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ABSTRACT

Large Language Models (LLMs) have made significant strides in mathematical
reasoning, underscoring the need for a comprehensive and fair evaluation of their
capabilities. However, existing benchmarks often fall short, either lacking extensive
coverage of undergraduate-level mathematical problems or probably suffering from
test-set contamination. To address these issues, we introduce UGMathBench, a
diverse and dynamic benchmark specifically designed for evaluating undergraduate-
level mathematical reasoning with LLMs. UGMathBench comprises 5,062 prob-
lems across 16 subjects and 111 topics, featuring 10 distinct answer types. Each
problem includes three randomized versions, with additional versions planned for
release as leading open-source LLMs become saturated in UGMathBench. Further-
more, we propose two key metrics: effective accuracy (EAcc), which measures the
percentage of correctly solved problems across all three versions, and reasoning
gap (∆), which assesses reasoning robustness by calculating the difference between
the average accuracy across all versions and EAcc. Our extensive evaluation of
23 leading LLMs reveals that the highest EAcc achieved is 56.3% by OpenAI-
o1-mini, with large ∆ values observed across different models. This highlights
the need for future research aimed at developing "large reasoning models" with
high EAcc and ∆ = 0. We anticipate that the release of UGMathBench, along
with its detailed evaluation codes, will serve as a valuable resource to advance
the development of LLMs in solving mathematical problems. Codes and data are
available at https://github.com/YangLabHKUST/UGMathBench.

1 INTRODUCTION

Mathematical reasoning and problem-solving are critical components of human intelligence, and the
ability of machines to understand and address mathematical challenges is crucial for their deployment
(Ahn et al., 2024; Liu et al., 2024; He et al., 2024a). Solving mathematical problems with machines
has been a significant research topic in natural language processing since the 1960s (Bobrow et al.,
1964), initially focusing on elementary math word problems (Patel et al., 2021; Wang et al., 2017;
Ling et al., 2017; Welbl et al., 2017; Cobbe et al., 2021). With the advent of Large Language Models
(LLMs) (Brown et al., 2020; Ouyang et al., 2022; OpenAI, 2023; Team et al., 2023; Anthropic,
2024), interest in using these advanced technologies to solve math problems has continued to grow.
Researchers are exploring various approaches to improve the mathematical reasoning capabilities
of LLMs, including prompting (Wei et al., 2022; Wang et al., 2023b; Kojima et al., 2022; Zhang
et al., 2023; Zheng et al., 2023; Xue et al., 2024), supervised fine-tuning (Yue et al., 2023; Yu et al.,
2023; Gou et al., 2023; Li et al., 2024a; Xu et al., 2024b; Tong et al., 2024; Yan et al., 2024; Xu
et al., 2025b; Yan et al., 2025), and continued pretraining (Lewkowycz et al., 2022; Shao et al., 2024;
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Problem_v1: Find the linear approximation at $x=0$ to 

$\\frac{1}{\\sqrt{8-x}}$. Write your answer in the form $y=Ax+B$.

Answer_v1: y-0.0220971*x = 0.353553 Type: EQ

Problem_v2: Find the linear approximation at $x=0$ to 

$\\frac{1}{\\sqrt{2-x}}$. Write your answer in the form $y=Ax+B$.

Answer_v2: y-0.176777*x = 0.707107 Type: EQ

Problem_v3: Find the linear approximation at $x=0$ to 

$\\frac{1}{\\sqrt{4-x}}$. Write your answer in the form $y=Ax+B$.

Answer_v3: y-0.0625*x = 0.5  Type: EQ

Difficulty Level: 3

Data Example

Subject: single-variable calculus

Topic: application of differentiation

KP: Linear approximation and differentials

Keywords: Calculus, Derivatives, Linear 

Approximation, Trigonometric Functions
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Figure 1: Overview of UGMathBench. UGMathBench is a diverse and dynamic benchmark specif-
ically designed for evaluating undergraduate-level mathematics with LLMs, covering 16 distinct
subjects and featuring 10 different answer types. Each problem contains three randomized versions,
with EAcc and ∆ rigorously assessing LLMs’ true reasoning skills.

Azerbayev et al., 2023). Consequently, LLMs have become increasingly capable of solving complex
mathematical problems (Hendrycks et al., 2021b; Ahn et al., 2024).

With the rapid advancements in LLMs, evaluating their reasoning capabilities has become increasingly
important (He et al., 2024a; Xu et al., 2025a; Phan et al., 2025), especially in mathematics (Liu
et al., 2024; Gao et al., 2024). Although benchmarks such as GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021b) are commonly used to assess these abilities, they are becoming
insufficient due to rapid progress in model performance, as evidenced by accuracy exceeding 97%
in GSM8K (Zhou et al., 2023) and 94.8% in MATH (OpenAI, 2024b). While more challenging
benchmarks are being introduced (Tang et al., 2024; Liu et al., 2024), they often remain limited
in size and scope regarding undergraduate-level mathematics, which is essential due to its breadth
and complexity (see Table 1). Moreover, there are growing concerns about test set contamination
in these static benchmarks (Srivastava et al., 2024; Zhang et al., 2024; Qian et al., 2024; White
et al., 2024). Recent efforts Qian et al. (2024); Srivastava et al. (2024) have introduced dynamic
benchmarks by functionalizing the original problems in GSM8K and MATH to generate randomized
variations through variable disturbance. However, these initiatives primarily focus on elementary
and competition-level mathematics (see Table 1). These limitations highlight the pressing need
for a comprehensive and dynamic benchmark specifically designed to assess undergraduate-level
mathematical reasoning.

In this paper, we present UGMathBench, a diverse and dynamic benchmark designed to evaluate the
mathematical reasoning capabilities of LLMs across a wide range of undergraduate-level mathemati-
cal topics, as illustrated in Figure 1. We meticulously collect, clean, and format undergraduate-level
mathematical problems from our online homework grading system (see Appendix B.1), resulting in a
benchmark comprising 5,062 problems in 16 subjects, categorized into eight atomic answer types and
two compound answer types. A key feature of UGMathBench is the inclusion of multiple randomized
versions for each problem, which aids in assessing the true reasoning abilities of LLMs through the
Effective Accuracy (EAcc) and reasoning gap (∆) (see Section 3.3). EAcc represents the percentage
of problems correctly solved across all versions, providing insights into intrinsic reasoning skills. It
operates on the premise that a model capable of solving a problem through reasoning should also
be able to solve all its variants under variable disturbance (Srivastava et al., 2024; Qian et al., 2024).
The reasoning gap, ∆, is defined as the difference between the average accuracy across all versions
and the EAcc, quantifying the robustness of reasoning when the original problems undergo slight
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modifications. These metrics help mitigate the impact of potential test set contamination (Deng et al.,
2024; Dong et al., 2024; Golchin & Surdeanu, 2023; Roberts et al., 2023) and ensure a more rigorous
evaluation of LLMs’ mathematical reasoning abilities. These features are summarized more clearly
in Figure 1 and Table 1.

We conducted an extensive evaluation of the leading LLMs, including proprietary models such as
OpenAI-o1 (OpenAI, 2024b) and open-source models like LLaMA-3-Instruct (AI@Meta, 2024).
Despite their advanced capabilities, the best EAcc achieved is 56.3% by OpenAI-o1 (OpenAI, 2024b)
and all LLMs exhibit a large reasoning gap. These results highlight the considerable challenges that
UGMathBench presents to current LLms in terms of mathematical reasoning, underscoring the need
for future research focused on developing "large reasoning models" characterized by high EAcc and
a reasoning gap ∆ = 0. To summarize our key findings:

1. Even LLMs with the most advanced reasoning ability, OpenAI-o1-mini, achieves a 56.30% EAcc
on UGMathBench, much lower on other text-only mathematical benchmarks. 2. All LLMs evaluated
exhibit high reasoning gap with Robustness Efficiency (RE, the ratio between ∆ and EAcc) ranging
from 20.78% to 196.6%, pinpointing the inconsistencies of current LLMs in solving problems
with variable disturbance. 3. There remains a significant discrepancy among closed-source LLMs
and open-source LLMs (even specialized mathematical LLMs). Among open-source LLMs, only
Qwen-2-Math-72B-Instruct and Mistral-Large-Instruct have comparable performance with GPT-4o.
4. The average EAcc varies by subject, with Arithmetic scoring 62.8%. In contrast, Abstract Algebra,
Differential Equations, and Financial Mathematics have average EAccs of less than 10%. 5. An error
analysis of OpenAI-o1-mini’s performance reveals that calculation errors are a major concern. Even
the same problem presented in different randomized versions can lead to varying types of errors.

Table 1: Comparison of various benchmarks. "#Types" indicates the number of answer types in the
dataset. "#Subjects" specifies the number of mathematical subjects covered. "Dynamic" denotes
whether the dataset is dynamic or static. "#Test" shows the number of test examples in the dataset,
while "#College" refers to the number of test examples at the college level.

Dataset Level #Types #Subjects Dynamic #Test #College

GSM8K Elementary 1 - 1,319 0
MATH Competition 3 7 5,000 0
MMLU-Math All 1 - 844 116
TAL-SCQ K12 Math 1 - 1,496 0
AGIEval-SAT-Math High School 2 - 102 0
AGIEval-Math Competition 2 - 938 0
CollegeMath College 3 7 2,818 2,818
MathBench All 1 5 1781 466
GSM1K Elementary 1 - 1,250 0
FN-EVAL Competition 3 7 2,060 0
VarBench-Math Elementary 1 - 1,319 0
LiveBench-Math Competition 2 - 232 0

UGMathBench College 10 16 5,062 5,062

2 RELATED WORK

Mathematical Benchmarks. Mathematical reasoning is increasingly vital for assessing the funda-
mental reasoning capabilities of LLMs (Ahn et al., 2024). Several math-related datasets have been
proposed in this area (Koncel-Kedziorski et al., 2016; Amini et al., 2019; Hendrycks et al., 2021a;
Cobbe et al., 2021; Hendrycks et al., 2021b; Chen et al., 2022). Among these, GSM8K (Cobbe et al.,
2021) and MATH (Hendrycks et al., 2021b) are the most representative datasets for elementary and
high school-level math reasoning, respectively. However, as modern LLMs become increasingly
powerful, these benchmarks lack sufficient challenge forlatest LLMs. Notably, o1 (OpenAI, 2024b)
achieves 94.8% accuracy on MATH, which was previously considered highly complex. To better
assess the mathematical reasoning abilities of current LLMs, some researchers create variants of
existing benchmarks (Shi et al., 2023; Chen et al., 2024; Li et al., 2024b; Xu et al., 2024b), while
others propose new, more challenging math reasoning benchmarks (Chen et al., 2023; Wang et al.,

3



Published as a conference paper at ICLR 2025

2023a; Collins et al., 2024; Tang et al., 2024; Liu et al., 2024; Wang et al., 2024). CollegeMath (Tang
et al., 2024) covers several college-level mathematics subjects with limited answer types. In contrast,
our UGMathBench encompasses a broader range of subjects, answer types, and test examples. In
addition, there are also several cross-modality math-related datasets (Chen et al., 2021; Lu et al.,
2023; Xu et al., 2024a; Yue et al., 2024a; He et al., 2024b;a; Huang et al., 2024; Yue et al., 2024b).

Dynamic Benchmarks for Mathematical Reasoning. Test set contamination, wherein benchmark
test data appear in a newer model’s training set, significantly challenges fair LLM evaluation by
artificially inflating performance (Deng et al., 2024; Dong et al., 2024; Golchin & Surdeanu, 2023;
Roberts et al., 2023). Since pretraining data often involve large corpora scraped from the Internet, any
static benchmark risks data contamination (Zhang et al., 2024; Qian et al., 2024). To mitigate this,
recent benchmarks maintain private test sets (Zhang et al., 2024; Huang et al., 2024), requiring anyone
who wishes to evaluate their models to submit predictions for centralized processing before publishing
results on their leaderboards. However, this process can be inefficient and lacks transparency for error
analysis (Qian et al., 2024). An alternative is releasing dynamic benchmarks that are periodically
updated (Srivastava et al., 2024; Qian et al., 2024; White et al., 2024). For example, Srivastava et al.
(2024) have functionalized a subset of the MATH dataset to regenerate new versions of the test set
by reassigning variable values. In this vein, our UGMathBench is a dynamic benchmark featuring
different sampled values for variables by setting distinct random seeds. Currently, we release three
snapshots for each question in UGMathBench and plan to release new versions if leading open-source
LLMs reach accuracy saturation.

3 THE UGMATHBENCH BENCHMARK

3.1 UGMATHBENCH OVERVIEW

Table 2: Benchmark Statistics

Statistic Number
Total Problems 5562
Number of Versions x 3
Total Subjects/topics 16/111
Total Answer Types 10
Total Difficulty Level 6

Average Problem Tokens 122.63
Average Number of Answers 2.77

We introduce the UGMathBench, a dynamic undergraduate-level
mathematical reasoning benchmark designed to thoroughly and
robustly assess the mathematical reasoning ability of LLMs. UG-
MathBench enables fair evaluation through randomized versions
of single problems. Unlike GSM1K (Zhang et al., 2024), our test
set labels are publicly available, facilitating efficient evaluation and
effective error analysis. UGMathBench covers fifteen core subject
areas in undergraduate-level mathematics, including single-variable
calculus, multivariable calculus, differential equations, probability,
and more, encompassing a total of 111 specific topics (details in
Appendix A.2). UGMathBench comprises a set of 5,062 problems
in 3 different randomized snapshots with 10 different answer types (see Appendix A.3). These answer
types range from atomic types (e.g., numerical value, expression) to compound types (e.g., multiple
answers in ordered or unordered lists), setting UGMathBench apart from many other math-related
benchmarks that focus primarily on a single answer with an atomic type. We randomly select 100
problems to examine student performance using our grading system’ records, with each problem
being completed by varying numbers of students ranging from 99 to 1,537. The average accuracy on
the first attempt is 56.5%, while the average accuracy on the final attempt increased to 96.1%.

