
Published in Transactions on Machine Learning Research (01/2024)

Multi-Horizon Representations with Hierarchical Forward
Models for Reinforcement Learning

Trevor McInroe t.mcinroe@ed.ac.uk
School of Informatics
The University of Edinburgh

Lukas Schäfer l.schafer@ed.ac.uk
School of Informatics
The University of Edinburgh

Stefano V. Albrecht s.albrecht@ed.ac.uk
School of Informatics
The University of Edinburgh

Reviewed on OpenReview: https: // openreview. net/ forum? id= fovUNTilp9

Abstract

Learning control from pixels is difficult for reinforcement learning (RL) agents because rep-
resentation learning and policy learning are intertwined. Previous approaches remedy this
issue with auxiliary representation learning tasks, but they either do not consider the tempo-
ral aspect of the problem or only consider single-step transitions, which may cause learning
inefficiencies if important environmental changes take many steps to manifest. We propose
Hierarchical k-Step Latent (HKSL), an auxiliary task that learns multiple representations
via a hierarchy of forward models that learn to communicate and an ensemble of n-step crit-
ics that all operate at varying magnitudes of step skipping. We evaluate HKSL in a suite
of 30 robotic control tasks with and without distractors and a task of our creation. We find
that HKSL either converges to higher or optimal episodic returns more quickly than several
alternative representation learning approaches. Furthermore, we find that HKSL’s repre-
sentations capture task-relevant details accurately across timescales (even in the presence of
distractors) and that communication channels between hierarchy levels organize information
based on both sides of the communication process, both of which improve sample efficiency.

1 Introduction

Recently, reinforcement learning (RL) has had significant empirical success in the robotics domain (Kalash-
nikov et al., 2018; 2021; Lu et al., 2021; Chebotar et al., 2021). However, previous methods often require
a dataset of hundreds of thousands or millions of agent-environment interactions to achieve their perfor-
mance. This level of data collection may not be feasible for the average industry group. Therefore, RL’s
widespread real-world adoption requires agents to learn a satisfactory control policy in the smallest number
of agent-environment interactions possible.

Pixel-based state spaces increase the sample efficiency challenge because the RL algorithm is required to
learn a useful representation and a control policy simultaneously. A recent thread of research has focused on
developing auxiliary learning tasks to address this dual-objective learning problem. These approaches aim
to learn a compressed representation of the high-dimensional state space upon which agents learn control.
Several auxiliary task types have been proposed such as image reconstruction (Jaderberg et al., 2017; Yarats
et al., 2020), contrastive objectives (Laskin et al., 2020a; Stooke et al., 2021), image augmentation (Laskin
et al., 2020b; Yarats et al., 2021), and forward models (Gelada et al., 2019; Hafner et al., 2019; 2020; Lee
et al., 2020a; Zhang et al., 2021).

1

https://openreview.net/forum?id=fovUNTilp9

Published in Transactions on Machine Learning Research (01/2024)

Forward models are a natural fit for RL because they target information across time by generating repre-
sentations of the state space that capture information relevant to the environment’s transition dynamics.
However, previous approaches learn representations by predicting single-step transitions, which may not
capture relevant information efficiently if various important environmental changes manifest on different
timescales. For example, suppose an agent is learning to catch objects that fall from the sky at varying
speeds. Here, the agent must make informed decisions that consider its own movement speed relative to
the order in which the objects reach the agent’s catching range. We demonstrate empirically in § 5.2 that
various auxiliary tasks from the literature perform poorly in an environment that reflects this exact scenario.
We also perform a linear probing exercise in § 5.4 that shows that representations learned by these current
auxiliary tasks tend to be poor predictors of task-relevant information over various timescales.

In this paper, we introduce Hierarchical k-Step Latent (HKSL)1, an auxiliary task for RL agents that
explicitly captures information in the environment at varying magnitudes of temporal coarseness. HKSL
accomplishes this by leveraging a hierarchical latent forward model where each level in the hierarchy predicts
transitions with a varying number of steps skipped. Levels that skip more steps should capture a coarser
understanding of the environment by focusing on changes that take more steps to manifest, and vice versa
for levels that skip fewer steps. For each level, HKSL trains an encoder paired with a n-step critic function
so that targets of the same temporal coarseness produce gradients for the learned representations. Also,
HKSL learns to share information between levels via a communication module that extracts representations
from coarser trajectories to help inform forward models that produce finer trajectories. As a result, HKSL
learns a set of representations that give the downstream RL algorithm information on objects that move at
different speeds. These representations are leveraged individually for value learning across various temporal
coarseness levels by an ensemble of critics and jointly for action selection.

We evaluate HKSL and various baselines in a suite of 30 DMControl tasks (Tassa et al., 2018; Stone et al.,
2021) that contains environments without and with distractors of varying types and intensities. Also, we
evaluate our algorithms in “Falling Pixels”, an environment of our creation that requires agents to track
objects that move at varying speeds, a task that exactly reflects the scenario we described previously. We
test our algorithms with and without distractors because real-world RL policies need to work well in controlled
settings (e.g., a laboratory) and uncontrolled settings (e.g., a public street). Also, distractors may change
at speeds independently from task-relevant information, thereby increasing the challenge of relating agent
actions to changes in pixels. The goal in our study is to learn a well-performing control policy in the smallest
number of agent-environment interactions as possible.

In our DMControl experiments, HKSL reaches an interquartile mean of evaluation returns that is 29% higher
than DrQ (Yarats et al., 2021), 74% higher than CURL (Laskin et al., 2020a), 24% higher than PI-SAC (Lee
et al., 2020b), 359% higher than DBC (Zhang et al., 2021), and 56% higher than DreamerV2 (Hafner et al.,
2021). Also, our experiments in Falling Pixels show that HKSL converges to an interquartile mean of eval-
uation returns that is 24% higher than DrQ, 35% higher than CURL, 31% higher than PI-SAC, 44% higher
than DBC, and DreamerV2 fails to learn. We analyze HKSL’s hierarchical model and find that its represen-
tations more accurately capture task-relevant details earlier on in training than the baselines. Additionally,
we find that HKSL’s communication manager considers both sides of the communication process, thereby
giving forward models information that better contextualizes their learning process. Finally, we provide data
from all training runs for all benchmarked methods.

2 Background

We study an RL formulation wherein an agent learns a control policy within a partially observable Markov de-
cision process (POMDP) (Bellman, 1957; Kaelbling et al., 1998), defined by the tuple (S, O, A, P s, P o, R, γ).
S is the ground-truth state space, O is a pixel-based observation space, A is the action space, P s : S×A×S →
[0, 1] is the state transition probability function, P o : S × A × O → [0, 1] is the observation probability func-
tion, R : S × A → R is the reward function that maps states and actions to a scalar signal, and γ ∈ [0, 1)
is a discount factor. The agent does not directly observe the state st ∈ S at step t, but instead receives
an observation ot ∈ O which we specify as a stack of the last three images. At each step t, the agent

1https://github.com/uoe-agents/hksl

2

https://github.com/uoe-agents/hksl

Published in Transactions on Machine Learning Research (01/2024)

samples an action at ∈ A with probability given by its control policy which is conditioned on the ob-
servation at time t, π(at|ot). Given the action, the agent receives a reward rt = R(st, at), the POMDP
transitions into a next state st+1 ∈ S with probability P s(st, at, st+1), and the next observation (stack of
pixels) ot+1 ∈ O is sampled with probability P o(st+1, at, ot+1). Within this POMDP, the agent must learn
a control policy that maximizes the sum of discounted returns over the time horizon T of the POMDP’s
episode: arg maxπ Ea∼π[

∑T
t=1 γtrt].

