
Attention Pattern Discovery at Scale

Anonymous Author(s)
Affiliation
Address
email

Abstract

Language models have scaled rapidly, yet methods for explaining their outputs1

are lagging behind. Most modern methods focus on a fine-grained explanation of2

individual components of language models. This is resource-intensive and does not3

scale well to describe the behavior of language models as a whole. To enable high-4

level explanations of model behavior, in this study, we analyze and track attention5

patterns across multiple predictions. We introduce Attention Pattern Masked6

AutoEncoder (AP-MAE), a vision-transformer–based approach that encodes and7

reconstructs large language model attention patterns at scale. By treating attention8

patterns as images, AP-MAE enables efficient mining of consistent structures9

across a large number of predictions.10

Our experiments on StarCoder2 models (3B–15B) show that AP-MAE (i) recon-11

structs masked attention with high fidelity, (ii) generalizes across unseen model12

sizes with minimal degradation, and (iii) predicts whether a token will be correct,13

without access to ground truth, with up to 70% accuracy. We further discover14

recurring attention patterns demonstrating that attention patterns are structured15

rather than random noise. These results suggest that attention maps can serve as16

a scalable signal for interpretability, and that AP-MAE provides a transferable17

foundation for analyzing diverse large language models. We release code and18

models to support future work in large-scale interpretability.19

1 Introduction20

Understanding how large language models (LLMs) work internally is a central challenge in mechanis-21

tic interpretability. Prior progress has largely centered on finding exact explanations for generations.22

Using tools such as sparse autoencoders [8], transcoders [25, 10], ACDC [7], and path patching [14]23

to gain insights into what features are encoded in LLMs, and which circuits of an LLM are important24

for specific generations. However, this focus leaves a major component of transformer computation25

less understood: the attention patterns that dynamically route information between token repre-26

sentations. Unfortunately, attention patterns are inherently two-dimensional, unlike features in the27

residual stream. This makes existing tooling ineffective for analyzing attention patterns, leaving them28

underexplored despite their central role in shaping information flow.29

Although underexplored, attention patterns have been used in previous studies to validate the existence30

of computational circuits on a small scale [30], showing that there is potential to mine common31

patterns. We aim to mine attention patterns at a large scale and propose a novel method based on32

vision models. Vision models are designed for two-dimensional data, and can be used as encoder33

models to cluster similar patterns. More specifically, we train a Vision Transformer - Masked34

AutoEncoder (ViT-MAE) model [16] to reconstruct masked attention patterns. We name this novel35

model Attention Pattern - Masked AutoEncoder (AP-MAE). We then use the mined patterns to show36

that they are critical to the generation of correct outputs, and train a classifier to differentiate correct37

from incorrect predictions using only the discovered patterns.38

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



We make the following contributions:39

• We demonstrate that attention patterns can be effectively learned by a masked autoencoder,40

validating this as a tractable and informative object of study.41

• We demonstrate that AP-MAE can be transferred between different models, resulting in only42

a minor increase in loss when evaluating attention patterns from a model not seen during43

training.44

• We show that using only the attention patterns for classifying the correctness of a model45

prediction is a valid future path, in a noisy, real world setting.46

• We release our code 1 and models 2 to be the basis of future work.47

2 Related Works48

Representation Learning The most basic element within the residual stream is the representation49

of features. To discover the features present at any location in the residual stream, models such as50

Sparse AutoEncoders (SAEs) can be utilized in a dictionary learning setting to map sparse features to51

human-relatable concepts [5]. Similarly, probing methods have also been shown to be effective, at52

mapping the residual stream between layers to the Language Model head, and thus understanding53

which tokens are represented at different parts of the model [4]. While SAEs and probing methods54

only look at one location, transcoders are trained to predict the outcome of a module given its input.55

This allows us to see a sparse representation of the calculation being done within a module [25, 10].56

Circuit Level Analysis While the previous works focused on finding the representation of tokens57

at a location, how the model came to a given representation is also important. Transcoders can be58

used to trace attribution graphs throughout a model, and incorporate attention scores as an attribution59

strength within a graph [10]. Transcoders can be further abstracted to replacement networks, and60

crosscoders, and replacement networks which replace entire sections of a network with a sparse61

model [1]. This makes it easier to trace cross-layer circuits to explain an output. Other approaches62

find circuits by pruning graphs until the minimal elements remain to make a correct prediction [7]63

or by patching paths [14]. However, current approaches have not been able to find general global64

circuits, that generalize past given examples [19, 2]. These methods all have in common that they65

show certain behaviors are local to a subset of components of a model. Our approach does not focus66

on the exact circuits but on making general explanations of behaviors based on mined patterns at67

scale.68

Attention Patterns As mentioned in previous sections, attention scores have been used to calculate69

attribution of different values to the output. However, the full attention patterns have been used to70

validate circuits and explain specific heads. For example, letter heads [18] show high attention to71

specific letters, and the rare word head showing the same patterns for rare words [27]. Furthermore,72

off-diagonal lines have been identified as induction heads, that look for previous copies of a token73

