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Abstract

Sensor fusion of camera, LiDAR, and 4-dimensional (4D) Radar has brought a
significant performance improvement in autonomous driving. However, there still
exist fundamental challenges: deeply coupled fusion methods assume continuous
sensor availability, making them vulnerable to sensor degradation and failure,
whereas sensor-wise cross-attention fusion methods struggle with computational
cost and unified feature representation. This paper presents availability-aware
sensor fusion (ASF), a novel method that employs unified canonical projection
(UCP) to enable consistency in all sensor features for fusion and cross-attention
across sensors along patches (CASAP) to enhance robustness of sensor fusion
against sensor degradation and failure. As a result, the proposed ASF shows a
superior object detection performance to the existing state-of-the-art fusion methods
under various weather and sensor degradation (or failure) conditions; Extensive
experiments on the K-Radar dataset demonstrate that ASF achieves improvements
0of 9.7% in APggy (87.2%) and 20.1% in AP3p (73.6%) in object detection at
IoU=0.5, while requiring a low computational cost. All codes are available at
https://github.com/kaist-avelab/k-radar,

1 Introduction

Autonomous driving technology has advanced rapidly, with multiple companies adopting multi-sensor
fusion approaches that combine two or more sensors, such as cameras, LIDAR, and 4-dimensional
(4D) Radar, to achieve more robust and reliable perception (Badue et al.,[2021}; [Wang et al., 2020).
Cameras uniquely provide color information but struggle with depth estimation; LiDAR delivers
high-resolution 3-dimensional (3D) point cloud data but is less reliable in adverse weather conditions
(Zheng et al., 2023a); and 4D Radar, despite its relatively low angular resolution, offers robustness
in adverse weather and directly measures relative velocity (Paek et al., [2022; [Palffy et al., [2022;
Kong et al.; 2024} Sun and Zhang| |2021)). This complementary nature initiated sensor fusion between
camera, LiDAR, and 4D Radar to improve perception performance and reliability compared to a
single-sensor (Yan et al.| [2023; [Liang et al., [2024; |Liu et al.| 2023a; Zheng et al.} 2023b).

Most multi-modal sensor fusion methods can be categorized into two methods. The first is deeply
coupled fusion (DCF), which directly combines feature maps (FMs) extracted by sensor-specific
encoder, as illustrated in Fig.[T}(a). While it is simple to implement and computationally efficient with
excellent performance in various benchmarks (Chae et al., 2024} [Liu et al.| 2023a} |Liang et al., [2024;
Zhao et al [2024a; Caesar et al., 2020} |Geiger et al.,[2013)), it assumes all sensors are functioning
properly and consistently. This makes DCF vulnerable to sensor degradation due to adverse weathers,
surface-damages, and sensor failure. Moreover, DCF requires retraining the entire neural network
when the number of sensors changes, as the size of the fused FM (i.e., the input to the detection
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Figure 1: Comparison of sensor fusion methods: (a) DCF (e.g., 3D-LRF (Chae et al.|[2024)), (b) SCF
(e.g., CMT (Yan et al., [2023)), and (c) ASF. FV, BEV, Obj., GT, L., and L,..4 stand for ‘“front-view’,
‘bird’s eye-view’, ‘objects’, ‘ground truths’, ‘classification loss’, and ‘regression loss’, respectively.
‘Feature coupling’ refers to methods that combine features from multiple sensors to create new
features. Optional components are in dashed lines; for example, (Vora et al.,|2020) combines camera
and LiDAR features without transforming the camera viewpoint, while (Yan et al., [2023) fuses
features through a transformer decoder head (Carion et al.l 2020) without explicit feature coupling.
ASF does not apply feature coupling to ensure independence between sensors.

head) changes. The second method is sensor-wise cross-attention fusion (SCF), which divides
features extracted from each sensor into patches with positional-embedding (e.g., depth information
for camera (Liu et al., [2022; [Wang et al.| 2022)) and selectively combines available patches using
cross-attention (Fig. |I|-(b)), allowing it to handle cases where some sensors are degraded. However,
SCF does not have sensor scalability, since the method does not project sensor-specific features into a
standardized representation (Zheng et al., 2024} [Liu et al.| 2023bj [Wang et al.,2016). In addition,
SCF incurs computational complexity that scales with the number of patches, resulting in substantial
computational overhead when processing multiple sensors with numerous patches (Fent et al., [ 2024;
Yan et al., [2023; Bai et al .| [2022).

One of the fundamental limitations of existing fusion methods stems from inconsistencies in feature
representation across different sensors (Shashua,|2024;|Yeong et al.| [2025)). Cameras produce 2D RGB
images, whereas LiDAR generates 3D point clouds, and 4D Radar produces low-resolution tensors
with power values. Therefore, each sensor extracts features with different representations for the same
object, making consistent fusion challenging (as shown in Fig. 2}(a)). To address this inconsistency,
an ideal strategy could project features from different sensors into a unified canonical space for
fusion. The concept of ‘True Redundancy (Shashual 2024)’, that ensures sensor independence
while maintaining canonical feature representation for any sensor combination, suggests a promising
direction for highly reliable and robust sensor fusion.