3 Related Work

Representation learning in RL. Some research has pinpointed the development of representation learning
methods that can aid policy learning for RL agents. In model-free RL, using representation learning objec-
tives as auxiliary tasks has been explored in ways such as contrastive objectives (Laskin et al., 2020a; Stooke
et al., 2021), image augmentation (Laskin et al., 2020b; Yarats et al., 2021), image reconstruction (Yarats
et al., 2020), information theoretic objectives (Lee et al., 2020b), causal disentanglement (Dunion et al.,
2023a;b), and inverse models (Pathak et al., 2017a; Burda et al., 2019). Other works build on Generalized
Value Functions (Schlegel et al., 2021) to learn representations with meta-gradient methods with predic-
tions tasks that are bidirectional in time (Veeriah et al., 2019), or with random graphs (Zheng et al., 2021).
HKSL fits within the auxiliary task literature but does not use contrastive objectives, image reconstruction,
information-theoretic objectives, meta-gradients, bi-directional prediction objectives, causal disentanglement,
nor inverse models.

Forward models and hierarchical models. Forward models for model-free RL approaches learn repre-
sentations that capture the environment’s transition dynamics via a next-step prediction objective. Some
methods learn stochastic models that are aided with image reconstruction (Lee et al., 2020a) or reward-
prediction objectives (Gelada et al., 2019). Other methods combine forward models with reward prediction
and bisimulation metrics (Zhang et al., 2021), momentum regression targets (Schwarzer et al., 2021), build
on successor representations (Dayan, 1993) to learn representations useful for tasks like transfer between
MDPs (Barreto et al., 2017), or shape the intermediate representations of an RNN with multi-step predic-
tions (Venkatraman et al., 2017). Outside of the purpose of representation learning, forward models are
used extensively in model-based RL approaches to learn control policies via planning procedures (Ha &
Schmidhuber, 2018; Zhang et al., 2019; Hafner et al., 2019; 2020), and to guide exploration towards novel
states (Schmidhuber, 1991a; Pathak et al., 2017b; Raileanu & Rocktäschel, 2020; Schäfer et al., 2022; McInroe
et al., 2023).

Stacking several forward models on top of one another forms the levels of a hierarchical model. This type
of model has been studied in the context of multiscale temporal inference (Schmidhuber, 1991b), varia-
tional inference Chung et al. (2017), and pixel-prediction objectives (Kim et al., 2019; Saxena et al., 2021).
Additionally, hierarchical models have been used for speech synthesis (Kenter et al., 2019), learning graph
embeddings (Chen et al., 2018), decomposing MDPs (Steccanella et al., 2021), modeling human cognition
at various visual resolutions (Rao & Ballard, 1999), and population-based multi-agent RL (Jaderberg et al.,
2019). Sequence prediction literature has explored the use of hierarchical models via manually-defined con-
nections between levels (Koutnik et al., 2014; Saxena et al., 2021) and using levels with uniform time-step
skipping (Castrejon et al., 2019; Kumar et al., 2020).

Unlike the aforementioned forward model approaches, HKSL combines a set of forward models that step in
the latent space with independent step sizes without additional prediction objectives. Also, HKSL uses a
differentiable connection between forward models that learns what to share when by using the context from
the entire rollout from higher levels and the current timestep of lower levels, which leads to faster learning.

4 Hierarchical k-Step Latent

HKSL’s hierarchical model is composed of forward models that take steps in the latent space at varying
magnitudes of temporal coarseness. We define temporal coarseness as the degree to which a level’s forward
model skips environment steps. For example, if a forward model predicts the latent representation of a state
five steps into the future, it is considered more coarse than a forward model that predicts only one step

3

Published in Transactions on Machine Learning Research (01/2024)

forward. Coarser levels should learn to attend to information in the environment that takes many steps to
manifest in response to an agent’s action. In contrast, finer levels should learn to attend to environmental
properties that immediately respond to agent actions. This is because coarser levels need to make fewer
predictions to reach steps further into the future than finer levels.

At each learning step, a batch of B trajectories of length k are sampled from the replay memory τ =
{(ot, at, . . . , at+k−1, ot+k)i}B

i=1. The initial observation of each trajectory ot is uniformly randomly sampled
on a per-episode basis t ∼ U(1, T − k)2. In the following, we will denote the first and last timestep of each
trajectory with t = 1 and t = k, respectively.

HKSL’s components. See Figure 1 for a visual depiction of the HKSL architecture. HKSL’s hierarchical
model is composed of h levels. Each level l has a forward model f l, a nonlinear projection module wl (e.g.,
an MLP), an online image encoder el

o, and a momentum image encoder el
m that is updated as an exponential

moving average of the online encoder (e.g., (He et al., 2020)). Between consecutive levels a communication
manager cl,l−1 passes information from one level l to the level below it l − 1. The number of steps skipped
by a given level nl is independent of the coarseness of other levels in the hierarchy.

Forward models. HKSL’s forward models are a modified version of the common GRU recurrent cell (Cho
et al., 2014) that allows for multiple data inputs at each step. See Appendix D.3 for a detailed mathematical
description. At step t = 1 in a training trajectory, the forward models take the representation produced by the
level’s online encoder zl

1 = el
o(o1) along with a concatenation of nl consecutive action vectors ā1 = [a1|...|anl]

to predict the latent representation of a future state zl
1+nl = f l(zl

1, ā1). For any following timestep t > 1,
the forward models take the predicted latent representation from the previous timestep as input instead of
the encoder representation.

Communication managers. Communication managers cl,l−1 pass information from coarser to finer levels
in the hierarchy (l → l − 1) while also allowing gradients to flow from finer to coarser levels (l − 1 → l). At
each rollout step for level l − 1, the communication manager cl,l−1 receives two inputs. First, it receives all
latent representations in a rollout over τ produced by level l’s forward model f l. Second, it receives a one-
hot-encoded timestep t that corresponds to the current rollout’s timestep in level l − 1. The communication
manager’s job is to extract information from the above level’s rollout that is relevant for the below level’s
predictions at each step. The context vectors produced by the communication manager are used as an
additional input into f l−1 for all levels but the uppermost level in the hierarchy. Additionally, gradients
from losses computed in level l−1 flow upwards into level l through cl,l−1 and are used to update parameters
in above levels.

Loss function. HKSL computes a loss value at each timestep within each level in the hierarchy as the
normalized ℓ2 distance between a nonlinear projection of the forward model’s prediction and the “true”
latent representation produced by the level’s momentum encoder em. Using this “noisy” approximation of
the target ensures smooth changes in the target between learning steps and is hypothesized to reduce the
possibility of collapsed representations (Tarvainen & Valpola, 2017) in a very similar manner to the Bootstrap
Your Own Latent (BYOL) loss (Grill et al., 2020). The nonlinear projection is produced by feeding a forward
model’s output through the nonlinear module wl assigned to its layer l in the hierarchy. Chen et al. (2020)
show that a nonlinear projection before a loss computation can improve the representations produced by a
previous learned layer. We verify this choice empirically (§ 5.3) and show that it does improve policy learning
in our used suit of learning tasks. Altogether, the HKSL loss of level l across the minibatch of trajectories
τ can be written as:

Ll
HKSL =

N∑
t=1

Ea,o∼τ ∥wl
(
f l(zl

t, āt, cl+1,l(·))
)

− el
m(ot+nl)∥2

2, (1)

where N is the number of steps that a given level can take in τ . Intuitively, Equation (1) encourages
the online encoder el

o to produce representations from which multiple forward-step predictions of temporal
coarseness nl can be made accurately. For this to be possible, the online encoder must learn to extract

2Ending the range of numbers on T − k guarantees that trajectories do not overlap episodes.

4

Published in Transactions on Machine Learning Research (01/2024)

Figure 1: Depiction of HKSL architecture with an “unrolled” two-level hierarchical model where the first
level moves at one step n1 = 1 and the second level moves at three steps n2 = 3. First, the online encoders eo

(blue) encode the initial observation o1 of the sampled trajectory. Next, the forward models f (red) predict
the latent representations of the following observations, with level 1 predicting single steps ahead conditioned
on the level’s previous representation and applied action. The forward model of the second level predicts
three steps ahead and receives the previous representation and concatenation of the three applied actions.
The communication manager c (green) forwards information from the representations of the coarser second
level to each forward model step of the first level as additional inputs. All models are trained end-to-end with
a normalized ℓ2 loss of the difference between the projected representations of each level and timestep and
the target representations of observations at the predicted timesteps. Target representations are obtained
using momentum encoders em (purple), and projections are done by the projection model w (yellow) of the
given level.

information from its input pixels that relate directly to contents in the environment that move at speeds
related to the given level’s temporal coarseness.

