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ABSTRACT

Centralized training with decentralized execution (CTDE) has been the dom-
inant paradigm in multi-agent reinforcement learning (MARL), but its re-
liance on global state information during training introduces scalability, robust-
ness, and generalization bottlenecks. Moreover, in practical scenarios such as
adding/dropping teammates or facing environment dynamics that differ from the
training, CTDE methods can be brittle and costly to retrain, whereas distributed
approaches allow agents to adapt using only local information and peer-to-peer
communication. We present a distributed MARL framework that removes the
need for centralized critics or global information. Firstly, we develop a novel Dis-
tributed Graph Attention Network (D-GAT) that performs global state inference
through multi-hop communication, where agents integrate neighbor features via
input-dependent attention weights in a fully distributed manner. Leveraging D-
GAT, we develop the distributed graph-attention MAPPO (DG-MAPPO) – a dis-
tributed MARL framework where agents optimize local policies and value func-
tions using local observations, multi-hop communication, and shared/averaged re-
wards. Empirical evaluation on the StarCraftII Multi-Agent Challenge, Google
Research Football, and Multi-Agent Mujoco demonstrates that our method consis-
tently outperforms strong CTDE baselines, achieving superior coordination across
a wide range of cooperative tasks with both homogeneous and heterogeneous
teams. Our distributed MARL framework provides a principled and scalable solu-
tion for robust collaboration, eliminating the need for centralized training or global
observability. To the best of our knowledge, DG-MAPPO appears to be the first
to fully eliminate reliance on privileged centralized information, enabling agents
to learn and act solely through peer-to-peer communication.

1 INTRODUCTION

Multi-agent reinforcement learning (MARL) has emerged as a powerful framework for training
multiple agents to learn cooperative and competitive behaviors in complex dynamic environments
(Zhang et al., 2021). However, learning effective collaborative policies remains challenging, as
each agent simultaneously seeks to maximize its own return, giving rise to the fundamental issue
of non-stationarity: the environment is constantly changing due to the evolving behaviors of other
agents from the perspective of any single agent. Recent works such as MAPPO (Yu et al., 2022),
MADDPG (Lowe et al., 2017), and HAPPO/HATRPO (Kuba et al., 2021; Zhong et al., 2024) alle-
viate this challenge by using the centralized training decentralized execution (CTDE) framework,
where agents assume access to global state information during training but rely on local informa-
tion during execution. Although effective, the CTDE approach suffers from several drawbacks that
limit its applicability in practical settings. First, it requires access to global information during
training, which may be infeasible in large-scale systems due to communication bandwidth, latency,
or privacy constraints —for example, wireless and ad-hoc networks often exhibit strong trade-offs
between communication range, throughput, and latency (Seferagić et al., 2020), making long-range
low-latency communication difficult to sustain. These limitations are particularly pronounced in off-
road robotics, distributed sensing networks, and search-and-rescue settings, where cluttered terrain
and unreliable links limit agents to short-range communication (Drew, 2021; Gielis et al., 2022).
In such environments, relying on global information is impractical, motivating the need for learn-
ing frameworks that operate effectively with only local communication. Moreover, CTDE methods
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often suffer from a train–test mismatch: agents are optimized with privileged global information
that is unavailable during execution, which can lead to poor generalization once this information is
removed. These limitations highlight the need for distributed MARL approaches that enable agents
to learn cooperative strategies using only local observations and peer-to-peer communication among
neighboring agents.

However, fully distributed learning techniques remain relatively underexplored compared to the
centralized training approaches, partly due to the inherent complexity of the problem. Existing
studies in this domain typically retain some form of centralization. For instance, Zhang et al. (2018)
proposed a decentralized multi-agent actor–critic algorithms that use average consensus protocols
(Tsitsiklis, 1984) to approximate global returns and value functions via neighbor communication,
while actors update their policies independently. Although effective, this approach relies on simple
averaging of value functions, which can yield suboptimal performance in heterogeneous teams with
non-i.i.d. dynamics. Moreover, their framework assumes access to global state information for
advantage estimation and thus cannot directly handle partial observability. In parallel, graph-based
methods have been introduced to better capture structured communication among agents. Jiang et al.
(2018) proposed graph convolution RL (DGN), where agents are represented as nodes in a dynamic
graph and leverage Graph Attention Networks (GATs) (Veličković et al., 2017) to process node-level
observations and actions. However, DGN shares both the Q-network and GAT parameters among
all agents, preventing fully distributed training.

In addition to these decentralized methods, GNN augmented MARL approaches have also explored
richer communication structures. For instance, the recent survey by Liu et al. (2024) outlines a
broad class of GNN-based communication architectures (GNNComm-MARL) that enhance mes-
sage routing, neighborhood selection, and multi-hop reasoning in cooperative tasks, but these meth-
ods continue to rely on CTDE and centralized critics. The attentional communication mechanism
ATOC (Jiang & Lu, 2018) also adopts this paradigm: agents use a learned attention module to
decide when to communicate; however, training still depends on a centralized critic and shared
parameterization, which prevents fully distributed learning. Similarly, Goeckner et al. (2024) pro-
posed a GNN-based patrolling framework where agents use deep message passing to overcome
partial observability and communication disturbances; nevertheless, their actor–critic structure fol-
lows the CTDE paradigm, and training remains centralized. Another relevant line of work integrates
information-theoretic objectives: Ding et al. (2023) introduced mutual-information–guided GNN
communication to enhance representation quality in value-decomposition MARL. Despite its strong
empirical performance, MARGIN requires centralized mixing of value functions and thus is not
fully distributed. In the context of UAV coordination, Du et al. (2024) employed GNN observers to
handle dynamic neighbor sets, and used transfer learning to accelerate QMIX-based training—again
relying on centralized value mixing. Overall, existing GNN augmented MARL works demonstrate
that graph-structured message passing improves coordination and robustness, especially under par-
tial observability. However, none of these approaches enable fully distributed policy optimization,
as they all depend on centralized critics, centralized value decomposition, or shared GNN param-
eterization across all agents. This leaves a significant gap: how to design a MARL framework
in which agents learn cooperative behaviors using only local observations, peer-to-peer com-
munication, and fully distributed updates, without any reliance on centralized components or
privileged information.