3.2 UGMATHBENCH CREATION

Our UGMathBench creation process has three distinct phases: data collection, data cleaning &
deduplication, and answer type annotation.

Data Collection. The dataset for UGMathBench is carefully compiled from the online grading
system of our institute’s undergraduate courses (see Appendix B.1). All problems in our system are
generated by programs that specify particular variable values to ensure correctness and maintain
the same solution (see Appendix A.1). We gather all mathematics-related problems, resulting in 16
subjects and 111 topics in total. To prevent student cheating, our grading system offers randomized
versions of most problems (see Figure 1), similar to the variable disturbance approach in Qian et al.
(2024). To create a dynamic benchmark, we exclude static problems without randomized versions, as
well as those containing images, ensuring a text-only reasoning benchmark. The collected problems
are originally in HTML format.
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Data Cleaning and Deduplication. After collecting problems in the HTML format, we utilize
the bs41 and re2 Python packages to convert them into Latex. Since no conversion process is
flawless, we manually verify the converted LaTeX files against the original HTML files. The latex
files are then further organized into the format shown in Figure 1. After converting and cleaning
all the problems, we perform deduplication within each subject based on embeddings generated by
text-embedding-ada-002 to remove duplicated problems (see Appendix B.2). The thresholds
and the number of questions that are filtered out are given in Table 10.

Table 3: Examples of eight
atomic answer types.

Type Example
Numerical Value π/4
Expression x2 + 1
Equation x2 + y2 = 1
Interval (−∞,−1]
True/False Yes
MC with single answer A
MC with multiple answers ACF
Open-Ended h(1-x)

Answer Type Annotation. Meta-information (e.g. subject, topic,
subtopic, difficulty level as shown in Figure 1) is stored in our grad-
ing system and is easily extracted along with the LaTeX files. The
primary task is determining the answer types. Problems requiring
definitive responses are largely categorized into two main classes:
atomic and compound. Questions with a single required answer
fall into the atomic type, while questions with multiple answers
are classified as compound, represented by a list of atomic answers
separated by commas. The atomic type can be further classified into
eight types, and the compound answer lists can be either ordered
or unordered, with each atomic answer fitting one of the aforemen-
tioned eight types. Simple examples of each type are provided in
Table 3, and detailed definitions are available in Appendix A.3.

3.3 EVALUATION METRICS

We denote the set of test examples in UGMathBench by D with a specific test example denoted as
ei, where i represents the index of the example. Each example ei consists of questions presented
in different randomized versions: q1i , q

2
i , ..., q

V
i , where V is the total number of versions3. The

corresponding ground-truth answers for these versions q1i , q
2
i , ..., q

V
i are denoted by a1i , a

2
i , ..., a

V
i .

The answer generated by an LLM M for a specific version of the question in the i-th test example is
denoted by M(qvi ). Inspired by Srivastava et al. (2024), we define the following metrics to evaluate
the true mathematical reasoning ability of LLM M in UGMathBench.

Accuracy of Version v Accv is defined as the average accuracy of model M on the set of questions
with version v in D:

Accv =

∑|D|
i=1 I[M(qvi ) = avi ]

|D| ,

where I is an indicator function and |D| denotes the number of examples in UGMathBench. It
assesses the performance of an LLM on the specific version v from UGMathBench.

Average Accuracy AAcc is defined as the mean of all Accv:

AAcc =

∑V
v=1 Accv
V

.

This metric evaluates the performance across all versions of the questions.

Effective Accuracy EAcc is defined as the accuracy in solving a test example ei across all its V
versions:

EAcc =

∑|D|
i=1 I[M(qvi ) = avi ,∀v ∈ {1, 2, ..., V }]

|D| .

If a model is able to solve a test case using proper reasoning, it should correctly solve this problem
for all randomized versions. Thus, effective accuracy measures the fraction of test cases correctly
solved across all versions V . It measures true reasoning of test cases in UGMathBench.

Reasoning Gap ∆ is defined as the percentage decrease between AAcc and EAcc. It provides a
measure of the robustness of reasoning, with ∆ = 0 being true reasoning with high robustness.

1https://pypi.org/project/beautifulsoup4/
2https://docs.python.org/3/library/re.html
3Currently, V=3 and we plan to release more versions in the future.
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Robustness Efficiency (RE) is defined as the ratio of the Reasoning Gap (∆) to the EAcc, expressed
as RE = ∆/EAcc. This metric evaluates the extent of the reasoning gap relative to the model’s
effective reasoning ability (i.e., EAcc). RE captures robustness by taking the effectiveness of
mathematical reasoning into account , with lower values indicating superior performance in adapting
to variations across different versions of problems in UGMathBench. Achieving a higher EAcc and
a lower ∆ results in a more favorable (lower) RE, reflecting improved robustness relative to "true"
reasoning ablility of LLMs.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Evaluated LLMs. Our evaluation covers 23 leading LLMs, including closed-source commercial
LLMs and open-source LLMs. Based on our UGMathBench, we provide a thorough evaluation of
the mathematical reasoning capabilities of current LLMs. The evaluated LLMs are listed below:

• For proprietary LLMs, we select OpenAI-o1-mini (OpenAI, 2024b), GPT4o (OpenAI,
2024a), GPT4o-mini (OpenAI, 2024a), and Claude-3-Opus (Anthropic, 2024).

• For open-source general-purpose LLMs, we evaluated the LLaMA-3-Instruct series (8B,
70B) (AI@Meta, 2024), Qwen2-Instruct (7B, 72B)(Yang et al., 2024a), Yi-1.5-Chat (6B, 9B,
34B) (AI et al., 2024), Mistral-7B-Instruct (Jiang et al., 2023), Mistral-Nemo-Instruct-2407
(Mistral, 2024c), Mistral-Small-Instruct-2409 (Mistral, 2024d), Mistral-Large-Instruct-2407
(Mistral, 2024b), DeepSeek-MOE-16B-Chat (Dai et al., 2024), and DeepSeek-V2-Lite-Chat
(DeepSeek-AI, 2024).

• We also include some specialized math LLMs: DeepSeekMath-7B (-RL, -Instruct) (Shao
et al., 2024), Qwen2-Math (7B, 72B)(Yang et al., 2024b), Mathstral-7B (Mistral, 2023), and
NuminaMath-7B-CoT (Beeching et al., 2024).

Details of these LLMs are provided in Appendix C.1.

Evaluation Settings. We employ Accv to evaluate the average performance of version v, AAcc to
measure the average performance across all versions, EAcc to quantify true reasoning, and reasoning
gap ∆ to assess the robustness of reasoning (see Section 3.3). To remove the effect of sensitivity
of few-shot prompts (Lu et al., 2022; Ma et al., 2023), all our experiments use zero-shot prompts,
tailored to different answer types for better answer extraction and rule-based matching. Detailed
prompts are given in Appendix C.2. We use vLLM4 to speed up the evaluation process. To maintain
consistency in evaluations and facilitate reproduction, we set the maximum output length to 2,048
tokens and employ a greedy decoding strategy with temperature 0.

4.2 MAIN RESULTS

The overall experiment results are shown in table 4. We have the following key observations:

UGMathBench is a challenging benchmark for evaluating the mathematical reasoning ca-
pabilities of LLMs. Even LLMs with the most advanced reasoning abilities, OpenAI-o1 (mini
version), achieve only 56.3% EAcc on UGMathBench, while most open-source LLMs, including
most specialized mathematical models, struggle to reach a 30% EAcc. Compared to commonly used
mathematics benchmarks like MATH (Hendrycks et al., 2021b), UGMathBench proves to be more
challenging. For instance, OpenAI-o1-mini achieves 90% on MATH (v.s. 56.3% on UGMathBench).

Even leading LLMs still have inconsistencies when solving problems with multiple versions.
LLMs with an AAcc greater than 20% display a reasoning gap ∆ exceeding (or near) 10%. All LLMs
demonstrate extremely high RE on UGMathBench, with values ranging from 20.78% to 196.6%.
Among the five models with the lowest RE, three of them are from OpenAI (OpenAI-o1-mini:
20.78%; GPT-4o: 20.89%; Mistral-Large-Instruct: 24.36%; Qwen2-Math-72B-Instruct: 24.39%;
GPT-4o-mini: 27.87%). These results pinpoint the limitaions of current LLMs and urge us to develop
ture "large reasoning models" with high EAcc and ∆ = 0.

4https://github.com/vllm-project/vllm
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Table 4: Main Results on UGMathBench (all figures are in %). Models are classified into three
categories according to their purpose and origin. The best results within each column are bolded and
the best results of open-source Chat LLMs within a similar parameter size group are underlined.

Models Acc1 Acc2 Acc3 AAcc EAcc ∆ RE
Closed-source LLMs

OpenAI-o1-mini-2024-09-12 68.02 67.95 68.04 68.00 56.30 11.70 20.78
GPT-4o-2024-08-06 59.92 60.79 60.41 60.37 49.94 10.43 20.89
GPT-4o-mini-2024-07-18 51.58 53.14 52.61 52.44 41.01 11.43 27.87
Claude-3-Opus-20240229 48.62 50.32 49.47 49.47 37.00 12.47 33.69

Open-source Chat LLMs
Yi-1.5-6B-Chat 25.33 26.83 26.59 26.25 15.23 11.02 72.33
Mistral-7B-Instruct 10.19 11.16 10.33 10.56 4.44 6.12 137.6
Qwen2-7B-Instruct 35.60 37.30 36.23 36.38 25.15 11.23 44.65
LLaMA3-8B-Instruct 16.00 17.01 16.63 16.55 8.91 7.64 85.74
Yi-1.5-9B-Chat 33.72 34.29 34.85 34.29 21.12 13.17 62.36
Mistral-Nemo-Instruct-2407 24.53 25.62 25.09 25.08 15.43 9.65 62.57
DeepSeek-MOE-16B-Chat 5.59 5.85 5.97 5.80 1.96 3.85 196.6
DeepSeek-V2-Lite-Chat 12.82 13.67 12.76 13.08 5.69 7.39 130.0
Mistral-Small-Instruct-2409 40.10 40.52 40.04 40.22 28.84 11.38 39.45
Yi-1.5-34B-Chat 37.08 38.11 37.65 37.61 24.34 13.28 54.55
LLaMA3-70B-Instruct 33.25 34.35 33.27 33.62 23.27 10.35 44.48
Qwen2-72B-Instruct 47.49 48.56 47.23 47.76 35.78 11.98 33.50
Mistral-Large-Instruct-2407 55.91 56.16 55.97 56.01 45.04 10.97 24.36

Specialized Mathematical LLMs
DeepSeek-Math-7B-Instruct 23.61 24.87 23.19 23.89 13.61 10.28 75.52
DeepSeek-Math-7B-RL 28.66 29.97 28.94 29.19 19.24 9.95 51.71
NuminaMath-7B-CoT 29.32 30.07 30.01 29.80 18.81 10.99 58.44
Mathstral-7B-v0.1 28.57 28.47 28.51 28.51 17.94 10.58 58.96
Qwen2-Math-7B-Instruct 43.01 44.13 44.05 43.73 32.46 11.27 34.73
Qwen2-Math-72B-Instruct 56.95 57.05 57.09 57.03 45.85 11.18 24.39

There remains a significant discrepancy between closed-source models and open-source LLMs.
OpenAI-o1-mini achieves the best results across Acci, i = 1, 2, 3, as well as in AAcc and EAcc.
However, the most powerful open-source LLM evaluated, Qwen2-Math-72B-Instruct, still falls
short: it shows a 10.97% lower AAcc and a 10.45% lower EAcc compared to OpenAI-o1-mini. The
best-performing open-source chat model is Mistral-Large-Instruct-2407, which ranks second among
all open-source LLMs. Only 2 out of 19 open-source LLMs exceed GPT-4o-mini in terms of EAcc,
and only 3 out of 19 have an EAcc comparable to Claude-3-Opus. Additionally, more than half of the
open-source LLMs (10 out of 19) have an EAcc smaller than 20%.

5 ANALYSIS

In this section, we conduct an in-depth analysis of the performance of the 23 LLMs evaluated on
UGMathBench by investigating the following research questions: 1. What is the relationship between
EAcc and Accv? (Section 5.1) 2. How do model size and model series influence performance on
UGMathBench? (Section 5.2) 3. How do LLMs perform across different subjects, difficulty levels,
and, different topics on UGMathBench? (Section 5.3) 4. What are the typical response errors made
by the best-performing LLM (OpenAI-o1-mini), and how are they distributed? (Section 5.4)

5.1 RELATIONSHIP BETWEEN EACC AND ACCv

To investigate the relationship between EAcc and Accv , scatter plots of EAcc against each Accv are
shown in Figure 2. From Figure 2, we have the following conclusions:

All LLMs fall below the diagonal lines. Each LLM evaluated is represented as a point in the
subfigures of Figure 2, plotted on the axes of (Accv,EAcc). Although LLMs exhibit small variations
in accuracy across different versions, they consistently demonstrate a lower EAcc than Accv , which
suggests that the accuracy of individual versions is insufficient for assessing the reasoning capabilities
of LLMs. By considering EAcc alongside accuracy, we can gain a better understanding of how LLMs
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Figure 2: EAcc v.s. Accv on UGMathBench.
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Figure 3: Left: EAcc v.s. Model Size. Right: 2-RE v.s. Model Size. The comparison chart of
performance versus performance (EAcc and RE) on UGMathBench for all LLMs evaluated, with
models from the same series connected by lines of the same color. The horizontal dotted lines
represent the score of close-source LLMs.

perform when solving problems that have different randomized versions. The discrepancy between
EAcc and Accv highlights a new inconsistency mode (Ahn et al., 2024) of current LLMs: they may
become inconsistent in their answers when the problem is slightly altered.

