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ABSTRACT

Centralized training with decentralized execution (CTDE) has been the dom-
inant paradigm in multi-agent reinforcement learning (MARL), but its re-
liance on global state information during training introduces scalability, robust-
ness, and generalization bottlenecks. Moreover, in practical scenarios such as
adding/dropping teammates or facing environment dynamics that differ from the
training, CTDE methods can be brittle and costly to retrain, whereas distributed
approaches allow agents to adapt using only local information and peer-to-peer
communication. We present a distributed MARL framework that removes the
need for centralized critics or global information. Firstly, we develop a novel Dis-
tributed Graph Attention Network (D-GAT) that performs global state inference
through multi-hop communication, where agents integrate neighbor features via
input-dependent attention weights in a fully distributed manner. Leveraging D-
GAT, we develop the distributed graph-attention MAPPO (DG-MAPPO) – a dis-
tributed MARL framework where agents optimize local policies and value func-
tions using local observations, multi-hop communication, and shared/averaged re-
wards. Empirical evaluation on the StarCraftII Multi-Agent Challenge (SMAC)
demonstrates that our method consistently outperforms strong CTDE baselines,
achieving superior coordination across a wide range of cooperative tasks with
both homogeneous and heterogeneous teams. Our distributed MARL framework
offers a principled and scalable solution for robust collaboration without requir-
ing centralized training or global observability. To the best of our knowledge,
DG-MAPPO appears to be the first to fully eliminate reliance on privileged cen-
tralized information, enabling agents to learn and act solely through peer-to-peer
communication.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) has emerged as a powerful framework for training
multiple agents to learn cooperative and competitive behaviors in complex dynamic environments
(Zhang et al., 2021). However, learning effective collaborative policies remains challenging, since
each agent simultaneously seeks to maximize its own return, giving rise to the fundamental issue of
non-stationarity, i.e., the environment is constantly changing due to the evolving behaviors of other
agents from the perspective of any single agent. Recent works such as MAPPO (Yu et al., 2022),
MADDPG (Lowe et al., 2017), and HAPPO/HATRPO (Kuba et al., 2021; Zhong et al., 2024) alle-
viate this challenge by using the centralized training decentralized execution (CTDE) framework,
where agents assume access to global state information during training but rely on local information
during execution. Although effective, the CTDE approach suffers from several drawbacks that limit
its applicability in practical settings. First, it requires access to global information during training,
which may be infeasible in large-scale systems due to communication bandwidth, latency, or privacy
constraints. Second, reliance on centralized critics introduces scalability bottlenecks and potential
single points of failure. Third, CTDE methods often suffer from a train–test mismatch, since agents
learn with privileged information that is unavailable at execution time, leading to suboptimal gener-
alization. These limitations highlight the need for distributed MARL approaches that enable agents
to learn cooperative strategies using only local observations and peer-to-peer communication from
neighboring agents.
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However, fully distributed learning techniques remain relatively underexplored compared to the
centralized training approaches, partly due to the inherent complexity of the problem. Existing
studies in this domain typically retain some form of centralization. For instance, Zhang et al. (2018)
proposed a decentralized multi-agent actor–critic algorithms that use average consensus protocols
(Tsitsiklis, 1984) to approximate global returns and value functions via neighbor communication,
while actors update their policies independently. Although effective, this approach relies on simple
averaging of value functions, which can yield suboptimal performance in heterogeneous teams with
non-i.i.d. dynamics. Moreover, their framework assumes access to global state information for
advantage estimation and thus cannot directly handle partial observability. In parallel, graph-based
methods have been introduced to better capture structured communication among agents. Jiang et al.
(2018) proposed graph convolution RL (DGN), where agents are represented as nodes in a dynamic
graph and leverage Graph Attention Networks (GATs) (Veličković et al., 2017) to process node-level
observations and actions. However, DGN shares both the Q-network and GAT parameters among
all agents, preventing fully distributed training.

