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Abstract
To enhance the safety of VLMs, this paper intro-
duces a novel reasoning-based VLM guard model
dubbed GuardReasoner-VL. The core idea is to in-
centivize the guard model to deliberatively reason
before making moderation decisions via online
RL. First, we construct GuardReasoner-VLTrain,
a reasoning corpus with 123K samples and 631K
reasoning steps, spanning text, image, and text-
image inputs. Then, based on it, we cold-start
our model’s reasoning ability via SFT. In addition,
we further enhance reasoning regarding modera-
tion through online RL. Concretely, to enhance
diversity and difficulty of samples, we conduct
rejection sampling followed by data augmentation
via the proposed safety-aware data concatenation.
Besides, we use a dynamic clipping parameter to
encourage exploration in early stages and exploita-
tion in later stages. To balance performance and
token efficiency, we design a length-aware safety
reward that integrates accuracy, format, and token
cost. Extensive experiments demonstrate the su-
periority of our model. Remarkably, it surpasses
the runner-up by 19.27% F1 score on average, as
shown in Figure 1. We release data, code, and
models (3B/7B) of GuardReasoner-VL1.

1. Introduction
Built upon large language models (LLMs), vision-language
models (VLMs) achieve remarkable success in a wide range
of real-world applications such as computer use (Team,
2024), deep research (Team, 2025b), embodied AI (Deep-
mind, 2025), etc. However, when deploying VLMs in safety-
critical domains such as education (Chu et al., 2025), finance
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(Wang et al., 2023), or government, they remain vulnerable
to manipulations and attacks (Lyu et al., 2024a; Gong et al.,
2023; Lyu et al., 2024b; Li et al., 2024d). To alleviate this
problem, safety alignment methods (Liu et al., 2024c; Zong
et al., 2024) are proposed by training VLMs to align with
human values and expectations. While effective, it imposes
the alignment tax (Huang et al., 2025; Lin et al., 2023a),
compromising the fundamental capabilities of models, such
as creativity, helpfulness, and reasoning.

To mitigate this drawback, VLM guard models (Du et al.,
2024; Chi et al., 2024; Ji et al., 2025a) are developed to
safeguard VLMs without direct modifications to the victim
VLMs. For example, VLMGuard (Du et al., 2024) detects
malicious text-image prompts using unlabeled data. In addi-
tion, LLaMA Guard 3-Vision (Chi et al., 2024) moderates
both text-image prompts and text responses by SFT. Then,
Beaver-Guard-V (Ji et al., 2025a) is developed via RL with
a well-trained reward model. The existing VLM guard mod-
els are trained to output only classification results. Although
effective, they lack interpretability, as the models do not
justify their decisions. Besides, the harmful categories are
fixed, restricting the generalization to new categories.

Therefore, this paper aims to build a reasoning-based VLM
guard model. It has three challenges as follows. 1) Limited
Data. The available training data is limited in terms of
the number of samples, input modalities, and reasoning
processes. 2) Offline Training. Current guard models are
typically restricted to offline training, which hampers their
performance. 3) Token Efficiency. The reasoning process
increases token costs, reducing inference efficiency.

To this end, we propose a novel reasoning-based VLM guard
model termed GuardReasoner-VL by incentivizing it to
reason-then-moderate via online RL. 1) First, to solve data
limitations, we create GuardReasoner-VLTrain, a reasoning
corpus with 123K samples and 631K reasoning steps. Un-
like the existing data, we collect a mixture of text, image,
and text-image samples (see Figure 3) to match the diverse
input modalities of VLMs, and generate reasoning processes
by prompting GPT-4o. Based on GuardReasoner-VLTrain,
we cold-start our model via SFT. 2) Then, we conduct online
RL to incentivize our model. To increase the diversity and
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(a) Prompt Harmfulness Detection Task.
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(b) Response Harmfulness Detection Task.

Figure 1: Mean Performance of GuardReasoner-VL on Multi-modal Guardrail Benchmarks.

Figure 2: Overview Training Pipeline of GuardReasoner-VL. It mainly contains three processes, including data curation,
model cold-start, and online RL. Concretely, we first build a reasoning corpus, which contains 123K samples with 631K
reasoning steps, spanning text, image, and text-image modalities. We cold-start the model via reasoning SFT. Then, we
perform data augmentation to improve the difficulty and diversity of the data via safety-aware data concatenation. In
addition, we conduct online RL with a dynamic clipping parameter and the designed length-aware safety reward.

difficulty of the data, we perform data augmentation via our
proposed safety-aware data concatenation. The main prin-
ciple is to guide the model to detect harmful content hidden
among predominantly harmless content. We concatenate
the inputs of different samples and assign new safety labels
based on whether any of the original samples are labeled
as harmful. Besides, we use a dynamic clipping param-
eter to encourage the model to explore in the early stage
and exploit in the later stage. 3) To balance the model per-
formance and token efficiency, we design a length-aware
safety reward, integrating accuracy, format, and reasoning
tokens. We develop two model versions: GuardReasoner-
VL, a more powerful version, and GuardReasoner-VL-Eco,
a more token-economical version. The main contributions
of this paper are listed as follows.

• We develop GuardReasoner-VL, a novel VLM guard
model that first reasons and then moderates.

• We curate a reasoning corpus for VLM guard termed
GuardReasoner-VLTrain, containing 123K samples with
631K reasoning steps, covering text, image, and text-
image paired samples.

• We incentivize the reasoning ability of our model through
online RL, incorporating the proposed safety-aware data
concatenation, dynamic clipping parameter, and length-
aware safety reward.