There is an apparent trend that a high EAcc consistently leads to a high Accv. A model with
high EAcc is more effective in handling variable disturbances, resulting in high accuracy for each
version. However, as EAcc becomes increasingly large, the difference between Accv and EAcc tends
to increase until it stabilizes around 10%.

5.2 THE EFFECT OF MODEL SIZE AND MODEL SERIES

Figure 3 has shown how EAcc and 2-RE changes with the parameter size.We can observe that:

LLMs within the same series have shown steady improvement as the parameter size increases.
When the model size increases from 7B to around 100B, EAcc substantially improve and RE
steadily decrease for Qwen-Chat, Qwen-Math, Mistral, Deepseek-Chat, LLaMA-3-Instruct, and
Yi-Chat series, indicating a steady improvement in performance in effectiveness and robustness of
mathematical reasoning.
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Specialized mathematical LLMs typically outperform their general-purpose counterparts. For
example, the Qwen2-Math series achieves significantly higher EAcc and lower RE than its general-
purpose chat LLMs with the same model size. Among all 7B specialized mathematical LLMs,
Qwen2-Math-7B-Instruct ranks first surpassing DeepSeek-Math-RL (second best) by a large margin.

5.3 PERFORMANCE ACROSS DIFFERENT SUBJECTS AND DIFFICULTY LEVELS

Figure 4a shows the average EAcc of different models in each subject. Figure 4b shows the averaged
EAcc of all subjects with respect to different levels of difficulty. The detailed performances across
different subjects and topics for each model can be found in Appendix D and F.

The average EAcc varies across different subjects. LLMs are effective at solving Arithmetic
problems, achieving 62.8% EAcc. In addition to Arithmetic, LLMs are also adept at Algebra,
Combinatorics, and Complex Analysis (over 30% average EAcc). The three least effective areas
are Abstract Algebra, Differential Equations, and Financial Mathematics, which typically require
challenging domain knowledge (less than 10% average EAcc).

In general, the averaged EAcc decreases as the level increases. OpenAI’s o1-mini is the strongest
among all models and wins by a larger margin as the level increases. Mistral-Large/Small-Instruct and
Qwen2 series are the most competitive open-source models on our benchmark, with EAcc comparable
to leading commercial models such as GPT-4o. However, as the level of difficulty increases, they
still lag behind GPT-4o, suggesting the gap between the leading open-source LLMs and proprietary
LLMs in solving difficult math problems.
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Figure 4: Relationship between EAcc, subject, and level of difficulty. (a) EAcc of different subjects,
averaged across all models. Each bar consists of several segments with colors indicating their
corresponding difficulty level. Notice that the length of each color segment only indicates its
proportion within all problems of all levels within that subject, and is not comparable between levels
or subjects. (b) EAcc of different levels, averaged across all subjects. Only models with top-10 EAcc
are included for brevity. Levels 5 and 6 are combined since level 6 has few samples.

5.4 ERROR ANALYSIS

We perform a comprehensive error analysis on OpenAI-o1-mini by randomly selecting 100 problems,
each having at least one incorrectly solved version (yielding a total of 300 versions). As shown
in Figure 5a, there are 231 incorrect versions, and OpenAI-o1-mini failed to solve 56% of the
problems across all versions. We then categorize these errors into six types, as illustrated in Figure 5b.
Calculation errors, including both numerical and expression errors, represent the largest category, with
several examples provided in Appendix E. We find that OpenAI-o1-mini tends to streamline its outputs
to avoid generating too long responses, sometimes leading to erroneous results. Additionally, we
encounter some "bad questions" that primarily arise due to overly complex structures (e.g. containing
long tables) or inadequately described (e.g. undefined variables in previous problems). This is
because our homework grading system (see Appendix B.1) is designed for students with a user-
friendly interface, and some problems may not be suitable for LLM to solve. In our sample of 300
versions, 19 were identified as "bad problems," giving us an estimated occurrence of approximately
2.7% in our UGMathBench. These problems do not impact our main claims, as no LLMs are able
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to solve these "bad questions." We will refine these types of problems to make them more suitable
for LLM evaluation in the future. No answer cleaning process is perfect, and improved evaluation
codes continue to be released in MATH (Hendrycks et al., 2021b). We will also actively update our
evaluation repository to improve its quality. Inspired by recent model-based evaluation efforts (Gao
et al., 2024; Xu et al., 2025a), we have updated our code repository to integrate the model-based
evaluation introduced by Xu et al. (2025a). Updated results will be made available there.

Notably, we have found that even when OpenAI-o1-mini solves a problem incorrectly among all its
randomized versions, the error types can be different. As shown in Figure 5a, there are around 16.1%
such inconsistent errors among the 100 problems sampled.
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Figure 5: Error Analysis of OpenAI-o1-mini on UGMathBench.

5.5 FURTHER ANALYSIS

About Self-Improvement. To examine how LLMs perform with refinement on UGMathBench,
we conducted experiments using Progressive-Hint Prompting (PHP) (Zheng et al., 2023) (see Ap-
pendix G). Detailed results can be found in Table 32 in Appendix G. Although PHP improves EAcc
and AAcc for most LLMs, the enhancements are not significant, indicating considerable room for
future development. The fine-grained results in Table 33 suggest that the impact of refinement
for GPT-4o varies across different subjects. For instance, PHP improves GPT-4o’s performance in
abstract algebra by 7.14%, yet reduces its performance in probability by 2.08% in terms of EAcc.
Our UGMathBench serves as an excellent testing ground for future research into refinement methods
for solving undergraduate-level mathematics with LLMs.

Table 5: Effects of Overfitting.

Proportion 5% 10% 15% 20%
∆ 3.43 3.80 4.50 4.64

Reasoning Gap and Test Set Contamination. To explore how
models specifically overfitting to a particular variation affect the
reasoning gap, we mixed a portion of the test set from one version
with MetaMathQA (Yu et al., 2023) and then conducted supervised
fine-tuning (SFT) Llama-3-8B on this data. Details of the SFT
process are provided in Appendix H, and the results are presented
in Table 5. As the proportion of the test set included in the training
data increases, the reasoning gap (∆) also becomes more pronounced. This study serves as an initial
investigation into test set contamination during the SFT stage. It’s worth noting that contamination at
the pre-training stage is also a significant area of interest (Razeghi et al., 2022; Jiang et al., 2024).

6 CONCLUSION

Current mathematical benchmarks are often inadequate, lacking comprehensive coverage of
undergraduate-level math problems or being susceptible to test-set contamination. To fill these
gaps, we propose UGMathBench, a diverse and dynamic benchmark for undergraduate-level math-
ematical reasoning. Our fine-grained analysis has pointed out the potential inconsistencies when
LLMs encounter problems with slightly different versions. We hope that our UGMathBench can
contribute to future development of "true" reasoning LLMs.
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LIMITATIONS

This work has several limitations. First, UGMathBench focuses on text-only reasoning, whereas
some undergraduate-level math problems require images for their solutions. Developing a multimodal
benchmark for undergraduate-level mathematics will be future work. Second, UGMathBench is
designed as an English-language benchmark. Extending UGMathBench to support multiple languages
could be an interesting avenue for future research. Third, the number of problems in certain subjects
is limited. Expanding these subjects would be valuable.

A DETAILED STATISTICS OF UGMATHBENCH

A.1 INTRINSIC MECHANISM OF DYNAMIC PROBLEMS

A key feature of our UGMathBench is its dynamic nature. In this appendix, we detail how this is
achieved. All problems in our homework grading system (see Appendix B.1) are stored as programs
written in Program Generation, an established programming language for mathematics. These
programs strictly specify conditions to ensure that the generated variations of each problem do not
fundamentally alter their nature, required solution approach, difficulty level, or underlying knowledge
points. One such program is shown in Listing 1, and two different versions of this problem it
generates are given in Figure 7. The relationship between the first and second variables is defined by
$expnt = −1 + 2 ∗ a;, which maintains the consistency of the concepts, techniques, and solutions
involved in different versions of each problem.

A.2 DISTRIBUTION OF PROBLEMS

Our UGMathBench covers various subjects in undergraduate-level mathematics. The detailed topics
and the number of subtopics of each topic across different subjects are listed in Table 6 and 7. There
are 111 topics and 583 subtopics across 16 subjects in total. Furthermore, the distribution information
of our benchmark on different subjects and difficulty level is presented in Table 8. Note that there are
problems with missing difficulty level in our online homework grading system (see Appendix B.1)
and we remain as is for consistency. The keywords of our UGMathBench are shown in Figure 6. The
detailed results across different subjects and topics are discussed in Appendix D and F.

A.3 ANSWER TYPES

By carefully reviewing a large collection of problems and referring to various past benchmarks (He
et al., 2024a; Huang et al., 2024), we classify all answers to be two main categories: atomic and
compound. There are 8 atomic types and 2 compound types. Each compound type is composed of
a list of atomic ones. These types are designed to encompass a wide range of problems. Detailed
definitions for each answer type can be found in Table 9.

B UGMATHBENCH CREATION

B.1 DATA SOURCE

UGMathBench originates from questions in the online homework grading system of our institute,
utilizing WebWork5, an open-source online platform licensed under GNU. Widely employed for
assigning mathematics and science homework in educational settings, WebWork benefits from
collaborative contributions by educators across various institutions.

Each question in WebWork is tagged with keywords related to concepts and difficulty level based on
Bloom’s taxonomy6, which helps simplify statistical analysis and cognitive assessment. To prevent
cheating from each other, WebWork is able to generate tailored problem sets with different random
seeds, making it popular among educational institutions.

5https://www.webwork.org
6https://webwork.maa.org/wiki/Problem_Levels
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Table 6: Topics of each subject and corresponding number of subtopics included in UGMathBench.

Subject Topics # Sub-Topics

Arithmetic Integers 11
Fractions/rational numbers 12
Decimals 9
Percents 3
Irrational numbers 1
Other bases 3
Units 2

Algebra Algebra of real numbers and simplifying expressions 8
Absolute value expressions and functions 3
Properties of exponents, rational exponents and radicals 2
Cartesian coordinate system 4
Factoring 5
Functions 8
Transformations of functions and graphs 6
Linear equations and functions 9
Quadratic equations and functions 8
Operations on polynomial and rational expressions 7
Polynomial equations and functions 7
Variation and power functions 5
Systems of equations and inequalities 1
Functions with fractional exponents and radical func-
tions

1

Rational equations and functions 6
Inverse functions 3
Exponential and logarithmic expressions and functions 8
Finite sequences and series 4
Conic sections 3

Set theory and logic Operations on sets 5
Relations between sets 2
Functions 2
Propositional logic 4
First order logic 3
Pattern matching 1

Trigonometry Geometric and algebraic foundations for trigonometry 3
Trigonometric functions 8
Triangle trigonometry 4
Analytic trigonometry 7
Polar coordinates & vectors 2

Combinatorics Counting 8
Recurrence relations 3

Geometry Shapes 4
Circle geometry 1
Vector geometry 7

Calculus single-variable Calculus of vector valued functions 6
Concepts for multivariable functions 6
Differentiation of multivariable functions 7
Integration of multivariable functions 9
Vector fields 1
Vector calculus 6
Fundamental theorems 4

Calculus multivariable Limits and continuity 14
Differentiation 13
Applications of differentiation 18
Integrals 4
Techniques of integration 8
Applications of integration 16
Infinite sequences and series 18
Parametric 6
Polar 3

Linear Algebra Systems of linear equations 7
Matrices 8
Matrix factorizations 5
Euclidean spaces 8
Abstract vector spaces 7
Eigenvalues and eigenvectors 5
Inner products 6
Linear transformations 6
Determinants 3

Number Theory Divisibility 4
Congruences 5
Diophantine equations 1

Financial Mathematics Annuities 5
Bonds 3
Equations of value 2
Interest 6
Options 5
Expected and contingent payments 2
Equities 2
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Table 7: Topics of each subject and corresponding number of subtopics included in UGMathBench
(Con’t).

Subject Topics # Sub-Topics

Probability Sample Space 6
Random variables 5
Discrete distributions 6
Continuous distributions 5
Laws, theory 2
Several variables 2

Statistics Experimental design 1
Sample survey methods 2
Exploratory data analysis/descriptive statistics 5
Sampling distributions 3
Confidence intervals 9
Hypothesis tests 13
Simple linear regression 7
Time series 2
Point estimation 1
Multiple regression 5
Generalized linear methods 1

Complex Analysis Arithmetic 8
Complex equations 1
Complex plane 1
Complex functions 2
Analytic functions 3
Series and residues 4

Differential Equations Introductory concepts 2
First order differential equations 13
Higher order differential equations 9
Laplace transforms 6
Systems of differential equations 4
Numerical methods 1
Series solutions 3
Partial differential equations 7

Abstract Algebra Groups 7
Rings 4
Fields and polynomials 1

Total count 111 583
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Figure 6: Word Cloud of Keywords in UGMathBench.
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Table 8: Statistics of UGMathBench across different subjects and difficulty levels.