HKSL and SAC. We make a few adjustments to the base SAC algorithm to help HKSL fit naturally. For
one, we replace the usual critic with an ensemble of h critics. Each critic and target critic in the ensemble
receive the latent representations produced by a given level’s encoder and momentum encoder, respectively.
We allow critics’ gradients to update their encoders’ weights but we do not allow gradients from actor updates
to update encoder weights3. Each critic is updated using n-step returns where n corresponds to the temporal
coarseness nl of the level l within which the critic’s given encoder resides. By matching encoders and critics

3Yarats et al. (2020) show that actor gradients can harm representation and policy learning while critic gradients can help.

5

Published in Transactions on Machine Learning Research (01/2024)

in this way, we ensure encoder weights are updated by gradients produced by targets of the same temporal
coarseness.

Second, the actor receives a concatenation of the representations produced by all online encoders. HKSL’s
actors will make better-informed action selections because they can consider information in the environment
that moves at varying magnitudes of temporal coarseness. Finally, we modify the actor’s loss function to
use a sum of Q-values from all critics:

Lactor = −Ea∼π,o∼τ

[
h∑

l=1
[Ql(o, a)] −α log π(a|[e1

o(o)|...|eh
o (o)])

]
. (2)

5 Experiments

We evaluate HKSL with a series of questions and compare it against several relevant baselines. First, is
HKSL more sample efficient in terms of agent-environment interactions than other representation learning
methods (§ 5.2)? Second, what is the efficacy of each of HKSL’s components (§ 5.3)? Third, how well do
HKSL’s encoders capture task-relevant information relative to the baselines’ encoders? (§ 5.4)? Finally,
what does cl,l−1 consider when providing information to l − 1 from l (§ 5.4)?

5.1 Experimental Setup

Baselines. We use DrQ (Yarats et al., 2021), CURL (Laskin et al., 2020a), PI-SAC (Lee et al., 2020b),
DBC (Zhang et al., 2021) and DreamerV2 Hafner et al. (2021) as baselines. DrQ regularizes Q-value learning
by averaging temporal difference targets across several augmentations of the same images. CURL uses a
contrastive loss similar to CPC (van den Oord et al., 2018) to learn image embeddings. PI-SAC uses a
Conditional Entropy Bottleneck (Fischer, 2020) auxiliary loss with both a forward and backward model
to learn a representation of observations that capture the environment’s transition dynamics. DBC uses a
bisimulation metric and a probabilisitc forward model to learn representations invariant to task-irrelevant
features. DreamerV2 is a model-based method that performs planning in a discrete latent space All model-
free methods use SAC (Haarnoja et al., 2018a;b) as the base RL algorithm, while DreamerV2 leverages
an on-policy actor-critic method with a λ-target critic (Schulman et al., 2016). All methods use the same
encoder, critic, and actor architectures to ensure a fair comparison. Additionally, each method uses the same
image augmentation. See Appendix D for hyperparameter settings.

Environments. We use six continuous-control environments provided by MuJoCo (Todorov et al., 2012)
via the DMControl suite (Tassa et al., 2018; 2020), a popular set of environments for testing robotic control
algorithms. Each of the six environments uses episodes of length 1k environment steps and a set number of
action repeats that controls the number of times the environment is stepped forward with a given action.
We use five variations of each DMControl environment for a total of 30 tasks. Four of the variations use
distractors provided by the Distracting Control Suite API (Stone et al., 2021), and the fifth variation uses
no distractors. We use the “color” and “camera” distractors on both the “easy” and “medium” difficulty
settings. The color distractor changes the color of the agent’s pixels on each environment step, and the
camera distractor moves the camera in 3D space each environment step. The difficulty setting controls the
range of color values and the magnitude of camera movement in each task4.

Additionally, we use an environment of our design, which we call “Falling Pixels”. In Falling Pixels, the agent
controls a platform at the bottom of the screen and is rewarded +1 for each pixel it catches. Pixels fall from
the top of the screen and are randomly assigned a speed when spawned, which controls how far they travel
downwards with each environment step. See Appendix C for further information on the environments.

5.2 Sample Efficiency

Training and evaluation procedure. In our training scheme, agents perform an RL and representation
learning gradient update once per action selection. Every 10k environment steps in DMControl and 2.5k

4Refer to (Stone et al., 2021) for details.

6

Published in Transactions on Machine Learning Research (01/2024)

0.15 0.30 0.45

DreamerV2

DBC

PI-SAC

CURL

DrQ

HKSL

IQM

0.60 0.75

Optimality Gap

Normalized Score
0 2 4 6 8 10

Environment Steps (×105)

0.0

0.1

0.2

0.3

0.4

0.5

E
va

lu
at

io
n

R
et

ur
ns

Sample Efficiency in DMControl Suite

DreamerV2
DBC
PI-SAC
CURL
DrQ
HKSL

Figure 2: IQM (left) and optimality gap (middle) of evaluation returns at 100k environment steps, and IQM
throughout training (right) across all 30 DMControl tasks. Shaded areas are 95% confidence intervals.

environment steps in Falling Pixels, we perform an evaluation checkpoint, wherein the agent’s policy is
sampled deterministically as the mean of the produced action distribution, and we compute the average
performance across 10 episodes. All methods are trained with a batch size of 128. We train agents for 100k
and 200k environment steps for five seeds in DMControl and Falling Pixels, respectively.

Results. We use the “rliable” package (Agarwal et al., 2021) to plot statistically robust summary metrics
in our evaluation suite. To produce aggregate metrics, we normalize all DMControl returns to the maximum
per-episode returns, which is 1k for all tasks. Specifically, Figure 2 shows the interquartile mean (IQM)
(left) and the optimality gap (middle) along with their 95% confidence intervals (CIs) that are generated via
stratified bootstrap sampling5 at the 100k steps mark in DMControl. Optimality gap measures the amount
by which a given algorithm fails to achieve a perfect score6. Additionally, Figure 2 shows IQM and 95% CIs
as a function of environment steps (right) in DMControl. Both of these results show that HKSL significantly
outperforms the baselines across our 30 environment DMControl testing suite. See Appendix F for individual
environment results. We note that simply using a forward model does not guarantee improved performance,
as suggested by the comparison between HKSL, PI-SAC, and DBC.

Due to the randomness in Falling Pixels, the maximum per-episode return is difficult to calculate. Therefore,
we do not aggregate Falling Pixels with DMControl returns, but instead show the IQM and 95% CIs for
Falling Pixels as a function of environment steps in Figure 3 (left). We highlight that HKSL significantly
outperforms all of the baselines, converging to a performance of collecting over 20% more pixels per episode
than the next-best-performing algorithm. Collecting a large number of pixels in Falling Pixels requires agents
to keep track of environment objects that move at varying speeds. HKSL explicitly achieves this with its
hierarchy of forward models. Also, we note that DreamerV2 struggles relative to the other agents in Falling
Pixels. We hypothesize that this is due to Falling Pixels’ observation space characteristics: the important
information is single-pixel-sized. Hafner et al. (2021) show that image-reconstruction gradients are important
to DreamerV2’s success (Figure 5 in Hafner et al. (2021)), and the small details in Falling Pixels cause an
uninformative reconstruction gradient7.