We could bridge this gap by grounding MARL in distributed optimization techniques. For instance,
decentralized stochastic gradient descent (D-SGD) (Lian et al., 2017; Assran et al., 2019) and clas-
sical distributed averaging protocols (Nedić & Ozdaglar, 2009; Tsitsiklis, 1984) provide strong the-
oretical foundations for consensus optimization over networks. Building on these insights, we in-
troduce Distributed Graph Attention Networks (D-GATs), which couple the expressiveness of
GATv2 (Brody et al., 2021) with neighbor-averaged parameter sharing inspired by D-SGD. This
design preserves dynamic, input-dependent attention while promoting consensus among agents in
a fully distributed setting. While related works, such as GATTA (Tian et al., 2023), have applied
graph attention to distributed supervised learning and personalization, it comes with higher compu-
tational overhead that scales poorly as the number of agents increases—making it less suitable for
multi-agent reinforcement learning settings where efficiency is critical. In contrast, our Distributed
Graph Attention Network (D-GAT) is designed specifically for MARL, focusing on global state
inference through lightweight, input-dependent attention mechanisms that remain tractable even in
large teams.
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Building on D-GAT, we introduce distributed graph-attention MAPPO (DG-MAPPO), a princi-
pled distributed MARL framework that removes the need for centralized training or global observ-
ability. DG-MAPPO integrates agents’ local observations with global state inference from D-GAT
and a shared/averaged team reward to learn collaborative policies that naturally scale to large teams.
Unlike CTDE approaches, our fully distributed framework enables agents to infer global state dur-
ing both training and execution, yielding more robust coordination at test time. We evaluate DG-
MAPPO on the StarCraftII Multi-Agent Challenge (SMAC) (Samvelyan et al., 2019), Google Re-
search Football Kurach et al. (2020), and Multi-Agent MuJoCo benchmarks for cooperative MARL,
against strong CTDE baselines such as MAPPO, MAT-Dec (Wen et al., 2022), and HAPPO. Our
experiments show that DG-MAPPO achieves consistently strong performance across diverse tasks,
demonstrating its ability to handle both homogeneous and heterogeneous settings, scale to large
teams, and learn effective collaboration without centralized training or privileged information.

Our contributions are threefold:

• We introduce D-GAT, a lightweight multi-hop communication module that enables agents
to construct global state representations using only local message passing.

• We develop DG-MAPPO, a fully distributed MARL framework that learns cooperative
policies solely from local observations, D-GAT–based state inference, and averaged team
rewards—without any centralized training signal or privileged information.

• We provide extensive evidence on SMAC and Multi-Agent MuJoCo showing that DG-
MAPPO matches or exceeds strong CTDE baselines, demonstrating that structured local
communications alone support high-quality coordination even under sparse connectivity.

2 PRELIMINARIES

We begin by establishing the necessary background in this section. We begin by formulating the
cooperative multi-agent reinforcement learning (MARL) problem as a decentralized partially
observable Markov decision process (Dec-POMDP). We then describe how graph neural networks,
particularly graph attention networks (GATs), can be utilized to model agent communication and
representation learning. Finally, we review the policy gradient theorem in the multi-agent setting,
which forms the foundation for our optimization framework. Throughout the paper, we denote
matrices by bold uppercase letters (e.g., X), vectors by bold lowercase letters (e.g., x), local data
with superscript i (e.g., xi), global data without superscript (e.g., x), and approximations with a hat
(e.g., x̂).

2.1 PROBLEM FORMULATION

We consider a distributed cooperative MARL problem formulated as a Dec-POMDP, represented
by the tuple ⟨N , {Oi}ni=1, {Ai}ni=1, R, P, γ⟩. Here, N = 1, . . . , n is the set of agents. Each agent
i ∈ N has an observation space Oi ⊂ Rp, where p is the observation dimension, and an action
space Ai ⊂ Rq , where q is the action dimension. The joint observation and action spaces are
O =

∏n
i=1 Oi and A =

∏n
i=1 Ai, respectively. The transition kernel P : O × A × O → [0, 1]

defines the environment dynamics, R : O ×A → [−Rmax, Rmax] is the local reward function, and
γ ∈ [0, 1) is the discount factor.

Remark 1 Settings with local reward functions can be incorporated by computing a consensus-
based average team reward (e.g., via average consensus protocol Saber & Murray (2003)).

We model the multi-agent interaction structure as a dynamic graph G = (N , E), where nodes (N )
correspond to agents and edges (E) denote available communication links which can change in
real-time. At each time step t, agent i receives a local observation oit ∈ Oi

(
ot = [o1t , . . . ,o

n
t ]

⊤),
communicates with nodes j ∈ N i, where N i is some neighborhood of node i (including i) in the
graph G over multiple-hops, and forms a local approximation of the global observation ôit ∈ Ôi.
Based on this, the agent selects an action ait from its policy πi, which is the ith component of the
joint policy π =

∏n
i=1 π

i. The transition kernel and the joint policy induce the marginal observation
distribution ρπ(·) =

∑∞
t=0 γ

tPr(ot | π) (Wen et al., 2022). All agents then receive an averaged
team reward R(ot,at) =

1
N

∑
i∈N Ri(oi, ai) and observe oit+1.

3
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We consider the fully cooperative setting in which all agents optimize a shared/averaged team re-
ward. The goal is to learn local policies {πi}ni=1 that maximize the expected discounted team return:

J (π) = Eπθ

[ ∞∑
t=0

γtR(ot, at)

]
(1)

2.2 GRAPH-ATTENTION NETWORKS

Graph neural networks (GNNs), such as GraphSAGE (Hamilton et al., 2017), learn node repre-
sentations by aggregating information from local neighborhoods in a graph. At each layer, a node
updates its embedding by combining its own features with those of its neighbors, typically using
simple operations such as mean or sum. While effective, this uniform treatment of neighbors may
fail to capture the varying importance of different connections.

GATs (Veličković et al., 2017; Brody et al., 2021) address this limitation by incorporating an atten-
tion mechanism into the aggregation process. Instead of assigning equal weight to all neighbors,
GATs learn to adaptively highlight the most relevant nodes when computing new representations.
Formally, for a node i with feature vector hi ∈ Rd and neighborhood N i, GAT defines a shared
attention function e : Rd × Rd → R to measure the importance of a neighbor j:

e(hi,hj) = LeakyReLU
(
q⊤
[
Whi∥Whj

])
, (2)

whereW ∈ Rd′×d is a learnable linear transformation matrix, q ∈ R2d′
is a trainable weight vector,

and ∥ denotes concatenation. The parameters W and q are shared across all nodes. These scores
are normalized with a softmax across all neighbors:

αij =
exp

(
e(hi,hj)

)∑
j′∈N i exp(e(hi,hj′))

. (3)

The attention coefficients αij encode the relative contribution of neighbor j to node i. The updated
representation of node i is then computed as

ĥi = σ

∑
j∈N i

αijWhj

 , (4)

where σ : Rd′ → Rd′
is a nonlinear activation. By learning these attention weights, GATs provide

a more flexible and expressive aggregation scheme than traditional GNNs, enabling the model to
prioritize informative neighbors and downplay less relevant ones. In the MARL setting, this enables
each agent to selectively integrate neighbor information when constructing a local approximation of
the global state.