• Extensive experiments and analyses verify the superiority
of our proposed GuardReasoner-VL.
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2. GuardReasoner-VL
This section outlines the methodology of the proposed
GuardReasoner-VL. First, we define the moderation task
of VLM guard models. Then, we present the data curation
for our training data. In addition, we introduce the train-
ing pipeline of our proposed reasoning-based VLM guard
model. The overview training pipeline is shown in Figure 2.
The basic notations are summarized in Table 1.

Table 1: Basic Notations of This Paper.

Notations Meanings Notations Meanings

F Victim VLM D Reasoning Corpus for R-SFT

X User Input Xnew Augmented Use Input

T Text Input DRL Reasoning Corpus for RL

I Image Input Mbase Base Model

{T , I} Text-image Paired Input MR-SFT Trained Model via R-SFT

S Response of Victim VLM Greasoner Reasoning-based VLM Guard Model

G VLM Guard Model LR-SFT Objective of R-SFT

Q Instruction for Guardrail Task Bs Dynamic Clipping Parameter

R Reasoning Process r Overall Reward

Ŷ Predicted Label lnorm Normalized Length of Reasoning

Y Ground Truth LRL Objective of RL

Moderation Task. Given a victim VLM F , a user inputs a
prompt X and receives a response S = F(X ), where X can
be represented by one of the following modalities: a text T ,
an image I, or an text-image pair {T , I}. The VLM guard
model G moderates the input and output of the victim VLM
F by detecting whether they are harmful:

Ŷ = (Ŷprom, Ŷres) = G(X ,S), (1)

where Ŷprom ∈ {harmful, unharmful} is the predicted la-
bel for the prompt harmfulness detection task, and Ŷres ∈
{harmful, unharmful} is the predicted label for the response
harmfulness detection task. The performance of G is
evaluated using the F1 score between the predicted label
Ŷ and the ground-truth Y = {Yprom,Yres}. The harm-
ful/unharmful samples are treated as positives/negatives.

However, existing VLM guard models (Du et al., 2024; Chi
et al., 2024; Ji et al., 2025a) merely provide classification
results, limiting performance, explainability, and general-
ization. Thus, we aim to develop a reasoning-based VLM
guard model Greasoner to first deliberatively reason and then
make moderation decisions as follows.

{Ŷ,R} = Greasoner(X ,S), (2)

where R are reasoning processes, improving performance,
explainability, and generalization.

2.1. Data Curation

First, to match the diverse input modalities of VLMs, we
collect a mixture of text, image, and text-image samples.
The distribution and cases are demonstrated in Figure 3.

Table 2: Statistics of our Reasoning Corpus
GuardReasoner-VLTrain.

Modality # Sample # Step Mean Step Mean Len. per Step

Text 63,799 353,440 5.54 163.25

Image 13,267 57,322 4.32 154.03

Text-Image 46,030 221,033 4.80 160.79

Overall 123,096 631,795 5.13 159.36

Text. Following GuardReasoner (Liu et al., 2025b), we
collect and combine the data of WildGuardTrain (Han et al.,
2024), AegisTrain (Ghosh et al., 2024a), BeaverTailsTrain
(Ji et al., 2024), and ToxicChatTrain (Lin et al., 2023b). To
balance the ratios of different input modalities, we use 50%
of the mixed text data.

Image. We collect and combine the data of UnsafeBench
(Qu et al., 2024), BadNews (Zeng et al., 2020), Hateful-
Memes (Kiela et al., 2020), HatefulPoliticalMemes (Hate-
fulPMemes) (Pramanick et al., 2021), and HOD (Ha et al.,
2023). For HatefulMemes and HatefulPMemes, we utilize
the processed data from VLGuard (Zong et al., 2024). For
HOD, we use 60% of the original dataset to balance the
harmful and unharmful categories of the images. For this
constructed image data, we use 80% for training and 20%
for testing. The test set is named as HarmImageTest.

Text-Image. We utilize the SPA-VL-Train dataset (Zhang
et al., 2024) as the text-image paired training data. To
balance the ratios of different input modalities, we use 50%
of the SPA-VL-Train dataset.

Then, to train the reasoning-based VLM guard models, we
generate the reasoning processes via prompting GPT-4o
(Liu et al., 2025b), as shown in Figure 10. As a result, we
obtain a reasoning corpus termed GuardReasoner-VLTrain,
consisting of 123K samples and 631K reasoning steps. The
detailed statistics is listed in Table 2. In Figure 7, we show
the distribution of data sources, the distribution of harmful
categories, and representative cases of each modality in
GuardReasoner-VLTrain.

2.2. Model Cold-Start

Based on the curated reasoning dataset GuardReasoner-
VLTrain, denoted as D, we cold-start the base model via
Reasoning Supervised Fine-Tuning (R-SFT). Specifically,
given the guardrail instruction Q, the user prompt X , and
the victim model’s response S, we train the base model
Mbase to generate both the reasoning process R and the
moderation result Y . The objective is formulated as follows.

LR-SFT = −E(X ,S,R,Y)∼D logPθ(R,Y | Q,X ,S), (3)
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Figure 3: Input Modalities and Distribution of Our Training Data GuardReasoner-VLTrain. It contains 123K samples
with 631K reasoning steps, spanning 3 input modalities, including text, image, and text-image.

where θ denotes the model parameters. The input X can
be a text, an image, or a text-image pair. The instruction,
input, and output are showcased in Figure 11. Through
R-SFT, we endow the model with basic reasoning ability for
moderation, resulting in a reasoning model MR-SFT.

2.3. Online Reinforcement Learning

Then, we perform online RL on MR-SFT to enhance the
reasoning ability regarding moderation. It contains 3 parts,
i.e., data augmentation, training process, and reward design.

2.3.1. DATA AUGMENTATION

We generate harder and more diverse samples to better fa-
cilitate the generalization of online RL. First, we perform
rejection sampling on MR-SFT over the reasoning corpus
D. We run the entire dataset four times with high random-
ness and select the samples for which all predictions are
incorrect.