5.3 Component Ablations

We probe each component of HKSL to determine its contribution to the overall RL policy learning process.
Specifically, we test SAC without the hierarchical model but with HKSL’s ensemble of critics (No Repr),
HKSL where each level in the hierarchy moves with a single step (All n = 1), HKSL without c (No c), HKSL
where each level in the hierarchy shares encoders (Shared Encoder), single-level HKSL (h = 1), and HKSL

5For all plots, we performed at least 5,000 samples.
6We note that a perfect score (optimality gap = 0) is technically impossible in the DMControl suite. As such, only the

relative positioning of CIs should be considered.
7Hafner et al. (2021) also give this reason for why DreamerV2 does poorly in the “Video Pinball” environment.

7

Published in Transactions on Machine Learning Research (01/2024)

0 0.5 1.0 1.5 2.0
Environment Steps (×105)

4

6

8

10

12

14
Ev

al
ua

tio
n

Re
tu

rn
s

Evaluation Returns in Falling Pixels
HKSL
DrQ
CURL
DBC
PI-SAC
DreamerV2

0 0.5 1.0 1.5 2.0
Environment Steps (×105)

6

8

10

12

14

Ev
al

ua
tio

n
Re

tu
rn

s

Evaluation Returns in Falling Pixels

h= 3

h= 1

h= 2

h= 4

Figure 3: IQM and 95% CIs of evaluation returns for all algorithms in Falling Pixels (left) and ablations
over HKSL’s h (right).

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×105)

0.0

0.2

0.4

0.6

0.8

IQ
M

 N
or

m
al

ize
d

Sc
or

e

Ablations in Cartpole, Swingup
HKSL
No Repr
All n= 1

No c
Shared Encoder
h= 1

No w

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×105)

0.0

0.2

0.4

0.6

0.8

1.0

IQ
M

 N
or

m
al

ize
d

Sc
or

e

Ablations in Ball in Cup, Catch

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×105)

0.0

0.2

0.4

0.6

0.8

IQ
M

 N
or

m
al

ize
d

Sc
or

e

Ablations in Walker, Walk

Figure 4: IQM 95% CIs of evaluation returns for HKSL ablations in Cartpole, Swingup (left), Ball in Cup,
Catch (middle), and Walker, Walk (right).

with no nonlinear projection (No w). The No Repr ablation tests whether HKSL’s performance boost is due
to the ensemble of critics or the hierarchical model itself. The All n = 1 ablation tests our hypothesis that
only learning representations at the environment’s presented temporal coarseness can miss out on important
information. The No c ablation tests the value of sharing information between levels. The Shared Encoder
ablation tests if one encoder can learn information at varying temporal coarseness. The h = 1 ablation tests
the value of the hierarchy itself by using a single forward model (e.g., (Schwarzer et al., 2021; McInroe et al.,
2021)). Finally, the No w ablation tests the value in the nonlinear projection between the forward models
and the loss computation.

See Figure 4 for the performance comparison between these ablations and full HKSL in the no distractors
setting of Cartpole, Swingup, Ball in Cup, Catch, and Walker, Walk. All results are reported as IQMs and
95% CIs over five seeds. We highlight that variations without all components perform worse than full HKSL.
This suggests that HKSL requires each of the individual components to achieve its full potential.

Also, we ablate across the number of levels h in HKSL’s hierarchy in Falling Pixels. Figure 3 (right) depicts
IQMs and 95% CIs over five seeds for values of h in the set {1, 2, 3, 4} with temporal coarseness of levels
set to [1, 3, 5, 7] for levels one through four, in order. We highlight that increasing h achieves a monotonic
improvement in evaluation returns up to when h = 4. We hypothesize that setting h = 3 captures all relevant
information in Falling Pixels, and increasing to h = 4 leads to similar returns as when h = 3 and does not
destabilize learning.

5.4 Representation Analysis

How well do representations align with task-relevant information? To test the ability of encoders
to retrieve task-relevant information from pixel input, we save the weights of the encoders for each method

8

Published in Transactions on Machine Learning Research (01/2024)

t+ 1 t+ 5 t+ 10
0.0

0.2

0.4

0.6

0.8

1.0

M
S

E

No Distractors

HKSL

DrQ

CURL

DBC

PI-SAC

DreamerV2

t+ 1 t+ 5 t+ 10
0.0

0.2

0.4

0.6

0.8

1.0

Color

t+ 1 t+ 5 t+ 10
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Camera

Cartpole, Swingup

t+ 1 t+ 2 t+ 3
0.000

0.005

0.010

0.015

0.020

0.025

0.030

M
S

E

No Distractors

t+ 1 t+ 2 t+ 3
0.000

0.005

0.010

0.015

0.020

0.025

Color

t+ 1 t+ 2 t+ 3
0.000

0.005

0.010

0.015

0.020

0.025

Camera

Ball in Cup, Catch

Figure 5: MSE on task-relevant information in unseen episodes for Cartpole, Swingup (top) and Ball in
Cup, Catch (bottom) at the 100k environment steps mark. Non-distraction, color distractor, and camera
distractor settings shown from left-to-right. Lower is better.

throughout training in our evaluation suite. We then use the representations produced by these encoders to
train a linear projection (LP) to predict task-relevant information over varying timescales. This process is
akin to linear probing (Alain & Bengio, 2017) used to analyze representations (e.g., Anand et al., 2019).
We note that the encoders’ weights are frozen, and the gradient from the prediction task only updates the
LP’s weights.

In the Cartpole, Swingup task, the objective is to predict the cart’s and pole’s coordinates. In the Ball in
Cup, Catch task, the objective is to predict the ball’s coordinates. We collect 10 and five episodes of image-
coordinate pairs in each environment for LP training and testing, respectively. We repeat this data-collection
exercise for both environments’ non-distraction, easy color distractors, and easy camera distractors versions.
After fitting the LP on the training sets, we measure the mean squared error (MSE) on the unseen testing
set. Figure 5 shows the average MSE and ± one standard deviation over the testing episodes using encoders
trained for 100k environment steps in our benchmark suite. In Cartpole, Swingup (top row), we use the LP
to predict coordinates from one (t + 1), five (t + 5) and 10 (t + 10) steps into the future. In Ball in Cup,
Catch (bottom row), we use the LP to predict coordinates from one (t+1), two (t+2) and three (t+3) steps
into the future. We highlight that HKSL’s encoders produce representations that more accurately capture
task-relevant information with the lowest variance in nearly every case. Also, this accuracy is relatively
unaffected by distraction settings, giving a reason for HKSL’s relatively strong performance in the presence
of distractors, despite not addressing distractors explicitly.

We repeat this process using encoders from earlier in the agent-training process. Figure 6 shows the MSE
and ± one standard deviation over the testing episodes using encoders trained for 50k environment steps in
our benchmark suite. We note that the same pattern from the 100k environment steps encoders persists.
These results suggest that HKSL agents benefit from more informative representations in earlier stages of
training than the baselines, which leads to better sample efficiency.

What does c consider? We hypothesize that the communication manager cl,l−1 provides a wide diversity
of information for f l−1 by taking into account the current transition of the below level l − 1 as well as the
representations from the above level l. To check this hypothesis, we perform two tests. First, we measure
the ℓ2 distance between the vectors produced by c when the step t is changed and other inputs are held

9

Published in Transactions on Machine Learning Research (01/2024)

t+ 1 t+ 5 t+ 10
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
SE

No Distractors
HKSL
DrQ
CURL
DBC
PI-SAC
DreamerV2

t+ 1 t+ 5 t+ 10
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Color

t+ 1 t+ 5 t+ 10
0.0

0.2

0.4

0.6

0.8

1.0
Camera

Cartpole, Swingup

t+ 1 t+ 2 t+ 3
0.000

0.005

0.010

0.015

0.020

0.025

0.030

M
SE

No Distractors

t+ 1 t+ 2 t+ 3
0.000

0.005

0.010

0.015

0.020

Color

t+ 1 t+ 2 t+ 3
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035
Camera

Ball in Cup, Catch

Figure 6: MSE on task-relevant information in unseen episodes for Cartpole, Swingup (top) and Ball in Cup,
Catch (bottom) at the 50k environment steps mark. Non-distraction, color distractor, and camera distractor
settings shown from left-to-right. Lower is better.