From an optimization perspective, decentralized stochastic gradient descent (D-SGD) (Lian et al.,
2017; Assran et al., 2019) and classical distributed averaging protocols (Nedić & Ozdaglar, 2009;
Tsitsiklis, 1984) provide strong theoretical foundations for consensus optimization over networks.
Building on these insights, we introduce Distributed Graph Attention Networks (D-GATs), which
couple the expressiveness of GATv2 (Brody et al., 2021) with neighbor-averaged parameter sharing
inspired by D-SGD. This design preserves dynamic, input-dependent attention while promoting con-
sensus among agents in a fully distributed setting. While related works, such as GATTA (Tian et al.,
2023), have applied graph attention to distributed supervised learning and personalization, it comes
with higher computational overhead that scales poorly as the number of agents increases—making it
less suitable for multi-agent reinforcement learning settings where efficiency is critical. In contrast,
our Distributed Graph Attention Network (D-GAT) is designed specifically for MARL, focusing
on global state inference through lightweight, input-dependent attention mechanisms that remain
tractable even in large teams.

Building on D-GAT, we introduce distributed graph-attention MAPPO (DG-MAPPO), a prin-
cipled distributed MARL framework that removes the need for centralized training or global ob-
servability. DG-MAPPO integrates agents’ local observations with global state inference from D-
GAT and a shared/averaged team reward to learn collaborative policies that naturally scale to large
teams. Unlike CTDE approaches, our fully distributed framework enables agents to infer global
state during both training and execution, yielding more robust coordination at test time. We eval-
uate DG-MAPPO on the StarCraftII Multi-Agent Challenge (SMAC) (Samvelyan et al., 2019), a
widely used benchmark for cooperative MARL, against strong CTDE baselines such as MAPPO,
MAT-Dec (Wen et al., 2022), and HAPPO. SMAC scenarios demand coordination under partial ob-
servability, dynamic environments, and complex team interactions, making them a rigorous testbed
for scalability and robustness. Our experiments show that DG-MAPPO achieves consistently strong
performance across diverse tasks, demonstrating its ability to handle both homogeneous and hetero-
geneous settings, scale to large teams, and learn effective collaboration without centralized training
or privileged information.

Our contributions are threefold:

• We propose D-GAT, an effective communication module that enables agents to infer global
state representations from purely local communication over multiple hops.

• We propose DG-MAPPO, a distributed MARL framework that learns collaborative policies
using only local observations, global state inference from D-GAT, and a shared/averaged
team reward. Crucially, DG-MAPPO operates entirely without any centralized mechanism.

• We demonstrate empirically that our approach outperforms prior CTDE baselines on coop-
erative tasks, achieving robust coordination under limited communication and no privileged
information.

2 PRELIMINARIES

We first establish the necessary background in this section. We begin by formulating the cooperative
multi-agent reinforcement learning (MARL) problem as a decentralized partially observable
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Markov decision process (Dec-POMDP). We then describe how graph neural networks, in particu-
lar graph attention networks (GATs), can be used to model agent communication and representation
learning. Finally, we review the policy gradient theorem in the multi-agent setting, which forms
the foundation for our optimization framework. Throughout the paper, we denote matrices by bold
uppercase letters (e.g., X), vectors by bold lowercase letters (e.g., x), local data with superscript i
(e.g., xi), global data without superscript (e.g., x), and approximations with a hat (e.g., x̂).

2.1 PROBLEM FORMULATION

We consider a distributed cooperative MARL problem formulated as a Dec-POMDP, represented
by the tuple ⟨N , {Oi}ni=1, {Ai}ni=1, R, P, γ⟩. Here, N = 1, . . . , n is the set of agents. Each agent
i ∈ N has an observation space Oi ⊂ Rp, where p is the observation dimension, and an action
space Ai ⊂ Rq , where q is the action dimension. The joint observation and action spaces are
O =

∏n
i=1 Oi and A =

∏n
i=1 Ai, respectively. The transition kernel P : O × A × O → [0, 1]

defines the environment dynamics, R : O × A → [−Rmax, Rmax] is the shared reward function,
and γ ∈ [0, 1) is the discount factor.

We model the multi-agent interaction structure as a dynamic graph G = (N , E), where nodes (N )
correspond to agents and edges (E) denote available communication links which can change in
real-time. At each time step t, agent i receives a local observation oit ∈ Oi

(
ot = [o1t , . . . ,o

n
t ]

⊤),
communicates with nodes j ∈ N i, where N i is some neighborhood of node i (including i) in the
graph G over multiple-hops, and forms a local approximation of the global observation ôit ∈ Ôi.
Based on this, the agent selects an action ait from its policy πi, which is the ith component of the
joint policy π =

∏n
i=1 π

i. The transition kernel and the joint policy induce the marginal observation
distribution ρπ(·) =

∑∞
t=0 γ

tPr(ot | π) (Wen et al., 2022). All agents then receive a shared team
reward R(ot,at) and observe oit+1.