to be predicted [11]. For knowledge circuits an incorrect knowledge selection is found using the74

attention heads, explaining why a prediction was incorrect [30]. These works all show that small,75

certain heads produce a recognizable attention pattern. As a result, the field lacks methods for76

systematically mining and characterizing attention behaviors across models and tasks. We aim to77

automate the finding of common attention patterns at scale using AP-MAE.78

3 Experimental Setting79

One of the main criticisms we want to address in this work is the specificity of the discovered80

features/attribution graphs/circuits to crafted or selected inputs [2]. With this, we refer to the task81

templates and manually crafted prompts intended to elicit certain behaviors, rather than running the82

experiments on real-world data [19, 7].83

In this work we focus on using inputs to the models that were not specifically crafted for a task.84

However, we also aim to leverage knowledge from mechanistic interpretability about the specificity85

1https://github.com/LaughingLogits/AP-MAE
2https://huggingface.co/collections/LaughingLogits/ap-mae-models-66b27a73536bb1306d55c4c4

2



Table 1: Training and architecture parameters for AP-MAE.
Model Inputs Encoder Decoder

Pattern Size 256 Layers 24 Layers 8
Patch Size 32 Dim 512 Dim 512
Mask Ratio 0.5 Heads 16 Heads 8
Batch Size 480 MLP 2048 MLP 2048
Learning Rate 1.44× 10−3

(a)

Original Attention Unmasked Input Predicted Output

loss:3.29e-03

Combined Reconstruction

0.0

0.2

0.4

0.6

0.8

(b)

Original Attention Unmasked Input Predicted Output

loss:5.23e-04

Combined Reconstruction

0.0

0.2

0.4

0.6

0.8

1.0

(c)

Original Attention Unmasked Input Predicted Output

loss:5.23e-04

Combined Reconstruction

10 6

10 4

10 2

100

Figure 1: Comparison of attention pattern reconstruction methods: (a) log normalized attention
pattern, (b) raw attention pattern, (c) raw attention pattern with pixel values scaled for visualization.

and locality of certain features within a model. This means we need to have a corpus that we can86

query to automatically generate samples where the same task is being completed in different scenarios.87

To accomplish this, we focus on code rather than natural language due to its highly structured nature,88

which allows us to use parsing tools, such as tree-sitter, to mine similar completion tasks from a large89

corpus of data. More specifically, this investigation will focus on Java.90

One challenge using real-world data has, is possible data contamination. Although the effect of this91

on the behavior of models (from a mechanistic interpretability point of view) is unexplored, we follow92

the general rule of machine learning not to use training data. As LLM training data is rarely made93

available, we focus our investigation on the Starcoder2 (SC2) [20] family due to their openness of94

sharing the exact training data. In order to have a decontaminated source of code files, we use The95

Heap [17] as it has already been deduplicated with regards to the training data of the SC2 models.96

4 AP-MAE97

The core of our proposed approach is the Attention Pattern – Masked Auto-Encoder (AP-MAE)98

model for identifying patterns in LLM attention outputs. To train AP-MAE, we model the patterns as99

1 channel images and base our model on the original ViT-L architecture [9]. We apply a novel scaling100

method to the attention patterns to allow the training to converge.101

Architecture AP-MAE is based on the ViT-L architecture with minor changes. We reduce the102

hidden size from 768 to 512 dimensions and scale the MLP down to 2048 parameters accordingly.103

3



Table 2: Cross-evaluation of AP-MAE

Trained
Evaluated SC2 3B Loss (×10−3) SC2 7B Loss (×10−3) SC2 15B Loss (×10−3)

SC2 3B 7.07± 2.12 7.78± 2.05 9.53± 2.76
SC2 7B 7.55± 2.05 7.17± 2.12 9.29± 2.66

SC2 15B 9.57± 3.35 10.05± 3.79 7.59± 2.42

We also remove the top right triangle of the data as this is masked in decoder-only attention patterns.104

For patches on the matrix’s diagonal, we pad the masked values above the diagonal. Finally, we scale105

the attention patterns by taking the natural logarithm. This step is essential in allowing the model to106

fit to attention patterns, as demonstrated in the ablation study discussed below. Table 1 presents an107

overview of the architecture.108

Data To train our models, we need to generate attention patterns. For this investigation, we use109

attention patterns generated by SC2 3B, 7B, and 15B. In order to generate attention patterns, we110

mimic the training procedure used for training the SC2 models. We mask spans between 3-10 tokens111

in a code file, at random locations. We then add the same sentinel tokens to the input data as were112

used during training. In order to ensure that the attention patterns used in this work are all the same113

size, we truncate the context to exactly 256 tokens in total.114

As a final step in the training data selection, we sub-sample the attention patterns we get from the115

language models when generating. We also focus exclusively on attention patterns generated when116

the prediction made by the model was correct. For each invocation of the target language model,117

we get 720 patterns for the 3B model, 1152 for the 7B model, and 1920 for the 15B model. As118

the generation procedure of these patterns is cheap from a time perspective, we sub-sample each119

generation to 25% of all attention heads. This allows us to get a larger variety of samples generated120

when the model is prompted in different locations in a code file. We ensure that when we subsample121

the patterns, we get 25% of the patterns from each layer. Other works have shown that there are signs122

of different behavior at different layers in a model, which we want to ensure we capture.123