1 2 3 4 5 6

1

2

3

4

5

6

0.0 1.3 2.1 3.2 4.2 5.1

0.0 1.3 2.5 3.7 4.6

0.0 1.4 2.7 3.8

0.0 1.5 2.8

0.0 1.4

0.0

`2 Distance Between Vectors from c

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5

5

0

5

10
PCA Projections of c's Output

Figure 7: Average distance between vectors produced by c (top). The numbers along the side and bottom
correspond to the value of t. PCA projections of representations produced by c for multiple timesteps across
18 trajectories (bottom) with colors corresponding to trajectories.

fixed. If c completely ignores t, the distance between c(·, 1) and c(·, 4), for example, would be zero. Second,
we examine the separability of c’s outputs on a trajectory-wise basis. If two sampled trajectories are very
different, then the representations produced by the above level should change c’s output such that either
trajectory should be clearly separable.

We first train an HKSL agent where h = 2, n1 = 1, and n2 = 3 in Cartpole, Swingup for 100k environment
steps and collect 50 episodes of experiences with a random policy. Then, we randomly sample a trajectory
from this collection and step through the latent space with both forward models. We repeat this 100 times
and measure the pairwise ℓ2 distance between c’s outputs for every value of t within sampled trajectories.
Figure 7 (top) reports the average distance between each pair. We note that the distance between c’s output
grows as the steps between the pairs grows. This suggests that c considers the transition of the level below it

10

Published in Transactions on Machine Learning Research (01/2024)

when deciding what information to share. Additionally, we highlight that the distance increases consistently
where pairs that are the same number of steps apart are about the same distance apart. For example,
pairs (2, 5) and (3, 6) are both three steps apart and share roughly the same average ℓ2 distance. This
suggests that c produces representations that are grouped smoothly in the latent space. Figure 7 (bottom)
visualizes the PCA projections of c’s outputs from 18 randomly sampled trajectories, where each trajectory
is a different color. This figure confirms our second intuition, as the representations are clearly separable on
a trajectory-wise basis with representations smoothly varying across steps within the same trajectory.

6 Conclusion, Limitations, and Future Work

This paper presented Hierarchical k-Step Latent (HKSL), an auxiliary task for accelerating control learning
from pixels via a hierarchical latent forward model. Our experiments showed that HKSL’s representations can
substantially improve the performance of downstream RL agents in pixel-based control tasks, both in terms
of converged returns and sample efficiency. We also showed that HKSL’s representations more accurately
capture task-relevant information than the baselines and do so early in training. Finally, we showed that
the communication manager organizes information in response to the above and below levels.

Despite its relatively good performance, the nested loop in HKSL’s learning step (see Algorithm 1) can
incur significant compute cost if the number of levels in the hierarchy grows large. In addition, the optimal
number of levels and temporal coarseness of an HKSL model may not be as clear as it is in the Falling Pixels
environment. Future work could develop a method that can learn to adjust the hierarchy dynamically,
thereby avoiding the need to tune the number of levels and their temporal coarseness. Also, future work
could consider using HKSL-style hierarchical models for purposes other than representation learning, such
as general model-based RL algorithms, exploration or planning procedures.

References
Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Bellemare. Deep

reinforcement learning at the edge of the statistical precipice. In Advances in Neural Information Processing
Systems, 2021.

Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using linear classifier probes. In
International Conference on Learning Representations (Workshop Track), 2017.

Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-Alexandre Côté, and R Devon Hjelm.
Unsupervised state representation learning in atari. In 33rd Conference on Neural Information Processing
Systems (NeurIPS), 2019.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Andre Barreto, Will Dabney, Remi Munos, Jonathan J. Hunt, Tom Schaul, Hado P. van Hasselt, and David
Silver. Successor features for transfer in reinforcement learning. In Advances in Neural Information
Processing Systems (NeurIPS), 2017.

Richard Bellman. A markovian decision process. Indiana University Mathematics Journal, 6:679–684, 1957.

Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A. Efros. Large-scale
study of curiosity-driven learning. In International Conference on Learning Representations (ICLR), 2019.

Lluis Castrejon, Nicolas Ballas, and Aaron Courville. Improved conditional vrnns for video prediction. In
International Conference on Computer Vision (ICCV), 2019.

Yevgen Chebotar, Karol Hausman, Yao Lu, Ted Xiao, Dmitry Kalashnikov, Jacob Varley, Alex Irpan,
Benjamin Eysenbach, Ryan C Julian, and Chelsea Finn andyou Sergey Levine. Actionable models: Unsu-
pervised offline reinforcement learning of robotic skills. In Proceedings of the 38th International Conference
on Machine Learning (ICML), 2021.

11

Published in Transactions on Machine Learning Research (01/2024)

Haochen Chen, Bryan Perozzi, Yifan Hu, and Steven Skiena. Harp: Hierarchical representation learning for
networks. In The Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18), 2018.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive
learning of visual representations. In Internation Conference on Machine (ICML), 2020.

Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties of
neural machine translation: Encoder–decoder approaches. In Proceedings of SSST-8, Eighth Workshop on
Syntax, Semantics and Structure in Statistical Translation, pp. 103–111, 2014.

Junyoung Chung, Sungjin Ahn, and Yoshua Bengio. Hierarchical multiscale recurrent neural networks. In
International Conference on Learning Representations (ICLR), 2017.

Peter Dayan. Improving generalization for temporal difference learning: The successor representation. Neural
Computation, 1993.

Mhairi Dunion, Trevor McInroe, Kevin Sebastian Luck, Josiah P. Hanna, and Stefano V. Albrecht. Con-
ditional mutual information for disentangled representations in reinforcement learning. In Conference on
Neural Information Processing Systems (NeurIPS), 2023a.

Mhairi Dunion, Trevor McInroe, Kevin Sebastian Luck, Josiah P. Hanna, and Stefano V Albrecht. Temporal
disentanglement of representations for improved generalisation in reinforcement learning. In International
Conference on Learning Representations (ICLR), 2023b.

Ian Fischer. The conditional entropy bottleneck. Entropy, 2020.

Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, and Marc G. Bellemare. DeepMDP: Learn-
ing continuous latent space models for representation learning. In Proceedings of the 36th International
Conference on Machine Learning (ICML), 2019.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond, Elena Buchatskaya,
Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, Bilal Piot, Koray
Kavukcuoglu, Rémi Munos, and Michal Valko. Bootstrap your own latent: A new approach to self-
supervised learning. In 34th Conference on Neural Information Processing Systems (NeurIPS), 2020.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In Proceedings of the 35th International
Conference on Machine Learning (ICML), volume 80, pp. 1861–1870, 2018a.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash Ku-
mar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft actor-critic algorithms and
applications. arXiv preprint arXiv:1812.05905, 2018b.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James Davidson.
Learning latent dynamics for planning from pixels. In International Conference on Machine Learning
(ICML), pp. 2555–2565, 2019.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. In International Conference on Learning Representations (ICLR), 2020.

Danijar Hafner, Timothy P Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with discrete
world models. In Internation Conference on Learning Representations (ICLR), 2021.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised
visual representation learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 9726–9735, 2020.

12

Published in Transactions on Machine Learning Research (01/2024)

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger. Deep
reinforcement learning that matters. In Proceedings of The Thirty-Second AAAI Conference on Artificial
Intelligence (AAAI-18), 2018.

Riashat Islam, Peter Henderson, Maziar Gomrokchi, and Doina Precup. Reproducibility of benchmarked
deep reinforcement learning tasks for continuous control. In Proceedings of the ICML 2017 workshop on
Reproducibility in Machine Learning (RML), 2017.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David Silver,
and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. In International
Conference on Learning Representations, 2017.