Then, to further improve the diversity and the difficulty of
the data, we conduct data augmentation via safety-aware
data concatenation, as shown in Figure 4. Our core idea is
to enable the guard model to identify harmful content hidden
among predominantly harmless content. Take the prompt
harmfulness detection task as an example, given two text-
image paired inputs X1 = {T1, I1},X2 = {T2, I2} and
their labels Y1,Y2, the augmented sample is constructed:

Tnew = text_concat(T1, T2), (4)

Inew = image_merge(I1, I2), (5)

Xnew = {Tnew, Inew}, (6)

Ynew =

{
unharmfulif Y1 = Y2 = unharmful
harmfulotherwise

, (7)

where text_concat denotes concatenating two textual inputs
into a single context. image_merge denotes combining two
image inputs through image-level transformations. For the
new label Ynew of the augmented sample Xnew, we assign
it as harmful if any of the original samples is harmful. In
this manner, it can enhance the guard model’s ability to
detect harmfulness in more complex and challenging cases.
Through rejection sampling and safety-aware data augmen-
tation, we generate a hard-sample reasoning corpus DRL.

2.3.2. TRAINING PROCESS

Based on DRL, we train MR-SFT via online RL. We imple-
ment it by using group relative policy optimization (GRPO)
(Shao et al., 2024). Unlike standard GRPO, we omit the KL
divergence loss to reduce constraints on the model’s behav-
ior. In addition, we propose to encourage exploration in the
early training stages and exploitation in the later training
stages. The objective is formulated as follows.

LRL = −E(X ,S,R,Y)∼DRL,{Ri,Ŷi}G
i=1∼Pθold

(8)

1

G

G∑
i=1

(min (Ki, clip (Ki, 1−B, 1 +B)) ·Ai) , (9)

Ki =
Pθ(Ri, Ŷi|Q,X ,S)
Pθold(Ri, Ŷi|Q,X ,S)

, (10)

Ai =
ri − mean({r1, r2, ..., rG})

std({r1, r2, ..., rG})
, (11)

Bs =

s∏
i=1

(
stotal − i

stotal

)
· ϵ, (12)

where Ki is the policy ratio, Ai denotes the estimated advan-
tage, {r1, r2, ..., rG} is a group of rewards. We introduce a
dynamic clipping parameter Bs in Formula (12), where s
is the current training step, and stotal is the total number of
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Figure 4: Safety-Aware Data Concatenation for Data Augmentation. Given two samples with labels {X1,Y1} and
{X2,Y2}, we generate a new sample Xnew by concatenating text and merge image. We assign the new label Ynew as harmful
if any of the original labels Y1,Y2 is harmful. It enables the guard model to identity harmful content hidden among
predominantly harmless content.

training steps. In the early stage, the clipping threshold is set
to a large value, allowing the model to explore more freely.
In the later stages, it is gradually reduced to encourage more
stable and fine-grained updates.

2.3.3. REWARD DESIGN

We design a safety reward to guide our guard model to finish
two guardrail tasks, i.e., prompt harmfulness detection and
response harmfulness detection. First, the model should
output in a correct format to ensure the predicted results
are extracted correctly. Then, based on the correct format,
we calculate the correctness between the predicted results
and the ground truth of these two tasks, and combine them
linearly. This safety reward is formulated as follows.

rsafety = Iformat × (rprompt × 0.5 + rresponse × 0.5), (13)

rprompt =

{
1 if Ŷprom = Yprom

0 otherwise
, (14)

rresponse =

{
1 if Ŷres = Yres

0 otherwise
, (15)

where Iformat indicates whether the output format satisfies
the required structure, i.e., Iformat = 1 if the model places the
reasoning process R between the “<think>” and “</think>”
tags, and the predicted label between the “<result>” and
“</result>” tags; otherwise, Iformat = 0. Based on rsafety, to
balance the performance and token efficiency, we incorpo-
rate the length of the reasoning process into the reward. The
basic idea is that when the model fails to complete these
guardrail tasks correctly, it is encouraged to improve its
accuracy by scaling up the reasoning length, while remain-
ing within a constraint. This length-aware safety reward is

formulated as follows.

r =
−1 + rsafety

min(lnorm, β)2
, (16)

where lnorm ∈ [0, 1] is the normalized length of the reasoning
R, and β is a cut-off hyper-parameter to alleviate over-
thinking. Note that the numerator rsafety is constrained to be
non-positive, i.e., rsafety ∈ [−1, 0]. Thus, when the model
fails to complete all tasks correctly, i.e., rsafety ∈ [−1, 0),
it is encouraged to improve its accuracy by increasing the
reasoning length, subject to the constraint β.

Through online RL with these designs, we obtain a
reasoning-based VLM guard model Greasoner.

3. Experiments
Environment. All experimental results are obtained on two
servers with 8 NVIDIA H100 (80 GB) GPUs, and one server
with 4 NVIDIA H200 (141GB) GPUs. For SFT, we use the
LLaMA Factory (Zheng et al., 2024) training platform. For
online RL, we use the EasyR1 (Zheng et al., 2025) platform.

Benchmark. We evaluate our method on 14 benchmarks
across two guardrail tasks, including prompt harmfulness
detection and response harmfulness detection. For prompt
harmfulness detection, we use 8 benchmarks, covering text-
only inputs (ToxicChat (Lin et al., 2023b), OpenAIModer-
ation (Markov et al., 2023), AegisSafetyTest (Ghosh et al.,
2024a), SimpleSafetyTests (Vidgen et al., 2023), Harm-
Bench (Mazeika et al., 2024), WildGuardTest (Han et al.,
2024)), image-only inputs (HarmImageTest), and text-image
paired inputs (SPA-VL-Eval (Zhang et al., 2024)). For re-
sponse harmfulness detection, we use 6 benchmarks, in-
cluding HarmBench (Mazeika et al., 2024), SafeRLHF (Dai
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Table 3: F1 score (%) of 21 Models on 8 Benchmarks of Prompt Harmfulness Detection. The bold and underlined
values denote the best and the runner-up. “-” denotes that the result is unavailable.