We focus on the fully cooperative setting where all agents share the same reward signal. Settings
with local reward functions can be incorporated by computing a consensus-based team reward (e.g.,
via average consensus (Tsitsiklis, 1984)). The goal is to learn local policies {πi}ni=1 that maximize
the expected discounted team return:

J (π) = Eπθ

[ ∞∑
t=0

γtR(ot, at)

]
(1)

2.2 GRAPH-ATTENTION NETWORKS

Graph neural networks (GNNs), such as GraphSAGE (Hamilton et al., 2017), learn node repre-
sentations by aggregating information from local neighborhoods in a graph. At each layer, a node
updates its embedding by combining its own features with those of its neighbors, typically using
simple operations such as mean or sum. While effective, this uniform treatment of neighbors may
fail to capture the varying importance of different connections.

GATs (Veličković et al., 2017; Brody et al., 2021) address this limitation by incorporating an atten-
tion mechanism into the aggregation process. Instead of assigning equal weight to all neighbors,
GATs learn to adaptively highlight the most relevant nodes when computing new representations.
Formally, for a node i with feature vector hi ∈ Rd and neighborhood N i, GAT defines a shared
attention function e : Rd × Rd → R to measure the importance of a neighbor j:

e(hi,hj) = LeakyReLU
(
q⊤
[
Whi∥Whj

])
, (2)

whereW ∈ Rd′×d is a learnable linear transformation matrix, q ∈ R2d′
is a trainable weight vector,

and ∥ denotes concatenation. The parameters W and q are shared across all nodes. These scores
are normalized with a softmax across all neighbors:

αij =
exp

(
e(hi,hj)

)∑
j′∈N i exp(e(hi,hj′))

. (3)
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The attention coefficients αij encode the relative contribution of neighbor j to node i. The updated
representation of node i is then computed as

ĥi = σ

∑
j∈N i

αijWhj

 , (4)

where σ : Rd′ → Rd′
is a nonlinear activation. By learning these attention weights, GATs provide

a more flexible and expressive aggregation scheme than traditional GNNs, enabling the model to
prioritize informative neighbors and downplay less relevant ones. In the MARL setting, this enables
each agent to selectively integrate neighbor information when constructing a local approximation of
the global state.

2.3 POLICY GRADIENT THEOREM FOR MULTI-AGENT REINFORCEMENT LEARNING

Policy gradient methods provide a principled approach to optimizing parameterized policies by es-
timating the gradient of the expected return with respect to policy parameters. Extending this idea
to the multi-agent setting raises unique challenges: agents act simultaneously, rewards are often ob-
served only locally, and in the fully decentralized case, no central controller is available to aggregate
global information.

Zhang et al. (2018) established a multi-agent policy gradient theorem for fully decentralized MARL
under the assumption that the global states and actions are observable to all agents, while rewards
remain local. This result forms the theoretical basis of their decentralized actor–critic algorithms.

Theorem 1 (Policy Gradient for MARL (Zhang et al., 2018)) Consider N agents with local
policies πi

θi parameterized by θi, and let the joint policy be πθ =
∏N

i=1 π
i
θi , θ = [θ1, . . . , θn]⊤.

The collective objective is to maximize the globally averaged return J(πθ) defined in Equation (1).
Then, for each agent i, the policy gradient with respect to θi is given by

∇θiJ(πθ) = Eo∼ρπθ
,a∼πθ

[
∇θi log πi

θi(ot,a
i
t)Aθ(ot,at)

]
, (5)

where Aθ(ot,at) = R(ot,at) + γVϕ(ot+1) − Vϕ(ot) is the global advantage function, and Vϕ :
O → R is the global state-value function parameterized by ϕ.