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 All

Arithmetic 22 179 47 21 53 0 322
Algebra 25 233 176 80 73 0 583
Set theory and logic 0 35 11 12 9 0 69
Trigonometry 5 86 44 17 25 0 178
Combinatorics 3 28 47 4 5 1 88
Geometry 5 48 86 13 6 0 161
Calculus single-variable 4 297 317 175 176 1 982
Calculus multivariable 13 279 244 80 37 0 654
Linear Algebra 2 172 232 53 26 0 498
Number Theory 2 33 7 1 1 2 46
Financial Mathematics 7 52 105 72 89 0 346
Probability 11 167 139 16 2 0 336
Statistics 44 151 158 46 0 0 401
Complex Analysis 0 40 7 2 1 1 51
Differential Equations 2 47 115 56 84 0 305
Abstract Algebra 0 8 16 9 1 7 42

Grand Total 145 1,855 1,751 657 588 12 5,062

Table 9: Answer Types and Definitions

Answer Type Definition

Atomic Types

Numerical Value (NV) Problems where the answer is a numerical value, including special values
such as π, e,

√
7, sinπ/8, etc., represented in LaTeX.

Expression (EX) Problems requiring an expression containing variables, e.g., 8x2+x+1,
represented in LaTeX.

Equation (EQ) Problems requiring an equation containing variables, e.g., y = 2x+ 1
represented in LaTeX.

Interval (INT) Problems where the answer is a range of values, e.g., (−∞, 2) ∪ (3,∞)
represented as an interval in LaTeX.

True/False (TF) Problems where the answer is either True or False, Yes or No, T or F, Y
or N, etc.

MC with Single answer (MCS) Multiple-Choice (MC) problems with only one correct option (e.g., one
out of four, one out of five, etc.). The options can be captical letters
(ABCD) or any other string according to the problems (independent or
dependent, etc.).

MC with multiple answers (MCM) Multiple-Choice (MC) problems with multiple correct options (e.g., two
out of four, two out of five, two out of six, etc.). The options can be
captical letters (ABCD) or any other string according to the problems
(independent or dependent, etc.).

Open-Ended (OE) Problems whose answers can be a term, name, or any other string that
satisfies the description of the problem, for example, the name of the
variable or function that occurs in the problem (which should be treated
differently with EX).

Compound Types

Ordered List (OL) Problems where the answer is an ordered list, e.g. a coordinate ( (1, 2, 3),
(2t, t2), etc.).

Unordered List (UOL) Problems where the answer is an unordered list, e.g., a set or multiple
solutions for an equation.

As mentioned in Appendix A.1, our problem generation programs will remain the main problem
structure and knowledge points. One such example is illustrated in Figure 7 and the corresponding
program is given in Listing 1. The dashed red box highlights the differences between randomized
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Figure 7: An Example of Our Online Homework Grading System Based on WebWork. The dashed
red box highlights the differences between randomized versions of the problem.

versions of the problem. For this specific example, the second random variable is initialized through
a = random(2, 10). The relationship between the first and second variables is defined by expnt =
−1+2∗a. This meticulous setup maintains the consistency of the concepts, techniques, and solutions
involved in different versions of each problem. Another example is demonstrated in Figure 8, where
’n’ is initialized to a randomly chosen exponent from 2 to 10 in increments of 0.1.

All problems within WebWork are stored in the Problem Generation language and are presented in
HTML format with JavaScript and external resources. This poses challenges for human interpretation
and LLMs analysis, urging us to clean and re-format them in Latex (see Section 3.2).

$a=random ( 2 , 1 0 ) ; # all-inclusive integers between 2 and 10
$expnt = −1+2*$a ;
$ans = " 1 / $a*x^ $a* s i n ( x^ $a ) + 1 / $a* cos ( x^ $a ) " ; #Right answer

TEXT( beginproblem ( ) ) ;
BEGIN_TEXT
First make a substitution and then use integration by parts to evaluate the integral.
$BR
\ [ \ i n t x^{ $expnt } \ cos ( x^ $a ) dx \ ]
$BR
Answer : \ { a n s _ r u l e ( 4 0 ) \ } \ ( + \ ) \ ( C \ )
END_TEXT

#Compare the right answer to the input
ANS( fun_cmp ( $ans , mode=> ’ a n t i d e r ’ ) ) ;

Listing 1: Problem Generator Code for the Problem in Figure 7

B.2 DEDUPLICATION

After converting and cleaning all the problems, we perform deduplication within each subject. More
specifically, we adhere to the following steps: First, we transform each question into a vector with
dimension 1536 using the embedding model text-embedding-ada-002, which is the most
capable 2nd generation embedding model of OpenAI7. We then calculate pairwise cosine similarities
using the embeddings in the previous step. Finally, a threshold is selected based on manual inspection
within each subject, and problems that have a cosine similarity higher than that threshold with existing
problems are excluded. The thresholds and the number of questions filtered out for different subjects
are presented in Table 10. We use subject-agnostic thresholds and filter out 9,382 questions in total.

7The information can be found at https://openai.com/index/new-embedding-models-and-api-updates/
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Figure 8: Another Example of Our Online Homework Grading System Based on WebWork.

Table 10: Thresholds of deduplication and the number of questions that filtered out in UGMathBench.

Threshold Before After # Filter Out

Arithmetic 0.92 845 322 523
Algebra 0.86 4663 583 4080
Set theory and logic 0.96 94 69 25
Trigonometry 0.91 399 178 221
Combinatorics 0.89 140 88 52
Geometry 0.92 267 161 106
Calculus single-variable 0.90 3234 982 2252
Calculus multivariable 0.94 866 654 212
Linear Algebra 0.93 1235 498 737
Number Theory 0.92 68 46 22
Financial Mathematics 0.92 653 346 307
Probability 0.91 453 336 117
Statistics 0.92 599 401 198
Complex Analysis 0.95 129 51 78
Differential Equations 0.92 741 305 436
Abstract Algebra 0.94 58 42 16

Grand Total - 14444 5,062 9382

C DETAILED EXPERIMENTAL SETUP

C.1 EVALUATED LLMS

A variety of LLMs are covered in our evaluation, including closed-source commercial models
and open-source models, general-purpose models and models dedicated for math problem solving.
Closed-source LLMs are as follows:

• o1-preview (OpenAI, 2024b): An early preview of OpenAI’s o1 model, designed to reason
about hard problems using broad general knowledge about the world. We used o1-preview-
2024-09-12 for our evaluation.

• GPT-4o (OpenAI, 2024a): GPT-4o is multimodal, and has the same high intelligence as
GPT-4 Turbo but is much more efficient.

• Claude-3-Opus (Anthropic, 2024): Anthropic’s most intelligent model, claimed to outper-
form its peers on most of the common evaluation benchmarks for AI systems.

We evaluated the following open-source general-purpose LLMs on our benchmark:

• Llama-3-Instruct (AI@Meta, 2024): LLaMA 3 Community License.
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• Mistral-7B-Instruct-v0.3 (Mistral, 2024a): Apache 2.0

• Mistral-Nemo-Instruct-2407 (Mistral, 2024c): Apache 2.0

• Mistral-Small-Instruct-2409 (Mistral, 2024d): MRL License.

• Mistral-Large-Instruct-2407 (Mistral, 2024b): MRL License.

• Qwen2-Instruct (Yang et al., 2024a): Qwen2 series are developed with dedication to math
and coding. We used 7B and 72B models. 7B models are licensed under Apache 2.0, while
72B models are under Tongyi Qianwen License.

• Yi-1.5-Chat (AI et al., 2024): Yi-1.5 delivers stronger performance in coding, math, reason-
ing, and instruction-following capability compared to its predecessor. We used 6B, 9B, 34B
variants. Yi-1.5 series are licensed under Apache 2.0.

• DeepSeek-V2-Lite-Chat (DeepSeek-AI, 2024): model under Model License code under
MIT License.

• deepseek-moe-16b-chat (Dai et al., 2024): model under Model License, code under MIT
License.

The following specialized math LLMs are evaluated in our study:

• DeepSeekMath-7B (Shao et al., 2024): DeepSeekMath is initialized with DeepSeek-Coder-
v1.5 7B and continues pre-training on math-related tokens. We tested both DeepSeekMath-
7B-RL and DeepSeekMath-7B-Instruct variants. Models are under Model License while
code is under MIT License.

• Qwen2-Math (Yang et al., 2024b): Qwen2-Math is a series of specialized math language
models built upon the Qwen2 LLMs. We evaluated 7B and 72B variants. They are under
the same license as Qwen2-Instruct series.

• Mathstral-7B (Mistral, 2023): Mathstral stands on the shoulders of Mistral 7B and special-
izes in STEM subjects. This model is published under Apache 2.0.

• Numinamath-7B-CoT (Beeching et al., 2024): This model is finetuned from
DeepSeekMath-7B-base with two stages of supervised fine-tuning to solve math problems
using chain of thought (CoT). It is licensed under Apache 2.0.

C.2 EVALUATION PROMPTS

The evaluation prompts in our experiments are given in Table 11, where detailed answer type
descriptions are given in Table 12. Following He et al. (2024a); Huang et al. (2024), these prompts
are specially designed for different subjects and answer types for better evaluation. Note that, for
chat models, we will apply chat template for better evaluation.

D RESULTS ACROSS DIFFERENT SUBJECTS

The detailed results across different subjects are given in Table 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, and 28. From the results, we have the following observations:

• OpenAI-o1-mini achieves the best results across nearly all subjects, although GPT-4o
sometimes excels in terms of RE.

• For open-source LLMs, Qwen-2-Math-72B-instruct achieves the best results in almost all
subjects. However, Mistral-Large-instruct-2407 outperforms Qwen-2-Math-72B-instruct in
Algebra.

• Some LLMs even achieve zero EAcc in certain subjects. For instance, Mistral-7B-Instruct
get zero EAcc in Set Theory and Logic, and seven LLMs exhibit zero EAcc in Abstract
Algebra.

• The variation in the reasoning gap differs significantly across subjects, providing more
fine-grained information on how different LLMs perform across various domains.
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Table 11: Evaluation prompts for problems with single answer or multiple answers. {problem} is the
specific problem to evaluate. {subject} denotes the subject this problem belongs to and all subjects
are given in Table 6. {answer_type_description} are specified in Table 12. {number_of_answers}
stands for the number of answers in the problem evaluated.

Evaluation Prompt for Single Answer

The following is an undergraduate-level mathematical problem in {subject}. You need to solve
the problem by completing all placeholders [ANS].

This problem involves only one placeholders [ANS] to be completed. The answer type is
{answer_type_description}.

Problem:
{problem}

All mathematical formulas and symbols you output should be represented with LaTeX. Please
end your response with: "The final answer is ANSWER , where ANSWER should be your final
answer.

Evaluation Prompt for Multiple Answers

The following is an undergraduate-level mathematical problem in {subject}. You need to solve
the problem by completing all placeholders [ANS].

This problem involves {number_of_answers} placeholders [ANS] to be completed. Their answer
types are, in order, {answer_type_description}.

Problem:
{problem}

All mathematical formulas and symbols you output should be represented with LaTeX. Please
end your response with: "The final answer is ANSWER , where ANSWER should be the
sequence of your final answers, separated by commas.

Table 12: Descriptions of answer types included in evaluation prompts, where {options} is the specific
options from the multiple choice question evaluated.

Answer Type Answer Type Description

NV a numerical value without units

EX an expression

EQ an equation

INT a range interval

TF either True or False

MCS one option for a multiple choice question with options {options}

MCM more than one option concatenated without space or commas of a multi-
ple choice question with options {options}, for example: BD

OE a word, phrase, term or string that satisfies the requirements of the
problem

OL an ordered list of answers surrounded by parentheses with any answer
types, for example (1, x2, T rue), where "ordered list" means changing
the order of elements results in different answers

UOL an unordered list of answers surrounded by parentheses with any answer
types, for example, (1, x2, T rue), where "unordered list" means chang-
ing the order of elements results in the same answer
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Table 13: Results on Abstract Algebra (all figures are in %). The best results within each column
are bolded and the best results of open-source Chat LLMs within a similar parameter size group are
underlined.

Models Acc1 Acc2 Acc3 AAcc EAcc ∆ RE
Closed-source LLMs

OpenAI-o1-mini-2024-09-12 76.19 73.81 71.42 73.81 57.14 16.67 29.17
GPT-4o-2024-08-06 42.86 50.00 52.38 48.41 28.57 19.84 69.44
GPT-4o-mini-2024-07-18 26.19 35.71 38.09 33.33 14.29 19.04 133.2
Claude-3-Opus-20240229 23.81 38.10 26.19 29.37 11.90 17.47 146.8

Open-source Chat LLMs
Yi-1.5-6B-Chat 4.76 2.38 9.52 5.56 0.00 5.56 ∞
Mistral-7B-Instruct 2.38 2.38 0.00 1.59 0.00 1.59 ∞
Qwen2-7B-Instruct 4.76 16.67 19.05 13.49 4.76 8.73 183.4
LLaMA3-8B-Instruct 0.00 7.14 9.52 5.56 0.00 5.56 ∞
Yi-1.5-9B-Chat 7.14 14.29 11.90 11.11 0.00 11.11 ∞
Mistral-Nemo-Instruct-2407 0.00 9.52 4.76 4.76 0.00 4.76 ∞
DeepSeek-MOE-16B-Chat 0.00 2.38 2.38 1.59 0.00 1.59 ∞
DeepSeek-V2-Lite-Chat 0.00 2.38 2.38 1.59 0.00 1.59 ∞
Mistral-Small-Instruct-2409 9.52 19.05 21.43 16.67 7.14 9.53 133.5
Yi-1.5-34B-Chat 19.05 9.52 9.52 12.70 0.00 12.70 ∞
LLaMA3-70B-Instruct 19.05 16.67 19.04 18.25 4.76 13.49 283.4
Qwen2-72B-Instruct 28.57 47.62 30.95 35.71 14.29 21.42 149.9
Mistral-Large-Instruct-2407 35.71 35.71 45.24 38.89 21.43 17.46 81.47

Specialized Mathematical LLMs
DeepSeek-Math-7B-Instruct 7.14 9.52 4.76 7.14 0.00 7.14 ∞
DeepSeek-Math-7B-RL 4.76 19.05 11.90 11.90 2.38 9.52 400.0
NuminaMath-7B-CoT 7.14 16.67 7.14 10.32 0.00 10.32 ∞
Mathstral-7B-v0.1 9.52 4.76 7.14 7.14 0.00 7.14 ∞
Qwen2-Math-7B-Instruct 23.81 33.33 28.57 28.57 14.29 14.28 99.93
Qwen2-Math-72B-Instruct 45.24 40.48 42.86 42.86 26.19 16.67 63.65

E ERROR ANALYSIS

We perform error analysis in Section 5.4, and here we showcase several examples of various error
types in Table 29, 30, and 31.