Method ToxicChat HarmBench OpenAI
Moderation

Aegis
SafetyTest

Simple
SafetyTests

WildGuard
Test

Average
(Text)

HarmImage
Test

SPA-VL-
Eval

Average
(All)

LLM Guard Models

LLaMA Guard 7B 61.60 67.20 75.80 74.10 93.00 56.00 64.89 00.00 00.00 33.43
LLaMA Guard 2 8B 47.10 94.00 76.10 71.80 95.80 70.90 63.62 00.00 00.00 32.77
LLaMA Guard 3 8B 53.12 98.94 79.69 71.39 99.50 76.18 68.47 00.00 00.00 35.27

Aegis Guard Defensive 7B 70.00 77.70 67.50 84.80 100.00 78.50 72.99 00.00 00.00 37.60
Aegis Guard Permissive 7B 73.00 70.50 74.70 82.90 99.00 71.50 73.83 00.00 00.00 38.03

Aegis Guard 2.0 8B - - 81.00 - - 81.60 - 00.00 00.00 -
ShieldGemma 2B 06.91 11.81 13.89 07.47 05.83 09.36 09.38 00.00 00.00 04.83
ShieldGemma 9B 67.92 67.96 78.58 77.63 91.89 57.74 68.77 00.00 00.00 35.42

WildGuard 7B 70.80 98.90 72.10 89.40 99.50 88.90 77.99 00.00 00.00 40.17
GuardReasoner 1B 72.09 94.92 69.02 89.34 98.99 87.13 77.18 00.00 00.00 39.76
GuardReasoner 3B 78.38 88.58 71.88 91.19 100.00 88.97 80.80 00.00 00.00 41.62
GuardReasoner 8B 79.43 93.30 71.24 90.27 100.00 88.59 81.09 00.00 00.00 41.77

VLM Guard Models

OpenAI Moderation API 25.40 09.60 79.00 31.90 63.00 12.10 35.28 44.39 63.00 44.20
Azure Content Safety API 57.61 37.41 74.27 46.75 74.21 32.54 54.30 26.42 43.64 44.95

LLaMA Guard 3 Vision 11B 58.19 96.09 67.64 70.62 97.96 75.19 67.24 00.48 54.86 48.03
Qwen2.5-VL-Instruct 3B 34.61 90.11 52.03 82.15 100.00 64.05 51.47 48.66 62.81 53.53
Qwen2.5-VL-Instruct 7B 40.99 91.61 57.21 81.58 100.00 74.77 58.04 43.88 66.02 56.53

GuardReasoner-VL-Eco 3B 73.47 88.58 70.87 89.04 99.50 89.16 78.43 66.79 85.82 77.39
GuardReasoner-VL 3B 74.45 89.10 70.83 88.79 99.50 88.92 78.77 70.93 86.47 78.73

GuardReasoner-VL-Eco 7B 76.26 98.73 70.82 90.34 99.50 88.54 79.82 64.84 85.26 77.49
GuardReasoner-VL 7B 76.51 98.30 70.98 90.13 98.99 88.35 79.88 70.84 85.60 79.07

et al., 2023), BeaverTails (Ji et al., 2024), XSTestResponse
(Röttger et al., 2023), WildGuardTest (Han et al., 2024), and
SPA-VL-Eval (Zhang et al., 2024). The statistical informa-
tion of these benchmarks is listed in Table 6. We use F1
score (harmful category as positive samples) for evaluation.
Due to the varying sample sizes across benchmarks (0.1K to
3K), we use a sample-weighted average of F1 scores across
benchmarks to evaluate the performance. “Average (Text)”
is the average performance on text guardrail benchmarks.
“Average (All)” is the average performance on all guardrail
benchmarks, including text, image, and text-image guardrail
benchmarks. We do not evaluate response harmfulness in
the image modality, as VLM responses are absent in the
collected image benchmark.

Baseline. Since the used benchmarks contain text, image,
and text-image inputs, we compare our model with both
LLM guard models (LLaMA Guard 7B (Inan et al., 2023),
LLaMA Guard 2 8B (Dubey et al., 2024), LLaMA Guard
3 8B, Aegis Guard Defensive 7B, Aegis Guard Permissive
7B (Ghosh et al., 2024a), Aegis Guard 2.0 8B (Ghosh et al.,
2024b), ShieldGemma 2B, ShieldGemma 9B (Zeng et al.,
2024), HarmBench LLaMA 13B, HarmBench Mistral 7B
(Mazeika et al., 2024), MD-Judge 7B (Li et al., 2024c),
BeaverDam 7B (Ji et al., 2024), WildGuard 7B (Han et al.,
2024)) and VLM guard models (LLaMA Guard 3-Vision
(Chi et al., 2024), OpenAI Moderation API (Markov et al.,

2023), Azure Content Safety API (Azure, 2024)). For Azure
Content Safety API, we use text moderation for the text
inputs, image moderation for image inputs, and multimodal
moderation for text-image inputs. We did not compare with
(Ji et al., 2025a), as their models were not fully released at
the time of our work.

