we conducted additional evaluations on WikiSec-
tion using maximum sequence lengths of 512, 1024,
and 4096, alongside the default 2048. For docu-
ments longer than the max sequence length, we use
a sliding window to take the last sentence of the
prior sample as the start sentence of the next sam-
ple. We run the baseline Longformer-Base and w/
our model (i.e., Longformer-Base+TSSP+CSSL)
three times with different random seeds and report
means and standard deviations of the metrics. De-
tails of hyperparameters are in Appendix B.

4.2 Main Results

Intra-domain Performance Table 2 and Table 3
show the performance of baselines and w/ our
approaches on WikiSection and WIKI-727K test
sets, respectively. The results of Longformer-Base
and LongformerSim in Table 2 show that using
cosine similarity alone is insufficient to predict
the topic segmentation boundary. Longformer-

Model WIKI-727K
F1 ↑ Pk ↓ WD ↓

Bi-LSTM (Koshorek et al., 2018) - 22.13 -
Cross-segment BERT (Lukasik et al., 2020) 66.0 - -
Hier. BERT (Lukasik et al., 2020) 66.5 - -
CATS (Somasundaran et al., 2020) - 15.95 -
Seq-BERT-Base (Zhang et al., 2021)† 70.39 17.35 18.50
Seq-ELECTRA-Base (Zhang et al., 2021)† 73.74 15.83 17.01
Naive LongT5-Base-DS (Inan et al., 2022) - 15.4 -
Naive LongT5-Base-SS (Inan et al., 2022) - 15.0 -
Longformer-Base 76.270.07 14.400.03 15.500.03
+TSSP (ours) 76.57 14.13 15.20
+CSSL (ours) 76.30 14.28 15.40
+TSSP+CSSL (ours) 77.16∗0.06 13.89∗0.02 14.99∗0.02

Table 3: Performance of baselines and w/ our methods
on the WIKI-727K test set. † represents our reproduced
results. x and y in xy denote mean and standard devia-
tion from three runs with different random seeds. ∗ in-
dicates the gains from +TSSP+CSSL over Longformer-
Base are statistically significant with p < 0.05.

Base already outperforms all baselines in the first
group of Table 2 and Table 3 and BERT-Base and
BigBird-Base. Training BERT-Base, BigBird-Base
and Longformer-Base with our TSSP or CSSL
task achieves further gains. Table 2 shows that
our TSSP and CSSL both outperform CATS or
CSC auxiliary tasks. More importantly, combin-
ing TSSP and CSSL exhibits complementary ef-
fects, as it achieves further gains and sets the new
SOTA, confirming the necessity of modeling both
sentence structure and text semantic similarity for
modeling text coherence and in turn for topic seg-
mentation. On WikiSection, +TSSP+CSSL im-
proves BERT-Base by (+1.17, +0.92) F1, BigBird-
Base by (+1.4, +1.53) F1, and Longformer-Base by
(+1.0, +1.88) F1. On WIKI-727K, +TSSP+CSSL
improves Longformer-Base by +0.89 F1. In addi-
tion, utilizing pre-training data also improves the
performance on WikiSection, by (+1.95, +3.16) F1.
Finally, our new SOTA reduces Pk of old SOTA
by 1.11 points on WIKI-727K (15.0→ 13.89) and
achieves an average relative reduction of 4.3% on
Pk on WikiSection. It is also important to note that
our proposed TSSP and CSSL are agnostic to docu-
ment lengths and are also applicable to models and
datasets for short documents, which is verified by
their gains on both short and long document subsets
of WIKI-727K test set (as shown in Appendix C).

Domain Transfer Performance Table 4 shows the
performance of the baselines and w/ our method
on the out-of-domain WIKI-50 and Elements test
sets. Longformer-Base already achieves 5.51 point
reduction on Pk on Elements over the prior best
performance from supervised models, and our ap-
proach further improves Pk by 2.83 points. While



Model WIKI-50 Elements
F1 ↑ Pk ↓ WD ↓ F1 ↑ Pk ↓ WD ↓

BayesSeg (Eisenstein and Barzilay, 2008) - 49.2 - - 35.6 -
GraphSeg (Glavaš et al., 2016) - 63.6 - - 49.1 -
Sector (Arnold et al., 2019) - 28.6 - - 42.8 -
CATS (Somasundaran et al., 2020) - 29.3 - - 45.2 -
BiLSTM+BERT (Xing et al., 2020) - 26.8 - - 39.4 -
Longformer-Base 46.450.85 28.760.28 31.160.63 55.132.16 33.893.01 44.992.81
+CATS (Somasundaran et al., 2020)† 43.96 28.11 29.82 57.48 31.45 41.75
+CSC (Xing et al., 2020)† 48.18 28.88 31.20 55.18 33.26 42.51
+TSSP+CSSL (ours) 52.29∗1.33 25.70∗0.65 27.69∗0.60 58.542.51 31.063.05 43.911.40

Table 4: Performance of baselines and w/ our methods under domain transfer setting. BERT and Longformer
are Base size. The training set of WikiSection is used for fine-tuning. † denotes fine-tuning Longformer with the
corresponding auxiliary task described in Section 2.2. x and y in xy denote mean and standard deviation from three
runs with different random seeds. ∗ indicates the gains from +TSSP+CSSL over Longformer-Base are statistically
significant with p < 0.05.

Longformer-Base does not perform best on WIKI-
50, incorporating our method achieves +5.84 F1

gain and 3.06 point gain on Pk, setting new SOTA
on WIKI-50 and Elements for both unsupervised
and supervised methods. Overall, the results
demonstrate that our proposed method not only
greatly improves the performance of a model un-
der the intra-domain setting, but also remarkably
improves the generalizability of the model.
Inference Speed Our proposed TSSP and CSSL do
not bring any additional computational cost to in-
ference and do not change the inference speed. We
randomly sample 1K documents from WIKI-727K
test set and measure the inference speed on a single
Tesla V100 GPU with batch_size = 1. On aver-
age, BERT-Base with max sequence length 512 pro-
cesses 19.5K tokens/sec while Longformer-Base
with max sequence length 2048 processes 15.9K
tokens/sec. This observation is consistent with the
findings in (Tay et al., 2020) that Longformer does
not show a speed advantage over BERT until the
input length exceeds 3K tokens.

5 Analysis

Effect of Context Size To study the effect of the
context size, we evaluate Longformer with max
sequence length of 512, 1024, 2048 and 4096 on
WikiSection. We evaluate the effectiveness of our
proposed methods using the corresponding max
sequence length to investigate whether they re-
main effective with different context sizes. As
can be seen from Figure 3, the topic segmenta-
tion F1 gradually improves as the context length
increases. Among them, the effect of increasing the
input length from 512 to 1024 is the largest with F1

on en_city and en_disease improved by +2.54 and

512 1024 2048 4096
context length
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Baseline Longformer on en_disease

Figure 3: F1 of baseline Longformer and our Long-
former (i.e., Longformer+TSSP+CSSL) on the Wiki-
Section en_city and en_disease test sets as the context
length increases.

+4.41 respectively. Considering that the average
document length of WikiSection is 1321, we infer
that capturing more context information is more
beneficial to topic segmentation on long documents.
We also observe that compared to Longformer-
Base, Longformer+TSSP+CSSL yields consistent
improvements across different input lengths on
both en_city and en_disease test sets. These results
suggest that our methods are effective at enhancing
topic segmentation across various context sizes and
can be applied to a wide range of data sets. Ab-
lation Study of TSSP and CSSL Figure 4 shows
ablation study of TSSP and CSSL on the WikiSec-
tion dev set, respectively. Figure 4(a) demonstrates
effectiveness of the three classification tasks in the
TSSP task (Section 2.1). Compared to SSO and
CATS, TSSP helps the model learn better inter-
sentence relations and both intra- and inter-topic
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Figure 4: Ablation study of Longformer with our method on the WikiSection dev set with (a) TSSP and (b) CSSL
separately. CATS and SSO in Figure (a) are previously proposed auxiliary tasks where CATS denotes Coherence-
Aware Text Segmentation (Section 2.2) and SSO denotes Sentence Structural Objective (Section 3.2). In Figure (a),
TSSP w/o inter-topic means without category 0 and w/o intra-topic means category 1 and 2 in Section 3.2. In Figure
(b), 0 negative pairs represents fine-tuning with just the CSC task (Section 2.2).

structure labels are needed to improve performance.
Figure 4(b) illustrates the impact of varying num-
bers of negative sample pairs for CSSL on Long-
former. We find that adding similarity-related aux-
iliary tasks improves the performance. Compared
with CSC, CSSL focuses on sentences of the same
and different topics when learning sentence rep-
resentations. As the number of negative samples
increases, the model performance improves and
optimizes at k2=3. Gain from TSSP is slightly
larger than that from CSSL, indicating that compre-
hending structural information contributes more to
coherence modeling. We speculate that encoding
the entire topic segment into a semantic space to
learn contrastive representation may help detect-
ing topic boundaries, which we plan to explore in
future work.
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Figure 5: F1 from using cosine similarity of two ad-
jacent sentence representations to predict topic bound-
aries, with different thresholds on WikiSection dev set.

Similarity of Sentence-pair Representations To
investigate impact of coherence-related auxiliary
tasks on sentence representation learning, we cal-
culate cosine similarity of adjacent sentence rep-
resentations for predicting topic boundaries. We
compute F1 of baselines and our Longformer (i.e.,
Longformer-Base+TSSP+CSSL) on en_city and
en_disease dev sets. As shown in Figure 5, com-
pared to Longformer-Base, our model achieves
higher F1, indicating that sentence representations
learned with our methods are more relevant to topic
segmentation and are better at distinguishing sen-
tences from different topics. We also explore com-
bining probability and similarity to predict topic
boundaries in Appendix D but find no further gain.
The results suggest that the model trained with
TSSP+CSSL covers more features than similarity.

6 Conclusion

Comprehending text coherence is crucial for topic
segmentation, especially on long documents. We
propose the Topic-aware Sentence Structure Predic-
tion and Contrastive Semantic Similarity Learning
auxiliary tasks to enhance coherence modeling. Ex-
perimental results show that Longformer trained
with our methods significantly outperforms SOTAs
on two English long document benchmarks. Our
methods also significantly improve generalizability
of the model. Future work includes extending our
approach to spoken document topic segmentation
and other segmentation tasks at various levels of
granularity and with modalities beyond text.



Limitations

Although our approach has achieved SOTA results
on long document topic segmentation, further re-
search is required on how to more efficiently model
even longer context. In addition, our method needs
to construct augmented data for the TSSP task,
which will take twice the training time.
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A ChatGPT for Topic Segmentation in
Long Document

To investigate the performance of ChatGPT on
long document topic segmentation, we adopt the
prompts proposed by Fan and Jiang (2023) and

evaluate ChatGPT on the WIKI-50 test set. The
prompts are shown in Table 5. We set tempera-
ture as 0 to ensure the consistency of ChatGPT.
The post-processing strategy for ChatGPT remains
unchanged to obtain the formatted output. Differ-
ent from Fan and Jiang (2023), we change the key
word dialogue to document in the prompt and try
to use one-shot prompt to see if it can improve per-
formance.
Table 6 shows the results of ChatGPT with differ-
ent prompts and Longformer with supervised data.
Firstly, the results show that the generative prompt
can achieve higher performance than the discrim-
inative prompt, which is consistent with the con-
clusion of Fan and Jiang (2023) that representing
structure directly can better leverage the generation
ability of ChatGPT. Additionally, incorporating a
single example in the generative prompt can fur-
ther improve 2-point F1, which indicates one-shot
prompt can better stimulate the in-context learning
ability of Large Language Models. However, while
ChatGPT-GPone achieves an F1 metric that is 4.6
points higher than Longformerood, its’ Pk and WD
metric are significantly worse due to the high false
recall rate of topic boundaries. This suggests that
how to fully apply the ability of Large Language
Models to the topic segmentation in long docu-
ments remains to be further explored. Finally, com-
pared with ChatGPT, the significant improvement
of Longformeriid shows the key role supervised
data plays in the topic segmentation task.

B Training Details

Our experiments are implemented with transform-
ers package5. The model parameters are initialized
with corresponding pre-trained parameters. The
initial learning rate is 5e− 5 and the dropout prob-
ability is 0.1. AdamW (Loshchilov and Hutter,
2017) is used for optimization. The batch size for
WIKI-727K and WikiSection is 4 and 8, and the
epoch for WIKI-727K and WikiSection is 3 and
5 respectively. We set the number of positive pair
in CSSL as k1 = 1 and carry out grid-search of
loss weight α1, α2 ∈ [0.5, 1.0], k2 ∈ [1, 2, 3, 4] on
dev set. The final configuration in the two bench-
marks is k2 = 3, α1 = 0.5. α2 performs best on
WikiSection when set to 1.0 while on WIKI-727K
α2 = 0.5 performs best.

5https://github.com/huggingface/transformers

https://github.com/huggingface/transformers


Type Prompts for Document Topic Segmentation

Discriminative

The following is a document. Give each utterance a binary label,
where 1 indicates that the utterance starts a new topic. please
output the result of the sequence annotation as a python list.
0: s1
1: s2
...
n− 1: sn

Generative

Please identify several topic boundaries for the following docu-
ment and each topic consists of several consecutive utterances.
please output in the form of {topic i:[], ... ,topic j:[]}, where the
elements in the list are the index of the consecutive utterances
within the topic, and output even if there is only one topic.
0: s1
1: s2
...
n− 1: sn

Table 5: Prompts for Document Topic Segmentation. n denotes the number of sentences and si denotes i-th sentence
in the document.

Model WIKI-50
F1 ↑ Pk ↓ WD ↓

ChatGPT-DPzero 23.28 52.83 66.63
ChatGPT-GPzero 49.59 37.79 46.18
ChatGPT-DPone 21.91 54.86 71.40
ChatGPT-GPone 51.61 37.19 45.21
Longformerood 47.01 29.04 31.41
Longformeriid 76.32 11.01 11.82

Table 6: Comparison of ChatGPT and Longformer
on the WIKI-50 test set. Longformerood denotes fine-
tuning Longformer on WikiSection and Longformeriid
denotes fine-tuning Longformer on WIKI-727K. DP and
GP are short for discriminative prompt and generative
prompt, respectively. zero and one denote zero-shot
and one-shot prompting settings.

C Performance of the Proposed Approach
on Short and Long Documents

It is important to note that our proposed TSSP and
CSSL approaches are agnostic to document lengths
and are applicable to models and datasets for short
documents. In order to evaluate the performance
of our proposed approach on various document
lengths, we partition the WIKI-727K test set into
a short document subset (18310 samples) and a
long document subset (54922 samples) according
to whether the number of tokens in a document is
less than 512 or not. The results from the baseline
Longformer and Longformer with our approaches

Model WIKI-727Kshort WIKI-727Klong

F1 ↑ Pk ↓ WD ↓ F1 ↑ Pk ↓ WD ↓
Longformer-Base 83.360.09 11.580.10 11.780.11 75.200.06 15.340.02 16.760.03
+TSSP+CSSL(ours) 83.97∗0.09 11.13∗0.06 11.30∗0.07 76.18∗0.05 14.81∗0.01 16.22∗0.01

Table 7: The performance of Longformer-Base and our
approach on short and long document subsets of WIKI-
727K test set.∗ indicates the gains from +TSSP+CSSL
over Longformer-Base are statistically significant with
p < 0.05.

Model Score en_city en_disease
F1 ↑ Pk ↓ WD ↓ F1 ↑ Pk ↓ WD ↓

Longformer
Prob Only 82.18 7.87 9.82 72.33 17.23 22.30
Prob and Sim 82.05 7.97 10.07 72.69 16.39 20.71

+TSSP+CSSL
Prob Only 83.16 7.33 9.24 74.19 16.29 20.29
Prob and Sim 83.08 7.52 9.47 74.31 16.44 20.76

Table 8: The results of combing the probability and co-
sine similarity to predict topic boundary on en_city and
en_disease. Prob Only denotes only using probability.
Prob and Sim denotes compute score as Formula 10.

(+TSSP+CSSL) are shown in Table 7. Our ap-
proach significantly improves the baseline on both
short and long documents. Notably, the gains from
our approach are larger on long documents, sug-
gesting that our coherence modeling benefits long
document topic segmentation even more. This is
consistent with our hypothesis.

D Ensemble Probability and Similarity

As shown in Formula 10, we try to combine the co-
sine similarity of neighbor sentence representations
(Sim) and model probability (Prob) to get the final
score to infer topic boundary. Specifically, we get



different thresholds at intervals of 0.05 from 0 to
1. Then we choose the threshold when F1 reaches
the best in the dev set, and finally use this thresh-
old to obtain the effect on the test set. The results
shown in Table 8 suggest that the score combining
similarity of neighbor sentence representations and
model probability lower the performance slightly.
We speculate that the boundary probability predic-
tion and auxiliary coherence tasks are performed
during training simultaneously, therefore the model
has incorporated more features than just similarity.

Score =
1

2
∗(Prob+Sigmoid(−1∗Sim)) (10)

Sigmoid(x) =
1

1 + e−x
(11)