2.3 POLICY GRADIENT THEOREM FOR MULTI-AGENT REINFORCEMENT LEARNING

Policy gradient methods provide a principled approach to optimizing parameterized policies by es-
timating the gradient of the expected return with respect to policy parameters. Extending this idea
to the multi-agent setting raises unique challenges: agents act simultaneously, rewards are often ob-
served only locally, and in the fully decentralized case, no central controller is available to aggregate
global information.

Zhang et al. (2018) established a multi-agent policy gradient theorem for fully decentralized MARL
under the assumption that the global states and actions are observable to all agents, while rewards
remain local. This result forms the theoretical basis of their decentralized actor–critic algorithms.

Theorem 1 (Policy Gradient for MARL (Zhang et al., 2018)) Consider N agents with local
policies πi

θi parameterized by θi, and let the joint policy be πθ =
∏N

i=1 π
i
θi , θ = [θ1, . . . , θn]⊤.

The collective objective is to maximize the globally averaged return J(πθ) defined in Equation (1).
Then, for each agent i, the policy gradient with respect to θi is given by

∇θiJ(πθ) = Eo∼ρπθ
,a∼πθ

[
∇θi log πi

θi(ot,a
i
t)Aθ(ot,at)

]
, (5)

4
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where Aθ(ot,at) = R(ot,at) + γVϕ(ot+1) − Vϕ(ot) is the global advantage function, and Vϕ :
O → R is the global state-value function parameterized by ϕ.

This theorem shows that each agent can compute its policy gradient update using only its local policy
parameters and an estimate of the global advantage function. Theorem 1 provides the theoretical
foundation for distributed MARL, upon which we build our distributed MARL algorithm in the next
section.

3 METHOD

In this section, we present DG-MAPPO, a distributed MARL algorithm that is both simple and
scalable. Unlike the widely adopted CTDE paradigm, our approach does not assume access to global
state information during either training or execution. Instead, coordination emerges organically
through multi-hop message passing over a connected communication graph.

Assumption 1 (Connected Communication Graph) The communication graph G is connected;
that is, for any two distinct agents i ̸= j, there exists at least one path from i to j in G.

This assumption significantly relaxes the stronger requirement of centralized information sharing
commonly made in prior MARL frameworks. Building on this, we formalize the notion of dis-
tributed MARL as follows:

Definition 1 (Distributed MARL) Consider a system of n agents operating on a connected graph
G. Each agent i observes only its local information oi and can communicate it with its neighbors.
A distributed MARL algorithm requires each agent to learn both its policy and value function us-
ing solely its local observations and peer-to-peer communication, without relying on centralized
training or access to the global state.

This definition distinguishes distributed approaches from purely decentralized ones: the former
leverage communication among agents to enable collaboration, whereas the latter operate inde-
pendently without inter-agent communication (e.g., the decentralized execution in CTDE). In what
follows, we first introduce D-GAT, our communication module that enables global state inference
via multi-hop message passing in a fully distributed manner. We then introduce our DG-MAPPO
algorithm which learns collaborative policies entirely from local observations and peer-to-peer com-
munication.

3.1 DISTRIBUTED GRAPH ATTENTION NETWORKS

GATs (Veličković et al., 2017) are a powerful tool for learning from graph-structured data, but their
standard formulation relies on globally shared attention parameters, preventing deployment in fully
distributed settings. We address this by introducing D-GAT, where each agent independently main-
tains and updates its own local attention parameters. This design ensures that message aggregation
remains attention-driven while fully respecting the real-time communication constraints. In addi-
tion, we adopt the dynamic attention formulation of GATv2 (Brody et al., 2021), which extends the
original GAT by enabling input-dependent query–key interactions, thereby enhancing representa-
tional expressiveness. The overall framework of D-GAT is illustrated in Figure 1.

A single D-GAT layer for node i operates as follows. For a node i with feature vector hi ∈ Rd

and neighborhood N i, we define a local attention function ei : Rd × Rd → R that measures the
importance of neighbor j as:

ei(hi,hj) = qi
⊤

LeakyReLU
(
W i[hi∥hj ]

)
. (6)

whereW i ∈ Rd′×2d is a learnable linear projection of agent i, qi ∈ Rd′
is a trainable weight vector

of agent i, and ∥ is the concatenation operator. We then perform score normalization and feature
aggregation as:

αi
ij =

exp
(
ei(hi,hj)

)∑
j′∈N i exp(ei(hi,hj′))

, ĥi = σ

∑
j∈N i

αi
ijh

j

 , (7)
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for k = 0, . . . ,K − 1 :

{hj
k ∥ h4

k}j∈N 4 e4k Softplus
∑

σ ĥ4
k+1

Linear

Normalization Aggregation Activation

Forward pass for node 4 in D-GAT

ψ5
t SGD ψ5

t+ 1
2

ψ5
t+1

D-GAT Params

Local Step

Half Params Weighted Average

Backward pass for node 5 in D-GAT (D-SGD update)

Figure 1: Illustration of the forward and backward passes in the proposed D-GAT framework.
1) Forward pass (top, red): At each layer k, node 4 aggregates information from its neighbors
{hjk∥h4k}j∈N 4 by applying a linear transformation, Softplus normalization, summation-based ag-
gregation, and a nonlinearity σ to produce the updated embedding ĥ4

k+1. This process is repeated
for k = 0, . . . ,K − 1, where K is the predefined number of hops. 2) Backward pass (bottom,
blue): Node 5 updates its local D-GAT parameters ψ5 via decentralized stochastic gradient descent
(D-SGD). First, a local step computes the half-step parameters ψ5

t+ 1
2

using the local update step of
Equation (8). Next, a neighbor averaging step mixes parameters from neighbors via the neighbor
averaging step of Equation (8) to get the updated D-GAT parameters ψ5

t , enabling distributed train-
ing without a central coordinator.

where ĥi is the updated vector representation of agent i computed as an attention-weighted aggre-
gation of its neighbors’ features, followed by a nonlinear activation σ(·). We stack n such layers
(equal to the number of agents) to facilitate multi-hop communication, ensuring that every agent
i ∈ N can exchange information with all other agents j ∈ N .