This theorem shows that each agent can compute its policy gradient update using only its local
policy parameters and an estimate of the global advantage function. Each agent learns its local value
function parameters ϕi by minimizing the local TD-error δi, and then they run the average consensus
protocol to find the global value function parameters ϕ:

δi = R(ot,at) + γVϕi(ot+1)− Vϕi(ot),

ϕ̃i = ϕi + βtδ
i
t∇ϕiVϕi(ot),

ϕ =
∑
j∈N i

ct(i, j)ϕ̃
i

(6)

where βt > 0 is a learning rate, N i is the neighborhood of agent i in the communication graph,
and ct(i, j) are consensus weights. Through this consensus process, local value estimates propagate
across the network, enabling each agent to converge to the global value function over time and hence
compute an unbiased policy gradient update.

Theorem 1 provides the theoretical foundation for distributed MARL, upon which we build our
distributed MARL algorithm in the next section.

3 METHOD

In this section, we present DG-MAPPO, a distributed MARL algorithm that is both simple and
scalable. Unlike the widely adopted CTDE paradigm, our approach does not assume access to global
state information during either training or execution. Instead, coordination emerges organically
through multi-hop message passing over a connected communication graph.
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Assumption 1 (Connected Communication Graph) The communication graph G is connected;
that is, for any two distinct agents i ̸= j, there exists at least one path from i to j in G.

This assumption significantly relaxes the stronger requirement of centralized information sharing
commonly made in prior MARL frameworks. Building on this, we formalize the notion of dis-
tributed MARL as follows:

Definition 1 (Distributed MARL) Consider a system of n agents operating on a connected graph
G. Each agent i observes only its local information oi and can communicate it with its neighbors.
A distributed MARL algorithm requires each agent to learn both its policy and value function us-
ing solely its local observations and peer-to-peer communication, without relying on centralized
training or access to the global state.

This definition distinguishes distributed approaches from purely decentralized ones: the former
leverage communication among agents to enable collaboration, whereas the latter operate inde-
pendently without inter-agent communication (e.g., the decentralized execution in CTDE). In what
follows, we first introduce D-GAT, our communication module that enables global state inference
via multi-hop message passing in a fully distributed manner. We then introduce our DG-MAPPO
algorithm which learns collaborative policies entirely from local observations and peer-to-peer com-
munication.

3.1 DISTRIBUTED GRAPH ATTENTION NETWORKS

GATs (Veličković et al., 2017) are a powerful tool for learning from graph-structured data, but their
standard formulation relies on globally shared attention parameters, preventing deployment in fully
distributed settings. We address this by introducing D-GAT, where each agent independently main-
tains and updates its own local attention parameters. This design ensures that message aggregation
remains attention-driven while fully respecting the real-time communication constraints. In addi-
tion, we adopt the dynamic attention formulation of GATv2 (Brody et al., 2021), which extends the
original GAT by enabling input-dependent query–key interactions, thereby enhancing representa-
tional expressiveness. The overall framework of D-GAT is illustrated in Figure 1.

A single D-GAT layer for node i operates as follows. For a node i with feature vector hi ∈ Rd

and neighborhood N i, we define a local attention function ei : Rd × Rd → R that measures the
importance of neighbor j as:

ei(hi,hj) = qi
⊤

LeakyReLU
(
W i[hi∥hj ]

)
. (7)

whereW i ∈ Rd′×2d is a learnable linear projection of agent i, qi ∈ Rd′
is a trainable weight vector

of agent i, and ∥ is the concatenation operator. We then perform score normalization and feature
aggregation as:

αij =
exp

(
ei(hi,hj)

)∑
j′∈N i exp(ei(hi,hj′))

, ĥi = σ

∑
j∈N i

αijh
j

 , (8)

where ĥi is the updated vector representation of agent i computed as an attention-weighted aggre-
gation of its neighbors’ features, followed by a nonlinear activation σ(·). We stack n such layers
(equal to the number of agents) to facilitate multi-hop communication, ensuring that every agent
i ∈ N can exchange information with all other agents j ∈ N .