The distribution of the relative error for OpenAI-o1-mini numerical values is illustrated in Figure 9.
We excluded numerical answers identical to the ground truth, as their logarithmic relative error would
be negative infinity.

F RESULTS ACROSS DIFFERENT TOPICS

The performances of differerent LLMs on 20 topics are shown in Figure 10, 11, 12 and 13. We
observe that different LLMs exhibit varying performance patterns across these topics, and even
models within the same family show differences in their rankings.

G REFINEMENT RESULTS

Progressive-Hint Prompting (PHP) (Zheng et al., 2023) is a technique designed to enhance automatic,
iterative interactions with LLMs. PHP uses previously generated answers as hints to progressively
guide users toward the correct solutions. In our experiments, we employ the zero-shot manner to
ensure a fair comparison with the primary experiments in Table 4, which helps to assess the impact
of refinement on the performance of LLMs in solving undergraduate-level mathematical problems.
We have set the maximum number of interaction rounds to five. To save cost, we only experiment
with GPT-4o for closed-source LLMs. The results are presented in Table 32. While PHP can improve
AAcc and EAcc in most cases, the improvements are not substantial. There remains considerable
potential for enhancing the mathematical reasoning abilities of LLMs in solving undergraduate-level
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Table 14: Results on Algebra (all figures are in %). The best results within each column are bolded
and the best results of open-source Chat LLMs within a similar parameter size group are underlined.

Models Acc1 Acc2 Acc3 AAcc EAcc ∆ RE
Closed-source LLMs

OpenAI-o1-mini-2024-09-12 76.16 75.47 74.44 75.36 66.72 8.64 12.95
GPT-4o-2024-08-06 70.50 71.53 72.04 71.36 64.67 6.69 10.34
GPT-4o-mini-2024-07-18 67.41 67.24 66.38 67.01 59.52 7.49 12.58
Claude-3-Opus-20240229 63.29 66.38 63.81 64.49 54.20 10.29 18.99

Open-source Chat LLMs
Yi-1.5-6B-Chat 38.77 37.22 40.48 38.82 25.21 13.61 53.99
Mistral-7B-Instruct 19.73 21.96 19.55 20.41 11.32 9.09 80.30
Qwen2-7B-Instruct 51.63 53.00 54.03 52.89 41.85 11.04 26.38
LLaMA3-8B-Instruct 30.53 33.28 30.19 31.33 18.35 12.98 70.74
Yi-1.5-9B-Chat 46.83 48.89 48.37 48.03 33.79 14.24 42.14
Mistral-Nemo-Instruct-2407 39.79 43.05 39.79 40.88 28.82 12.06 41.85
DeepSeek-MOE-16B-Chat 12.01 12.35 10.98 11.78 4.97 6.81 137.0
DeepSeek-V2-Lite-Chat 23.33 24.01 24.53 23.96 11.32 12.64 111.7
Mistral-Small-Instruct-2409 58.32 57.46 56.95 57.58 47.86 9.72 20.31
Yi-1.5-34B-Chat 53.34 53.00 52.66 53.00 40.31 12.69 31.48
LLaMA3-70B-Instruct 50.09 51.80 51.11 51.00 40.48 10.52 25.99
Qwen2-72B-Instruct 63.81 63.46 64.49 63.92 54.72 9.20 16.81
Mistral-Large-Instruct-2407 68.44 68.10 67.92 68.15 59.86 8.29 13.85

Specialized Mathematical LLMs
DeepSeek-Math-7B-Instruct 40.31 38.77 38.25 39.11 26.07 13.04 50.02
DeepSeek-Math-7B-RL 44.43 47.51 44.94 45.63 34.31 11.32 32.99
NuminaMath-7B-CoT 45.80 45.45 46.14 45.80 34.65 11.15 32.18
Mathstral-7B-v0.1 45.97 43.91 43.57 44.48 32.25 12.23 37.92
Qwen2-Math-7B-Instruct 56.09 57.46 57.63 57.06 47.86 9.20 19.22
Qwen2-Math-72B-Instruct 67.58 67.75 67.24 67.52 58.83 8.69 14.77
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Figure 9: Relative Error of Numeric Answers excluding ones that are identical to the ground truth.
Red dotted line indicates the tolerance threshold when we evaluate model answers.

mathematics. The results for PHP across different subjects for GPT-4o (see Table 33) indicate that
the impact of PHP is subject-agnostic.
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Table 15: Main Results on Arithmetic (all figures are in %). The best results within each column
are bolded and the best results of open-source Chat LLMs within a similar parameter size group are
underlined.

Models Acc1 Acc2 Acc3 AAcc EAcc ∆ RE
Closed-source LLMs

OpenAI-o1-mini-2024-09-12 93.48 92.86 94.10 93.48 90.37 3.11 3.44
GPT-4o-2024-08-06 91.93 91.30 92.24 91.82 87.27 4.55 5.21
GPT-4o-mini-2024-07-18 89.44 87.27 90.06 88.92 83.23 5.69 6.84
Claude-3-Opus-20240229 84.78 85.71 86.96 85.82 78.26 7.56 9.66

Open-source Chat LLMs
Yi-1.5-6B-Chat 63.98 64.91 67.70 65.53 50.00 15.53 31.06
Mistral-7B-Instruct 30.43 34.78 33.54 32.92 15.22 17.70 116.3
Qwen2-7B-Instruct 77.64 78.26 78.57 78.16 68.94 9.22 13.37
LLaMA3-8B-Instruct 51.24 53.42 54.97 53.21 33.54 19.67 58.65
Yi-1.5-9B-Chat 73.60 73.60 70.81 72.67 59.32 13.35 22.51
Mistral-Nemo-Instruct-2407 69.88 70.19 72.67 70.91 55.28 15.63 28.27
DeepSeek-MOE-16B-Chat 26.09 30.43 31.68 29.40 12.42 16.98 136.7
DeepSeek-V2-Lite-Chat 50.31 53.42 49.07 50.93 32.92 18.01 54.71
Mistral-Small-Instruct-2409 82.61 84.78 81.68 83.02 73.29 9.73 13.28
Yi-1.5-34B-Chat 75.47 74.84 75.47 75.26 62.42 12.84 20.57
LLaMA3-70B-Instruct 79.81 82.61 83.85 82.09 72.36 9.73 13.45
Qwen2-72B-Instruct 88.51 88.20 89.44 88.72 82.61 6.11 7.40
Mistral-Large-Instruct-2407 90.37 89.13 90.06 89.86 82.61 7.25 8.78

Specialized Mathematical LLMs
DeepSeek-Math-7B-Instruct 62.73 68.63 65.22 65.53 49.69 15.84 31.88
DeepSeek-Math-7B-RL 74.53 76.71 76.71 75.98 67.08 8.90 13.27
NuminaMath-7B-CoT 74.22 75.78 77.33 75.78 62.42 13.36 21.40
Mathstral-7B-v0.1 71.74 72.67 72.36 72.26 59.63 12.63 21.18
Qwen2-Math-7B-Instruct 88.51 84.78 86.65 86.65 78.88 7.77 9.85
Qwen2-Math-72B-Instruct 90.68 90.68 90.99 90.79 86.96 3.83 4.40

H REASONING GAP AND TEST SET CONTAMINATION

Given the limited number of examples in the test set for one version (in terms of SFT), it is necessary
to mix the test set with general mathematical SFT data. For our experiments, we adopt MetaMathQA
(Yu et al., 2023), a high-quality SFT dataset for math word problems, which includes 395,000 training
examples. We use Llama-3-8B as our base model and set the maximum output token length to 4096.
Following Tong et al. (2024), we set the learning rate to 5e-5, use a warmup ratio of 0.03, adopt
cosine decay, and train the model for one epoch. Training one model takes approximately three hours
on four A100 GPUs. The results are presented in Table 5. We set the proportion of the test set (from
one version) for SFT to 5%, 10%, 15% and, 20% and see how the reasoning gap varies. As the
proportion of the test set included in the training data increases, the reasoning gap (∆))also becomes
more pronounced. This study serves as an initial investigation into test set contamination during the
SFT stage. It is important to note that contamination at the pre-training stage is also a significant area
of interest (Razeghi et al., 2022; Jiang et al., 2024).
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Table 16: Main Results on Calculus - multivariable (all figures are in %). The best results within
each column are bolded and the best results of open-source Chat LLMs within a similar parameter
size group are underlined.

Models Acc1 Acc2 Acc3 AAcc EAcc ∆ RE
Closed-source LLMs

OpenAI-o1-mini-2024-09-12 59.33 60.09 59.94 59.79 48.32 11.47 23.74
GPT-4o-2024-08-06 50.00 49.69 49.24 49.64 38.23 11.41 29.85
GPT-4o-mini-2024-07-18 42.81 44.80 43.27 43.63 32.11 11.52 35.88
Claude-3-Opus-20240229 35.93 39.14 35.93 37.00 24.01 12.99 54.10

Open-source Chat LLMs
Yi-1.5-6B-Chat 20.34 22.48 20.03 20.95 10.40 10.55 101.4
Mistral-7B-Instruct 5.05 3.98 4.59 4.54 1.22 3.32 272.1
Qwen2-7B-Instruct 25.38 25.23 26.15 25.59 16.06 9.53 59.34
LLaMA3-8B-Instruct 6.27 7.80 7.03 7.03 2.45 4.58 186.9
Yi-1.5-9B-Chat 28.75 28.75 29.51 29.00 16.67 12.33 73.97
Mistral-Nemo-Instruct-2407 13.61 12.39 10.55 12.18 5.81 6.37 109.6
DeepSeek-MOE-16B-Chat 1.68 0.46 1.22 1.12 0.00 1.12 ∞
DeepSeek-V2-Lite-Chat 5.05 4.89 3.52 4.49 1.38 3.11 225.4
Mistral-Small-Instruct-2409 27.98 29.51 27.68 28.39 17.28 11.11 64.29
Yi-1.5-34B-Chat 26.45 27.98 26.15 26.86 14.22 12.64 88.89
LLaMA3-70B-Instruct 20.79 23.39 20.95 21.71 12.23 9.48 77.51
Qwen2-72B-Instruct 35.02 37.92 35.32 36.09 23.55 12.54 53.25
Mistral-Large-Instruct-2407 46.94 49.08 47.71 47.91 36.70 11.21 30.54

Specialized Mathematical LLMs
DeepSeek-Math-7B-Instruct 11.16 12.54 12.23 11.98 5.35 6.63 123.9
DeepSeek-Math-7B-RL 18.81 17.58 16.06 17.48 8.56 8.92 104.2
NuminaMath-7B-CoT 20.49 20.80 22.02 21.10 11.47 9.63 83.96
Mathstral-7B-v0.1 16.36 17.89 17.89 17.38 9.63 7.75 80.48
Qwen2-Math-7B-Instruct 35.78 36.09 33.33 35.07 24.77 10.30 41.58
Qwen2-Math-72B-Instruct 48.47 49.39 51.22 49.69 39.45 10.24 25.96

Table 17: Main Results on Calculus - single variable (all figures are in %). The best results within
each column are bolded and the best results of open-source Chat LLMs within a similar parameter
size group are underlined.

Models Acc1 Acc2 Acc3 AAcc EAcc ∆ RE
Closed-source LLMs

OpenAI-o1-mini-2024-09-12 72.81 73.32 72.61 72.91 59.37 13.54 22.81
GPT-4o-2024-08-06 63.65 65.48 65.48 64.87 53.05 11.82 22.28
GPT-4o-mini-2024-07-18 54.68 57.43 55.91 56.01 42.26 13.75 32.53
Claude-3-Opus-20240229 47.96 51.32 50.61 49.97 34.73 15.24 43.88

Open-source Chat LLMs
Yi-1.5-6B-Chat 27.39 31.57 30.96 29.97 16.80 13.17 78.39
Mistral-7B-Instruct 8.86 10.29 8.96 9.37 4.38 4.99 113.9
Qwen2-7B-Instruct 39.51 41.96 39.41 40.29 27.70 12.59 45.45
LLaMA3-8B-Instruct 13.14 13.95 13.44 13.51 7.03 6.48 92.18
Yi-1.5-9B-Chat 37.27 37.88 38.19 37.78 23.42 14.36 61.32
Mistral-Nemo-Instruct-2407 21.28 23.22 22.20 22.23 12.32 9.91 80.44
DeepSeek-MOE-16B-Chat 4.58 4.48 4.48 4.51 1.22 3.29 269.67
DeepSeek-V2-Lite-Chat 11.30 12.53 12.02 11.95 4.38 7.57 172.83
Mistral-Small-Instruct-2409 39.41 40.73 39.51 39.88 26.37 13.51 51.23
Yi-1.5-34B-Chat 39.41 41.34 39.21 39.99 24.95 15.04 60.28
LLaMA3-70B-Instruct 32.89 36.46 34.21 34.52 22.81 11.71 51.34
Qwen2-72B-Instruct 47.86 50.20 48.88 48.98 33.50 15.48 46.21
Mistral-Large-Instruct-2407 57.33 59.17 59.57 58.69 45.93 12.76 27.78

Specialized Mathematical LLMs
DeepSeek-Math-7B-Instruct 23.83 27.39 23.83 25.02 13.75 11.27 81.96
DeepSeek-Math-7B-RL 30.04 30.65 30.65 30.45 20.06 10.39 51.79
NuminaMath-7B-CoT 32.08 32.89 32.79 32.59 20.16 12.43 61.66
Mathstral-7B-v0.1 27.70 27.19 29.53 28.14 16.29 11.85 72.74
Qwen2-Math-7B-Instruct 46.03 49.49 49.49 48.34 35.74 12.60 35.25
Qwen2-Math-72B-Instruct 61.71 61.81 60.08 61.20 49.29 11.91 24.16
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Table 18: Main Results on Combinatorics (all figures are in %). Models are classified into three
categories according to their purpose and origin. The best results within each column are bolded and
the best results of open-source Chat LLMs within a similar parameter size group are underlined.