The distributed design of D-GAT introduces a fundamental challenge in MARL: each agent updates
its local attention parameters solely to maximize its own performance. Such locally selfish updates
can impede the formation of a coherent global representation, which is essential for effective coor-
dination. Consequently, agents may struggle to approximate the global state, leading to suboptimal
joint performance. To mitigate this issue, we propose a two-step solution. Firstly, inspired by de-
centralized stochastic gradient descent (D-SGD) (Lian et al., 2017), we update each agent’s graph
network parameters via local SGD and then average them with its immediate neighbors. Mathemat-
ically, it is given as:

(Local step) ψi

t+
1
2

= ψi
t − ηt ∇̂ℓi

(
ψi

t; ξ
i
t

)
,

(Neighbor averaging) ψi
t+1 =

∑
j∈N i

c(i, j)ψj

t+
1
2

, i = 1, . . . , n,
(8)

where ψi = {W i, qi} are the local graph attention network parameters, ∇̂ℓi
(
ψi

t; ξ
i
t

)
is a stochas-

tic gradient computed from local data/minibatch ξit , ηt is the learning step-size, and c(i, j) is the
consensus weight between agent i and j consistent with the communication graph given by,

c(i, j) =


1

|N i|
, if j ∈ N i,

0, otherwise.
(9)
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Simulation Environment

o0t o1t · · · oNt

Local Observations D-GAT

õ0t õ1t · · · õNt

Local Observations with D-GAT Outputs

π0
θ0 π1

θ1 · · · πN
θN

Local Policies

V 0
ϕ0 V 1

ϕ1 · · · V N
ϕN

Per-Agent Value Functions

PPO

Per-Agent Policy Update

Figure 2: DG-MAPPO Framework. Each agent receives raw local observations oit from the en-
vironment. Agents then communicate with neighbors using D-GAT to get global state inference ôit
which is then concatenated with raw local observations to get õit = [oit, ô

i
t]. This combined obser-

vation is used by both local policies πi
θi to generate actions and by value functions V i

ϕi to estimate
global returns. PPO performs per-agent policy updates using the advantage estimates derived from
GAE.

Here, |N i| is the degree of node i. This D-SGD procedure is equivalent to an average consensus
step over the local D-GAT parameters, ensuring that agents gradually align their representations
with those of their neighbors. By doing so, the network parameters are regularized across the graph,
which improves the generalizability of the learned representations. Importantly, since the local
updates still follow the GATv2 architecture, agents can compute dynamic, input-dependent attention
weights as in Brody et al. (2021), thereby preserving the expressive power of attention mechanisms
while operating in a distributed setting.

Moreover, to facilitate global state inference, we introduce a consensus regularization objective for
D-GAT that explicitly encourages neighboring agents to align their learned representations. Con-
cretely, in addition to the value (Equation (13)) and policy losses (Equation (14)), each agent also
minimizes a consensus loss with respect to its neighbors, given by

Li
consensus(ψ

i) = αconsensus
1

|N i|
∑
j∈N i

MSE
(
ĥi
K , ĥ

j
K

)
, (10)

where αconsensus controls the strength of the regularization, ĥK is the output of D-GAT (with K
hops) forward pass, and MSE(·, ·) denotes the mean-squared error. Intuitively, D-GAT integrates
D-SGD with a consensus regularization objective, providing a communication framework that en-
ables agents to extract essential global state information while suppressing irrelevant information
from less important neighbors. For instance, D-GAT enables agents to prioritize information from
collaborators with strong influence on their outcomes, while downweighting signals from agents
whose actions have little impact.

3.2 DISTRIBUTED GRAPH-ATTENTION MAPPO

We now introduce our distributed MARL framework, DG-MAPPO, illustrated in Figure 2. The
central idea is that, given access to global state information and a globally shared (or averaged)
reward, each agent i ∈ N can independently learn a global state value function V i

ϕi : O → R
defined as

V i
ϕi(ot) = Eat∼πθ

[
T∑

t=0

γtR(ot,at)

∣∣∣∣∣ o0 = ot

]
. (11)

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

In practice, however, agents in our distributed setting cannot directly observe the true global state.
To overcome this limitation, we incorporate the D-GAT communication module (see Section 3.1),
which enables agents to perform multi-hop message passing after each local observation. Through
this process, agents obtain an informative approximation of the global state, denoted as ôit ∈ Ôi.

Training the value function solely on ôit can lead to high variance, particularly in the early stages of
learning, which risks destabilizing the training process. To address this, we provide each agent with
a concatenated input combining its own local observation and the global state approximation:

õit = [oit ∥ ôit] ∈ Õi (12)

This representation ensures that agents retain a reliable self-signal while progressively benefiting
from improved global context. Each agent’s critic is then trained by minimizing the Bellman error:

Li
critic(ϕ

i) = Eat∼πθ

[
T−1∑
t=0

R(ot,at) + γV i
ϕi(õit+1)− V i

ϕi(õit)

]2
. (13)

Although agents cannot directly access the joint global policy πθ, they can still learn state-value
functions consistent with it. This is possible because agents experience a common reward sig-
nal—either provided by a global reward mechanism or obtained through averaging local rewards via
consensus, and they condition the state-value function on õit, consisting of the global state represen-
tation. Agents can now estimate the global advantage function Ai

θ : Õi × A → R leveraging the
shared/average reward R(ot,at) and the local estimate of the global value function V i. In practice,
the agents use generalized advantage estimation (GAE) (Schulman et al., 2015) to independently
approximate a low-bias, low-variance global advantage estimate leveraging the local stored trajec-
tories.

Following Theorem 1, the policy parameters of each agent θi are updated using a clipped policy
gradient objective, as in PPO (Schulman et al., 2017),

Li
DG-MAPPO(θ

i) = Et

[
min

(
πi
θi(ait | õit))

πi
θi

old
(ait | õit))

, clip

(
πi
θi(ait | õit))

πi
θi

old
(ait | õit))

, 1± ϵ

))
Ai

θ(õ
i
t,at)

]
,

where ϵ is the clip parameter. A brief derivation of the DG-MAPPO policy gradient loss is provided
in Appendix A.3. Overall, using DG-MAPPO, each agent performs local actor–critic updates using
only its own observation and a local approximation of the global state, acquired through multi-hop
communication, while coordination emerges organically from the shared reward structure and multi-
hop message passing. The pseudocode is provided in the Appendix A.2. A comprehensive analysis
of communication overhead, and cost analysis is provided in Appendix A.4 A.5.