The distributed design of D-GAT introduces a fundamental challenge in MARL: each agent updates
its local attention parameters solely to maximize its own performance. Such locally selfish updates
can impede the formation of a coherent global representation, which is essential for effective coor-
dination. Consequently, agents may struggle to approximate the global state, leading to suboptimal
joint performance. To mitigate this issue, we propose a two-step solution. Firstly, inspired by de-
centralized stochastic gradient descent (D-SGD) (Lian et al., 2017), we update each agent’s graph
network parameters via local SGD and then average them with its immediate neighbors. Mathemat-
ically, it is given as:
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for k = 0, . . . ,K − 1 :

{hj
k ∥ h4

k}j∈N 4 e4k Softplus
∑

σ ĥ4
k+1

Linear

Normalization Aggregation Activation

Forward pass for node 4 in D-GAT

ψ5
t SGD ψ5

t+ 1
2

ψ5
t+1

D-GAT Params

Local Step

Half Params Weighted Average

Backward pass for node 5 in D-GAT (D-SGD update)

Figure 1: Illustration of the forward and backward passes in the proposed D-GAT framework.
1) Forward pass (top, red): At each layer k, node 4 aggregates information from its neighbors
{hjk∥h4k}j∈N 4 by applying a linear transformation, Softplus normalization, summation-based ag-
gregation, and a nonlinearity σ to produce the updated embedding ĥ4

k+1. This process is repeated
for k = 0, . . . ,K − 1, where K is the predefined number of hops. 2) Backward pass (bottom,
blue): Node 5 updates its local D-GAT parameters ψ5 via decentralized stochastic gradient descent
(D-SGD). First, a local step computes the half-step parameters ψ5

t+ 1
2

using the local update step of
Equation (9). Next, a neighbor averaging step mixes parameters from neighbors via the neighbor
averaging step of Equation (9) to get the updated D-GAT parameters ψ5

t , enabling distributed train-
ing without a central coordinator.

(Local step) ψi

t+
1
2

= ψi
t − ηt ∇̂ℓi

(
ψi

t; ξ
i
t

)
,

(Neighbor averaging) ψi
t+1 =

∑
j∈N i

c(i, j)ψj

t+
1
2

, i = 1, . . . , n,
(9)

where ψi = {W i, qi} are the local graph attention network parameters, ∇̂ℓi
(
ψi

t; ξ
i
t

)
is a stochas-

tic gradient computed from local data/minibatch ξit , ηt is the learning step-size, and c(i, j) is the
consensus weight between agent i and j consistent with the communication graph given by,

c(i, j) =


1

|N i|
, if j ∈ N i,

0, otherwise.
(10)

Here, |N i| is the degree of node i. This D-SGD procedure is equivalent to an average consensus
step over the local D-GAT parameters, ensuring that agents gradually align their representations
with those of their neighbors. By doing so, the network parameters are regularized across the graph,
which improves the generalizability of the learned representations. Importantly, since the local
updates still follow the GATv2 architecture, agents can compute dynamic, input-dependent attention
weights as in Brody et al. (2021), thereby preserving the expressive power of attention mechanisms
while operating in a distributed setting.

Moreover, to facilitate global state inference, we introduce a consensus regularization objective for
D-GAT that explicitly encourages neighboring agents to align their learned representations. Con-
cretely, in addition to the value (Equation (14)) and policy losses (Equation (15)), each agent also

6
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Simulation Environment

o0t o1t · · · oNt

Local Observations D-GAT

õ0t õ1t · · · õNt

Local Observations with D-GAT Outputs

π0
θ0 π1

θ1 · · · πN
θN

Local Policies

V 0
ϕ0 V 1

ϕ1 · · · V N
ϕN

Per-Agent Value Functions

PPO

Per-Agent Policy Update

Figure 2: DG-MAPPO Framework. Each agent receives raw local observations oit from the en-
vironment. Agents then communicate with neighbors using D-GAT to get global state inference ôit
which is then concatenated with raw local observations to get õit = [oit, ô

i
t]. This combined obser-

vation is used by both local policies πi
θi to generate actions and by value functions V i

ϕi to estimate
global returns. PPO performs per-agent policy updates using the advantage estimates derived from
GAE.

minimizes a consensus loss with respect to its neighbors, given by

Li
consensus(ψ

i) = αconsensus
1

|N i|
∑
j∈N i

MSE
(
ĥi, ĥj

)
, (11)

where αconsensus controls the strength of the regularization, MSE(·, ·) denotes the mean-squared error.