3.1. Performance

The performance is shown in Table 3 (prompt harmfulness
detection) and Table 4 (response harmfulness detection). In
Figure 1 (“Average (All)” metric) and Figure 8 (“Average
(Text)” metric), we show the average performance of these
two tasks. From the results, we draw 4 findings. 1) LLM
guard models, limited to text inputs, underperform on image
and text-image modalities, yielding unpromising average
performance. 2) Existing VLM guard models, typically
trained as pure classifiers on text-image pairs, struggle with
image-only moderation. 3) Our models achieve the best
performance by learning to reason for moderation across
modalities. 4) Our models achieve comparable performance
on text guardrail benchmarks with the LLM guard models.

3.2. Ablation Study

This section verifies the effectiveness of modules in
GuardReasoner-VL. As shown in Figure 5, we conduct
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Table 4: F1 score (%) of 25 Models on 6 Benchmarks of Response Harmfulness Detection. The bold and underlined
values denote the best and the runner-up. “-” denotes the result is unavailable.

Method HarmBench SafeRLHF BeaverTails XSTestReponse WildGuard
Test

Average
(Text)

SPA-VL
-Eval

Average
(All)

LLM Guard Models

LLaMA Guard 7B 52.00 48.40 67.10 82.00 50.50 58.27 00.00 41.07
LLaMA Guard 2 8B 77.80 51.60 71.80 90.80 66.50 66.99 00.00 47.22
LLaMA Guard 3 8B 85.07 44.36 67.84 87.67 70.80 64.97 00.00 45.79

Aegis Guard Defensive 7B 62.20 59.30 74.70 52.80 49.10 62.79 00.00 44.25
Aegis Guard Permissive 7B 60.80 55.90 73.80 60.40 56.40 63.55 00.00 44.79

Aegis Guard 2.0 8B - - - 86.20 77.50 - 00.00 -
ShieldGemma 2B 35.36 16.92 30.97 65.55 20.13 27.24 00.00 19.20
ShieldGemma 9B 56.44 47.07 63.61 73.86 47.00 55.67 00.00 39.24

HarmBench LLaMA 13B 84.30 60.00 77.10 64.50 45.70 65.49 00.00 46.16
HarmBench Mistral 7B 87.00 52.40 75.20 72.00 60.10 66.70 00.00 47.01

MD-Judge 7B 81.60 64.70 86.70 90.40 76.80 78.67 00.00 55.45
BeaverDam 7B 58.40 72.10 89.90 83.60 63.40 76.60 00.00 53.99
WildGuard 7B 86.30 64.20 84.40 94.70 75.40 77.95 00.00 54.94

GuardReasoner 1B 84.75 68.39 85.84 90.12 74.81 79.06 00.00 55.72
GuardReasoner 3B 85.66 69.02 86.72 91.36 79.70 80.80 00.00 56.95
GuardReasoner 8B 85.47 70.04 87.60 94.34 78.20 81.22 00.00 57.24

VLM Guard Models

OpenAI Moderation API 20.60 10.10 15.70 46.60 16.90 16.68 47.21 25.69
Azure Content Safety API 44.16 36.56 51.52 57.80 38.12 44.47 39.35 42.96

LLaMA Guard 3 Vision 11B 80.95 41.72 64.98 81.08 56.51 59.28 41.43 54.01
Qwen2.5-VL-Instruct 3B 62.14 64.71 73.30 31.40 29.79 58.05 52.84 56.51
Qwen2.5-VL-Instruct 7B 65.21 59.73 77.29 47.06 42.21 62.25 60.00 61.58

GuardReasoner-VL-Eco 3B 84.72 66.96 85.39 93.59 77.39 79.31 72.01 77.14
GuardReasoner-VL 3B 85.76 66.37 85.16 93.08 76.07 78.83 71.19 76.56

GuardReasoner-VL-Eco 7B 86.22 66.15 85.51 93.33 78.60 79.51 70.81 76.94
GuardReasoner-VL 7B 87.22 66.37 84.76 92.72 79.04 79.42 73.22 77.58

73.25%

74.92%

65.65%

74.57%

76.85%

78.03%
77.81%

77.09%

78.73%

Reasoning SFT
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Figure 5: Ablation Studies of 3B (left) and 7B Models (right) on Prompt Harmfulness Detection. Y-axis denotes F1
score (%), and X-axis denotes model variants in reasoning SFT and online RL.

ablation studies on 3B and 7B models over the prompt harm-
fulness detection task. They are grouped into two stages,

including the reasoning SFT stage and the online RL stage.

First, at the reasoning SFT stage, “SFT” denotes conduct-
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ing supervised fine-tuning on the collected multimodal data
(text, images, text-image pairs) without reasoning processes.
“R-SFT (Text)” denotes conducting SFT on the collected text
data with reasoning processes. “R-SFT (Image)” denotes
conducting SFT on the collected image data with reasoning
processes. “R-SFT (T-I)” denotes conducting SFT on the
collected text-image data with reasoning processes. “R-SFT”
denotes conducting SFT on our GuardReasoner-VLTrain
data. We have the conclusions as follows. 1) The reason-
ing processes help the model achieve better performance,
e.g., “R-SFT” outperforms “SFT”. 2) Each modality of the
reasoning data contributes to the performance improvement.
However, SFT on images alone degrades the textual capa-
bility of the model, leading to unpromising performance.

Second, at the online RL stage, “Ours” denotes our
GuardReasoner-VL model. “w/o Aug.” denotes our model
without safety-aware data augmentation. “w/o Dyn.” de-
notes our model without the dynamic clipping strategy. “w/o
Len. Reward” denotes our model without the length term in
the reward. We find that 1) Each design contributes to the
performance improvement. 2) GuardReasoner-VL achieves
the best performance, showing the effectiveness of the com-
bination of these designs. Similar conclusions hold for the
response harmfulness detection task, as shown in Figure 9.