Models Acc1 Acc2 Acc3 AAcc EAcc ∆ RE
Closed-source LLMs

OpenAI-o1-mini-2024-09-12 90.91 92.05 95.45 92.80 88.64 4.16 4.69
GPT-4o-2024-08-06 77.27 77.27 78.41 77.65 61.36 16.29 26.55
GPT-4o-mini-2024-07-18 70.45 69.32 73.86 71.21 56.82 14.39 25.33
Claude-3-Opus-20240229 56.82 65.91 68.18 63.64 50.00 13.64 27.28

Open-source Chat LLMs
Yi-1.5-6B-Chat 25.00 34.09 29.55 29.55 18.18 11.37 62.54
Mistral-7B-Instruct 10.23 12.50 11.36 11.36 2.27 9.09 400.4
Qwen2-7B-Instruct 39.77 45.45 44.32 43.18 28.41 14.77 51.99
LLaMA3-8B-Instruct 22.73 23.86 23.86 23.48 14.77 8.71 58.97
Yi-1.5-9B-Chat 32.95 43.18 44.32 40.15 25.00 15.15 60.60
Mistral-Nemo-Instruct-2407 26.14 30.68 32.95 29.92 18.18 11.74 64.58
DeepSeek-MOE-16B-Chat 6.82 11.36 7.95 8.71 2.27 6.44 283.7
DeepSeek-V2-Lite-Chat 17.05 22.73 12.50 17.42 6.82 10.60 155.43
Mistral-Small-Instruct-2409 46.59 59.09 50.00 51.89 38.64 13.25 34.29
Yi-1.5-34B-Chat 37.50 48.86 52.27 46.21 27.27 18.94 69.45
LLaMA3-70B-Instruct 47.73 52.27 45.45 48.48 37.50 10.98 29.28
Qwen2-72B-Instruct 60.23 63.64 60.23 61.36 47.73 13.63 28.56
Mistral-Large-Instruct-2407 69.32 72.73 71.59 71.21 57.95 13.26 22.88

Specialized Mathematical LLMs
DeepSeek-Math-7B-Instruct 26.14 37.50 27.27 30.30 17.05 13.25 77.71
DeepSeek-Math-7B-RL 30.68 42.05 39.77 37.50 26.14 11.36 43.46
NuminaMath-7B-CoT 30.68 35.23 37.50 34.47 23.86 10.61 44.47
Mathstral-7B-v0.1 34.09 38.64 35.23 35.98 26.14 9.84 37.64
Qwen2-Math-7B-Instruct 62.50 62.50 64.77 63.26 47.73 15.53 32.54
Qwen2-Math-72B-Instruct 76.14 76.14 75.00 75.76 62.50 13.26 21.22

Table 19: Main Results on Complex analysis (all figures are in %). The best results within each
column are bolded and the best results of open-source Chat LLMs within a similar parameter size
group are underlined.

Models Acc1 Acc2 Acc3 AAcc EAcc ∆ RE
Closed-source LLMs

OpenAI-o1-mini-2024-09-12 74.51 74.51 76.47 75.16 64.71 10.45 16.15
GPT-4o-2024-08-06 66.67 70.59 70.59 69.28 58.82 10.46 17.78
GPT-4o-mini-2024-07-18 62.75 62.75 62.75 62.75 50.98 11.77 23.09
Claude-3-Opus-20240229 47.06 49.02 50.98 49.02 37.25 11.77 31.60

Open-source Chat LLMs
Yi-1.5-6B-Chat 35.29 37.25 31.37 34.64 23.53 11.11 47.22
Mistral-7B-Instruct 11.76 11.76 9.80 11.11 5.88 5.23 88.95
Qwen2-7B-Instruct 45.10 50.98 43.14 46.41 35.29 11.12 31.51
LLaMA3-8B-Instruct 19.61 17.65 17.65 18.30 13.73 4.57 33.28
Yi-1.5-9B-Chat 39.22 39.22 39.22 39.22 27.45 11.77 42.88
Mistral-Nemo-Instruct-2407 29.41 25.49 25.49 26.80 19.61 7.19 36.66
DeepSeek-MOE-16B-Chat 1.96 3.92 1.96 2.61 0.00 2.61 ∞
DeepSeek-V2-Lite-Chat 17.65 13.73 15.69 15.69 7.84 7.85 100.1
Mistral-Small-Instruct-2409 47.06 49.02 43.14 46.41 37.25 9.16 24.59
Yi-1.5-34B-Chat 47.06 45.10 39.22 43.79 25.49 18.30 71.79
LLaMA3-70B-Instruct 43.14 33.33 37.25 37.91 25.49 12.42 48.72
Qwen2-72B-Instruct 52.94 62.75 62.75 59.48 47.06 12.42 26.39
Mistral-Large-Instruct-2407 64.71 64.71 60.78 63.40 52.94 10.46 19.76

Specialized Mathematical LLMs
DeepSeek-Math-7B-Instruct 35.29 29.41 27.45 30.72 23.53 7.19 30.56
DeepSeek-Math-7B-RL 35.29 41.18 47.06 41.18 27.45 13.73 50.02
NuminaMath-7B-CoT 33.33 35.29 37.25 35.29 21.57 13.72 63.61
Mathstral-7B-v0.1 37.25 29.41 31.37 32.68 15.69 16.99 108.3
Qwen2-Math-7B-Instruct 56.86 49.02 52.94 52.94 41.18 11.76 28.56
Qwen2-Math-72B-Instruct 70.59 72.55 72.55 71.90 64.71 7.19 11.11
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Table 20: Main Results on Differential equations (all figures are in %). Models are classified
into three categories according to their purpose and origin. The best results within each column are
bolded and the best results of open-source Chat LLMs within a similar parameter size group are
underlined.

Models Acc1 Acc2 Acc3 AAcc EAcc ∆ RE
Closed-source LLMs

OpenAI-o1-mini-2024-09-12 29.84 29.18 29.51 29.51 22.62 6.89 30.46
GPT-4o-2024-08-06 23.93 24.59 25.57 24.70 19.34 5.36 27.71
GPT-4o-mini-2024-07-18 20.00 22.30 19.67 20.66 16.07 4.59 28.56
Claude-3-Opus-20240229 18.69 18.03 20.33 19.02 13.11 5.91 45.08

Open-source Chat LLMs
Yi-1.5-6B-Chat 6.23 9.51 4.59 6.78 2.95 3.83 129.8
Mistral-7B-Instruct 3.28 3.93 4.59 3.93 1.64 2.29 139.6
Qwen2-7B-Instruct 11.80 12.13 11.48 11.80 7.54 4.26 56.50
LLaMA3-8B-Instruct 4.26 5.90 5.57 5.25 2.62 2.63 100.4
Yi-1.5-9B-Chat 11.80 13.44 12.13 12.46 6.23 6.23 100.0
Mistral-Nemo-Instruct-2407 8.52 7.87 9.18 8.52 4.26 4.26 100.0
DeepSeek-MOE-16B-Chat 0.66 1.31 0.00 0.66 0.00 0.66 ∞
DeepSeek-V2-Lite-Chat 2.62 2.62 1.97 2.40 0.33 2.07 627.3
Mistral-Small-Instruct-2409 15.74 15.74 14.43 15.30 9.84 5.46 55.49
Yi-1.5-34B-Chat 12.13 15.08 12.13 13.11 7.21 5.90 81.83
LLaMA3-70B-Instruct 12.79 13.44 12.13 12.79 7.54 5.25 69.63
Qwen2-72B-Instruct 19.34 20.00 18.36 19.23 13.77 5.46 39.65
Mistral-Large-Instruct-2407 22.95 25.90 24.92 24.59 18.69 5.90 31.57

Specialized Mathematical LLMs
DeepSeek-Math-7B-Instruct 6.89 7.54 5.90 6.78 1.97 4.81 244.2
DeepSeek-Math-7B-RL 8.52 10.82 9.84 9.73 5.25 4.48 85.33
NuminaMath-7B-CoT 10.82 10.16 7.87 9.62 4.26 5.36 125.8
Mathstral-7B-v0.1 10.49 10.49 9.51 10.16 4.92 5.24 106.5
Qwen2-Math-7B-Instruct 15.41 18.69 18.03 17.38 12.13 5.25 43.28
Qwen2-Math-72B-Instruct 22.95 22.95 22.95 22.95 17.38 5.57 32.05
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Table 21: Main Results on Financial mathematics (all figures are in %). Models are classified
into three categories according to their purpose and origin. The best results within each column are
bolded and the best results of open-source Chat LLMs within a similar parameter size group are
underlined.

Models Acc1 Acc2 Acc3 AAcc EAcc ∆ RE
Closed-source LLMs

OpenAI-o1-mini-2024-09-12 46.53 49.13 51.16 48.94 28.32 20.62 72.81
GPT-4o-2024-08-06 28.61 29.77 29.77 29.38 18.21 11.17 61.34
GPT-4o-mini-2024-07-18 16.19 17.63 19.65 17.82 9.54 8.28 86.79
Claude-3-Opus-20240229 19.65 21.39 20.52 20.52 10.98 9.54 86.89

Open-source Chat LLMs
Yi-1.5-6B-Chat 5.49 6.94 6.94 6.45 3.18 3.27 102.8
Mistral-7B-Instruct 1.16 3.47 2.02 2.22 0.87 1.35 155.2
Qwen2-7B-Instruct 8.67 12.43 8.96 10.02 3.76 6.26 166.5
LLaMA3-8B-Instruct 2.60 2.02 3.18 2.60 1.16 1.44 124.1
Yi-1.5-9B-Chat 9.25 14.45 12.43 12.04 4.05 7.99 197.2
Mistral-Nemo-Instruct-2407 4.62 5.49 6.07 5.39 1.73 3.66 211.6
DeepSeek-MOE-16B-Chat 0.58 0.87 1.16 0.87 0.00 0.87 ∞
DeepSeek-V2-Lite-Chat 3.76 3.76 3.76 3.76 1.45 2.31 159.3
Mistral-Small-Instruct-2409 12.43 11.85 13.01 12.43 5.78 6.65 115.1
Yi-1.5-34B-Chat 11.85 14.45 13.58 13.29 5.20 8.09 155.6
LLaMA3-70B-Instruct 8.09 10.12 9.25 9.15 4.62 4.53 98.05
Qwen2-72B-Instruct 15.03 18.50 16.47 16.67 8.96 7.71 86.05
Mistral-Large-Instruct-2407 22.54 26.59 21.97 23.70 15.32 8.38 54.70

Specialized Mathematical LLMs
DeepSeek-Math-7B-Instruct 4.91 6.07 4.62 5.20 2.31 2.89 125.1
DeepSeek-Math-7B-RL 5.49 7.51 5.78 6.26 2.02 4.24 209.9
NuminaMath-7B-CoT 8.67 9.25 9.25 9.06 3.76 5.30 141.0
Mathstral-7B-v0.1 4.91 9.83 7.23 7.32 3.18 4.14 130.2
Qwen2-Math-7B-Instruct 10.69 17.05 15.32 14.35 5.49 8.86 161.38
Qwen2-Math-72B-Instruct 28.90 26.88 29.19 28.32 16.47 11.85 71.95
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Table 22: Main Results on Geometry (all figures are in %). Models are classified into three
categories according to their purpose and origin. The best results within each column are bolded and
the best results of open-source Chat LLMs within a similar parameter size group are underlined.