Intuitively, D-GAT integrates D-SGD with a consensus regularization objective, providing a com-
munication framework that enables agents to extract essential global state information while sup-
pressing irrelevant information from less important neighbors. For instance, D-GAT enables agents
to prioritize information from collaborators with strong influence on their outcomes, while down-
weighting signals from agents whose actions have little impact.

3.2 DISTRIBUTED GRAPH-ATTENTION MAPPO

We now introduce our distributed MARL framework, DG-MAPPO, illustrated in Figure 2. The
central idea is that, given access to global state information and a globally shared (or averaged)
reward, each agent i ∈ N can independently learn a global state value function V i

ϕi : O → R
defined as

V i
ϕi(ot) = Eat∼πθ

[
T∑

t=0

γtR(ot,at)

∣∣∣∣∣ o0 = ot

]
. (12)

In practice, however, agents in our distributed setting cannot directly observe the true global state.
To overcome this limitation, we incorporate the D-GAT communication module (see Section 3.1),
which enables agents to perform multi-hop message passing after each local observation. Through
this process, agents obtain an informative approximation of the global state, denoted as ôit ∈ Ôi.

Training the value function solely on ôit can lead to high variance, particularly in the early stages of
learning, which risks destabilizing training. To address this, we provide each agent with a concate-
nated input combining its own local observation and the global state approximation:

õit = [oit ∥ ôit] ∈ Õi (13)

7
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Table 1: Performance evaluations of win rate and standard deviation on the SMAC benchmark.

Task Difficulty MAT-Dec MAPPO HAPPO DG-MAPPO
3m Easy 100.0(1.1) 100.0(0.4) 100.0(1.2) 100.0(1.4)

8m Easy 97.2(2.5) 96.8(2.9) 97.5(1.1) 100.0(1.4)

MMM Easy 98.1(2.1) 95.6(4.5) 81.2(22.9) 98.7(1.7)

5m vs 6m Hard 83.1(4.6) 88.2(6.2) 73.8(4.4) 88.7(4.7)

8m vs 9m Hard 95.0(4.6) 93.8(3.5) 86.2(4.4) 95.0(4.1)

10m vs 11m Hard 100.0(2.0) 96.3(5.8) 77.5(9.7) 100.0(1.4)

25m Hard 86.9(5.6) 100.0(2.7) 0.6(0.8) 72.5(10.1)

MMM2 Hard+ 91.2(5.3) 81.8(10.1) 0.3(0.4) 97.5(1.4)

6h vs 8z Hard+ 93.8(4.7) 88.4(5.7) 0.0(0.0) 95.0(2.7)

3s5z vs 3s6z Hard+ 85.3(7.5) 84.3(19.4) 82.8(21.2) 91.9(10.7)

This representation ensures that agents retain a reliable self-signal while progressively benefiting
from improved global context. Each agent’s critic is then trained by minimizing the Bellman error:

Li
critic(ϕ

i) = Eat∼πθ

[
T−1∑
t=0

R(ot,at) + γV i
ϕi(õit+1)− V i

ϕi(õit)

]2
. (14)

Although agents cannot directly access the joint global policy πθ, they can still learn state-value
functions consistent with it. This is possible because agents experience a common reward sig-
nal—either provided by a global reward mechanism or obtained through averaging local rewards via
consensus, and they condition the state-value function on õit, consisting of the global state represen-
tation. Agents can now estimate the global advantage function Ai

θ : O × A → R leveraging the
shared/average reward R(ot,at) and the local estimate of the global value function V i. In practice,
the agents use generalized advantage estimation (GAE) (Schulman et al., 2015) to independently
approximate a low-bias, low-variance global advantage estimate leveraging the local stored trajec-
tories.

Following Theorem 1, the policy parameters of each agent θi are updated using a clipped policy
gradient objective, as in PPO (Schulman et al., 2017):

Li
PPO(θ

i) = Et

[
min

(
πi
θi(ait | õit))

πi
θi

old
(ait | õit))

Ai
θ(ot,at), clip

(
πi
θi(ait | õit))

πi
θi

old
(ait | õit))

, 1± ϵ

)
Ai

θ(ot,at)

)]
,

where ϵ is the clip parameter. Overall, using DG-MAPPO, each agent performs local actor–critic
updates using only its own observation and local approximation of global state acquired through
multi-hop communication, while coordination emerges organically from the shared reward structure
and multi-hop message passing. The pseudocode is provided in the Appendix 1.