3.3. Token Efficiency

Although our reasoning-based VLM guard models achieve
promising performance, their multi-step reasoning process
incurs higher token consumption, which increases moder-
ation latency. To mitigate this issue, we set a constraint
parameter β = 1

6 in Formula (16), developing a more token-
efficient variant, termed GuardReasoner-VL-Eco. As shown
in Table 5, this variant achieves comparable performance
(1%∼2% F1 score drops) while reducing 10% token usage.

3.4. Analyses

Training Process. We analyze the training process of our
models. As shown in Figure 6, we visualize the training
curves of GuardReasoner-VL 7B and GuardReasoner-VL-
Eco 7B. We observe that GuardReasoner-VL 7B tends to in-
crease its response length to gain higher rewards. In contrast,
GuardReasoner-VL-Eco 7B initially increases the length
slightly but soon stabilizes, still achieving competitive re-
wards under the imposed constraint.

Case Study. To further verify the effectiveness of our pro-
posed GuardReasoner-VL, we conduct case studies on our
GuardReasoner-VL 7B and “Qwen2.5-VL-Instruct 7B +
SFT”. “Qwen2.5-VL-Instruct 7B + SFT” denotes conduct-
ing SFT on the collected multimodal data (text, images, text-
image pairs) without reasoning processes for the Qwen2.5-
VL-Instruct 7B model. The cases are demonstrated in Figure
12 (text input data), Figure 13 (image input data), and Figure

14 (text-image input data). From these cases, we observe
that GuardReasoner-VL can accurately identify harmful
content in both user requests and AI responses. Also, it can
effectively infer the underlying reasons for its predictions.

4. Related Work
4.1. Vision-Language Models

Motivated by the great success of the large language mod-
els (LLMs) (Achiam et al., 2023; Team, 2025c), Vision-
language models (VLMs) are developed to extend the strong
ability of LLMs to process both visual and textual informa-
tion. The pioneer models like Flamingo (Alayrac et al.,
2022), CLIP (Radford et al., 2021), and the BLIP series
(Li et al., 2022; 2023) aim to align the visual encoders and
LLMs in the latent space. Then, LLaVA is (Liu et al., 2023)
proposed to construct the visual instruction data and con-
duct visual instruction tuning. This visual instruction tuning
pipeline has become mainstream, and researchers (Chen
et al., 2024a; Liu et al., 2024a) pay attention to the con-
struction of visual instruction data. Besides, any-resolution
methods (Chen et al., 2024c; Liu et al., 2024b) enable VLMs
to handle images with any resolutions and ratios, improving
the adaptability of VLMs in real-world applications. More
recently, state-of-the-art open-sourced VLMs such as the
LLaVA series (Liu et al., 2024b; Li et al., 2024a), InternVL
series (Chen et al., 2024c;b;d), and QwenVL (Bai et al.,
2023; Wang et al., 2024b; Yang et al., 2024) series have
advanced the capabilities of vision-language understanding.

4.2. Safety of VLMs

Despite their impressive performance, current VLMs re-
main susceptible to manipulations and attacks (Lyu et al.,
2024a; Gong et al., 2023; Lyu et al., 2024b; Li et al., 2024d),
posing substantial risks in safety-critical applications such
as autonomous driving (Ma et al., 2024), robotic manipu-
lation (Ji et al., 2025b), and education (Chu et al., 2025).
To alleviate this problem, the 3H principle (Askell et al.,
2021) (Helpful, Honest, and Harmless) provides a founda-
tional guideline for constraining model behaviors. Safety
alignment techniques are proposed to better align VLMs
with human values and expectations (Ye et al., 2025). For
example, (Liu et al., 2024c) implements the safety align-
ment of VLMs by training the additional safety modules. In
addition, ADPO (Weng et al., 2025), Safe RLHF-V (Ji et al.,
2025a), and (Li et al., 2025) enhance the safety alignment
of VLMs via DPO (Rafailov et al., 2023), RLHF (Ouyang
et al., 2022), and GRPO (Shao et al., 2024), respectively.
Besides, open-sourced datasets (Zhang et al., 2024; Ji et al.,
2025a; Gu et al., 2024) contributed to high-quality align-
ment data and benchmarks. Differently, (Wang et al., 2024c;
Ghosal et al., 2024; Ding et al., 2024; Liu et al., 2025a)
propose to conduct safety alignment at inference time.
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Table 5: Performance and Token Costs of GuardReasoner-VL and GuardReasoner-VL-Eco. The F1 score is averaged
over the prompt harmfulness detection and response harmfulness detection.

Model
3B 7B

F1 Score (%) Output Tokens F1 Score (%) Output Tokens

GuardReasoner-VL 77.65 213.32 78.33 208.33
GuardReasoner-VL-Eco 77.27 187.30 77.22 180.08

Relative Change 0.48%↓ 12.20%↓ 1.42%↓ 13.56%↓

Figure 6: Response Length and Reward During Training of Our Models.

Although effective, safety alignment on the VLM itself com-
promises its capabilities in other dimensions, e.g., creativity,
reasoning, and helpfulness. As an alternative, safeguard-
ing methods (Wang et al., 2024d; Sun et al., 2024; Zhang
et al., 2023; Oh et al., 2024; Liu et al., 2025a) are pro-
posed to perform content moderation, aiming to ensure the
safety of VLMs without directly degrading VLMs’ core
abilities. Among these, one promising approach is to train
a separate VLM-based guard model to moderate the inputs
and outputs of the victim VLM. For example, based on
LLaVA-OneVision (Li et al., 2024a) and the collected mul-
timodal safety dataset, LLaVAGuard (Helff et al., 2024) is
built to conduct large-scale dataset annotation and moderate
the text-image models. However, it is merely designed to
moderate the images rather than the text-image pairs. In
addition, VLMGuard (Du et al., 2024) is proposed to con-
duct malicious text-image prompt detection by leveraging
the unlabeled user prompts. Moreover, LLaMA Guard 3-
Vision (Chi et al., 2024) is developed to moderate both the
text-image input and text output of VLMs via SFT. To im-
prove the generalization ability, (Ji et al., 2025a) presents
Beaver-Guard-V by training a reward model and then ap-
plying reinforcement learning. Recently, GuardReasoner
(Liu et al., 2025b) has been proposed to enhance the perfor-
mance, explainability, and generalization of the LLM guard
model by guiding it to learn to reason. Motivated by its
success, this paper develops a reasoning-based VLM guard
model named GuardReasoner-VL.