Therefore, we propose availability-aware sensor fusion (ASF) method (Fig. |I|-(c)), in which each
sensor performs independently while being complementarily fused through a projection to a unified
canonical space. As a result, the proposed method addresses the limitations of both DCF and SCF
simultaneously. The key innovation of ASF is in two sub-modules; First, unified canonical projection
(UCP) projects features from each sensor into a unified space based on common criteria (i.e.,
canonical). Since UCP is optimized using the same reference query for all sensors, inconsistencies
in sensor features are eliminated. While Fig. [2}(a) shows sensor features represented without clear
patterns, Fig. 2}(b) demonstrates how UCP aligns the features from each sensor to the fused feature.
Second, cross-attention across sensors along patches (CASAP) estimates the availability of sensors
through patch-wise cross-attention on features projected into the unified canonical space, assigning
higher weights to features from available sensors and lower weights to features from missing or
degraded sensors. Unlike SCF that applies the cross-attention across all sensors (N;) and patches (IV,))
(i.e., O(NyNgN,) for N, queries), ASF only applies the cross-attention across sensors along patches
(i.e., O(N,Ny)). Because of this, ASF eliminates complex positional-embedding and improves
computationally efficiency. Additionally, it applies normalization to ensure that (camera, LiDAR,
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Figure 2: Visualization of feature representation with t-SNE (van der Maaten and Hinton| |2008]) at
different stages of ASF for ‘Sedan’ class. Red, green, blue, and gray dots represent features from
camera, LiDAR, 4D Radar, and fused features, respectively. Symbols in solid lines such as circle and
triangle, square, and star indicate normal, sleet, and heavy snow conditions, respectively. (a) Initial
output features from sensor-specific encoders show inconsistent distribution across sensors. (b) After
unified canonical projection (UCP), features become better aligned to the fused feature. (c) After
cross-attention across sensors along patches (CASAP), features from available sensors form cohesive
clusters (in dashed symbols) based on weather conditions. Note that in adverse weather, camera
features show larger deviation due to the degradation. Additional visualizations are in Appendix B.

and 4D Radar) features can be processed consistently by the detection head regardless of sensor
combination. In contrast to Fig. 2}(b), where each sensor’s features remain separate, Fig. 2}(c) shows
how sensor features cluster together after CASAP (except for camera become useless in adverse
weathers, as shown in Fig.[3). This enables ASF to flexibly handle sensor degradation or failure and to
achieve the reliability embodied in the ‘“True Redundancy’ concept (Shashual [2024) for autonomous
driving implementation.

To integrate the availability awareness into the detection head, we propose a sensor combination loss
(SCL) that optimizes learning outcomes across all sensor combinations. SCL considers individual
sensor unavailability during the training, enabling the system to maintain high performance in the
presence of unexpected sensor failure or adverse weather conditions. The effectiveness of our
proposed ASF method has been validated on the K-Radar dataset (Paek et al.,[2022), demonstrating
improvements of 9.7% in APggy (87.2%) and 20.1% in APsp (73.6%) for detection performance
at IoU=0.5 compared to state-of-the-art (SOTA) methods (Chae et al.| [2024; |Huang et al., [2025)),
which includes the performance in extreme situations such as sensor degradation or failure (i.e.,
unavailable).

The main contributions of this paper are as follows: (1) We propose ASF based on UCP and
CASAP that achieves superior performance to SOTA methods and robust performance against
sensor degradation and failure. (2) We propose SCL for the loss function to optimize the detection
performance for all possible sensor combinations. (3) Through extensive experiments on the K-Radar
dataset, we demonstrate that ASF achieves the high performance with low computational load.

The remainder of this paper is organized as follows: Section [2]introduces existing methods, and
Section [3|describes the proposed ASF in detail. Section[d]presents experimental settings and results
on the K-Radar dataset, analyzing performance in various scenarios including sensor degradation and
failure. Section[5]concludes the paper with a summary and discusses the limitations. All codes and
logs for ASF are available at https://github.com/kaist-avelab/k-radar|

2 Related Works

2.1 Deeply Coupled Fusion (DCF)

DCEF constructs a fused feature map (FM) by concatenating FMs from each sensor. Most studies
focus on fusing camera with LiDAR or 4D Radar (Liu et al.,2023a} Liang et al.| 2024; Zheng et al.|
2023bj [ X1ong et al., 2023)), or combining LiDAR and 4D Radar (Chae et al., 2024} |Huang et al.,
2025)). Implementations range from directly fusing the front-view (FV) camera image with LiDAR
or 4D Radar without view transformation (Vora et al., 2020) to applying learnable BEV transforms


https://github.com/kaist-avelab/k-radar

(Philion and Fidler} |2020) and concatenating at the BEV stage (Liu et al.,[2023a} [Liang et al.,2024;
Zheng et al.l|2023b). DCF method is straightforward to implement and computationally efficient
compared to SCF, demonstrating strong performance across multiple benchmarks.