4 RESULTS

Our distributed MARL framework offers a principled alternative to the widely adopted CTDE
paradigm for cooperative MARL. Instead of relying on centralized critics and global information,
our approach enables agents to collaborate using only local observations and peer-to-peer commu-
nication. By leveraging the dynamic communication graph, agents can mimic—and in many cases
surpass—the benefits of CTDE methods. A distinctive advantage is that communication is actively
used during both training and execution, allowing agents to maintain awareness of their neighbors’
states and adapt their coordination in real time. This design not only ensures robustness in fully
distributed settings without a central controller but also allows agents to selectively attend to infor-
mative messages while filtering out irrelevant noise. Importantly, the flexibility of our framework
extends naturally to heterogeneous teams, where agents with different roles can effectively exchange
information and align their strategies toward maximizing the overall team return.
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We evaluate DG-MAPPO on the StarCraftII Multi-Agent Challenge (SMAC) benchmark
(Samvelyan et al., 2019), a widely used testbed for cooperative MARL. SMAC consists of mi-
cromanagement tasks of varying difficulty, ranging from small homogeneous battles (e.g., 3m, 8m)
to heterogeneous or large-scale scenarios (e.g., 3s5z vs 3s6z, MMM2). Following prior works such
as MAPPO and MAT, we report the median win rate across multiple random seeds together with
standard deviations, and we compare against CTDE baselines: MAPPO, HAPPO, and MAT-Dec.

4.1 EXPERIMENT SETUP

While CTDE baselines exploit global observations available in SMAC, our DG-MAPPO algorithm
relies solely on local observations. Agents communicate at every timestep via the D-GAT com-
munication module and select actions leveraging the inferred global state, receiving a shared reward
from the environment. To ensure fully distributed learning, each agent maintains its own local
dataset and performs optimization independently. Parameter averaging with local neighbors is ap-
plied only to the D-GAT networks, as detailed in Section 3.1. Additionally, we track the average
node degree at the end of each episode (see Appendix A.4) to provide insight into graph connectivity.

4.2 PERFORMANCE ON SMAC

Table 1 compares DG-MAPPO with strong CTDE baselines (MAPPO, HAPPO, and MAT-Dec)
on the SMAC benchmark. DG-MAPPO achieves consistently strong results across diverse tasks,
ranging from small homogeneous battles to challenging heterogeneous and large-scale scenarios.
In easier homogeneous settings, all methods reach near-perfect win rates, indicating that local co-
ordination suffices for simple tasks. As difficulty increases, however, the benefits of distributed
communication and independent learning become clear. For example, in hard+ scenarios such as
MMM2 and 6h vs 8z, HAPPO collapses, MAPPO succeeds with centralized critics, yet DG-MAPPO
still attains a strong 92.2% win rate in a fully distributed setting. Likewise, in heterogeneous scenar-
ios like 3s5z vs 3s6z, DG-MAPPO outperforms CTDE baselines by a notable margin, demonstrating
its capacity to handle both heterogeneity and scaling challenges.

Beyond average performance, DG-MAPPO also exhibits greater robustness across runs, with lower
variance compared to centralized baselines. This suggests that distributed communication via D-
GAT provides more stable learning dynamics, even under partial observability. We also observe
that performance scales favorably as the number of agents increases, though at the cost of higher
communication overhead due to multi-hop message passing. Nevertheless, DG-MAPPO maintains
competitive results without relying on privileged information or centralized critics, highlighting
its scalability and practical relevance for large-scale MARL. These findings confirm the effective-
ness of D-GAT for distributed communication and global state inference: unlike CTDE methods,
DG-MAPPO maintains high performance without centralized training, while remaining robust and
scalable in complex cooperative MARL environments.