4.3. Reasoning Ability of VLMs

Recent advances in vision-language reasoning have enabled
VLMs to tackle increasingly complex multimodal tasks, in-

cluding math (Wang et al., 2024a), code (Li et al., 2024b),
and agent systems (Xie et al., 2024). Early efforts focused
on eliciting reasoning capabilities through improved visual
encoding strategies (Jin et al., 2024), task-specific modules
(Gupta & Kembhavi, 2023), in-context learning (Zhou et al.,
2024), and prompt tuning (Zamfirescu-Pereira et al., 2023).
More recently, inspired by models such as OpenAI o1/o3
(OpenAI, 2024a;b) and DeepSeek R1 (Team, 2025a), re-
searchers have shifted toward actively incentivizing VLMs
to learn the reasoning processes (Xu et al., 2024; Yang et al.,
2025; Chen et al., 2025; Peng et al., 2025; Shen et al., 2025).

5. Conclusion
This paper presents GuardReasoner-VL, a novel reasoning-
based VLM guard model that moderates harmful multi-
modal inputs by first performing deliberative reasoning. To
enable this, we construct a large-scale reasoning dataset,
GuardReasoner-VLTrain, spanning diverse input modalities
and complex safety cases. We further enhance the guard
model via online reinforcement learning, leveraging a set of
tailored techniques including safety-aware data concatena-
tion, dynamic clipping, and a length-aware safety reward to
balance safety performance and token efficiency. Extensive
experiments demonstrate that GuardReasoner-VL signifi-
cantly outperforms existing VLM guard models across mul-
tiple benchmarks. We hope our work offers a new direction
for building interpretable, generalizable VLM guard models,
and we release all data, code, and models to support future
research. In the future, it is worthy building reasoning-based
guard models for agentic systems.
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6. Impact Statement
We introduce a guard model designed to enhance the safety
of VLMs. We aim to mitigate the potential risks and harmful
impacts that VLMs may pose to society. The key aim of this
paper is to demonstrate that the performance, explainability,
and generalizability of the guard model can be improved by
learning to reason. Inspired by this work, companies can
build their own guard models for commercial use.
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A. Appendix
A.1. Datasets

We list the statistical information of the used benchmarks in Table 6.

(a) Text. (b) Image.

(c) Text-Image.

Figure 7: Data Sources and Cases of Different Modalities in GuardReasoner-VLTrain Dataset. The Y-axis denotes the
number of samples. The X-axis denotes the different data sources.

A.2. Additional Experiments

We show the average performance of our model on text guardrail benchmarks in Figure 8.

We list the additional experiments regarding ablation studies in Figure 9.

A.3. Implementation

A.3.1. BASELINE

We use the original codes of the baselines to replicate their results. We introduce the baselines and provide the implementation
details as follows, including 16 LLM guard models and 5 guard models.

LLM Guard Models

• LLaMA Guard 7B. LLaMA Guard 7B (Inan et al., 2023) is Meta’s AI content guard model. It is instruct-tuned from the
base model LLaMA 2 7B (Touvron et al., 2023b). The training data is private and contains 13K samples.

• LLaMA Guard 2 8B. LLaMA Guard 2 8B is the second version of the LLaMA Guard series. It is based on LLaMA 3
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(b) Response Harmfulness Detection.

Figure 8: Mean Performance of GuardReasoner-VL on Text Guardrail Benchmarks.
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Figure 9: Ablation Studies of 3B (left) and 7B Models (right) on Response Harmfulness Detection. X-axis denotes
model variants in reasoning SFT and online RL.

8B (Dubey et al., 2024). They flip labels to conduct data augmentation on the training data.

• LLaMA Guard 3 8B. LLaMA Guard 3 8B is the third version of LLaMA Guard series. The base model is LLaMA 3.1
8B (Dubey et al., 2024). It supports 8 languages and has a context window of 128K tokens.

• Aegis Guard Defensive/Permissive 7B. They are developed by NVIDIA. It is based on LLaMA Guard 7B and uses
LoRA to train the model. The defensive version classifies samples that need caution as harmful, and the permissive
version classifies them as benign.

• Aegis Guard 2.0 8B. It is the second version of the Aegis Guard series. The base model is LLaMA 3.1-instruct 8B.
Ghosh et al. (2024b) propose a new safety corpus with 12 top-level hazard categories.

• ShieldGemma 2B/9B. ShieldGemma 2B/9B is Google’s AI content moderation model. It is based on Gemma 2 2B/9B
(Team et al., 2024) and targets on four harm categories: sexually explicit, dangerous content, hate, and harassment.

• HarmBench LLaMA 13B. HarmBench LLaMA 13B is based on LLaMA 2 13B (Touvron et al., 2023b). The training
data comes from GPT-4. It is used to evaluate jailbreak attacks in HarmBench (Mazeika et al., 2024).
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Table 6: Statistics of 14 Benchmarks on 2 Guardrail Tasks.