Max Jaderberg, Wojciech M. Czarnecki, Iain Dunning, Luke Marris, Guy Lever, Antonio Garcia Castaneda,
Charles Beattie, Neil C. Rabinowitz, Ari S. Morcos, Avraham Ruderman, Nicolas Sonnerat, Tim Green,
Louise Deason, Joel Z. Leibo, David Silver, Demis Hassabis, Koray Kavukcuoglu, and Thore Graepel.
Human-level performance in first-person multiplayer games with population-based deep reinforcement
learning. Science, 364:859–865, 2019.

Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting in partially
observable stochastic domains. Artificial Intelligence, 101(1):99–134, 1998.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre Quillen,
Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, and Sergey Levine. QT-Opt: Scalable deep rein-
forcement learning for vision-based robotic manipulation. In 2nd Conference on Robot Learning (CoRL),
2018.

Dmitry Kalashnikov, Jake Varley, Yevgen Chebotar, Benjamin Swanson, Rico Jonschkowski, Chelsea Finn,
Sergey Levine, and Karol Hausman. Scaling up multi-task robotic reinforcement learning. In Proceedings
of the 5th Conference on Robot Learning (CoRL), 2021.

Tom Kenter, Vincent Wan, Chun-An Chan, Rob Clark, and Jakub Vit. CHiVE: Varying prosody in speech
synthesis with a linguistically driven dynamic hierarchical conditional variational network. In Proceedings
of the 36th International Conference on Machine Learning (ICML), 2019.

Taesup Kim, Sungjin Ahn, and Yoshua Bengio. Variational temporal abstraction. In 33rd Conference on
Neural Information Processing Systems (NeurIPS), 2019.

Jan Koutnik, Klaus Greff, Faustino Gomez, and Juergen Schmidhuber. A clockwork rnn. In Proceedings of
the 31st International Conference on Machine Learning (ICML), 2014.

Manoj Kumar, Mohammad Babaeizadeh, Dumitru Erhan, Chelsea Finn, Sergey Levine, Laurent Dinh, and
Durk Kingma. Videoflow: A conditional flow-based model for stochastic video generation. In International
Conference on Learning Representations (ICLR), 2020.

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. CURL: Contrastive unsupervised representations for
reinforcement learning. In Proceedings of the 37th International Conference on Machine Learning (ICML),
volume 119, pp. 5639–5650, 2020a.

Misha Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas. Reinforcement
learning with augmented data. In 34th Conference on Neural Information Processing Systems (NeurIPS),
volume 33, pp. 19884–19895, 2020b.

Alex X. Lee, Anusha Nagabandi, Pieter Abbeel, and Sergey Levine. Stochastic latent actor-critic: Deep
reinforcement learning with a latent variable model. In Advances in Neural Information Processing Systems
(NeurIPS), volume 33, pp. 741–752, 2020a.

Kuang-Huei Lee, Ian Fischer, Anthony Liu, Yijie Guo, Honglak Lee, John Canny, and Sergio Guadarrama.
Predictive information accelerates learning in rl. In Advances in Neural Information Processing Systems
(NeurIPS), volume 33, pp. 11890–11901, 2020b.

13

Published in Transactions on Machine Learning Research (01/2024)

Yao Lu, Karol Hausman, Yevgen Chebotar, Mengyuan Yan, Eric Jang, Alexander Herzog, Ted Xiao, Alex
Irpan, Mohi Khansari, Dmitry Kalashnikov, and Sergey Levine. Aw-opt: Learning robotic skills with
imitation and reinforcement at scale. In roceedings of the 5th Conference on Robot Learning (CoRL),
2021.

Trevor McInroe, Lukas Schäfer, and Stefano V. Albrecht. Learning temporally-consistent representations
for data-efficient reinforcement learning. arXiv preprint: arXiv:2110.04935, 2021.

Trevor McInroe, Stefano V. Albrecht, and Amos Storkey. Planning to go out-of-distribution in offline-to-
online reinforcement learning. arXiv preprint arXiv:2310.05723, 2023.

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration by self-
supervised prediction. In International Conference on Machine Learning (ICML), 2017a.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration by self-
supervised prediction. In International conference on machine learning, pp. 2778–2787. PMLR, 2017b.

Roberta Raileanu and Tim Rocktäschel. Ride: Rewarding impact-driven exploration for procedurally-
generated environments. In International Conference on Learning Representations, 2020.

Rajesh P. N. Rao and Dana H. Ballard. Predictive coding in the visual cortex: a functional interpretation
of some extra-classical receptive-field effects. Nature Neuroscience, 1999.

Vaibhav Saxena, Jimmy Ba, and Danijar Hafner. Clockwork variational autoencoders. In 35th Conference
on Neural Information Processing Systems (NeurIPS), 2021.

Lukas Schäfer, Filippos Christianos, Josiah P Hanna, and Stefano V Albrecht. Decoupled reinforcement
learning to stabilise intrinsically-motivated exploration. In International Conference on Autonomous
Agents and Multiagent Systems, 2022.

Matthew Schlegel, Andrew Jacobsen, Zaheer Abbas, Andrew Patterson, Adam White, and Martha White.
General value function networks. Journal of Artificial Intelligence Research, 70, 2021.

Jürgen Schmidhuber. A possibility for implementing curiosity and boredom in model-building neural con-
trollers. In Proc. of the international conference on simulation of adaptive behavior: From animals to
animats, pp. 222–227, 1991a.

Jürgen Schmidhuber. Neural sequence chunkers. Technical report, 1991b.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional con-
tinuous control using generalized advantage estimation. In International Conference on Learning Repre-
sentations (ICLR), 2016.

Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, and Philip Bachman. Data-
efficient reinforcement learning with self-predictive representations. In International Conference on Learn-
ing Representations (ICLR), 2021.

Saurabh Singh and Shankar Krishnan. Filter response normalization layer: Eliminating batch dependence
in the training of deep neural networks. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2020.

Lorenzo Steccanella, Simone Totaro, and Anders Jonsson. Hierarchical representation learning for markov
decision processes. arXiv preprint: arXiv:2106.01655, 2021.

Austin Stone, Oscar Ramirez, Kurt Konolige, and Rico Jonschkowski. The distracting control suite – a
challenging benchmark for reinforcement learning from pixels. arXiv preprint arXiv:2101.02722, 2021.

Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. Decoupling representation learning from
reinforcement learning. In Proceedings of the 38th International Conference on Machine Learning (ICML),
volume 139, pp. 9870–9879, 2021.

14

Published in Transactions on Machine Learning Research (01/2024)

Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged consistency tar-
gets improve semi-supervised deep learning results. In 31st Conference on Neural Information Processing
Systems (NeurIPS), 2017.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden, Abbas
Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy Lillicrap, and Martin Riedmiller. DeepMind control
suite. arXiv preprint arXiv:1801.00690, 2018.

Yuval Tassa, Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel,
Tom Erez, Timothy Lillicrap, and Nicolas Heess. dm_control: Software and tasks for continuous control.
arXiv preprint arXiv:2006.12983, 2020.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033, 2012.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

Vivek Veeriah, Matteo Hessel, Zhongwen Xu, Janarthanan Rajendran, Richard L. Lewis, Junhyuk Oh,
Hado P. van Hasselt, David Silver, and Satinder Singh. Discovery of useful questions as auxiliary tasks.
In Advances in Neural Information Processing Systems (NeurIPS), 2019.

Arun Venkatraman, Nicholas Rhinehart, Wen Sun, Lerrel Pinto, Martial Hebert, Byron Boots, Kris M.
Kitani, and J. Andrew Bagnell. Predictive-state decoders: Encoding the future into recurrent networks.
In Advances in Neural Information Processing Systems (NeurIPS), 2017.

Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fergus. Improving sample
efficiency in model-free reinforcement learning from images. arXiv preprint arXiv:1910.01741, 2020.

Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image augmentation is all you need: Regularizing deep
reinforcement learning from pixels. In International Conference on Learning Representations (ICLR),
2021.

Amy Zhang, Rowan Thomas McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learning invariant
representations for reinforcement learning without reconstruction. In International Conference on Learning
Representations (ICLR), 2021.