5 CONCLUSION

In this work, we presented DG-MAPPO, a principled distributed MARL framework that leverages
D-GAT for global state inference and enables collaborative policy learning without relying on a
centralized controller or global information. Our experiments on the challenging SMAC benchmark
demonstrate that DG-MAPPO consistently matches or surpasses state-of-the-art CTDE approaches,
highlighting its scalability and effectiveness in cooperative tasks under partial observability and dy-
namic environments. Beyond strong empirical performance, our work underscores the potential of
communication-driven distributed frameworks to overcome the limitations of centralized training,
providing a foundation for more resilient, scalable, and realistic multi-agent learning systems. While
DG-MAPPO performs well across a wide range of tasks, we observe that scalability becomes more
challenging in large-scale teams, where long-range communication becomes ineffective due to in-
formation squashing. In particular, the 25m scenario reveals room for improvement, suggesting that
future work should focus on designing more efficient deep-communication strategies to further en-
hance scalability. We believe DG-MAPPO provides a promising step toward advancing distributed
multi-agent learning at scale, opening opportunities for more robust and efficient frameworks in
complex real-world environments.
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A APPENDIX

A.1 USE OF LLMS

We used a large language model (OpenAI’s ChatGPT) as a writing assistant to help polish the clarity,
grammar, and readability of certain sections of the paper (e.g., abstract, introduction, and conclu-
sion). The model was not used for generating research ideas, designing experiments, or analyzing
results. All technical content, experiments, and conclusions were conceived and validated solely by
the authors.

A.2 PSEUDO CODE FOR DG-MAPPO

Algorithm 1 Distributed Graph-Transformer MAPPO

1: Input: Number of agents and hops n, learning rate α, episodes K, steps per episode T
2: Initialize: D-GAT {ψi}i∈N , Critic {ϕi}i∈N , Policy {θi}i∈N , Replay Buffer {ξi}i∈N
3: for k = 0, 1, . . . ,K − 1 do
4: for t = 0, 1, . . . , T − 1 do
5: Receive local observations {oit}i∈N from environment.
6: Perform multi-hop communication using D-GAT to infer global state {ôit}i∈N .
7: Sample actions using local policies ait ∼ πi

θi ∀i ∈ N .
8: Perform the joint action at in the environment and observe joint reward R(ot,at).
9: Store (oit, ô

i
t,a

i
t, R(ot,at) in the buffer {ξi}

10: end for
11: Sample random minibatch ξi from ξi

12: Infer state-values for all agents {V i
ϕi(õi)}i∈N , where õi = (oi∥ôi).

13: Calculate {Li
critic(ϕ

i)}i∈N using Equation (14).
14: Estimate global advantage Ai based on V i

ϕi(õi) and R(ot,at) ∀i ∈ N using GAE.
15: Compute policy loss {Li

PPO(θ
i)}i∈N (ϕi) using Equation (15).

16: Compute D-GAT consensus regularizer loss {Li
consensus(ψ

i)}i∈N using Equation (11).
17: Update D-GAT, value critic, and policy networks by minimizing Li

critic(ϕ
i) + Li

PPO(θ
i) +

Li
consensus(ψ

i) ∀i ∈ N using gradient decent.
18: end for

A.3 HYPER-PARAMETERS FOR DG-MAPPO

Table 2: Common hyper-parameters used for DG-MAPPO

Parameter Value Parameter Value Parameter Value
critic lr 5e-4 actor lr 5e-4 use GAE True

gain 0.01 optim eps lr 1e-5 training threads 32
entropy coeff 0.001 max grad norm 10 optimizer Adam

hidden layer dim 128 use huber loss True gae lambda 0.95
D-GAT lr 5e-4 num heads 1 αconsensus 20
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Table 3: Different hyper-parameters used for DG-MAPPO

Maps ppo
epochs

ppo
clip

batch
size

rollout
threads

episode
length gamma steps

3m 10 0.05 2048 32 100 0.98 2e6
8m 10 0.05 2048 32 300 0.98 1e7

MMM 10 0.05 2048 32 300 0.98 1e7
5m vs 6m 5 0.05 3200 32 300 0.98 3e7
8m vs 9m 10 0.05 2048 16 500 0.98 2e7

10m vs 11m 5 0.05 3200 32 500 0.98 2.5e7
25m 5 0.05 4800 16 300 0.95 1e7

MMM2 5 0.05 3200 32 300 0.95 3e7
6h vs 8z 10 0.05 2048 32 300 0.98 2e7

3s5z vs 3s6z 5 0.2 3200 32 300 0.98 3e7

A.3.1 DG-MAPPO EVALUATION PLOTS
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A.4 AVERAGE NODE DEGREE (AT END OF EPISODE)
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