Guardrail Task Benchmark # Sample Input Modality

Prompt Harmfulness
Detection

ToxicChat 2,853 Text

OpenAIModeration 1,680 Text

AegisSafetyTest 359 Text

SimpleSafetyTests 100 Text

HarmBenchPrompt 239 Text

WildGuardTest 1,756 Text

HarmImageTest 3,295 Image

SPA-VL-Eval 3,282 Text-Image

Response Harmfulness
Detection

HarmBenchResponse 602 Text

SafeRLHF 2,000 Text

BeaverTails 3,021 Text

XSTestReponseHarmful 446 Text

WildGuardTest 1,768 Text

SPA-VL-Eval 3,282 Text-Image

• HarmBench Mistral 7B. HarmBench Mistral 7B is based on Mistral 7B (Jiang et al., 2023). The training data is
constructed by prompting GPT-4. It is used to evaluate jailbreak attacks in HarmBench (Mazeika et al., 2024).

• MD-Judge 7B. MD-Judge 7B (Li et al., 2024c) is based on Mistral 7B (Jiang et al., 2023). The training data is private.

• BeaverDam 7B. BeaverDam 7B (Ji et al., 2024) is based on LLaMA 7B (Touvron et al., 2023a) and is instruction-tuned
on BeaverTails training dataset (Ji et al., 2024).

• WildGuard 7B. WildGuard 7B is based on Mistral 7B (Jiang et al., 2023). It unifies the tasks of prompt/response
harmfulness detection and refusal detection. They release the training data, WildGuardTrain.

• GuardReasoner 1B. WildGuard 1B is based on LLaMA 3.2 1B (Dubey et al., 2024). It is a reasoning-based LLM guard
model. They release the reasoning corpus GuardReasonerTrain.

• GuardReasoner 3B. WildGuard 3B is based on LLaMA 3.2 3B (Dubey et al., 2024). It is a reasoning-based LLM guard
model. They release the reasoning corpus GuardReasonerTrain.

• GuardReasoner 8B. WildGuard 8B is based on LLaMA 3.1 8B. It is a reasoning-based LLM guard model. They release
the reasoning corpus GuardReasonerTrain.

VLM Guard Models.

• OpenAI Moderation API. It (Markov et al., 2023) is a tool that automatically detects and filters harmful or inappropriate
user-generated content using AI, helping developers maintain safe environments.

• Azure Content Safety API. The cloud-based Azure AI Content Safety API (Azure, 2024) provides developers with
access to advanced algorithms for processing images and text and flagging content that is potentially offensive, risky, or
otherwise undesirable.

• LLaMA Guard 3 Vision 11B. LLaMA Guard 3 Vision (Chi et al., 2024) is a LLaMA-3.2-11B pretrained model (Dubey
et al., 2024), fine-tuned for content safety classification. It can be used to safeguard content for both LLM inputs and
LLM responses.

• Qwen2.5-VL-Instruct 3B/7B. Qwen2.5-VL-Instruct 3B/7B are fine-tuned for instruction-following, agent tool use,
creative writing, and multilingual tasks across 100+ languages and dialects. We prompt them to finish VLM guardrail
tasks.
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A.3.2. GUARDREASONER-VL

We provide the implementation details of our proposed GuardReasoner-VL as follows.

(I) In the R-SFT stage, we adopt 2 base VLM models with different scales, including Qwen2.5-VL-Instruct 3B and
Qwen2.5-VL-Instruct 7B. We use our synthesized GuardReasoner-VLTrain as the training data of R-SFT. It contains 123K
samples with 631K reasoning steps. The chat template is set to qwen2_vl. The cutoff length is set to 2048 tokens. The
initial learning rate is set to 5e-05, and we use the cosine learning rate scheduler. We use the BFloat16 training, and we
adopt the full-parameter fine-tuning. We adopt AdamW optimizer. The number of epochs is set to 3. The total batch size is
set to 192 = 8(accumulate step)× 6(batch size)× 4(device). The DeepSpeed stage is set to 3.

(II) In the online RL stage, we first perform rejection sampling. We generate 4 candidate responses using temperature = 1.0
and top_p = 0.95, and retain only those hard samples where all responses are incorrect. Then, we perform data augmentation
on these hard samples by randomly selecting pairs of the samples and conducting safety-aware data concatenation. We set
the augmented samples to comprise 20% of the training data for online RL. We obtain training data for online RL, consisting
of 12K samples. During training, the number of rollouts is set to 16 and temperature = 1.2. The batch size of rollouts is set
to 512. The batch size for the actor model is 256. The initial learning rate for the actor model is set to 1e-6, and the weight
decay is set to 1e-2. The clipping ratio ϵ is set to 0.2. The length constrain β is set to 1 for GuardReasoner-VL, and 1

6 for
GuardReasoner-VL-Eco.

A.4. Case Studies

The cases are demonstrated in Figure 12 (text input data), Figure 13 (image input data), and Figure 14 (text-image input
data).

A.5. Limitations

Although the proposed GuardReasoner-VL achieves promising performance, the token efficiency is still limited. In the future,
we could solve this problem via techniques like model merge, agentic router, pruning, etc. Besides, for the attacks in the
wild, e.g., indirect attacks in the environment for a computer-use agent, our models may achieve unpromising performance.
In the future, it is worthy developing the reasoning-based guard models for the computer-use agents or multi-agent systems.
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Figure 10: Prompt for Reasoning Data Synthesis.
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Figure 11: Instruction, Input, and Output for Reasoning SFT.
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Figure 12: Case Study on Text Input Data. This case is sampled from WildGuardTest (Han et al., 2024).
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Figure 13: Case Study on Image Input Data. This case is sampled from HatefulMemes (Kiela et al., 2020).
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Figure 14: Case Study on Text-Image Input Data. This case is sampled from SPA-VL-Eval (Zhang et al., 2024).
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