4 RESULTS

Our distributed MARL framework offers a principled alternative to the widely adopted CTDE
paradigm for cooperative MARL. Instead of relying on centralized critics and global information,
our approach enables agents to collaborate using only local observations and peer-to-peer com-
munication. By leveraging the dynamic communication graph, agents can mimic—and often sur-
pass—the benefits of CTDE methods. A distinctive advantage is that communication is actively
used during both training and execution, allowing agents to maintain awareness of their neighbors’
states and adapt their coordination in real time.

We evaluate DG-MAPPO on StarCraftII Multi-Agent Challenge (SMAC), Google Research Football
(GFootball) and Multi-Agent MuJoCo benchmarks, where CTDE approaches have shown SOTA
performance. We adopt the strongest reported results for SMAC from the existing literature without
re-running the baseline algorithms. For MA-MuJoCo, we follow the original implementations and
parameter settings to reproduce each method’s best-performing configuration.

4.1 EXPERIMENT SETUP

While CTDE baselines leverage global observations available in SMAC, GFootball, and Multi-
Agent MuJoCo, DG-MAPPO operates strictly from local observations. At each timestep, agents

8
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Table 1: Performance evaluations of win rate and standard deviation on the SMAC benchmark for
default sight range value “9”.

Task Difficulty MAT-Dec MAPPO HAPPO DG-MAPPO
3m Easy 100.0(1.1) 100.0(0.4) 100.0(1.2) 100.0(1.4)

8m Easy 97.2(2.5) 96.8(2.9) 97.5(1.1) 100.0(1.4)

MMM Easy 98.1(2.1) 95.6(4.5) 81.2(22.9) 100.0(1.6)

5m vs 6m Hard 83.1(4.6) 88.2(6.2) 77.5(7.2) 88.7(4.7)

8m vs 9m Hard 95.0(4.6) 93.8(3.5) 86.2(4.4) 95.0(4.1)

10m vs 11m Hard 100.0(2.0) 96.3(5.8) 87.5(6.7) 100.0(1.4)

25m Hard 86.9(5.6) 100.0(2.7) 95.0(2.0) 95.3(3.1)

MMM2 Hard+ 91.2(5.3) 81.8(10.1) 88.8(2.0) 98.9(1.2)

6h vs 8z Hard+ 93.8(4.7) 88.4(5.7) 76.2(3.1) 95.0(2.7)

3s5z vs 3s6z Hard+ 85.3(7.5) 84.3(19.4) 82.8(21.2) 91.9(10.7)

Table 2: Performance evaluations of win rate and standard deviation on the SMAC benchmark for
clipped sight range value “4” across different hop values.

Task Num-Agents Difficulty 1-Hop N
2 -Hops N -Hops Steps

6h vs 8z 6 Hard+ 77.08(7.6) 83.68(10.0) 83.75(7.7) 4e7
MMM2 10 Hard+ 90.62(3.1) 92.7(3.6) 93.1(2.6) 4e7

communicate through the D-GAT module to construct an inferred global representation, which is
then used for action selection alongside the shared environment reward. To preserve fully distributed
training, each agent maintains its own local dataset and performs updates independently. Parameter
averaging with local neighbors is applied only to the D-GAT networks, as described in Section 3.1.
Since the communication topology in SMAC and GFootball evolves over time, we record the aver-
age node degree at the end of each episode (Appendix A.9) to characterize graph connectivity. In
contrast, we define a sparse fixed communication topology for the Multi-Agent MuJoCo environ-
ment, where communication is restricted to physically adjacent agents (joints).

4.2 PERFORMANCE ON COOPERATIVE BENCHMARKS

Table 1 compares DG-MAPPO with strong CTDE baselines (MAPPO, HAPPO, and MAT-Dec)
on the SMAC benchmark with a default communication range of 9 units for each agent. DG-
MAPPO achieves consistently strong results across diverse tasks, ranging from small homogeneous
battles to challenging heterogeneous and large-scale scenarios. Notably, the 25m scenario highlights
DG-MAPPO’s ability to scale to larger teams even under a sparse communication topology (see
Appendix A.9). To the best of our knowledge, this is the first distributed MARL approach to
match CTDE-level performance in teams of up to 25 agents. To further assess DG-MAPPO’s
performance in highly sparse settings, we reduce the communication range to 4 units and evaluate
the method on two “Hard+” scenarios, 6h vs 8z and MMM2. The corresponding evaluation win
rates across different hop values are reported in Table 2, with performance and average node-degree
curves provided in Appendix A.6.

These results show that DG-MAPPO not only matches but in several cases surpasses strong CTDE
baselines when agents operate with relatively dense communication (Table 1). More importantly,
DG-MAPPO maintains competitive performance even when the communication network is made
highly sparse, as demonstrated in the clipped-range experiments for 6h vs 8z and MMM2 (Table 2).
A notable trend across both settings is that DG-MAPPO learns effectively even with a small number
of hops—often achieving near-optimal win rates with K = N/2 or even K = 1—thereby reducing
communication and computation overhead with only marginal performance degradation. Figure 3a
shows similar performance trend of DG-MAPPO compared to CTDE baselines in the GFootball
environment.

9
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(a) Google Research Football (b) Multi-Agent MuJoCo

Figure 3: Evaluation performance of DG-MAPPO compared to the CTDE baselines. (a) Results on
the Google Research Football Academy 3 vs 1 with Keeper scenario. (b) Results on the Multi-Agent
MuJoCo Multi-HalfCheetah (6×1) task.

The results on Multi-Agent MuJoCo (Figure 3b) further highlight DG-MAPPO’s robustness in
continuous-control settings. Unlike SMAC, these tasks provide dense proprioceptive observations
and enforce a fixed communication topology in which each agent exchanges information only with
its physically adjacent joints. Even under these constraints, DG-MAPPO—operating solely on
local observations and learned multi-hop message passing—achieves returns on the 6×1 Multi-
HalfCheetah benchmark comparable to those of CTDE baselines. Increasing the hop count from
K = 1 to K = 3 yields improved sample efficiency, closely tracking CTDE training curves, while
K = 6 surpasses the CTDE baseline. This mirrors our findings in SMAC: only a small number of
message-passing hops are needed to match CTDE performance, and additional hops offer incremen-
tal gains at the cost of higher communication and computation. Overall, these results demonstrate
that DG-MAPPO scales naturally to continuous-control settings and maintains strong performance
under restricted communication, reinforcing its applicability beyond discrete cooperative tasks.

Please refer to Appendix A.7 for a detailed analysis of the impact of attention-based aggregation,
hop count, and the Consensus Loss regularization.