Marvin Zhang, Sharad Vikram, Laura Smith, Pieter Abbeel, Matthew J. Johnson, and Sergey Levine. Solar:
Deep structured representations for model-based reinforcement learning. In International Conference on
Machine Learning (ICML), 2019.

Zeyu Zheng, Vivek Veeriah, Risto Vuorio, Richard L Lewis, and Satinder Singh. Learning state represen-
tations from random deep action-conditional predictions. In Advances in Neural Information Processing
Systems (NeurIPS), 2021.

A Appendix

B Extended Background

Soft Actor-Critic. Soft Actor-Critic (SAC) (Haarnoja et al., 2018a;b) is a popular off-policy, model-
free RL algorithm for continuous control. SAC uses a state-action value-function critic Q and target
critic Q̄, a stochastic actor π, and a learnable temperature α that weighs between reward and entropy:
Eot,at∼π[

∑
t R(ot, at) + αH(π(·|ot))].

SAC’s critic is updated with the squared Bellman error over historical trajectories τ = (ot, at, rt, ot+1) sam-
pled from a replay memory D:

Lcritic = Eτ∼D[(Q(ot, at) − (rt + γy))2], (3)

15

Published in Transactions on Machine Learning Research (01/2024)

where y is computed by sampling the current policy:

y = Ea′∼π[Q̄(ot+1, a′) − α log π(a′|ot+1)]. (4)

The target critic Q̄ does not receive gradients, but is updated as an exponential moving average (EMA) of
Q (e.g., He et al. (2020)). SAC’s actor parameterizes a multivariate Gaussian N (µ, σ) where µ is a vector
of means and σ is the diagonal of the covariance matrix. The actor is updated via minimizing :

Lactor = −Ea∼π,τ∼D[Q(ot, a) − α log π(a|ot)], (5)

and α is learned against a static value.

C Environments

Table 1 outlines the action space, the action repeat hyperparameter, and the reward function type of each
environment used in this study. The action repeat hyperparameters that are displayed in the table are the
standards as defined by (Hafner et al., 2019) and are the same used in most studies in DMControl. The
versions of each environment with distractors follow the presented information as well.

Table 1: Dimensions of action spaces, action repeat values, and reward function type for all six environments
in the DMControl benchmark suite and Falling Pixels.

Environment, Task dim(A) Action Repeat Reward Type
Finger, spin 2 2 Dense

Cartpole, swingup 1 8 Dense
Reacher, easy 2 4 Sparse
Cheetah, run 6 4 Dense
Walker, walk 6 2 Dense

Ball in Cup, catch 2 4 Sparse
Falling Pixels 1 1 Dense

The Falling Pixels environment is rendered as a 35×15 grayscale image. The agent is confined to the bottom
row and pixels are spawned at the top row. The agent is placed randomly along the bottom row and the
top row is filled with pixels at the beginning of each episode. With each environment step, the pixels travel
downwards until they reach the bottom row. If the agent is occupying a pixel’s column when it reaches the
bottom row, that pixel is collected and the agent is rewarded +1. Regardless of whether a pixel is collected,
it disappears from the board once it reaches the bottom row. When a column does not have a pixel within
it, there is a 2.5% chance for a new pixel to be spawned in that row each environment step. When spawned,
the pixel is assigned a speed from the set {1, 3, 5} uniformly at random. Each episode is 250 environment
steps.

D Architecture and Hyperparameters

D.1 SAC Settings

All encoders follow the same architecture as defined by (Yarats et al., 2020). These encoders are made of four
convolutional layers separated by ReLU nonlinearities, a linear layer with 50 hidden units, and a final layer
norm opertion (Ba et al., 2016). Each convolutional layer has 32 3×3 kernels and the layers have a stride of
2, 1, 1, and 1, respectively. This in contrast to the encoder used in the PI-SAC study (Lee et al., 2020b),
which uses Filter Response Normalization (Singh & Krishnan, 2020) layers between each convolution.

The architectures used by the SAC networks follow the same architecture as deinfed by (Yarats et al., 2020).
Both the actor and critic networks have two layers with 1024 hidden units, separated by ReLU nonlinearities.
This is in contrast to the networks used in the PI-SAC study, which uses a different number of hidden units
in the actor and critic networks.

16

Published in Transactions on Machine Learning Research (01/2024)

Several studies have shown that even small differences in neural network architecture can cause statistically
signficant differences in performance (Islam et al., 2017; Henderson et al., 2018). As such, we avoid using
the original PI-SAC encoder and SAC architectures to ensure a fair study between all methods.

Table 2 shows the SAC hyperparameters used by all methods in this study. For method-specific hyperpa-
rameters (e.g., auxiliary learning rate, architexture of auxiliary networks, etc.), we defaulted to the settings
provided by the original authors.

Table 2: SAC Hyperparameters used to produce paper’s main results.

Hyperparameter Value
Image padding 4 pixels

Initial steps 1000
Stacked frames 3

Evaluation episodes 10
Optimizer Adam

(β1, β2) Optimizer (0.9, 0.999)
Learning rate 1e − 3

Batch size 128
Q function EMA 0.01
Encoder EMA 0.05

Target critic update freq 2
dim(z) 50

γ 0.99
Initial α 0.1
Target α - |A|

Replay memory capacity 100,000
Actor log stddev bounds [-10,2]

D.2 HKSL Hyperparameters

Table 3 shows the hyperparameters that control HKSL. h represents the number of levels, n contains a list
of the skips of each level from lowest to highest level, k shows the length of the trajectory sampled at each
training step, learning rate corresponds to the learning rate of all HKSL’s components, and actor update
freq corresponds to the number of steps between each actor update. These hyperparameters were found with
a brief search over the non-distractor setting of each environment.

HKSL’s communication manager c is a simple two-layer nonlinear model. The first layer has 128 hidden
units and the second has 50. The two layers are separated by a ReLU nonlinearity.

Table 3: Hyperparameters used for HKSL for each environment.

Environment, Task h n k Learning rate Actor Update Freq
Finger, spin 2 [1,3] 3 1e-4 2

Cartpole, swingup 2 [1,3] 6 1e-3 1
Reacher, easy 2 [1,3] 3 1e-4 2
Cheetah, run 2 [4,5] 10 1e-4 2
Walker, walk 2 [1,3] 6 1e-3 1

Ball in Cup, catch 2 [1,3] 6 1e-3 1
Falling Pixel 3 [1,3,5] 6 le-3 1

17

Published in Transactions on Machine Learning Research (01/2024)

D.3 HKSL’s Forward Models

The usual GRU formulation at step t:

ut
gru = σ(fu

gru([at|zt−1])) (6)
rt

gru = σ(fr
gru([at|zt−1])) (7)

ht
gru = tanh(fh

gru([rt
gru ⊙ zt−1|at])) (8)

gt
gru = (1 − ut

gru) ⊙ zt−1 + ut
gru ⊙ ht

gru (9)

where each each distinct f is an affine transform, σ is the sigmoid nonlinearity, and ⊙ is the Hadamard
product. In order to allow the forward models to take the optional input from c, we add an identical set of
additional affine transforms:

ut
c = σ(fu

c ([Ct|zt−1])) (10)
rt

c = σ(fr
c ([Ct|zt−1])) (11)

ht
c = tanh(fh

c ([rt
c ⊙ Ct|zt−1])) (12)

gt
c = (1 − ut

c) ⊙ zt−1 + ut
c ⊙ ht

c (13)

where Ct denotes the output from c at step t. Finally, the output of the forward model is the average of the
two pathways:

zt =
gt

c + gt
gru

2 (14)

E Attention Maps

We examine the encoders within HKSL’s hierarchy to ascertain their objects of focus. Each encoder receives
gradients relating to a different magnitude of temporal coarseness. Therefore, each encoder should learn to
“focus” on different aspects of input images. The top row in each plot shows the unstacked frames that go
into the past from right to left (e.g., the framestack depicted with images as [ot−2, ot−1, ot].) The bottom
row of each plot shows the attention maps from each encoder. The attention maps are generated by taking
the output of the final convolutional layer, post-activation, and averaging across the feature map dimension.
Doing so collapses the output feature maps into a single-channel image with the most “active" portions of
the image highlighted. All encoders are from HSKL agents after 100k environment steps of training.

Figure 8 depicts a scenario from Cartpole, Swingup. We note that the encoder from the first level (left)
attends to the pole, an object that is not controlled by the agent. In contrast, the encoder from the second
level (right) attends to the cart, which is directly controlled by the agent. Figure 9 also depicts a scenario
from the Cartpole, Swingup environment. Here, the cart is offscreen for one frame in the stack. Here, we
see the same pattern as in Figure 8. The encoder from the first and second level pay more attention to the
pole and the cart, respectively.

Figure 10 depicts a scenario from the Ball in Cup, Catch environment. We highlight that the encoder from
the first level (left) appears to attend entirely to the information from the most recent frame in the input
stack. In contrast, the encoder from the second level (right) gathers the full trajectory of information from
each frame in the stack. This phenomenon is especially apparent in Figure 11, where the encoder from the
second level (right) captures the trajectory of the ball as it falls into the cup.

F Individual Environment Results

This section shows the mean (bold lines) ± one standard deviation (shaded area) for every individual
environment and distractor combination. Figure 12 displays the non-distractor environments, Figure 13
shows the color distractors on the easy setting, Figure 14 shows the color distractors on the medium setting,
Figure 15 shows the camera distractors on the easy settings, and Figure 16 shows the camera distractors on
the medium setting.

18

Published in Transactions on Machine Learning Research (01/2024)

Figure 8: Input frame stack (top row) and corresponding attention maps (bottom row) for a scenario from
Cartpole, Swingup. Encoder from first and second level shown on the left and right, respectively.

Figure 9: Input frame stack (top row) and corresponding attention maps (bottom row) for a scenario from
Cartpole, Swingup. Encoder from first and second level shown on the left and right, respectively.

G Pseudocode

19

Published in Transactions on Machine Learning Research (01/2024)

Figure 10: Input frame stack (top row) and corresponding attention maps (bottom row) for a scenario from
Ball in Cup, Catch. Encoder from first and second level shown on the left and right, respectively.

Figure 11: Input frame stack (top row) and corresponding attention maps (bottom row) for a scenario from
Ball in Cup, Catch. Encoder from first and second level shown on the left and right, respectively.

20

Published in Transactions on Machine Learning Research (01/2024)

0

200

400

600

800

Ev
al

ua
tio

n
Re

tu
rn

s

Cartpole, Swingup
HKSL
DrQ
CURL
PI-SAC
DBC
DreamerV2

0

200

400

600

800

1000
Ball in Cup, Catch

0

200

400

600

800

Walker, Walk

0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×105)

0

100

200

300

400

500

Ev
al

ua
tio

n
Re

tu
rn

s

Cheetah, Run

0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×105)

0

200

400

600

800

Finger, Spin

0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×105)

0
100
200
300
400
500
600
700

Reacher, Easy

No Distractiors

Figure 12: Evaluation returns for agents trained in DMControl without distractors. Bold line depicts the
mean and shaded area represents +− one standard deviation across five seeds.

0

200

400

600

800

Ev
al

ua
tio

n
Re

tu
rn

s

Cartpole, Swingup
HKSL
DrQ
CURL
PI-SAC
DBC
DreamerV2

0

200

400

600

800

Ball in Cup, Catch

0
100
200
300
400
500
600
700

Walker, Walk

0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×105)

0

100

200

300

400

500

Ev
al

ua
tio

n
Re

tu
rn

s

Cheetah, Run

0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×105)

0

200

400

600

800

Finger, Spin

0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×105)

0

100

200

300

400

500

Reacher, Easy

Color Distractiors (Easy)

Figure 13: Evaluation returns for agents trained in DMControl with color distractors on the easy setting.
Bold line depicts the mean and shaded area represents +− one standard deviation across five seeds.

21

Published in Transactions on Machine Learning Research (01/2024)

0

200

400

600

800

Ev
al

ua
tio

n
Re

tu
rn

s

Cartpole, Swingup
HKSL
DrQ
CURL
PI-SAC
DBC
DreamerV2

0

200

400

600

800

1000
Ball in Cup, Catch

0

100

200

300

400

Walker, Walk

0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×105)

0

100

200

300

400

500

Ev
al

ua
tio

n
Re

tu
rn

s

Cheetah, Run

0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×105)

0

200

400

600

800
Finger, Spin

0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×105)

0

100

200

300

400

Reacher, Easy

Color Distractiors (Medium)

Figure 14: Evaluation returns for agents trained in DMControl with color distractors on the medium setting.
Bold line depicts the mean and shaded area represents +− one standard deviation across five seeds.

0

100

200

300

400

500

600

Ev
al

ua
tio

n
Re

tu
rn

s

Cartpole, Swingup
HKSL
DrQ
CURL
PI-SAC
DBC
DreamerV2

0

200

400

600

800

Ball in Cup, Catch

0

100

200

300

400

Walker, Walk

0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×105)

0
50

100
150
200
250
300
350

Ev
al

ua
tio

n
Re

tu
rn

s

Cheetah, Run

0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×105)

0

200

400

600

800
Finger, Spin

0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×105)

0

200

400

600

800
Reacher, Easy

Camera Distractiors (Easy)

Figure 15: Evaluation returns for agents trained in DMControl with camera distractors on the easy setting.
Bold line depicts the mean and shaded area represents +− one standard deviation across five seeds.

22

Published in Transactions on Machine Learning Research (01/2024)

0

100

200

300

400

Ev
al

ua
tio

n
Re

tu
rn

s

Cartpole, Swingup
HKSL
DrQ
CURL
PI-SAC
DBC
DreamerV2

0

200

400

600

Ball in Cup, Catch

0

50

100

150

200

250

300
Walker, Walk

0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×105)

0

50

100

150

200

250

Ev
al

ua
tio

n
Re

tu
rn

s

Cheetah, Run

0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×105)

0

100

200

300

400

500

600

700 Finger, Spin

0 0.2 0.4 0.6 0.8 1.0
Environment Steps (×105)

0

100

200

300

400

500

600
Reacher, Easy

Camera Distractiors (Medium)

Figure 16: Evaluation returns for agents trained in DMControl with camera distractors on the medium
setting. Bold line depicts the mean and shaded area represents +− one standard deviation across five seeds.

Algorithm 1 HKSL Learning Loop
Input: trajectory τ

1: for layer i in HKSL (begin with the lowest layer) do
2: for layer j in HKSL (begin with the highest layer) do
3: if i == j then
4: break loop
5: end if
6: Embed first observation o in τ using layer j’s encoder
7: if layer j is the top layer then
8: for step layer j can take in τ do
9: Compute forward-step using layer j’s forward model and actions from τ

10: Store the prediction
11: end for
12: else layer j is not the top layer
13: for step layer j can take in τ do
14: Compute forward-step using layer j’s forward model, actions from τ , and output from

communication manager using the stored rollout from above level
15: Store the prediction
16: end for
17: end if
18: end for
19: Embed first observation o in τ using layer i’s encoder
20: for step layer i can take in τ do
21: Compute forward-step using layer i’s forward model, actions from τ , and output from communi-

cation manager using the stored rollout from above level
22: Project the forward model’s output with layer i’s nonlinear projection
23: Compute loss per Equation 1
24: end for
25: Update layer i’s weights
26: end for

23

	Introduction
	Background
	Related Work
	Hierarchical k-Step Latent
	Experiments
	Experimental Setup
	Sample Efficiency
	Component Ablations
	Representation Analysis

	Conclusion, Limitations, and Future Work
	Appendix
	Extended Background
	Environments
	Architecture and Hyperparameters
	SAC Settings
	HKSL Hyperparameters
	HKSL's Forward Models

	Attention Maps
	Individual Environment Results
	Pseudocode