Models Acc1 Acc2 Acc3 AAcc EAcc ∆ RE
Closed-source LLMs

OpenAI-o1-mini-2024-09-12 71.43 67.08 71.43 69.98 58.39 11.59 19.85
GPT-4o-2024-08-06 64.60 63.98 63.98 64.18 51.55 12.63 24.50
GPT-4o-mini-2024-07-18 60.87 55.90 59.63 58.80 44.10 14.70 33.33
Claude-3-Opus-20240229 57.76 49.69 49.07 52.17 37.89 14.28 37.69

Open-source Chat LLMs
Yi-1.5-6B-Chat 32.92 27.33 30.43 30.23 18.01 12.22 67.85
Mistral-7B-Instruct 8.70 8.70 6.83 8.07 3.11 4.96 159.5
Qwen2-7B-Instruct 50.31 39.75 42.86 44.31 29.19 15.12 51.80
LLaMA3-8B-Instruct 24.84 19.88 19.88 21.53 9.94 11.59 116.6
Yi-1.5-9B-Chat 38.51 37.89 36.02 37.47 22.36 15.11 67.58
Mistral-Nemo-Instruct-2407 31.68 27.95 28.57 29.40 16.77 12.63 75.31
DeepSeek-MOE-16B-Chat 4.97 3.73 6.21 4.97 1.86 3.11 167.2
DeepSeek-V2-Lite-Chat 11.18 14.29 14.91 13.46 4.97 8.49 170.8
Mistral-Small-Instruct-2409 44.72 47.21 46.58 46.17 32.92 13.25 40.25
Yi-1.5-34B-Chat 43.48 37.89 44.72 42.03 27.33 14.70 53.79
LLaMA3-70B-Instruct 39.13 38.51 39.75 39.13 25.47 13.66 53.63
Qwen2-72B-Instruct 59.01 49.69 53.42 54.04 40.99 13.05 31.84
Mistral-Large-Instruct-2407 61.49 57.76 60.25 59.83 50.31 9.52 18.92

Specialized Mathematical LLMs
DeepSeek-Math-7B-Instruct 29.19 24.22 24.22 25.88 14.29 11.59 81.11
DeepSeek-Math-7B-RL 34.78 29.19 29.81 31.26 19.25 12.01 62.39
NuminaMath-7B-CoT 33.54 31.68 28.57 31.26 19.25 12.01 62.39
Mathstral-7B-v0.1 39.13 32.92 37.89 36.65 24.22 12.43 51.32
Qwen2-Math-7B-Instruct 52.80 42.86 45.96 47.20 34.16 13.04 38.17
Qwen2-Math-72B-Instruct 67.08 61.49 64.60 64.39 53.42 10.97 20.54

Table 23: Main Results on Linear algebra (all figures are in %). Models are classified into three
categories according to their purpose and origin. The best results within each column are bolded and
the best results of open-source Chat LLMs within a similar parameter size group are underlined.

Models Acc1 Acc2 Acc3 AAcc EAcc ∆ RE
Closed-source LLMs

OpenAI-o1-mini-2024-09-12 74.90 74.90 75.90 75.23 65.86 9.37 14.23
GPT-4o-2024-08-06 63.86 61.65 61.65 62.38 51.61 10.77 20.87
GPT-4o-mini-2024-07-18 57.63 57.03 56.22 56.96 43.37 13.59 31.34
Claude-3-Opus-20240229 51.20 48.80 49.00 49.67 37.15 12.52 33.70

Open-source Chat LLMs
Yi-1.5-6B-Chat 23.69 23.69 21.49 22.96 12.45 10.51 84.42
Mistral-7B-Instruct 8.03 7.43 7.23 7.56 2.61 4.95 189.7
Qwen2-7B-Instruct 36.35 34.54 32.73 34.54 22.29 12.25 54.96
LLaMA3-8B-Instruct 13.25 12.45 12.65 12.78 6.43 6.35 98.76
Yi-1.5-9B-Chat 34.14 31.93 31.93 32.66 18.47 14.19 76.83
Mistral-Nemo-Instruct-2407 23.69 20.48 23.90 22.69 11.24 11.45 101.9
DeepSeek-MOE-16B-Chat 2.01 2.41 3.61 2.68 0.80 1.88 235.0
DeepSeek-V2-Lite-Chat 9.24 8.23 7.43 8.30 1.81 6.49 358.6
Mistral-Small-Instruct-2409 43.17 38.35 41.57 41.03 28.51 12.52 43.91
Yi-1.5-34B-Chat 35.34 31.93 34.94 34.07 20.08 13.99 69.67
LLaMA3-70B-Instruct 34.34 30.72 29.32 31.46 19.28 12.18 63.17
Qwen2-72B-Instruct 52.81 51.00 49.80 51.20 38.15 13.05 34.21
Mistral-Large-Instruct-2407 62.25 59.04 58.43 59.91 48.59 11.32 23.30

Specialized Mathematical LLMs
DeepSeek-Math-7B-Instruct 20.08 21.08 18.07 19.75 9.44 10.31 109.2
DeepSeek-Math-7B-RL 26.91 26.51 23.09 25.50 15.46 10.04 64.94
NuminaMath-7B-CoT 25.70 25.50 27.11 26.10 14.66 11.44 78.04
Mathstral-7B-v0.1 29.92 23.90 24.70 26.17 13.86 12.31 88.82
Qwen2-Math-7B-Instruct 46.39 43.17 43.57 44.38 32.73 11.65 35.59
Qwen2-Math-72B-Instruct 61.45 59.24 62.85 61.18 47.59 13.59 28.56
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Table 24: Main Results on Number theory (all figures are in %). Models are classified into three
categories according to their purpose and origin. The best results within each column are bolded and
the best results of open-source Chat LLMs within a similar parameter size group are underlined.

Models Acc1 Acc2 Acc3 AAcc EAcc ∆ RE
Closed-source LLMs

OpenAI-o1-mini-2024-09-12 80.43 76.09 73.91 76.81 58.70 18.11 30.85
GPT-4o-2024-08-06 60.87 63.04 67.39 63.77 56.52 7.25 12.83
GPT-4o-mini-2024-07-18 60.87 58.70 58.70 59.42 52.17 7.25 13.90
Claude-3-Opus-20240229 47.83 54.35 56.52 52.90 39.13 13.77 35.19

Open-source Chat LLMs
Yi-1.5-6B-Chat 26.09 26.09 19.57 23.91 13.04 10.87 83.36
Mistral-7B-Instruct 6.52 6.52 8.70 7.25 2.17 5.08 234.1
Qwen2-7B-Instruct 34.78 39.13 41.30 38.41 23.91 14.50 60.64
LLaMA3-8B-Instruct 19.57 21.74 15.22 18.84 8.70 10.14 116.6
Yi-1.5-9B-Chat 34.78 32.61 34.78 34.06 23.91 10.15 42.45
Mistral-Nemo-Instruct-2407 17.39 28.26 28.26 24.64 8.70 15.94 183.2
DeepSeek-MOE-16B-Chat 6.52 6.52 2.17 5.07 2.17 2.90 133.6
DeepSeek-V2-Lite-Chat 15.22 13.04 15.22 14.49 4.35 10.14 233.1
Mistral-Small-Instruct-2409 45.65 34.78 41.30 40.58 30.43 10.15 33.36
Yi-1.5-34B-Chat 36.96 34.78 47.83 39.86 26.09 13.77 52.78
LLaMA3-70B-Instruct 30.43 23.91 36.96 30.43 15.22 15.21 99.93
Qwen2-72B-Instruct 47.83 58.70 43.48 50.00 36.96 13.04 35.28
Mistral-Large-Instruct-2407 58.70 58.70 58.70 58.70 45.65 13.05 28.59

Specialized Mathematical LLMs
DeepSeek-Math-7B-Instruct 23.91 28.26 30.43 27.54 15.22 12.32 80.95
DeepSeek-Math-7B-RL 21.74 26.09 26.09 24.64 13.04 11.60 88.96
NuminaMath-7B-CoT 17.39 32.61 32.61 27.54 13.04 14.50 111.2
Mathstral-7B-v0.1 28.26 30.43 30.43 29.71 17.39 12.32 70.85
Qwen2-Math-7B-Instruct 39.13 43.48 43.48 42.03 30.43 11.60 38.12
Qwen2-Math-72B-Instruct 60.87 54.35 63.04 59.42 50.00 9.42 18.84

Table 25: Main Results on Probability (all figures are in %). Models are classified into three
categories according to their purpose and origin. The best results within each column are bolded and
the best results of open-source Chat LLMs within a similar parameter size group are underlined.

Models Acc1 Acc2 Acc3 AAcc EAcc ∆ RE
Closed-source LLMs

OpenAI-o1-mini-2024-09-12 66.07 68.45 68.15 67.56 51.49 16.07 31.21
GPT-4o-2024-08-06 66.07 66.07 65.77 65.97 54.76 11.21 20.47
GPT-4o-mini-2024-07-18 50.89 56.85 52.38 53.37 39.88 13.49 33.83
Claude-3-Opus-20240229 56.55 59.23 59.82 58.53 44.94 13.59 30.24

Open-source Chat LLMs
Yi-1.5-6B-Chat 20.24 22.62 21.43 21.43 10.42 11.01 105.7
Mistral-7B-Instruct 10.12 11.01 10.42 10.52 3.57 6.95 194.7
Qwen2-7B-Instruct 31.85 39.58 33.63 35.02 20.54 14.48 70.50
LLaMA3-8B-Instruct 16.37 16.96 15.48 16.27 9.23 7.04 76.27
Yi-1.5-9B-Chat 28.27 30.06 31.85 30.06 13.69 16.37 119.6
Mistral-Nemo-Instruct-2407 23.81 26.79 25.00 25.20 15.18 10.02 66.01
DeepSeek-MOE-16B-Chat 5.65 4.76 4.17 4.86 1.19 3.67 308.4
DeepSeek-V2-Lite-Chat 9.82 11.61 10.42 10.62 3.27 7.35 224.8
Mistral-Small-Instruct-2409 39.58 43.15 43.45 42.06 27.68 14.38 51.95
Yi-1.5-34B-Chat 37.20 41.67 38.39 39.09 23.51 15.58 66.27
LLaMA3-70B-Instruct 35.12 36.31 34.23 35.22 22.02 13.20 59.95
Qwen2-72B-Instruct 48.51 48.51 44.05 47.02 33.04 13.98 42.31
Mistral-Large-Instruct-2407 59.82 60.12 58.33 59.42 45.54 13.88 30.48

Specialized Mathematical LLMs
DeepSeek-Math-7B-Instruct 21.73 22.92 21.43 22.02 10.71 11.31 105.6
DeepSeek-Math-7B-RL 24.40 25.89 26.19 25.50 14.88 10.62 71.37
NuminaMath-7B-CoT 25.60 26.49 25.30 25.79 13.39 12.40 92.61
Mathstral-7B-v0.1 27.38 29.46 25.30 27.38 14.88 12.50 84.01
Qwen2-Math-7B-Instruct 36.61 44.35 39.88 40.28 25.89 14.39 55.58
Qwen2-Math-72B-Instruct 58.33 62.20 59.52 60.02 44.05 15.97 36.25
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Table 26: Main Results on Set theory and logic (all figures are in %). Models are classified into
three categories according to their purpose and origin. The best results within each column are bolded
and the best results of open-source Chat LLMs within a similar parameter size group are underlined.

Models Acc1 Acc2 Acc3 AAcc EAcc ∆ RE
Closed-source LLMs

OpenAI-o1-mini-2024-09-12 78.26 73.91 79.71 77.29 66.67 10.62 15.93
GPT-4o-2024-08-06 75.36 76.81 68.12 73.43 59.42 14.01 23.58
GPT-4o-mini-2024-07-18 59.42 57.97 59.42 58.94 40.58 18.36 45.24
Claude-3-Opus-20240229 56.52 60.87 62.32 59.90 43.48 16.42 37.76

Open-source Chat LLMs
Yi-1.5-6B-Chat 14.49 14.49 18.84 15.94 7.25 8.69 119.9
Mistral-7B-Instruct 2.90 5.80 5.80 4.83 0.00 4.83 ∞
Qwen2-7B-Instruct 20.29 36.23 24.64 27.05 13.04 14.01 107.4
LLaMA3-8B-Instruct 8.70 15.94 8.70 11.11 5.80 5.31 91.55
Yi-1.5-9B-Chat 24.64 18.84 26.09 23.19 5.80 17.39 299.8
Mistral-Nemo-Instruct-2407 24.64 33.33 26.09 28.02 18.84 9.18 48.73
DeepSeek-MOE-16B-Chat 2.90 1.45 1.45 1.93 0.00 1.93 ∞
DeepSeek-V2-Lite-Chat 4.35 7.25 5.80 5.80 1.45 4.35 300.0
Mistral-Small-Instruct-2409 47.83 44.93 40.58 44.44 30.43 14.01 46.04
Yi-1.5-34B-Chat 30.43 40.58 43.48 38.16 21.74 16.42 75.53
LLaMA3-70B-Instruct 28.99 26.09 24.64 26.57 15.94 10.63 66.69
Qwen2-72B-Instruct 52.17 55.07 49.28 52.17 36.23 15.94 44.00
Mistral-Large-Instruct-2407 59.42 60.87 57.97 59.42 44.93 14.49 32.25

Specialized Mathematical LLMs
DeepSeek-Math-7B-Instruct 21.74 18.84 13.04 17.87 8.70 9.17 105.4
DeepSeek-Math-7B-RL 23.19 23.19 24.64 23.67 10.14 13.53 133.4
NuminaMath-7B-CoT 17.39 26.09 18.84 20.77 8.70 12.07 138.7
Mathstral-7B-v0.1 23.19 26.09 20.29 23.19 14.49 8.70 60.04
Qwen2-Math-7B-Instruct 31.88 39.13 27.54 32.85 18.84 14.01 74.36
Qwen2-Math-72B-Instruct 60.87 56.52 55.07 57.49 40.58 16.91 41.67

Table 27: Main Results on Statistics (all figures are in %). Models are classified into three categories
according to their purpose and origin. The best results within each column are bolded and the best
results of open-source Chat LLMs within a similar parameter size group are underlined.