5 CONCLUSION

We presented DG-MAPPO, a fully distributed MARL framework that leverages multi-hop mes-
sage passing through D-GAT to learn collaborative policies without any centralized controller or
privileged observations. Across SMAC, GFootball, and Multi-Agent MuJoCo environments, DG-
MAPPO consistently achieves performance on par with, and often exceeding, strong CTDE base-
lines—despite operating under significantly more restrictive information conditions. These results
demonstrate that structured local communication, when combined with expressive graph-based ag-
gregation, is sufficient to enable high-quality cooperative behavior in complex partially observable
environments. Our findings also shed light on the practical robustness of distributed communica-
tion. DG-MAPPO performs reliably across diverse settings, exhibits stable training dynamics, and
scales naturally across both discrete and continuous control domains. Notably, the algorithm main-
tains strong performance even when restricted to sparse communication networks, highlighting its
resilience to limited communication depth and its suitability for environments where long-range
information flow is inherently constrained. In addition, DG-MAPPO maintains competitive per-
formance in larger team scenarios, such as the 25m, demonstrating that distributed communication
alone can effectively support long-range coordination in challenging multi-agent systems. Over-
all, DG-MAPPO represents an important step toward scalable, decentralized, and deployment-ready
multi-agent learning. By demonstrating that competitive performance can be achieved without rely-
ing on centralized training assumptions, our work broadens the path toward more resilient, realistic,
and scalable MARL systems capable of operating in dynamic and uncertain real-world environ-
ments.
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A APPENDIX

A.1 USE OF LLMS

We used a large language model (OpenAI’s ChatGPT) as a writing assistant to help polish the clarity,
grammar, and readability of certain sections of the paper (e.g., abstract, introduction, and conclu-
sion). The model was not used for generating research ideas, designing experiments, or analyzing
results. All technical content, experiments, and conclusions were conceived and validated solely by
the authors.
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A.2 PSEUDO CODE FOR DG-MAPPO

Algorithm 1 Distributed Graph-Transformer MAPPO

Input: Number of agents and hops n, learning rate α, episodes K, steps per episode T
Initialize: D-GAT {ψi}i∈N , Critic {ϕi}i∈N , Policy {θi}i∈N , Replay Buffer {ξi}i∈N
for k = 0, 1, . . . ,K − 1 do

for t = 0, 1, . . . , T − 1 do
Receive local observations {oit}i∈N from environment.
Perform multi-hop communication using D-GAT to infer global state {ôit}i∈N .
Sample actions using local policies ait ∼ πi

θi ∀i ∈ N .
Perform the joint action at in the environment and observe joint reward R(ot,at).
Store (oit, ô

i
t,a

i
t, R(ot,at) in the buffer {ξi}

end for
Sample random minibatch ξi from ξi

Infer state-values for all agents {V i
ϕi(õi)}i∈N , where õi = (oi∥ôi).

Calculate {Li
critic(ϕ

i)}i∈N using Equation (13).
Estimate global advantage Ai based on V i

ϕi(õi) and R(ot,at) ∀i ∈ N using GAE.
Compute policy loss {Li

PPO(θ
i)}i∈N (ϕi) using Equation (14).

Compute D-GAT consensus regularizer loss {Li
consensus(ψ

i)}i∈N using Equation (10).
Update D-GAT, value critic, and policy networks by minimizing Li

critic(ϕ
i) + Li

PPO(θ
i) +

Li
consensus(ψ

i) ∀i ∈ N using gradient decent.
end for

A.3 DERIVATION OF THE DG-MAPPO POLICY LOSS FROM THE MARL POLICY GRADIENT
THEOREM

We provide a brief derivation showing how the decentralized MARL policy gradient theorem (The-
orem 1) leads directly to the PPO surrogate loss used in DG-MAPPO.

The Multi-agent policy gradient theorem states that the policy gradient for each agent i can be
computed with respect to local parameters θi using Eq. 5, as long as we can access a global advantage
function Aθ(ot,at).

In DG-MAPPO, the agent acts on the augmented local observation õi = [oi∥ôi], and the global
advantage is approximated locally using the shared or averaged reward R(o,a) and the local critic
V i
ϕi(õi) as,

Ai
θ(õ

i
t,at) = R(ot,at) + γV i

ϕi(õit+1)− V i
ϕi(õit) (14)

Thus,
∇θiJ(πθ) ≈ E

[
∇θi log πi

θi(ai | õi)Ai
θ(õ

i
t,at)

]
. (15)

Trajectories are collected under the old policy πi
θi

old
. Rewriting equation 15 using importance sam-

pling yields
∇θiJ(πθ) ≈ Eπi

θiold

[
ri(θi)∇θi log πi

θi(ai | õi)Ai
θ(õ

i
t,at)

]
, (16)

where ri(θi) =
πi
θi

(ai|õi)
πi

θiold
(ai|õi) is the probability ratio. Using ∇θi log π = 1

ri∇θiri, this corresponds to

maximizing the standard surrogate loss

Li
PG(θ

i) = E
[
ri(θi)A

i
]
. (17)

Large deviations of ri(θi) can destabilize decentralized learning; following the approach of PPO,
we therefore replace the unconstrained surrogate equation 17 with the clipped surrogate loss

Li
DG-MAPPO(θ

i) = E
[
min

(
ri(θi)Ai, clip(ri(θi), 1− ϵ, 1 + ϵ)Ai

)]
, (18)

which preserves the ascent direction of the policy gradient while preventing excessively large up-
dates. This is the policy loss optimized by each agent in DG-MAPPO.
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A.4 COMMUNICATION COMPLEXITY AND OVERHEAD ANALYSIS

To demonstrate the scalability of DG-MAPPO, we compare its communication requirements with
those of standard CTDE baselines (e.g., MAPPO, MAT-Dec). We distinguish between the training
phase (gradient and parameter synchronization) and the execution phase (inference and action se-
lection), and explicitly account for how message size, hop count, and network structure enter the
communication complexity. An overview is provided in Table 3.

A.4.1 TRAINING PHASE

Standard CTDE methods rely on a central learner that aggregates observations and actions from all
N agents to compute joint value functions or policy updates. Let |Oi| and |Ai| denote the dimensions
of agent i’s observation and action spaces, respectively. The total amount of data sent to the central
learner per update can be written as

Ctrain
CTDE =

N∑
i=1

(
|Oi|+ |Ai|

)
, (19)

which scales as O
(
N(|O| + |A|)

)
under homogeneous agents. When the communication range is

physically constrained, distant agents must route their data through multi-hop paths to reach the
central server, resulting in increased latency and physical communication costs within the network.