In Figure 1 (a), we show the initial attention pattern on the left. Then we display the masking and the124

reconstructed parts of the masked pattern. Finally, we present the combination of the original and125

reconstructed patterns.126

Training Setup We train the models on eight A100 GPUs with a local batch size of 60 attention127

patterns. We train for 150, 000 batches using 72M attention patterns. The total training time is less128

than 100 GPU hours on our institution’s cluster. Although we used eight A100 GPUs, all target129

models and AP-MAE models combined fit on one A100, making it possible to train on smaller130

servers. The limiting factor is the LLM size, as the AP-MAE encoder has 101M parameters and the131

decoder has 25M. We use the AdamW optimizer with a weight decay of 0.05 and a cosine annealing132

scheduler initialized with a global Learning Rate (LR) of 1.44× 10−3. We linearly upscale from the133

base LR of 1.5× 10−4 for a batch size of 50 used by ViT-MAE.134

4.1 Generalizability135

One of the main advantages of analyzing attention patterns, compared to representations of features136

within a model, is that they have the same dimensions between models. To investigate if AP-MAE137

can take advantage of this we evaluate its ability to reconstruct attention patterns from models it was138

not trained on. We cross-evaluate the AP-MAE models on a test set containing all combinations139

of SC2 target models. Table 2 provides an overview of the results. We observe that evaluating the140

encoder models on attention patterns from other target models results in a loss often within one141

standard deviation of each other. This shows that there are opportunities to use an AP-MAE base142

model to make inferences about a target LLM’s behaviors without training a new model every time.143

4.2 Ablation Study - Logarithmic Scaling144

One of the preprocessing steps we used for the data is the log normalized scaling. To show that this145

step is necessary we conduct an ablation study by training an identical model, without scaling the146

4



attention patterns. In Figure 1 (b), we show an unscaled attention pattern together with its masking147

and reconstruction. Here it is difficult to see the reconstruction. In Figure 1 (c), we show the same148

pattern but scale the color gradient logarithmically to visualize the reconstruction. We see that the149

patches that were masked are corrupted. We compare this with the output of a model that has been150

trained on scaled attention patterns in Figure 1 (a). We see that when using logarithmic scaling, major151

patterns are reconstructed. While we cannot compare loss values directly, this shows the need for the152

logarithmic scaling of the attention patterns when training and evaluating the AP-MAE models.153

5 Pattern mining154

5.1 Setup155

We begin by encoding the attention heads using AP-MAE and select specific tasks to use as inputs156

to the language model, based on findings from previous research. We then cluster the resulting157

representations, a step that poses significant challenges given the large scale of the problem.158

Tasks Given the vast search space of possible circuits in Java, we leverage prior knowledge of159

circuits identified in LLMs to narrow our focus. Specifically, we select 11 tasks for pattern mining in160

attention heads, including a validation task in which the target model is probed with noise as an input.161

1. Identifiers (1 task): One of the earliest benchmark circuits is the Indirect Object Identifier (IOI)162

circuit [28], where the model uses context to predict the correct token. Adapting this to source code,163

we mask a single identifier and task the target LLM with reconstructing it from the surrounding164

context.165

2. Literals (3 tasks): Generating correct literals—spanning booleans, strings, and numbers—poses166

challenges distinct from identifier generation. Unlike identifiers, the correct literal values are not167

present in the input and must instead be inferred by the model (e.g., deducing π = 3.14). Prior work168

suggests that factual knowledge is encoded in the feed-forward layers of transformer models [29, 13],169

making this setting particularly suitable for probing systematic behaviors of attention heads. Moreover,170

evidence of arithmetic-related circuits has been reported, including a greater-than circuit [15] for171

numeric comparison and modules specialized for mathematical reasoning [19, 3].172

3. Operators (3 tasks): Beyond selecting appropriate operand values, recent work has shown that173

LLMs exhibit operator-specific heuristics when performing arithmetic reasoning [23]. To complement174

literal selection, we include tasks focused on predicting the correct operator across three categories:175

boolean operators, arithmetic operators, and programming-specific assignment operators (e.g., +=).176

4. Ending Statements (2 tasks): Finally, we evaluate the models’ ability to complete complex syntactic177

structures. We consider two tasks. The first requires predicting the correct closing bracket for a178

statement, a capability that has been linked to specialized model circuitry [12]. The second task179

involves predicting line endings. Unlike brackets, line termination in Java is not syntactically required,180

making this task a blend of program correctness and modeling human coding conventions. Prior work181

has examined structural and stylistic features at line endings in natural language [19].182

5. Baselines (2 tasks): To contextualize our results, we consider two baseline tasks. First, we include183

a random masking task, identical to the one used for generating attention patterns during AP-MAE184

training. