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ABSTRACT

Biological foundation models hold significant promise for deciphering complex biological
functions. However, evaluating their performance on functional tasks remains challenging
due to the lack of standardized benchmarks encompassing diverse sequences and func-
tions. Existing functional annotations are often scarce, biased, and susceptible to train-test
leakage, hindering robust evaluation. Furthermore, biological functions manifest at mul-
tiple scales, from individual residues to large genomic segments. To address these limi-
tations, we introduce the Diverse Genomic Embedding Benchmark (DGEB), inspired by
natural language embedding benchmarks. DGEB comprises six embedding tasks across
18 expert curated datasets, spanning sequences from all domains of life and encompassing
both nucleic acid and amino acid modalities. Notably, four datasets enable direct compar-
ison between models trained on different modalities. Benchmarking protein and genomic
language models (pLMs and gLMs) on DGEB reveals performance saturation with model
scaling on numerous tasks, especially on those with underrepresented sequences (e.g. Ar-
chaea). This highlights the limitations of existing modeling objectives and training data
distributions for capturing diverse biological functions. DGEB is available as an open-
source package with a public leaderboard at URLhiddenforanonymity.

1 INTRODUCTION

Biological sequences encode complex molecular, evolutionary and biophysical information that govern bi-
ological function. Deep learning models have been proposed as promising methods for extracting biologi-
cally relevant functional information from sequence data. The promise of ”biological foundation models”
enabling functional interpretation of sequences has resulted in many modeling efforts in protein (Rives et al.,
2021; Madani et al., 2023; Elnaggar et al., 2022) and genomic (Dalla-Torre et al., 2023; Hwang et al., 2024;
Nguyen et al., 2024) sequence modalities. While the field has seen major advances in AI-enabled structure
prediction of protein sequences (Jumper et al., 2021; Baek et al., 2021), validated successes for AI-enabled
function prediction remain limited (Li et al., 2024). Slow progress in function prediction of sequences can
be attributed to the following main challenges:

1. Unlike for structural prediction tasks, objective measurements of function do not exist. Struc-
ture prediction tasks benefit from objective evaluation metrics based on quantifiable atomic dis-
tances (Mariani et al., 2013). However, biological function is inherently multifaceted and context-
dependent, making direct quantitative assessment difficult.

2. Functional labels are sparse, biased, and prone to leakage. Labels are heavily biased towards
model organisms (e.g. Human), therefore performance on species-specific evaluation tasks are not
guaranteed to transfer to other organisms. Furthermore, functional annotations in databases are
rarely standardized in format, necessitating careful curation (e.g. unification of synonymous text
labels requires expert knowledge). Critically, all biological sequences are related through evolu-
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tion. Without carefully designed parameters, train-test leakage can frequently occur, resulting in
unreliable evaluation results (Fang, 2023).

3. Biological function takes place across diverse scales. Single nucleotide polymorphisms can have
phenotypic effects, while entire segments of genomes can be coordinated to carry out singular
functions (e.g. biosynthetic gene clusters). These challenges innate to biological data have led to
the lack of diverse benchmarks, resulting in independent evaluations of models on biased sets of
”in-house” tasks, preventing comprehensive and objective model comparisons.

The Diverse Genomic Embedding Benchmark (DGEB) is inspired by text embedding evaluation bench-
marks that have advanced the field of natural language modeling. DGEB aims to span diverse types of
downstream embedding tasks, scopes of function, and taxonomic lineages. DGEB consists of 18 datasets
covering 117 phyla across all three domains of life (Bacteria, Archaea and Eukarya). Similar to Massive
Text Embedding Benchmark (MTEB) (Muennighoff et al., 2023), DGEB evaluates embeddings using six
different embedding tasks: Classification, BiGene mining, Evolutionary Distance Similarity (EDS), Pair
classification, Clustering, and Retrieval. DGEB focuses on evaluating the representations of higher-order
functional and evolutionary relationships of genomic elements, and is designed to complement existing
benchmarks that focus on residue-level representations ((Notin et al., 2023) (Marin et al., 2024)).

We provide DGEB as an open source software, facilitating the evaluation of custom models, and enabling
the addition and revision of datasets. Biological labels for function are limited and rely on careful curation
by domain experts. DGEB provides a much-needed infrastructure for allowing experts to contribute new
benchmarks and revise datasets upon acquisition of new knowledge. Community driven efforts to collect
and standardize diverse datasets will move the emerging interdisciplinary field of Machine Learning and
Biology forward.

2 RELATED WORKS

2.1 NATURAL LANGUAGE EMBEDDING BENCHMARKS

Embedding benchmarks (e.g. SentEval (Conneau & Kiela, 2018); BEIR (Thakur et al., 2021); MTEB
(Muennighoff et al., 2023)) in natural language processing (NLP) aim to evaluate how the structure of
word/sentence representations match the geometric structure of their semantics. For natural language, tasks
are typically either zero-shot or few-shot; examples of such tasks range from distance-based matching of
translated texts to classifying tweets based on the labeled sentiment. NLP benchmarks highlight the need
for holistic evaluation of models through a diverse set of tasks, as model performance can vary significantly
across tasks and datasets.

2.2 BIOLOGICAL SEQUENCE AND LANGUAGE MODELS

Biological sequence language models are unsupervised models trained on biological sequence data such
as proteins or genomic segments. Protein language models (pLMs) have been shown to encode features
for protein structure prediction (Lin et al., 2023), enzyme function prediction (Yu et al., 2023) and remote
homology search (Liu et al., 2024). More recently, genomic language models (gLMs) have been evaluated
on classification of various genomic motifs (e.g. regulatory elements, chromatin features, splicing) (Dalla-
Torre et al., 2023) and mutation fitness prediction (Nguyen et al., 2024).

2.3 BIOLOGICAL FUNCTION BENCHMARKS

Existing benchmarks rely mainly on two types of evaluation to measure biological function:

1. Fitness prediction of mutations using large-scale datasets collected from deep mutational
scanning (DMS) data. DMS (Fowler & Fields, 2014) uses large-scale mutagenesis and high-
throughput sequencing to model fitness landscapes of various mutations (e.g. substitutions and
indels) in a single protein. ProteinGym (Notin et al., 2023) leverages diverse DMS datasets to
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Figure 1: Phylogenetic tree of all phyla represented in DGEB. One representative 16S/18S sequence
for each phylum represented in any DGEB dataset was obtained from SILVA (Quast et al., 2013), where
available. Phylogeny was estimated using iQ-TREE 2. Widths of tree branches correspond to how well a
given phylum is represented across multiple datasets.

evaluate a model’s ability to predict fitness scores of mutants in either zero-shot or supervised
regimes. While fitness prediction serves as a meaningful proxy for evaluating model understanding
of genotype to phenotype relationships at the residue-level for a single protein, this metric cannot be
used to determine how well a model can abstract evolutionary and functional relationships between
non-homologous proteins.

2. Classification of proteins on their biophysical properties. For example, PEER (Xu et al., 2022)
benchmarks protein models on various general biophysical properties, such as fluorescence, lo-
calization and solubility. These are important properties, they are too coarse in scope to evaluate
whether a model has learned more granular functional information (e.g. enzymatic function, protein
interaction)

3
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Figure 2: Overview of tasks and datasets in DGEB. Nucleic acid (NA) and amino acid (AA) modality
specific datasets are marked in purple and green respectively, and datasets that support both modalities are
marked with both colors.

3 THE DGEB BENCHMARK

3.1 DESIGN CHOICES

DGEB is built on the desiderata previously outlined by NLP benchmarks, in particular, MTEB. While bio-
logical sequences and their functional labels are fundamentally different from natural language, these design
choices allow for a scalable and flexible framework that can be expanded and optimized as the field matures.

a) Diversity: We aim to cover sequences derived from phylogenetically diverse lineages of biology
(Fig. 1). Existing functional benchmarks largely consist of human or E.coli K-12 sequences. Data
imbalance in biology is a critical problem when training biological sequence language models
(Ding & Steinhardt, 2024) and prevents the models from learning features transferable to underrep-
resented sequences. Benchmarks that only utilize sequences from highly overrepresented sequences
in the training set perpetuate this problem of data imbalance, hindering the progress towards AI-
enabled characterization, discovery and design of diverse biological sequences.

b) Simplicity: DGEB provides a simple API that can be used with any custom model that encodes
biological sequences into vectors.

c) Extensibility: Given the complexity of biological function, no single dataset can fully capture its
diversity, and existing functional annotations must be continuously refined and expanded. DGEB
supports simple extension of tasks and datasets. New or revised datasets can be uploaded to the
HuggingFace Hub and new evaluation tasks can easily be added through GitHub pull requests.

d) Reproducibility: We version both the software and the datasets and include versioning in the
results, making the benchmark results fully reproducible.

3.2 TASKS AND EVALUATION

DGEB consists of 18 datasets that are evaluated using one of the six task types (Fig. 2). The tasks and their
evaluation schemes are described below:

BiGene Mining BiGene Mining is inspired by Bitext Mining tasks in NLP, where the tasks typically
consist of matching translated sentences between two languages using cosine similarity. For BiGene Mining,
we curated functionally analogous sequences found in two phylogenetically distant taxa (e.g. Bacteria and
Archaea) or interacting pairs in sets of orthologous sequences. For each gene in the first set, the best match
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in the second set is found using the cosine similarity. F1 serves as the primary metric for BacArch BiGene
Mining, while recall@50 is used as the primary metric for ModBC BiGene Mining due to the difficulty of
the task; accuracy and precision are also reported.

Evolutionary Distance Similarity (EDS) This task evaluates how accurately models learn evolutionary
relationships between sequences. We compute the correlation between pairwise embedding distances and
their phylogenetic distances (sum of branch lengths connecting the two leaves of the calculated phylogenetic
tree). Larger phylogenetic distance represents more evolutionary time since divergence. Pearson correlations
are calculated and the top correlation score across three distance metrics (cosine, euclidean, and manhattan)
is reported as the primary metric.

Classification Classification tasks measure the model’s ability to map from embeddings to discrete func-
tional classes with few-shot supervision. For multiclass single-label classification, a logistic regression
classifier is trained with up to 1000 iterations. For multiclass multi-label classification, a k-nearest neigh-
bor (kNN) classifier is trained. Test performance on the test set is measured using F1 as the main metric;
accuracy and average precision scores are also reported.

Pair Classification Pair classification tasks evaluate model understanding of functional relationships be-
tween pairs of sequences. Inputs are pairs of sequences, where labels are binary variables denoting the
existence of some particular functional relationship between the pair. Sequences are embedded and the
distances between the pairs are calculated cosine similarity, dot product, euclidean distance and manhattan
distance. The best binary threshold accuracy, average precision, F1, precision, and recall are calculated. The
primary metric is the average precision score calculated using cosine similarity.

Clustering Clustering tasks evaluate zero-shot separability of embeddings over discrete classes. Inputs are
sets of sequences with labels, and a mini-batch k-means model is trained on their embeddings. The primary
metric is v-measure (Rosenberg & Hirschberg, 2007).

Retrieval Retrieval tasks evaluate how well a query embedding can retrieve functionally analogous se-
quences. Dataset consists of a corpus and queries, where the objective is to rank the embeddings in the
corpus by cosine similarity to each query sequence. Correct retrieval is determined by matching functional
labels. An example of a retrieval task is retrieving a bacterial homolog given an archaeal query sequence.
nDCG@k, MRR@k, MAP@k, precision@k and recall@k are calculated for k=5, 10, 50. MAP@5 is used
as the primary metric.

3.3 DATASETS

Datasets are divided into three categories: single-element, inter-element, and multi-element, where an el-
ement refers to a protein/gene or noncoding RNA. Each element can be represented in amino acid and/or
nucleotide sequence modalities. Some datasets support multiple sequence modalities (AA and NA), allow-
ing direct comparison between protein and genomic language models. Statistics for each dataset are found in
Appendix B. All datasets are dereplicated at sequence identity thresholds of 70% using CD-hit (Huang et al.,
2010), to remove sampling biases. For tasks requiring train and test splits, datasets are split with a maximum
sequence identity of 10%. For tasks requiring multiple classes, we conduct class-balanced random sampling.
Detailed preprocessing steps are found in Appendix A.

Single Element Datasets (SE) For SE datasets, each genomic element (protein/gene, noncoding RNA) is
individually embedded, with an associated label. SE datasets in DGEB include:

• RNA Clustering: rRNA, sRNA, and tRNA features predicted using RFam (Kalvari et al., 2021)
genomes across diverse taxa. We cluster the sequence embeddings and assess how well they match
the RNA class assignments.

• MopB Clustering: The dimethyl sulfoxide reductase (or MopB) family is a functionally diverse set
of enzymes found across Bacteria and Archaea. Sequences are sampled from Wells et al. (2023),
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where the sequence’s catalytic functions are assigned using phylogenetic analysis. We assess how
well the embeddings cluster with their catalytic function.

• EC Classification: Enzyme commission (EC) numbers are assigned to protein sequences. For each
EC class, one sequence is randomly selected for testing, and four sequences from the corresponding
class that have less than 10% sequence identity to each other and test sequence are selected for
training.

• Convergent Evolution Classification: Examples of convergent evolution in proteins include en-
zymes that have different evolutionary history but have converged in the enzymatic reaction that
they confer. We identify such convergent enzymes by curating a set of enzymes that have no se-
quence similarity to any of the other sequences in the train set with the same EC designation.

• Archaeal Retrieval: Given the corpus of bacterial protein sequences in SWISS-PROT (Bairoch &
Apweiler, 2000), where the label is the corresponding text annotation, we query archaeal sequences
with string match annotations in the bacterial corpus. We retrieve k nearest neighbors in bacterial
corpus embedding space and look for matching labels to calculate the metrics@k.

• Eukaryotic Retrieval: Given the corpus of bacterial protein sequences in SWISS-PROT, we query
eukaryotic sequences with string match annotations in the bacterial corpus. Metrics are calculated
as above.

Inter-element datasets (IE) Understanding biological function relies on understanding the evolutionary
and functional relationships between sequences. For IE datasets, a label is assigned for each pair of genomic
embeddings. IE datasets include:

• BacArch BiGene: Similar to matching translated sentences between two languages, we curated
functionally analogous pairs of sequences in a bacterial genome (Escherichia coli K-12) and an
archaeal genome (Sulfolobus acidocaldarius DSM 639 ASM1228v1).

• ModBC BiGene: Identifying interacting pairs of ModB and ModC from sets of orthologs is a
challenging task. ModB and ModC are interacting subunits of an ABC transporter. This dataset
consists of pairs of ModB and ModC that are found to be interacting in the same genome. The
goal is to correctly find the interacting ModC for each ModB given a set of orthologous ModC
sequences (found in different genomes).

• E.coli Operonic Pair Classification: Given a pair of adjacent proteins, the label is assigned based
on whether they belong to the same transcription unit in Escherichia coli K-12 substr. MG165.

• Vibrio Operonic Pair Classification: Same as E.coli Operonic Pair Classification except with Vibrio
cholerae O1 biovar El Tor str. N16961.

• Cyano Operonic Pair Classification: Same as Ecoli Operonic Pair Classification except with Syne-
chococcus elongatus PCC 7942.

• FeFeHydrogenase Phylogeny: Fe-Fe hydrogenases are complex enzymes that carry out important
metabolic functions across diverse organisms. They carry out divergent and specific functions
including H2 production, H2 sensing, H2 uptake, and CO2 reduction. Identifying the specific func-
tion of these hydrogenases often requires constructing a phylogenetic tree that reconstructs the
evolutionary history of the catalytic, or large, subunit. This dataset includes the phylogenetic dis-
tances (sum of tree branches connecting the leaves) calculated for all pairs of Fe-Fe hydrogenase
sequences.

• RpoB Bacterial Phylogeny: RpoB is a ribosomal protein conserved across bacteria and archaea.
They are essential single-copy genes and not frequently horizontally transferred, and therefore are
often used as phylogenetic marker genes. The RpoB gene is also significantly longer than the
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Fe-Fe hydrogenase gene making this phylogeny distinctly different from the Fe-Fe hydrogenase
phylogeny. We sample bacterial RpoB sequences utilized as markers in the GTDB (Parks et al.,
2022) database, and calculate the tree to assign phylogenetic distances between pairs of RpoB
sequences.

• RpoB Archaeal Phylogeny: Same as RpoB Bacterial Phylogeny but with archaeal genomes in
GTDB.

• Bacterial 16S Phylogeny: 16S rRNA genes encode ribosomal RNA and are universal across Bacte-
ria and Archaea. 16S rRNA is often used as a taxonomic marker gene because it rarely undergoes
horizontal gene transfer and has both conserved and variable regions. Bacterial 16S rRNA se-
quences were downloaded from the SILVA database (Quast et al., 2013) and phylogenetic distances
were calculated for each pair of sequences.

• Archaeal 16S Phylogeny: Same as Bacterial 16S Phylogeny but with archaeal sequences from
SILVA.

• Eukaryotic 18S Phylogeny: Same as Bacterial 16S Phylogeny but with 18S rRNA (eukaryotic
homolog of 16S rRNA) from SILVA.

Multi-element datasets (ME) Many biological functions are carried out by multiple genomic elements in
conjunction. DGEB supports multi-element datasets, where a label is assigned to a larger genomic sequence
containing more than one genes, and whereby a single embedding is calculated either by mean-pooling
across genes, or segments of genome with predefined window size. DGEB currently supports one multi-
element dataset:

• MIBiG Classification: Minimum Information about a Biosynthetic Gene cluster (MIBiG) (Terlouw
et al., 2023) is a database of biosynthetic gene clusters where a genomic segment consisting of
multiple genes synthesize various classes of natural products (e.g. Polyketides, NRPS, etc). A
single genomic segment can synthesize molecules that belong to multiple classes, making this a
multi-label, multi-class classification task. Train and test sets are split at 80/20 using stratified
random sampling.

4 RESULTS

4.1 MODELS

We focus on evaluating self-supervised models pretrained on either amino acid (AA) or nucleic acid (NA)
sequences. These are ”foundation models” that are not fine-tuned for specific tasks, and we evaluate how
well the pre-trained embeddings capture various aspects of biological function. For AA models, we evaluate
the ESM2 (Lin et al., 2023) series, ESM3 (Hayes et al., 2024) open model, the ProGen2 (Madani et al.,
2023) series, and the ProtTrans (Elnaggar et al., 2022) models. For NA models, we evaluate the DNABERT-
2 (Zhou et al., 2024), Nucleotide Transformer (NT) (Dalla-Torre et al., 2023) series and the Evo (Nguyen
et al., 2024) models. Notably, we include both masked language models (MLM) and causal language models
(CLM) in our evaluation for both data modalities. To extract sequence-level embeddings, each model’s
hidden layer is mean-pool across the sequence dimension, resulting in a fixed-size representation. Model
information is found in Appendix C. Additionally, we provide one-hot baselines for AA and NA sequences,
where the sequence is represented as one-hot vectors per position (Appendix H.

4.2 ANALYSIS

4.2.1 LAYER PERFORMANCE

For all tasks, we test performances of mid- and last hidden layers in the model. For many of the tasks,
the mid layer representation outperforms last layer representations (Fig. 3). This behavior has been noted
in previous studies in both NLP (Rogers et al., 2020) and pLMs (Valeriani et al., 2023), where different
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Figure 3: Performance per task with model scaling for ESM2, ProGen2, and NT series. Primary metric
from the best scoring layer (between mid, and last) is reported for each task. Tasks where performance
scales with model size for the majority of the model types are marked with a blue background. Other models
plotted for reference are ProtTrans, Evo, and ESM3, and DNABERT-2.

layers specialize in learning distinct semantic information. For instance, mid-layer representations for ESM2
models perform better than last layer for enzyme function classification tasks (EC Classification, Convergent
Enzyme Classification) and retrieval tasks, while phylogenetic distances are better reflected in last-layer
representations (RpoB phylogenies) (Appendix D). These patterns appear specific to model type. To flexibly
account for this behavior, DGEB calculates model performance for both mid and last layer and reports the
best score between the two.

4.2.2 SCALING WITH MODEL SIZE

We observe scaling with model size increase for most AA tasks, except for MIBiG classification task, RpoB
archaeal phylogeny, and operonic pair tasks (Fig. 3). In general, pLMs perform poorly for predicting
functions of elements that span multiple genes (e.g. biosynthetic gene clusters, operons). Additionally, while
we observe improved performance with model scaling for bacterial RpoB phylogeny task, we observe no
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scaling in performance for archaeal RpoB phylogeny task. This may be attributed to limitations in learning
due to the significant bias against archaeal sequences in training data. Interestingly, we observe little to no
evidence of improvement in performance with increasing model size for NA tasks (Fig. 3 and 4). We also test
performance scaling with pre-training floating point operations (FLOPs) when the information is reported
or can be derived (Appendix C). We observe scaling patterns with increasing training FLOPs (Appendix E
and F) similar to those observed with increasing model size. Full results can be found in Appendix G.

Figure 4: Average performance across all AA and NA tasks for models benchmarked in this study.
Marker size corresponds to embedding dimension and variants of same models (e.g. evo-1-8k-base, and
evo-1-131k-base) are distinguished with text labels.

4.2.3 DIRECT COMPARISON OF AMINO ACID AND NUCLEIC ACID MODELS

While both AA and NA sequences can be used to represent coding sequences, little work has been conducted
on directly comparing the quality of NA-based model representations against AA-based model representa-
tions on the same task and data. DGEB includes four datasets that support both modalities as input for a
given coding region of the sequence. For all such tasks, we find that NA sequence derived representations
perform poorly in capturing biological function and evolutionary relationships of coding sequences (Fig.
5). This suggests that AA sequences are a more compute efficient input modality for learning functional
information of coding sequences.

5 LIMITATIONS

DGEB includes multiple zero-shot tasks, as ground-truth labels for biological function are sparse and bi-
ased. These tasks rely on embedding geometry to evaluate model performance. The assumption that models
capturing important features of biological function have geometry directly matching the given tasks is not
guaranteed. Future research could explore methods for identifying and leveraging relevant subspaces within
model embeddings. For the EDS task, we acknowledge the limitation of Euclidean embeddings for repre-
senting phylogenetic tree structures and the possibility that certain regions of the phylogeny may be of low
confidence (due to the inherent uncertainty in reconstructing the ground-truth phylogeny). However, this
task provides a useful starting point for comparing model performance, and will be important for evaluating
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Figure 5: Comparison of AA and NA model representations on tasks that support both modalities.
Marker color corresponds to the model type and the size corresponds to the model size.

novel hyperbolic architectures, baselined by Euclidean embedding model results. While DGEB is designed
to support both NA and AA models, current suite is biased towards coding sequences with only four tasks
targeting non-coding elements (16S Arch, 16S Bac, 16S Euk, Ecoli RNA), limiting ability to evaluate NA
model representations of regulatory elements (e.g. promoters, transcription binding sites). Furthermore,
DGEB’s current evaluation suite focuses on single-element, inter-element, and multi-element scales of rep-
resentations, and is designed to complement existing benchmarks that focus on residue-level representations
(e.g. mutational effects (Notin et al., 2023) (Marin et al., 2024)).

6 CONCLUSION

We developed DGEB to assess how well learned embeddings of biological sequences capture various aspects
of biological function. Our expert-curated datasets feature diverse sequences spanning all three domains and
major phyla in the tree of life. We benchmarked 20 models that are trained on either AA or NA sequences.
Our results demonstrate that there is no single model that performs well across all tasks. Importantly, there
are many tasks where performance does not scale with model size for existing models, particularly in tasks
that feature poorly represented sequences (e.g. Archaeal genes), or tasks that assess functions that require
large context lengths (e.g. biosynthetic gene cluster product class classification, operon prediction). For
many tasks, there is large headroom for improvement (e.g. ModBC matching, convergent enzyme classi-
fication). DGEB also supports direct comparison of models trained on AA and NA data modalities, and
our results show that NA models are yet to learn important aspects of biological function. We open-source
DGEB to facilitate community-driven dataset addition and revision. We hope that DGEB and the leader-
board allow transparent comparison of biological foundation models and drive the field forward.
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ETHICS STATEMENT

This study aims to advance open science by developing a open-source, reproducible benchmark for ge-
nomics. All sequences and labels are curated from public repositories. As the data originates from environ-
mental samples, no personally identifiable information is associated with the datasets.
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Barbara R Terlouw, Kai Blin, Jorge C Navarro-Muñoz, Nicole E Avalon, Marc G Chevrette, Susan Egbert,
Sanghoon Lee, David Meijer, Michael J J Recchia, Zachary L Reitz, Jeffrey A van Santen, Nelly Selem-
Mojica, Thomas Tørring, Liana Zaroubi, Mohammad Alanjary, Gajender Aleti, César Aguilar, Suhad A A
Al-Salihi, Hannah E Augustijn, J Abraham Avelar-Rivas, Luis A Avitia-Domı́nguez, Francisco Barona-
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APPENDIX A METHODS

ModBC BiGene Mining ModA and ModC sequence pairs were identified in Ovchinnikov et al.
(2014) and downloaded from https://gremlin.bakerlab.org/cplx.php?uni_a=2ONK_A&
uni_b=2ONK_C. Original sequences queried using the UniProt IDs were used for the dataset. Sequences
were dereplicated at 70% sequence identity using CD-HIT (Huang et al., 2010) and only pairs where both
sequences were in the dereplicated set were included in the dataset.

BacArch BiGene Dataset RefSeq annotations were obtained forE. coli str. K-12 substr. MG1655
(GCF 000005845.2) and Sulfolobus acidocaldarius (GCF 000012285.1). Orthologous genes were identi-
fied as follows: 1) Genes with exactly matching annotations were identified first and added to the dataset;
numerous genes with nearly identical, but not exactly matching, annotations, were also added to the dataset.
2) Genes without highly similar annotations and with matching function indicated through other databases
such as UniRef, were marked as orthologs. 3) Unannotated genes in Sulfolobus were identified as orthologs
to E. coli sequences through a combination of genome context information, matching HMM domains, and
high structural similarity identified through a Foldseek (van Kempen et al., 2024) search between the pre-
dicted structure of Sulfolobus sequences against the structures available for E. coli MG1655; 4) For Sul-
folobus genes with ambiguous RefSeq annotations, at least two such clues (matching UniRef annotations,
genome context clues, matching HMM annotations, and Foldseek structural similarity) were required to as-
sign an orthologous pair. 5) Genes where multiple homologs existed in both E. coli and Sulfolobus genomes
were deliberately excluded.

EC Classification Datasets Sequences with an assigned EC number were downloaded from UniProtKB
(Breuza et al., 2016) on May 16th 2024. Only ”reviewed” sequences, non-fragments and sequences with
a single EC designation were included. Sequences were first dereplicated at 70% sequence identity using
CD-HIT and further clustered at 10% sequence identity (--min-seq-id 0.1) using mmseqs cluster
(Steinegger & Söding, 2017) with coverage threshold of 30% (-c 0.3) and minimum alignment length of
50 bp (--min-aln-len 50). Only EC classes with greater than five sequences after dereplication and
clustering were kept. Five sequences were chosen randomly for each EC class, where one sequence was
added to the test set and the remaining four were added to the train set.

Convergent Enzymes Classification Dataset Raw sequences and EC labels were downloaded from
UniProtKB and dereplicated at 70% sequence identity as described above in section ”EC Classification.”
Sequences were BLASTed against every other sequence with the same EC number designation in the derepli-
cated set. Only one example per EC class with at least five examples in the same EC class without a signifi-
cant BLASTP match (alignment length <10 and percent identity <0.1) were kept for testing. Five sequences
in the corresponding EC class that have no significant BLASTP match to the test sequence were randomly
chosen for training.

MIBiG Classification Dataset Sequences and labels (secondary metabolite classes) were downloaded
from the MIBiG server version 3.1 (https://mibig.secondarymetabolites.org/). Secondary
metabolite class ”Other” was removed from the dataset. For the AA dataset, protein sequences were
extracted from the MIBiG genbank files and embedded in chunks of maximum sequence length set by
--max seq len (determined by the model, e.g., 1024 for ESM2) and subsequently mean-pooled across
the example. For the NA dataset, DNA sequences were extracted from the MIBiG genbank files, embed-
ded in chunks of sequence length set by --max seq len (e.g. 8,192 for evo-1-8k-base, 65,536 for
evo-1-131k-base as sequence length 131,072 did not fit into a single 80GB GPU with batch size 1) and
subsequently mean-pooled to yield a single embedding per example. Examples were split into train and test
sets using 80/20 ratio random sampling with stratification on the first class label.

MopB Clustering Dataset Labeled MopB family sequences, displayed in the phylogenetic tree of Fig-
ure 1 in Wells et al. (2023), were obtained from their provided Supplementary Materials (https:
//itol.embl.de/tree/249112161424681659917609). Wells et al. (2023) conducted one of
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the most comprehensive and up-to-date classification of MopB family enzymes to date. Sequences were
first dereplicated at 70% identity using CD-HIT. Functional groups with fewer than 60 representatives were
excluded from the dataset, and functional groups with greater than 100 representatives were randomly down-
sampled to only include 100 representatives. Selected sequences were aligned with FAMSA (Deorowicz
et al., 2016). Alignments were trimmed with trimAL (Capella-Gutiérrez et al., 2009) v1.4.rev15 with the
parameter -gt 0.1 to remove columns consisting of ≥ 90% gaps. Phylogenetic trees were estimated using
iQ-TREE 2 (Minh et al., 2020) with the following parameters: -bb 1000 -m GTR+G4+F.

E.coli RNA Clustering RNA sequences in the E. coli str. K-12 substr. MG1655 genome (GenBank ID
GCF 000005845.2) were identified by running the RFAM (Kalvari et al., 2021) family of models using the
Infernal (Nawrocki, 2014) software suite. RNA groups with more than one identified representative included
sRNAs, tRNAs, and rRNAs, and each sequence was classified using these three labels. In order to remove
length bias in each RNA class (e.g. rRNAs are significantly longer than sRNAs), each sequence longer than
100bp was replaced by a random subsequence of length 100bp.

RpoB Phylogenies RpoB sequences were obtained from the GTDB database (release 09-RS220). Bacte-
rial RpoB sequences were identified using the TIGRFAM model TIGR02013 (rpoB bac); Archaeal RpoB
sequences were identified using the TIGRFAM model TIGR03670 (rpoB arc) using methods described pre-
viously (Parks et al., 2018). Sequences were then dereplicated at 70% identity using CD-HIT. Sequences
from phyla with fewer than 10 representatives in the GTDB were excluded. For all other phyla, 10 rep-
resentative sequences were chosen; where 10 or more classes were present in each phylum, one sequence
each was chosen for each of 10 random classes within the phylum in order to diversify sampled sequences,
otherwise the 10 representative sequences for that phylum were chosen randomly. Nucleotide coding se-
quences for each chosen protein sequence were then obtained and used to construct separate phylogenies.
Four phylogenies were constructed in total: Bacterial amino acid, Archaeal amino acid, Bacterial nucleotide,
and Archaeal nucleotide. All alignments were performed using FAMSA. All alignments were trimmed us-
ing trimAL with parameters described above. Amino acid phylogenies were estimated using iQ-TREE 2
with the following parameters: -bb 1000 -m LG+G4+F. Nucleotide phylogenies were estimated using
iQ-TREE 2 with the following parameters: -bb 1000 -m GTR+G4+F.

FeFeHydrogenase Phylogeny FeFe hydrogenase catalytic subunit sequences were obtained from HydDB
(Søndergaard et al., 2016) and dereplicated at 70% ID using CD-HIT. The remaining sequences were then
aligned using FAMSA. Alignments were trimmed using trimAL with parameters as described above. Amino
acid phylogenies were then estimated using iQ-TREE 2 with the following parameters: -bb 1000 -m
LF+G4+F.

16S/18S rRNA phylogenies 16S/18S sequences were obtained from SILVA release 138 2 and derepli-
cated at 70% identity using CD-HIT. Sequences were then aligned with FAMSA and trimmed using trimAL
with parameters as described above. Phylogenies were estimated using iQ-TREE with the following param-
eters: -m GTR+G4+F+I -bb 1000 with the addition of the +I model parameter to accommodate the
presence of invariant sites in the alignment. The phylogeny in Fig. 1 was obtained by sampling one 16S or
18S rRNA sequence from each phylum designated and constructed using the procedure described above.

Operonic Pairs For transcription units information and the corresponding protein sequences were ex-
tracted from the BioCyc server (https://biocyc.org/) (Karp et al., 2019) for genomes Escherichia
coli K-12 substr. MG165 Vibrio cholerae O1 biovar El Tor str. N16961, Synechococcus elongatus PCC
7942. For a given consecutive gene pair, a label was assigned (1 or 0) depending on whether or not they are
found in the same transcription unit.

Retrieval Protein sequences and protein name annotations were downloaded from UniProtKB on June 16
2024. Only reviewed sequences and non fragments were kept for further processing. First, the sequences
were partitioned into three domain (bacterial, archaeal or eukaryotic) sets using the UniProt taxonomic
designation. Second, all proteins with ”UPF” or ”Uncharacterized protein” in the text labels were removed.
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Third, the sequence were dereplicated at 50% sequence identity with CD-HIT with additional parameters -c
0.5, -n 2. Finally, overlapping text annotations between bacterial and archaeal, or bacterial and eukaryotic
sequence sets were identified, and only sequences that map to the overlapping text annotations were kept.
For the Arch retrieval dataset, bacterial sequences were used as corpus with archaeal sequences as query.
For the Euk retrieval dataset, bacterial sequences were used as corpus with eukaryotic sequences as query.
Relevance scores for each corpus-query sequence pair were calculated using fuzzy string matching (https:
//github.com/seatgeek/thefuzz): for fuzz ratio >90 between two text annotations relevance
score of 1 was assigned, otherwise, score of 0 was assigned.

A.1 MODEL INFERENCE

For all tasks except MIBiG classification task, sequences were truncated to the model’s maximum sequence
length (predetermined by the model) using the flag --max seq len. For the MIBiG classification task,
sequences were chunked by the model’s maximum sequence length as described above.
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APPENDIX B DATASET STATISTICS

Overview of DGEB dataset statistics. For datasets that support both modalities (amino acids (AA) and nucleic acids
(NA)), the values in parenthesis refer to the statistics for NA datasets.

Dataset Type Categ. # Phyla
# Label
classes

# Train

Avg.
train
seq

length

# Test
Avg.

test seq
length

Modalities

BacArch BiGene Mining IE 2 2 - - 265 663 AA
ModBC BiGene Mining IE 36 2 - - 1492 707 AA

FeFe Hydrogenase EDS IE 26 - - - 429 569 AA

RpoB Bac EDS IE 56 - - - 360
(360)

1305
(3927)

AA,
NA

RpoB Arch EDS IE 13 - - - 170
(170)

831
(2491)

AA,
NA

16S Bac EDS IE 31 - - - 545 1686 NA
16S Arch EDS IE 10 - - - 96 1423 NA
18S Euk EDS IE 20 - - - 751 2117 NA

Ecoli Operon Pair Classification IE 1 2 - - 4315 310 AA
Vibrio Operon Pair Classification IE 1 2 - - 2574 335 AA
Cyano Operon Pair Classification IE 1 2 - - 2611 305 AA

EC Classification SE 38 128 512
(512)

541
(1901)

128
(128)

640
(1622)

AA,
NA

Convergent Enzymes Classification SE 51 400 2000 415 400 433 AA

MIBIG Classification ME 15 6 29992
(1763)

647
(41178)

7213
(441)

638
(38206)

AA,
NA

MopB Clustering SE 46 13 - - 1300 817 AA
Ecoli RNA Clustering SE 1 3 - - 161 83 NA

Arch Retrieval SE 52 - 9229 344 2343 332 AA
Euk Retrieval SE 44 - 3202 353 311 367 AA
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APPENDIX C MODEL INFORMATION AND STATISTICS

Models evaluated with DGEB are detailed with the number of parameters, number of hidden layers, and embedding dimensions. Pretraining FLOPs are estimated in (Chen et al.,
2024) or from the model’s original papers when available. FLOP values with an asterisk are estimated using the formula C = 6ND from (Kaplan et al., 2020), where C is the total
pretraining flops, N is the model size, and D is the number of pretraining tokens.

Model type Model Name Modeling Objective Training Data Num Params Num Layers Emb. Dim. Modality Pretrain FLOPs

ESM2 esm2 t6 8M UR50D MLM UniRef50/D 8M 6 320 AA 4.8E+19*
ESM2 esm2 t12 35M UR50D MLM UniRef50/D 35M 12 480 AA 2.1E+20*
ESM2 esm2 t30 150M UR50D MLM UniRef50/D 150M 30 640 AA 1.1E+21
ESM2 esm2 t33 650M UR50D MLM UniRef50/D 650M 33 1280 AA 4.4E+21
ESM2 esm2 t36 3B UR50D MLM UniRef5/0D 3B 36 2560 AA 1.9E+22

ESM3 esm3 sm open v1 MLM UniRef, MGnify; JGI (Hayes et al. 2024) 1.4B 48 1536 AA 6.72E+20

ProGen progen2-small CLM UniProtKB 150M 12 1024 AA 1.8E+20
ProGen progen2-medium CLM UniProtKB 765M 27 1536 AA 8.9E+20
ProGen progen2-large CLM UniProtKB 2.7B 32 2560 AA 3.4E+21
ProGen progen2-xlarge CLM UniProtKB 6.4B 32 4096 AA 1.4E+22

ProTrans prot t5 xl uniref50 MLM UniRef50 1.2B 24 1024 AA -
ProTrans prot t5 xl bfd MLM BFD (Steinegger and Söding 2018) 1.2B 24 1024 AA 1.7E+22

NT nt-v2-50m-multi-species MLM Multispecies (NCBI) (Dalla-Torre et al. 2023) 55M 12 512 NA 9.0E+19*
NT nt-v2-100m-multi-species MLM Multispecies (NCBI) 98M 22 512 NA 1.76E+20*
NT nt-v2-250m-multi-species MLM Multispecies (NCBI) 235M 24 768 NA 1.13E+21*
NT nt-v2-500m-multi-species MLM Multispecies (NCBI) 498M 29 1024 NA 2.69E+21*
NT nt-2.5b-multi-species MLM Multispecies (NCBI) 2.5B 32 2560 NA 4.5E+21*

Evo evo-1-8k-base CLM OpenGenome (Nguyen et al. 2024) 6.5B 32 4096 NA -
Evo evo-1-131k-base CLM OpenGenome 6.5B 32 4096 NA 2E+22

DNABERT DNABERT2 MLM Multispecies 117M 12 768 NA 2.3E+20
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APPENDIX D COMPARISON OF MID LAYER AND LAST LAYER PERFORMANCE FOR
ESM2 SERIES MODELS.
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APPENDIX E PER-TASK PERFORMANCE SCALING WITH PRE-TRAINING FLOPS.
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APPENDIX F AGGREGATED DGEB SCORE RELATIVE TO PRE-TRAINING FLOPS.
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APPENDIX G MODEL PERFORMANCE PER TASK

AA models NA models
ESM2 ESM3 Progen ProtTrans Nucleotide Transformer Evo DNABERT

Task Type Task es
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1
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1k
-b
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D
N

A
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E
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T
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11
7M

BiGene Mining ModBC BiGene 0.049 0.054 0.145 0.174 0.131 0.199 0.184 0.365 0.336 0.436 0.275 0.273 n/a n/a n/a n/a n/a n/a n/a n/a
BacArch BiGene 0.457 0.647 0.778 0.808 0.797 0.794 0.579 0.728 0.575 0.770 0.799 0.782 n/a n/a n/a n/a n/a n/a n/a n/a

Classification
EC Classification 0.437 0.554 0.611 0.637 0.680 0.581 0.437 0.500 0.497 0.549 0.629 0.565 0.070 0.086 0.110 0.095 0.131 0.012 0.016 0.086
MIBIG Classification 0.656 0.654 0.722 0.665 0.713 0.636 0.661 0.699 0.682 0.700 0.692 0.665 0.447 0.503 0.506 0.500 0.499 0.426 0.446 0.446
Convergent Enzymes Classification 0.116 0.201 0.246 0.257 0.265 0.225 0.095 0.149 0.153 0.148 0.243 0.227 n/a n/a n/a n/a n/a n/a n/a n/a

Clustering MopB Clustering 0.654 0.784 0.843 0.872 0.902 0.745 0.785 0.879 0.848 0.908 0.872 0.828 n/a n/a n/a n/a n/a n/a n/a n/a
E. coli RNA Clustering n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 0.200 0.143 0.227 0.231 0.190 0.660 0.681 0.018

EDS

FeFeHydrogenase Phylogeny 0.393 0.562 0.614 0.717 0.792 0.738 0.711 0.759 0.811 0.839 0.707 0.624 n/a n/a n/a n/a n/a n/a n/a n/a
16S Bacterial Phylogeny n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 0.368 0.340 0.291 0.299 0.311 0.073 0.073 0.322
16S Archaeal Phylogeny n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 0.135 0.028 0.157 0.110 0.013 -0.005 0.019 0.112
18S Eukaryotic Phylogeny n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a 0.338 0.336 0.334 0.306 0.303 0.223 0.161 0.339
RpoB Archaeal Phylogeny 0.375 0.372 0.373 0.318 0.293 0.241 0.419 0.509 0.501 0.501 0.339 0.356 0.150 0.187 0.214 0.279 0.184 0.146 0.152 0.154
RpoB Bacterial Phylogeny 0.191 0.186 0.242 0.286 0.259 0.210 0.375 0.397 0.441 0.477 0.288 0.273 0.100 0.216 0.123 0.107 0.138 0.090 0.070 0.145

Pair Classification
E. coli Operonic Pair 0.533 0.557 0.575 0.573 0.561 0.577 0.565 0.592 0.594 0.566 0.618 0.626 n/a n/a n/a n/a n/a n/a n/a n/a
Cyano Operonic Pair 0.353 0.352 0.373 0.373 0.358 0.390 0.335 0.373 0.367 0.371 0.409 0.407 n/a n/a n/a n/a n/a n/a n/a n/a
Vibrio Operonic Pair 0.453 0.469 0.492 0.483 0.446 0.497 0.470 0.476 0.494 0.494 0.543 0.541 n/a n/a n/a n/a n/a n/a n/a n/a

Retrieval Euk Retrieval 0.215 0.309 0.352 0.359 0.357 0.345 0.291 0.339 0.313 0.344 0.359 0.355 n/a n/a n/a n/a n/a n/a n/a n/a
Arch Retrieval 0.179 0.273 0.305 0.309 0.313 0.289 0.218 0.281 0.270 0.292 0.311 0.306 n/a n/a n/a n/a n/a n/a n/a n/a
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APPENDIX H ONE-HOT BASELINE DETAILS

We introduce a one-hot vector representation of biological sequences as a baseline method to compare
model performance. This baseline represents each residue or nucleic acid as a one-hot vector. The one-
hot representation is mean-pooled across the sequence dimension, like all evaluated models (Section 4.1).

After mean-pooling, the one-hot baseline results in a representation equivalent to amino-acid composition for
AA tasks and nucleic-acid composition for NA tasks. Previous work has shown that amino-acid composition
is highly predictive of biological tasks such as transmembrane β-barrel protein identification (Garrow et al.,
2005) and microbial growth conditions (Barnum et al., 2024). The baseline representation is evaluated in
the same way as model embeddings, such as logistic regression for single-label classification tasks.
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