In contrast, DG-MAPPO eliminates the central sink. Each agent i maintains its own local policy pa-
rameters θi and critic parameters ϕi, and performs fully local actor–critic updates. Communication
during training is restricted to:

1. Message passing: exchanging feature embeddings hi ∈ R|h| with immediate neighbors
N i.

2. Representation consensus: averaging D-GAT parameters ψi with neighbors N i using the
D-SGD update.

3. Reward consensus: exchanging local reward values for average consensus when a globally
shared reward is unavailable.

At each hop, agent i transmits a single embedding vector of dimension |h| to every neighbor j ∈ N i.
The per-hop message-passing cost over the whole network is therefore

CMP, 1-hop
DG =

N∑
i=1

|N i| |h|. (20)

For K hops, the communication cost during training due to D-GAT message passing is

CMP
DG = K

N∑
i=1

|N i| |h|. (21)

In addition, D-GAT parameter averaging incurs a cost

Cparam
DG =

N∑
i=1

|N i| |ψ|, (22)

where |ψ| denotes the number of parameters in the local D-GAT instance.

Combining these contributions, the total training-time communication cost of DG-MAPPO can be
written as

C train
DG = CMP

DG + Cparam
DG . (23)

Comparing Eq. 24 and Eq. 23, it is clear that CTDE methods have lower communication cost com-
pared to our fully distributed MARL method in ideal settings. However, when the communication
is restricted, CTDE methods will also have to route their information to the central controller via
multi-hop communication.

C train
CTDE-MultiHop =

N∑
i=1

Ki
(
|Oi|+ |Ai|

)
, (24)
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Figure 4: Comparison of communication cost for CTDE and DG-MAPPO as team size N increases.
All methods assume identical per-message and per-observation sizes. The DG-MAPPO curve uses
a hop budget of N/2, consistent with our ablation findings on effective message-passing depth. The
multi-hop CTDE baseline models a worst-case 1-D network topology. Results are shown on a log
scale to highlight differences in growth rates.

Table 3: Communication and Computational Complexity Comparison. N denotes the number of
agents, |O| and |A| the observation and action space sizes, ψ the D-GAT parameters, and K the
number of communication hops.

Feature CTDE (e.g., MAPPO) DG-MAPPO (Ours)
Training Architecture Centralized Server / Coordinator Fully Distributed (Peer-to-Peer)
Training Comm. Pattern Many-to-One (Gather + Broadcast) Neighbor-to-Neighbor (Mesh)
Comm. Bottleneck Central Server Bandwidth (O(N)) Uniform Link Load (O(|N i|))
Data Transferred (Train) Obs., Actions, Global State, Gradients D-GAT Params (ψ), Feature Vectors (hi)
Execution Comm. None (Silent) Feature Vectors (hi) via D-GAT
Dependency on Range High (Requires global reach) Low (Localized to radius R)
Scalability Limited by Central Server I/O Linearly Scalable with Team Size

which scales as O
(
N2

N (|O|+ |A|)
)

under homogeneous agents and worst-case 1-D link communica-
tion topology. We see that DG-MAPPO scales better in terms of cost complexity in such scenarios.
Figure 4 shows cost comparison of DG-MAPPO against single-hop CTDE (ideal case), multi-hop
CTDE.

A.4.2 EXECUTION PHASE

CTDE methods are typically communication-free during execution: once training is complete,
agents act based solely on local observations and fixed policies. However, this “silent” execution
phase presupposes policies that were optimized under access to global state information. This cre-
ates a structural train–test mismatch that can severely degrade robustness under partial observability
or dynamic topology changes that were not present during training.

DG-MAPPO, by design, uses the same communication mechanism during both training and ex-
ecution. At inference time, agents continue to exchange feature vectors hi with neighbors via
the D-GAT module. The per-timestep communication cost for a K-hop rollout is again given by
Eq. 21. While this incurs a non-zero communication overhead during deployment, our ablation
studies show that strong performance is already obtained with small hop budgets (e.g., K = 1 or
K = N/2), so the execution-time communication cost remains bounded and tunable by design.
In return, DG-MAPPO completely eliminates reliance on privileged global information, thereby
avoiding the train-test mismatch inherent to CTDE.

A.5 PHYSICAL COMMUNICATION COST AND DISTANCE
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In real-world deployments, such as multi-robot teams or UAV swarms, communication cost is gov-
erned not only by bit rate but also by the physical distance over which signals are transmitted. The
transmission energy Etx typically follows a power-law relationship with distance d,

Etx ∝ dα, (25)

where α ∈ [2, 4] is the path-loss exponent determined by the propagation environment.

Let b denote the encoded size (in bits) of a single transmitted embedding vector (e.g., a quantized
version of hi). For simplicity, we model the energy cost of transmitting b bits over distance d as

C(b, d) ≈ b dα. (26)

This abstraction is sufficient to compare the relative energy scaling of CTDE and DG-MAPPO.

CTDE energy cost. In CTDE, each agent must ultimately send its information to a central con-
troller or parameter server. Let di,center denote the (effective) distance between agent i and the central
learner, which may be realized via direct transmission or via multi-hop relaying. The total energy
cost per update can be approximated as

ECTDE =

N∑
i=1

C
(
bi, di,center

)
, (27)

where bi is the number of bits sent by agent i (e.g., encoding its observation, action, and possibly
gradients). In large-scale environments, di,center grows with the network diameterD, so the aggregate
energy cost scales roughly as O

(
NDα

)
.

DG-MAPPO energy cost. In DG-MAPPO, agents communicate only with physically adjacent
neighbors within a limited communication radius R. Let di,j ≤ R be the distance between neigh-
boring agents i and j. The total energy cost per communication round can then be expressed as

EDG-MAPPO =

N∑
i=1

∑
j∈Ni

C
(
b, di,j

)
, (28)

where b is the bit-size of the transmitted embedding per link. For undirected links, each physical
edge is counted twice in the double sum; one may divide by 2 if desired, but we retain the form in
Eq. equation 28 for notational simplicity. Because di,j ≤ R by construction, the per-link energy
cost is uniformly bounded, and for bounded node degree |N i| the total energy scales as O(N).

Discussion. Equations equation 27 and equation 28 highlight a key advantage of DG-MAPPO in
physically realistic settings. CTDE requires long-range or multi-hop communication to a central-
ized learner, resulting in energy costs that increase with the network diameter and necessitating the
maintenance of high-throughput long-range links. DG-MAPPO, in contrast, restricts communica-
tion to short-range neighbor exchanges whose cost is both bounded (via R) and tunable (via the
hop budget K). Although DG-MAPPO incurs continuous communication during execution, these
locally constrained transmissions result in more favorable energy scaling compared to the long-
range communication required to support centralized learning in large and geographically extended
multi-agent systems.