Recent DCF studies have improved performance by applying feature coupling, where the FMs of
each sensor are enhanced with FMs of other sensors using multi-layer perception (MLP) or attention
mechanisms (Vaswani et al.,2017)). 3D-LRF (Chae et al.}2024)) demonstrated superior performance
to the conventional DCFs (Liang et al.,|2024; [Liu et al.; 2023a) by applying attention between LiDAR
and 4D Radar voxel features before concatenation. L4DR (Huang et al.| 2025) achieved SOTA
performance on the K-Radar dataset by weighting each sensor’s FM using coupled BEV FMs with
LiDAR and 4D Radar. However, DCF assumes all sensors are functioning normally, as they rely on
the fused FM constructed by concatenating FMs from all sensors, making DCF vulnerable to sensor
degradation and failure. This limitation arises because the training process does not expose the model
to potential sensor degradation or failure scenarios that commonly occur during deployment.

2.2 Sensor-wise Cross-attention Fusion (SCF)

SCF divides sensor-specific FMs into patches and dynamically combines them through cross-attention
in a transformer decoder head (Yan et al 2023)), inherently accommodating sensor availability.
TransFusion (Bai et al.| [2022)) is the first SCF that addresses sensor availability, but its sequential
fusion method (e.g., performing LiDAR detection first and then fusing with camera data) makes
inference impossible when LiDAR is unavailable. CMT (Yan et al., [2023) presents an availability-
aware sensor fusion of camera and LiDAR data using a transformer decoder head without applying
feature coupling to individual sensors. However, without feature coupling for camera, CMT relies on
positional embedding to incorporate depth information into camera FMs (Liu et al., [2022)), which
results in 3D patches (H x W x D). This leads to computational complexity of O(N;N,;N,) (where
Ny, Ny, and N, are the number of queries, sensors, and patches, respectively), causing explosive
growth in computational cost and memory usage. For instance, CMT requires 8 A100 GPUs with
80GB VRAM to train with a batch size of 16.

Recently, DPFT (Fent et al.,[2024) creates independent FMs and projects sensor-agnostic query points
onto different FMs to verify sensor availability, achieving 56.1% APsp at IoU=0.3 (using only 4D
Radar and camera). Unlike methods that utilize entire FMs, DPFT achieves reasonable computational
efficiency by employing deformable attention (Xia et al.,|2022)) that considers varying receptive fields
using only a small number of key points. However, similar to CMT, DPFT performs object detection
using variable object queries, which does not establish a common representation across different
sensors (as illustrated in Fig. 2).

3 Proposed Methods

3.1 Sensor Fusion Framework

The overall sensor fusion framework consists of three stages: (1) sensor-specific encoders (i.e.,
backbones) that extract same-sized bird’s eye-view (BEV) feature maps (FMs) from each sensor data
(i.e., RGB image, LiDAR point cloud, and 4D Radar tensor), (2) the proposed availability-aware
sensor fusion (ASF) network that is described in following subsection [3.2] and (3) a detection head
that detects objects from the fused FM.

Focusing on our ASF contribution, we utilize established methods for the sensor-specific encoders
and detection head. Specifically, we adopt BEVDepth (Li et al.,|2023), SECOND (Yan et al.| 2018)),
and RTNH (Paek et al., [2022) backbones for camera, LiDAR, and 4D Radar, respectively, along with
a SSD detection head (Liu et al.| 2016). Further specifications regarding the overall sensor fusion
framework, such as sensor-specific encoders and detection head, are provided in Appendix A.

3.2 Availability-aware Sensor Fusion (ASF)

As illustrated in Fig. [T}(c), the proposed ASF consists of two key components: unified canonical
projection (UCP) and cross-attention across sensors along patches (CASAP).