Models Acc1 Acc2 Acc3 AAcc EAcc ∆ RE
Closed-source LLMs

OpenAI-o1-mini-2024-09-12 64.09 62.34 61.85 62.76 49.88 12.88 25.82
GPT-4o-2024-08-06 59.10 62.09 60.10 60.43 49.38 11.05 22.38
GPT-4o-mini-2024-07-18 43.14 46.38 48.63 46.05 32.92 13.13 39.88
Claude-3-Opus-20240229 52.12 53.12 50.37 51.87 37.16 14.71 39.59

Open-source Chat LLMs
Yi-1.5-6B-Chat 15.96 16.96 21.45 18.12 6.23 11.89 190.9
Mistral-7B-Instruct 11.97 11.72 11.47 11.72 2.99 8.73 291.0
Qwen2-7B-Instruct 26.68 27.93 29.18 27.93 13.97 13.96 99.93
LLaMA3-8B-Instruct 10.72 13.47 16.21 13.47 5.99 7.48 124.9
Yi-1.5-9B-Chat 26.43 23.94 31.67 27.35 13.97 13.38 95.78
Mistral-Nemo-Instruct-2407 22.94 27.18 24.94 25.02 14.71 10.31 70.09
DeepSeek-MOE-16B-Chat 3.24 3.49 4.74 3.82 1.00 2.82 282.0
DeepSeek-V2-Lite-Chat 8.98 8.48 9.23 8.89 2.74 6.15 224.5
Mistral-Small-Instruct-2409 37.66 35.91 35.66 36.41 23.69 12.72 53.69
Yi-1.5-34B-Chat 32.92 37.41 37.91 36.08 21.45 14.63 68.21
LLaMA3-70B-Instruct 22.44 20.70 21.45 21.53 11.97 9.56 79.87
Qwen2-72B-Instruct 43.14 44.39 44.89 44.14 31.42 12.72 40.48
Mistral-Large-Instruct-2407 54.36 50.12 53.62 52.70 39.90 12.80 32.08

Specialized Mathematical LLMs
DeepSeek-Math-7B-Instruct 18.95 16.96 18.95 18.29 6.73 11.56 171.8
DeepSeek-Math-7B-RL 21.70 24.44 22.69 22.94 9.23 13.71 148.5
NuminaMath-7B-CoT 17.71 18.20 18.95 18.29 6.48 11.81 182.3
Mathstral-7B-v0.1 19.70 22.69 21.70 21.36 9.73 11.63 119.5
Qwen2-Math-7B-Instruct 31.42 31.17 37.66 33.42 17.71 15.71 88.71
Qwen2-Math-72B-Instruct 47.38 50.87 47.63 48.63 33.92 14.71 43.37
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Table 28: Main Results on Trigonometry (all figures are in %). Models are classified into three
categories according to their purpose and origin. The best results within each column are bolded and
the best results of open-source Chat LLMs within a similar parameter size group are underlined.

Models Acc1 Acc2 Acc3 AAcc EAcc ∆ RE
Closed-source LLMs

OpenAI-o1-mini-2024-09-12 75.84 74.16 69.10 73.03 56.74 16.29 28.71
GPT-4o-2024-08-06 67.98 74.16 66.29 69.48 51.69 17.79 34.42
GPT-4o-mini-2024-07-18 52.25 58.99 55.06 55.43 37.64 17.79 47.26
Claude-3-Opus-20240229 53.93 52.81 53.37 53.37 37.64 15.73 41.79

Open-source Chat LLMs
Yi-1.5-6B-Chat 24.16 24.72 20.79 23.22 11.24 11.98 106.6
Mistral-7B-Instruct 6.74 7.87 6.18 6.93 1.69 5.24 310.0
Qwen2-7B-Instruct 36.52 41.01 42.13 39.89 25.84 14.05 54.37
LLaMA3-8B-Instruct 14.61 12.92 13.48 13.67 4.49 9.18 204.5
Yi-1.5-9B-Chat 32.02 30.34 32.02 31.46 15.73 15.73 100.0
Mistral-Nemo-Instruct-2407 23.03 23.60 24.72 23.78 11.80 11.98 101.5
DeepSeek-MOE-16B-Chat 3.93 3.93 4.49 4.12 0.00 4.12 ∞
DeepSeek-V2-Lite-Chat 10.67 15.73 11.80 12.73 3.37 9.36 277.7
Mistral-Small-Instruct-2409 38.76 41.01 45.51 41.76 27.53 14.23 51.69
Yi-1.5-34B-Chat 44.38 39.33 37.64 40.45 25.28 15.17 60.01
LLaMA3-70B-Instruct 33.71 36.52 34.83 35.02 23.03 11.99 52.06
Qwen2-72B-Instruct 52.25 50.56 50.00 50.94 35.39 15.55 43.94
Mistral-Large-Instruct-2407 65.73 64.61 66.85 65.73 50.00 15.73 31.46

Specialized Mathematical LLMs
DeepSeek-Math-7B-Instruct 26.40 28.09 29.78 28.09 11.24 16.85 149.9
DeepSeek-Math-7B-RL 32.02 33.71 36.52 34.08 20.22 13.86 68.55
NuminaMath-7B-CoT 33.71 34.83 30.34 32.96 17.42 15.54 89.21
Mathstral-7B-v0.1 30.34 31.46 34.27 32.02 18.54 13.48 72.71
Qwen2-Math-7B-Instruct 53.93 50.00 51.69 51.87 38.76 13.11 33.82
Qwen2-Math-72B-Instruct 62.92 65.17 63.48 63.86 50.00 13.86 27.72
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Table 29: An example of Linear algebra with expression calculation error.

Problem: You have boxes of five types. They are characterized by their length
L, their width W , their height H , their age A, and their price P , as given in the
following table:

type L W H A P
I 1 1 1 1 1
II 1 1 2 3 2
III 1 2 3 2 2
IV 1 2 4 1 2
V 1 2 5 1 3

So for example, boxes of type IV measure 1 by 2 by 4 feet, are a year old, and
cost $2 each. Suppose the sum of the lengths of your boxes is 25, the sum of
their widths is 40, the sum of their heights is 75, the sum of their ages is 43, and
the total price of those boxes is 51. You have [ANS] boxes of type I, [ANS]
boxes of type II, [ANS] boxes of type III, [ANS] boxes of type IV, [ANS] boxes
of type V.

o1-mini Completion: To solve the system of equations based on the given
constraints, we define the variables as follows:





x1 = Number of Type I boxes

x2 = Number of Type II boxes

x3 = Number of Type III boxes

x4 = Number of Type IV boxes

x5 = Number of Type V boxes

Using the provided data, we set up the following equations:

1. x1 + x2 + x3 + x4 + x5 = 25

2. x1 + x2 + 2x3 + 2x4 + 2x5 = 40

3. x1 + 2x2 + 3x3 + 4x4 + 5x5 = 75

4. x1 + 3x2 + 2x3 + x4 + x5 = 43

5. x1 + 2x2 + 2x3 + 2x4 + 3x5 = 51

By systematically solving these equations, we find the values of the variables:
x5 = 2.5

x1 = x5 − 1 = 1.5

x2 = 11− x5 = 8.5

x3 = x5 + 1 = 3.5

x4 = 14− 2x5 = 9

[It skipped detailed steps and obtained incorrect results in equation manipulation]
**The final answers are 1.5, 8.5, 3.5, 9, 2.5 **

Ground-Truth Answer: 4, 6, 6, 4, 5

Model Output: 1.5, 8.5, 3.5, 9, 2.5
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Table 30: An example of Financial mathematics with numeric calculation error.

Problem: How long will it take for $3100 compounded semiannually at an
annual rate of 1% to amount to $7000? [ANS] years

o1-mini Completion: To determine how long it will take for $3100 to grow to
$7000 with semiannual compounding at an annual rate of 1%, we can use the
compound interest formula:

A = P
(
1 +

r

n

)nt

Where: - A = 7000 (the final amount) - P = 3100 (the principal amount) -
r = 0.01 (the annual interest rate) - n = 2 (the number of compounding periods
per year) - t is the time in years
Plugging in the known values:

7000 = 3100

(
1 +

0.01

2

)2t

7000

3100
= (1.005)2t

2.258064516 = (1.005)2t

Taking the natural logarithm of both sides:

ln(2.258064516) = 2t · ln(1.005)

t =
ln(2.258064516)

2 · ln(1.005)
Calculating the values:

ln(2.258064516) ≈ 0.8154244

[should be 0.8145080376]

ln(1.005) ≈ 0.00498752

[should be 0.00498754141]

t ≈ 0.8154244

2 · 0.00498752 ≈ 81.56

[With the wrong parameters, should be
0.8154244

2 · 0.00498752 = 81.74647921]
[With the right parameters, should be

0.8145080376

2 · 0.00498754141 = 81.6542615]
The final answer is 81.56 .

Ground-Truth Answer: 81.6542614995239

Model Output: 81.56
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Table 31: An example of Financial mathematics with flawed reasoning.

Problem: If you make a deposit into a bank account, at what interest rate (com-
pounded weekly) should you invest if you would like to double your investment
in 78 weeks? [ANS] % (Note: Your answer should be accurate to two decimal
places)

o1-mini Completion: To determine the interest rate r (compounded weekly)
required to double your investment in 78 weeks, we can use the compound
interest formula:

FV = PV ×
(
1 +

r

100

)n

[
here should be

(
1 +

r

52

)n

for 52 weeks a year
]

Where: - FV is the future value - PV is the present value - r is the weekly
interest rate (in percentage) - n is the number of weeks
Given that you want to double your investment:

2 =
(
1 +

r

100

)78

To solve for r, take the natural logarithm of both sides:

ln(2) = 78× ln
(
1 +

r

100

)
ln

(
1 +

r

100

)
=

ln(2)

78

1 +
r

100
= e

ln(2)
78

r

100
= e

ln(2)
78 − 1

r =

(
e

ln(2)
78 − 1

)
× 100

Calculating the above:

r ≈
(
e

0.693147
78 − 1

)
× 100 ≈ 0.89%

The final answer is 0.89 .

Ground-Truth Answer: 46.4157

Model Output: 0.89
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Figure 10: Model accuracy across topics
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Figure 11: Model accuracy across topics
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Figure 12: Model accuracy across topics
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Figure 13: Model accuracy across topics
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Table 32: Results of PHP on UGMathBench (all figures are in %). "diff." refers to the improvement
over results in Table 4. The best results within column with "diff." are bolded and the worst results
are underlined.

Models AAcc diff. AAcc EAcc diff. EAcc ∆ diff. ∆
Closed-source LLMs

GPT-4o-2024-08-06 60.73 +0.36 50.44 +0.50 10.29 -0.14
Open-source Chat LLMs

Yi-1.5-6B-Chat 26.11 -0.14 15.57 +0.24 10.54 -0.38
Mistral-7B-Instruct 10.76 +0.20 4.41 -0.03 6.35 +0.23
Qwen2-7B-Instruct 36.38 0.0 25.29 0.14 11.09 -0.14
LLaMA3-8B-Instruct 16.41 -0.14 8.61 -0.3 7.8 +0.16
Yi-1.5-9B-Chat 34.50 +0.21 21.75 +0.63 12.75 -0.42
Mistral-Nemo-Instruct-2407 25.46 +0.38 15.19 -0.24 10.27 +0.62
DeepSeek-MOE-16B-Chat 6.34 +0.54 2.07 +0.11 4.27 +0.44
DeepSeek-V2-Lite-Chat 13.98 +0.9 6.44 +0.75 7.54 +0.25
Mistral-Small-Instruct-2409 39.66 -0.56 27.90 -0.94 11.76 +0.38
Yi-1.5-34B-Chat 37.57 +0.04 23.83 -0.51 13.74 +0.47
LLaMA3-70B-Instruct 33.93 +0.31 23.24 -0.03 10.69 +0.34
Qwen2-72B-Instruct 47.89 +0.13 36.08 +0.30 11.81 -0.17
Mistral-Large-Instruct-2407 55.97 +0.04 45.17 +0.13 10.8 -0.09

Specialized Mathematical LLMs
DeepSeek-Math-7B-Instruct 24.57 +0.68 14.90 +1.29 9.67 -0.61
DeepSeek-Math-7B-RL 29.42 -0.23 19.58 +0.24 9.84 -0.47
NuminaMath-7B-CoT 27.81 -1.99 16.62 -2.19 11.19 +0.20
Mathstral-7B-v0.1 29.75 +1.24 19.26 +1.32 10.49 -0.08
Qwen2-Math-7B-Instruct 42.65 -1.08 31.18 -1.08 11.47 0.0
Qwen2-Math-72B-Instruct 57.35 + 0.32 46.04 +0.19 11.31 +0.13

Table 33: Results across different subjects of PHP for GPT-4o. (all figures are in %). "diff." refers
to the improvement over results in Table 4. The best results within column with "diff." are bolded
and the worst results are underlined.

Subject AAcc diff. AAcc EAcc diff. EAcc ∆ diff. ∆

Arithmetic 92.11 +0.29 88.47 +1.20 3.64 -0.91
Algebra 72.33 +0.97 65.35 +0.68 6.98 + 0.29
Set theory and logic 71.98 -1.45 57.97 -1.45 14.01 0.0
Trigonometry 67.79 -1.69 53.37 +1.68 14.42 -3.37
Combinatorics 78.79 +1.14 65.91 +4.55 12.88 -3.41
Geometry 67.49 +3.31 54.04 +2.49 13.45 +1.82
Calculus single-variable 65.11 +0.24 53.26 +0.21 11.85 +0.03
Calculus multivariable 49.85 +0.21 38.53 +0.30 11.32 -0.09
Linear Algebra 62.85 +0.47 52.81 +1.20 10.04 -0.73
Number Theory 65.22 +1.45 54.35 +2.18 10.87 -0.73
Financial Mathematics 29.87 +0.49 20.81 +2.60 9.06 -2.11
Probability 65.38 -0.59 52.68 -2.08 12.7 +1.49
Statistics 60.27 -0.16 48.88 -0.50 11.39 +0.34
Complex Analysis 70.59 +1.31 58.82 0.0 11.77 +1.31
Differential Equations 25.03 0.33 18.03 -1.31 7.00 +1.64
Abstract Algebra 53.17 +4.76 35.71 +7.14 7.46 -2.38
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