A.6 LEARNING CURVES FOR CLIPPED SIGHT RANGE IN SMAC

Figures 5 and 6 demonstrate that DG-MAPPO remains effective even under sparse communication
topologies, where the average node degree is approximately N/2. Moreover, our experiments re-
veal that respectable performance can be achieved even with 1-hop communication, and subsequent
improvements in performance can be observed as the number of hops increases, albeit at the cost of
slightly higher communication and computation overhead. Refer to Appendix X for an analysis of
computation and communication overhead.
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Figure 5: Evaluation win rate of DG-MAPPO under different hop counts with clipped sight range in
the SMAC environment.

Figure 6: Average communication graph node degree at the final timestep of each SMAC episode
with clipped sight range.

A.7 ABLATION STUDY

The goal of our ablation study is to assess the importance of: 1) Attention mechanism for message
aggregation, 2) number of communication hops on performance, and 3) consensus loss for perfor-
mance stability. To test these components of DG-MAPPO, we strategically chose a “Hard” rated
environment (10m vs 11m) with 10 collaborative agents, and two “Hard+” rated environments (6h
vs 8z and MMM2) with 6 and 10 collaborative agents, respectively. We believe this provides us with
sufficient diversity in terms of team size, heterogeneity and task complexity to effectively evaluate
individual components of our algorithm.

A.7.1 MESSAGE AGGREGATION

Figure 7: Training win rate comparison between “mean” message aggregation and attention-
augmented aggregation across different hop counts (iterations) in SMAC environments.
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Figure 7 compares mean-based and attention-augmented message aggregation within the D-GAT
communication module. Although attention augmentation may appear inherently advantageous,
its benefits turn out to be scenario-dependent. In the 6h vs 8z setting—where the task is partic-
ularly challenging—attention-augmented aggregation consistently outperforms mean aggregation
across all hop configurations. In contrast, for MMM2 and 10m vs 11m, mean aggregation achieves
performance comparable to attention augmentation when the number of hops is set to N/2 or N ,
suggesting that one can reduce the computation cost of D-GAT without sacrificing performance in
moderately complex scenarios. However, it is worth noting that in both environments, the 1-hop
setting still favors attention-augmented aggregation, indicating its advantage when communication
cost is the dominant concern.

A.7.2 EFFECT OF NUMBER OF HOPS ON PERFORMANCE

We further evaluate DG-MAPPO under different choices of communication hops. Overall, increas-
ing the number of hops generally improves performance, as broader information propagation enables
better coordination. However, the trend is distinctly sublinear. As seen in Figures 3b and 7, DG-
MAPPO already achieves strong performance with only 1-hop communication, and its results with
N/2 hops are comparable to those of CTDE baselines that rely on global information. The marginal
gains from increasing hops from N/2 to N are present but relatively small. In practice, this sug-
gests that one can begin with 1-hop communication and only increase the hop budget when the task
difficulty or coordination demands justify the additional cost.

A.7.3 EFFECT OF CONSENSUS LOSS ACROSS VARIOUS HOP CONFIGURATIONS

Figure 8: Training win-rate comparison in 6h vs 8z scenario, illustrating the effect of the Consensus
Loss under varying numbers of communication hops.

We further evaluate the impact of the proposed Consensus Loss under different communication hop
budgets in the 6h vs 8z scenario. As shown in Figure 8, the effect of this regularizer depends strongly
on the available communication depth. When agents communicate with a relatively large hop budget
(e.g., 6 hops), incorporating the Consensus Loss yields a substantial performance improvement. In
this setting, messages propagate widely through the team, and enforcing agreement among neigh-
boring representations accelerates the emergence of globally coherent policies. This is reflected in
both faster learning and higher final win rates. In contrast, when the hop budget is restricted (e.g.,
1 hop), the benefit of the Consensus Loss becomes more modest. Limited propagation constrains
the ability of local consistency constraints to influence global coordination. Nevertheless, even in
the 1-hop case, we observe a small but consistent improvement in learning speed, suggesting that
encouraging local agreement still helps stabilize training under decentralized gradients. The inter-
mediate 3-hop setting exhibits a clear improvement when the Consensus Loss is applied, although
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the gain is smaller than what is observed with 6 hops. With three hops, agents can propagate infor-
mation to a moderate portion of the team, allowing the regularizer to influence coordination more
effectively than in the one-hop case. However, because information does not spread as widely as in
the 6-hop configuration, the benefit of enforcing local agreement is correspondingly limited, leading
to a moderate yet consistent performance increase. Overall, these results highlight that the Con-
sensus Loss is most beneficial when communication is sufficiently expressive to carry its influence
across the team. At the same time, the regularizer remains non-detrimental in low-communication
regimes, supporting its use as a generally helpful stabilization mechanism in decentralized training.

A.8 HYPER-PARAMETERS FOR DG-MAPPO

Table 4: Common hyper-parameters used for DG-MAPPO

Parameter Value Parameter Value Parameter Value
critic lr 5e-4 actor lr 5e-4 use GAE True

gain 0.01 optim eps lr 1e-5 training threads 32
entropy coeff 0.001 max grad norm 10 optimizer Adam

hidden layer dim 128 use huber loss True gae lambda 0.95
D-GAT lr 5e-4 num heads 1 αconsensus 20

Table 5: Different hyper-parameters used for DG-MAPPO

Maps ppo
epochs

ppo
clip

batch
size

rollout
threads

episode
length gamma steps

3m 10 0.05 2048 32 100 0.98 2e6
8m 10 0.05 2048 32 300 0.98 1e7

MMM 10 0.05 2048 32 300 0.98 1e7
5m vs 6m 5 0.05 3200 32 300 0.98 3e7
8m vs 9m 10 0.05 2048 16 500 0.98 2e7

10m vs 11m 5 0.05 3200 32 500 0.98 2.5e7
25m 5 0.05 4800 16 300 0.95 1e7

MMM2 5 0.05 3200 32 300 0.95 3e7
6h vs 8z 10 0.05 2048 32 300 0.98 2e7

3s5z vs 3s6z 5 0.2 3200 32 300 0.98 3e7

A.8.1 DG-MAPPO EVALUATION PLOTS
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A.9 AVERAGE NODE DEGREE (AT END OF EPISODE)
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