Unified Canonical Projection (UCP). One of the key challenge in multi-modal sensor fusion is
the inherent inconsistency of features from different sensors (Shashual [2024; Yeong et al., 2025)), as



visualized in Fig. [2}(a). To tackle this, we divide BEV FMs into an equal number of patches for all
sensors and train projection functions to transform features from each sensor into a unified space
based on the same criteria (i.e., reference query in CASAP). To formally define our methods, we first
represent the same-sized FMs of each sensor as:

FM® € REXHXW s c 155,51, SR}, €]

where C denotes the channel dimension for sensor s, H and W represent the identical height and
width of BEV FMs for all sensors, respectively, and S¢, S, and S denote camera, LiIDAR, and 4D
Radar sensors, respectively. Each FM is then divided into patches F} with height Py and width Py :

To(FM®)={F; ,|F5 e RO*Pm>Fw j—1:N,}, )

where 7,(-) is the operation that divides each FM into patches, N, = (H/Pg) x (W/Py) is the
number of patches, which is identical across all sensors since each FM has the same spatial size, and

‘1: N, denotes ‘1,2,..., N,”. Note that since the patches are already spatially aligned (i.e., F;? ,

Fg %, and FSR correspond to the same position), our method eliminates the use of computationally
expensive posmonal embedding (Liu et al., |2022) required for SCF (Yan et al.| 2023; |[Fent et al.,

2024). Then, we apply a parallel operation along patches that projects each patch to have the same
channel dimension C',. This is the UCP operation ¢/°(-) that transforms sensor-specific patches into

patches in a unified canonical space. The UCP-processed patch P;; for each sensor is expressed as:
Py ={F; i [F  =U (LN(F} ) €R% i=1:N,} 3
U (-) =LN(Proj(™) (), Proj(-) = GeLU(MLP(.)), 4)

where LN and n,, denote layer normalization (Ba et al.,[2016) for training stability and the number
of sequential projection functions incorporating MLP for transformation and GeLU (Hendrycks
and Gimpel, |2016) for non-linearity, respectively. While our framework allows for repetition of the
projection function to increase non-linearity, with 1 or 2 repetitions being sufficient (we use n,, = 2,
which aligns features as demonstrated in Fig.[2}(b)). Note that 1/* is trained separately for each sensor
based on reference query, which results in alignment of features from all sensors with respect to the
fused feature as shown in Fig. (b).

Cross-attention Across Sensors Along Patches (CASAP). The patches F3 projected into the
unified canonical space by UCP serve as keys (/) and values (V) for a trainable reference query
Qrer€ RNaxCu (where N, is the number of queries ()), and we perform cross-attention across
sensors along patches as:

Q... ;i =CrossAttn(Q=Qycs, K&V €{F.5 F}%

uz7 7J.Z7

FSR}) i=1:N,, 5)

where Q.. 7, 1s the output of the cross-attention applied across sensors for the i-th patch. Since Qrey
is trained primarily on features that are mostly available in the training data, it naturally develops
high correlation (i.e., high attention scores) with patches from available sensors after the training.
Consequently, during inference, Q., 7,; s predominantly composed of available F7,. The number of
heads in cross-attention is a hyper-parameter whose impact is analyzed in subsectron[@

Compared to ASF, cross-attention in SCF is performed across all patches with respect to object
queries Qp; in the transformer decoder head. This can be mathematically expressed as:

Q/obj_crOSSAttn ntd)(@ QObj?K&VG{Fpe D FgecN »FgeL D FijN 7Fpe D FSRN }) (6)
where F represents patches with positional-embedding, and n;4 (usually larger than 6 (Liu et al.,
20225 [Yan et al.l 2023)) is the number of stacked transformer decoders. Eq. E] shows the cross-
attention across all sensors and all patches (i.e., the K&V set contains N, N, patches, resulting in
O(N4N;N,) computational complexity for /V, queries) In contrast, in Eq. |5} the cross-attention is
apphed across sensors and along patches, Wthh requires only O(N,Ny) computat10nal operations.
This is a significant computational costs reduction as Ny < N,,. Moreover, as demonstrated in
Fig.[3|and Tab.[I} ASF achieves better performance with only a single cross-attention layer than SCF
utilizing stacked cross-attention layers (i.e., n¢qg > 6).

Sequentially, ASF applies post-feature normalization (PN) A that has a similar structure to 4/(+)
with LN, to ensure that features can be processed consistently by the detection head regardless of
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Figure 3: Qualitative results of ASF for various sensor combinations. We show results for normal
and adverse weather conditions in (a-i) and (j-r), respectively, where employed sensors are noted
in the top-left corner (C: Camera, L: LiDAR, R: 4D Radar, C*: damaged camera). Each subplot
visualizes front-view camera image, LiDAR point cloud, 4D Radar tensor, and a sensor attention map
(SAM) showing attention score distribution from cross-attention in CASAP. In the SAMs, red, green,
and blue represent attention scores for Camera, LiDAR, and 4D Radar, respectively. For example,
a predominantly blue SAM indicates that 4D Radar receives the highest attention scores, meaning
that 4D Radar is used primarily for detection in the scene. The bottom-left corner of each subplot
shows the proportion of attention scores in colored percentages (C/L./R[%]). Note that predictions are
visualized on all sensor data, even when a sensor is not employed for detection (e.g., predictions from
L+R are also visualized on the camera image).

the sensor combination. Therefore, PN enables camera, LIDAR, and 4D Radar features for the same
object to be consistent. The set of patches P,, with PN is formulated as:

Pn:{Fn’i|Fn,i:N(LN(Q;ef,i))ERC"vi:LNp} @)
N () =LN(Proj ™) (-)), Proj(-) = GeLU(MLP(")), ®)

where n,, denotes the number of sequential projections, with 1 or 2 being sufficient to increase non-
linearity. Unlike Fig. 2}(b) where features from different sensors occupy distinct regions, Fig. 2}(c)
illustrates how PN causes sensor features to converge into unified clusters.

Finally, to transform P,, back to the original BEV size (H x W), we apply a reshape operation Ty, (+).
Since the size of P,, is C,, x N, =Cy X Ng x Ny =Cy X (H /P ) x(W/ Py ), the fused FM FMygea
can be obtained as:

FMiyseq = T (Pn € RO Ne) e RO HXW ©)



Table 1: Performance comparison of 3D object detection on K-Radar (Paek et al.,|2022) benchmark
v1.0. C, L, and R represent Camera, LiDAR, and 4D Radar, respectively. The bold and underlined
values indicate the best and the second-best, respectively. Note that the two ASF models for sensors
L+R and C+L+R share the same neural network weights trained with C+L+R, which means that ASF
for L+R represents a scenario where camera becomes unavailable. Nor., Ove., Sle., L.s., and H.s.
denote ‘Normal’, ‘Overcast’, ‘Sleet’, ‘Light snow’, and ‘Heavy snow’, respectively.

Methods Sensors | IoU | Metric | Total | Nor. Ove. Fog Rain Sle. L.s. H.s.
03 BEV 41.1 | 41.0 446 454 329 506 81,5 563

RTNH R ’ 3D 374 | 37.6 420 412 292 49.1 639 431
(Pack et al.)) 05 BEV 36.0 | 358 419 448 302 345 639 551
’ 3D 141 | 19.7 205 159 13.0 135 210 6.36

03 BEV 76.5 | 76.5 882 863 773 553 8I.1 595

RTNH L ’ 3D 727 | 73.1 765 848 645 534 803 529
(Paek et al.)) 05 BEV 663 | 654 874 838 737 488 785 48.1
’ 3D 37.8 | 39.8 463 598 282 314 507 24.6

03 BEV 84.0 | 83.7 892 954 783 60.7 889 749

3D-LRF L+R ’ 3D 74.8 | 812 872 86.1 738 495 879 672
(Chae et al.) 05 BEV 73.6 | 723 884 866 76.6 475 79.6 64.1
' 3D 452 | 453 558 51.8 383 234 60.2 369

03 BEV 79.5 | 86.0 89.6 899 81.I 623 89.1 613

L4DR L4+R ’ 3D 78.0 | 77.7 80.0 886 79.2 60.1 789 519
(Huang et al.) 05 BEV 775 | 76.8 88.6 89.7 782 593 809 538
) 3D 535 | 53.0 64.1 732 538 462 524 370

03 BEV 88.6 | 88.1 903 99.0 89.1 804 894 78.7

L+R 3D 873 | 86.6 89.8 90.7 88.6 80.0 88.8 77.5

05 BEV 87.0 | 862 90.2 90.8 888 782 88.6 71.0

ASF ’ 3D 729 | 646 86.6 79.6 734 70.0 77.6 66.7
(Proposed) 03 BEV 88.6 | 882 902 989 8.0 804 892 784
C4L4+R ) 3D 874 | 87.0 90.1 90.7 3882 80.0 3886 774

05 BEV 87.2 [ 86.7 90.1 90.8 887 783 883 709

3D 73.6 | 71.8 87.0 794 730 675 78.0 66.4

where Cj is the quotient of C,,/(Pg % Py) as we design C,, = Py x Py x Cy. Since the resulting
channel dimension C; may be insufficient for containing feature representation due to reduced
channel dimensions after reshaping, in the implementation, we increase the number of patches by
a factor of n,, (i.e., Np,=Npg x Nyy—N,, =n,xNgxNy,). Consequently, the channel dimension of
FMgysed increases from C, to n, x Cy, and impact of this modification is evaluated in subsection@

3.3 Sensor Combination Loss (SCL)

Leveraging the consistent size of FMjpygeq

(which serves as the input to the detection head) )
regardless of sensor combinations, we propose Table 2: Comparison of VRAM and FPS evaluated

an SCL that enables simultaneous optimization ©On the K-Radar benchmark v1.0. The bold and
across multiple sensor configurations. The pro- underlined values indicate the best and the second-

posed SCL is formalized as: best, respectively. The unit of VRAM and FPS are
GB and Hz, respectively.
Lscr= Z (£cls,s+£reg,s)7 (10) Methods Sensors | VRAM | FPS
sesC 3D-LRF (Chae et al.) L+R 1.2 5.04
DPFT (Fent et al.) C+R 4.0 11.5
where SC represents the set of 7 possible sensor ASF L+R L5 20.5
combinations (S¢-only, Sy -only, Sg-only, Sp+ (Proposed) C+L+R 1.6 135

Sgr, Sc+Sg, Sc+Sr, and Sc+S+SR), where

Sc, Sp, and Sk denote camera, LiDAR, and 4D

Radar, respectively. L. s and L,.q4 s are the classification and regression losses for each sensor
combination. SCL explicitly prepares for the potential sensor unavailability by optimizing across all
sensor combinations in the training, enabling the model to recognize that available sensors perform
better than others (e.g., 4D Radar outperform camera in adverse weather). As demonstrated in Tab. 4]
SCL enhances the performance of the proposed ASF method when compared to ASF without SCL.



4 Experiments

4.1 Experimental Setup

Dataset and Metrics. K-Radar (Paek et al.,[2022) is a large-scale autonomous driving dataset with a
broad range of conditions including time (day, night), weather (normal, rain, fog, snow, sleet), road
types (urban, highway, mountain), and sensors (4D Radar, LIDAR, camera, GPS). Notably, K-Radar
is the only dataset with data captured in adverse weather conditions.

For comparison with SOTA methods, we utilize two K-Radar benchmark variants. Benchmark v1.0
(Paek et al., 2022} |Chae et al., 2024} [Huang et al., [2025) focuses on the ‘Sedan’ class within a
driving corridor region of [Om, 72m] X [-6.4m, 6.4m] x [-2m, 6m] (XxYxZ). For ablation studies and
qualitative analysis, we use benchmark v2.0, which covers a wider area [Om, 72m] x [-16m, 16m]
x [-2m, 7.6m] and includes both ‘Sedan’ and ‘Bus or Truck’ classes. We evaluate using APs;p and
APggy atIoU thresholds of 0.3 and 0.5, while also reporting VRAM usage and FPS based on the
same hardware setup.

Implementation Details. We implement
the ASF on a single RTX3090 GPU with

24GB VRAM. ASF is trained for 11
epochs using AdamW (Loshchilov and
Hutter, 2017) optimizer with a learning
rate 0.001 and a batch size 2. The voxel
size for the fused FM is set to 0.4m, con-
sistent with (Paek et al., [2022).

4.2 Comparison
of ASF to SOTA Methods

Following the benchmark v1.0 of the K-
Radar (Paek et al.,|2022)), we compare the

Table 3: Performance comparison of ASF under vari-
ous sensor combinations on K-Radar (Paek et al., [2022)
benchmark v2.0. We indicate the employed sensors (C:
Camera, L: LiDAR, R: 4D Radar) and report AP;p at
TIoU = 0.3 for ‘Sedan’ and ‘Bus or Truck’ classes. ‘Nor.”,
‘Ove.’, ’Sle.‘ and ‘H.s.” refer to ‘Normal’, ‘Overcast’,
‘Sleet’, and ‘Heavy snow’, respectively. * denotes the
sensor unavailability, as shown in Fig.[3] The bold and
underlined values indicate the best and the second-best,
respectively. All ten ASF models share the same neural
network weights trained for R+L+C. Performance un-
der additional weather conditions (Fog, Rain, and Light
Snow) and with other evaluation metric APg gy is pro-

proposed ASF with SOTA methods includ-  vided in Appendix D.
ing 3D-LRF (Chae et al,2024) and LADR Class Sensors | Total | Nor. Ove. Sle. H.s.
(Huang et al., 2025), and we use RTNH R 4773 407 58.8 45.9 56.5
(Paek et al., 2022)) for single-sensor per- L 73.0 | 73.0 86.1 649 545
formance. In addition to the detection per- C 148 | 149 771 _ .
formance comparison with DCF methods Cc* 371 | 3.72 3.17 - -
(Chae et al.| [2024; Huang et al.| 2025)), we Sedan L+R 713 | 777 813 744 654
evaluate computational efficiency against C+R 527 | 49.1 624 460 572
DPFT (Fent et al,[2024) which is the only C+L | 764 | 783 865 642 571
open-sourced SCF method available for C+L+R 79.3 | 788 876 742 658
K-Radar C*+L+R | 77.6 | 782 877 744 654

’ C+L*+R | 58.9 | 58.8 66.6 523 582
Detection Performance. As shown in R 342 [ 229 409 21.1 512
Tab. ASF significantly outperforms L 549 | 537 748 69.1 3738
SOTA methods across various weather C* 9.59 19.02 172 - -
conditions. Compared to previous SOTA Bus LC R 2963 2262 0-102 68- ) 655 9
L4DR (Huang et al.,|2025)), ASF achieves or + : SIS : :

- : . C+R 36.2 | 244 414 234 565
substantial improvements of 9.7% in  Truck

C+L 53.0 | 49.1 60.1 721 39.6

APppy (87.2% vs. 77.5%) and 20.1% C+L+R | 60.4 | 527 774 692 68.9
in APs;p (73.6% vs. 53.5%) at IoU=0.5. C*+L+R | 60.1 521 72.0 70.9 69.1
These improvements are particularly re- C+L*+R | 400 | 315 382 289 548

markable in challenging conditions like
sleet (67.5% vs. 46.2% APs;p) and
heavy snow (66.4% vs. 37.0% APsp).
Notably, both ASF configurations (L+R
and C+L+R) use identical neural network
weights yet maintain comparable performance, demonstrating the system’s ability to gracefully
handle sensor degradation. Even with only LiDAR and Radar, ASF achieves 87.0% APgpgy and
72.9% APsp at IoU=0.5, nearly matching the full sensor suite’s performance.



Computational Efficiency. ASF achieves exceptional computational efficiency for real-time au-
tonomous driving applications. As demonstrated in Tab.[2] ASF with LiDAR and 4D Radar processes
at 20.5 Hz, approximately 4x faster than 3D-LRF (5.04 Hz) using identical sensors. Even with
all three sensors, ASF maintains 13.5 Hz, exceeding the 10 Hz threshold typically required for
autonomous driving systems (Zhao et al.| 2024b). This efficiency results from our CASAP, which
applies cross-attention across sensors along patches rather than across all sensors and patches. Fur-
thermore, ASF maintains a compact memory footprint (1.5-1.6 GB), comparable to 3D-LRF (1.2
GB) and substantially lower than DPFT (4.0 GB).

4.3 Addressing Sensor Degradation and Failure

A key advantage of ASF is the robust performance under sensor degradation or failure. As shown in
Tab. [3|and Fig. [3] ASF dynamically adapts to different sensor combinations without retraining. Under
normal conditions (Fig. E]-(a-i)), ASEF effectively utilizes all available sensors with attention weights
distributed according to each sensor’s reliability. However, ASF’s true value emerges in challenging
scenarios. In adverse weather (Fig. [3}(j-r)), camera and LiDAR measurements are significantly
degraded or disappear completely. In these critical situations, ASF automatically redistributes
attention toward the more reliable 4D Radar, as evidenced by the predominant blue coloration in
the sensor attention maps (SAMs) and corresponding attention percentages. Even with damaged
sensors (denoted by * in Tab. [3]and Fig. [3), ASF maintains near-optimal performance. For example,
with a damaged camera (C*), C*+L+R shows 77.6% APsp, which is only 1.7% lower than with
fully sensors (79.3%). This robustness stems from the unified canonical projection (which creates a
common feature space) and the cross-attention mechanism (which estimates sensor reliability).

The qualitative results in Fig. [3]demonstrate that in adverse weather, when LiDAR measurements
disappear and camera visibility severely degrades, reliable object detection is only possible with
active 4D Radar and ASF is fully using 4D Radar. Note that all results shown are from the same
ASF model with identical weights, illustrating how ASF dynamically adjusts attention to maintain
detection performance across varying sensor availabilities.

4.4 Ablation Studies

Tab. ] presents ablation studies of key ASF

components, analyzing five factors: patch

size (P), channel dimension (C,), patches T?lble 4: Ablation study of ASF. ASF performance? for
multiplier (n,), number of attention heads different components anq parameters: P (Patch size),
(np,), and sensor combination loss (SCL). Our C, (channel dimension in unified canonical space),
findings reveal that smaller patch sizes (P=2) 7p (number of patches multiplier), nj, (number of
improve performance through finer feature heads in CASAP) and SCL, using APsp at IoU=0.3
extraction, while balancing reduced channel ~for both “Sedan” and “Bus or Truck” on the K-Radar

dimension (C',=256) with increased patches benchmark v2.0.

multiplier (n,=8) maintains or enhances re- _Exp. | P | Cu | np | nn | SCL | Sedan  Bus
sults; furthermore, increasing attention heads (a) 51512 1 8 76.1 45.7
(np, = 16) benefits ‘Bus or Truck’ detec- (b) S| 512) 4 8 764 474
. ; s ; ; © | 2 |512] 4 | 8 772 497
tion, and incorporating SCL consistently im-
. (d) 2 | 256 8 8 77.6 57.9
proves performance across configurations by © | 2|25 | 8 ] v 793 582
enhancing robustness to varying sensor avail- @ | 2]25| 8 | 16 775 602
ability. The optimal configuration combines @ | 21256 8 | 16 v 793 604

P=2, C,=256, n,=8, n,=16 with SCL.

5 Conclusion

This paper introduces availability-aware sensor fusion (ASF), which addresses sensor availability
challenges in autonomous driving by transforming features into a unified canonical space through
UCP and CASAP. Our approach maintains computational efficiency (O(N,N;)) while providing
robust fusion for sensor degradation or failure. The proposed sensor combination loss further
enhances robustness by optimizing across all possible sensor combinations. Experiments on the
K-Radar dataset demonstrate significant improvements over SOTA methods (9.7% in APggy and



20.1% in APsp at IoU=0.5), with consistent performance across various weather conditions and
sensor combinations.

Limitations. Despite ASF’s strong performance, the camera network’s capabilities remain a limi-
tation. As shown in Fig.3}(g) and (p), camera-based object detection is less precise, particularly
in adverse weather. In Fig.[2}(c), while LiDAR and 4D Radar features are well integrated, camera
features remain more separated in feature space. Enhancing the camera backbone could further boost
system performance, especially in favorable weather conditions, where visual information is valuable.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the paper’s key contributions (ASF
with UCP and CASAP, sensor combination loss).

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper explicitly addresses limitations in conclusion, noting that camera
network capabilities remain a limitation, particularly in adverse weather conditions, and
acknowledging that camera features are less well-integrated than LiDAR and 4D Radar
features in the unified feature space.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper provides complete mathematical formulations with clearly stated
assumptions for all components of the ASF (UCP, CASAP). Specifically, the computational
complexity analysis (O(NyNy) vs. O(NyN,N,,)) is mathematically justified in subsection
[3.2] with all relevant variables defined and assumptions explicitly stated.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides comprehensive details for reproducing the experimental re-
sults, including dataset specifications (K-Radar benchmarks v1.0 and v2.0), implementation
details (GPU, epochs, optimizer, learning rate, batch size, voxel size), network architecture
specifics, and evaluation metrics. Additionally, the authors explicitly state that the code will
be made publicly available after the review process.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The K-Radar dataset referenced in the paper is a widely used dataset and
benchmark in autonomous driving research, making it accessible to researchers in the field.
Additionally, the authors explicitly state that the code will be made publicly available
following the completion of the review process, ensuring full reproducibility.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper provides comprehensive experimental details in subsection {1}
specifying dataset variants (benchmark v1.0 and v2.0), evaluation metrics, implementation
hardware (RTX3090 GPU), training parameters (11 epochs, AdamW optimizer, learning
rate 0.001, batch size 2), and architectural specifics.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [Yes]

Justification: The paper provides suitable information about statistical significance through
comprehensive performance breakdowns across different weather conditions and sensor
combinations in Tab.[T]and 3] demonstrating the consistency of results. Additionally, the
authors have included experiments in the Appendix that specifically analyze the impact of
random seed variations, confirming the statistical reliability of the reported performance
improvements.

Guidelines:

¢ The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper specifies the computing resources used, including hardware (single
RTX3090 GPU with 24GB VRAM) and provides computational efficiency metrics (VRAM
usage and FPS) in Tab. 2] Training details including epochs, batch size, and optimizer
settings are clearly stated, giving sufficient information to estimate resource requirements
for reproduction.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research adheres to the NeurIPS Code of Ethics by focusing on technical
advancements in sensor fusion without involving human subjects or sensitive data.
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10.

11.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses broader impacts in introduction, highlighting the positive
societal implications of improved autonomous driving safety in adverse weather conditions.
It addresses how the proposed ASF enhances reliability when sensors are degraded or
compromised, which directly impacts safety during challenging environmental conditions.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not pose high risks for misuse as it focuses on a technical
approach for sensor fusion in autonomous driving systems. It does not release pretrained
language models, image generators, or scraped datasets that would require special safeguards
against potential misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

13.

14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper properly cites the K-Radar dataset when referencing it for experi-
ments. While the license (CC BY-NC-ND) is not explicitly mentioned in the paper itself,

this information is publicly available on the official K-Radar release page, and the authors’
usage complies with the terms of this license.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper introduces a new ASF method with comprehensive documentation
of the architecture, implementation details, and experimental results. The authors state that
complete code will be made publicly available after the review process with appropriate
documentation to ensure reproducibility of all experiments and findings.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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15.

16.

Justification: The paper focuses on sensor fusion technology for vehicle detection without
conducting research with human subjects. While the K-Radar dataset contains pedestrians
with faces blurred for privacy protection (as noted in the dataset documentation), this privacy
measure was implemented by the dataset creators rather than being part of the research
methodology presented in this paper.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve any research with human subjects. The study
focuses exclusively on technical methods for sensor fusion in autonomous driving systems
using the K-Radar dataset, where any human data (such as pedestrian images) was previously
collected and anonymized through face blurring by the dataset creators.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs were only used for editing purposes such as grammar checking, spelling
corrections, and word choice refinements in the manuscript. This editorial assistance does
not impact the core methodology, scientific rigor, or originality of the research.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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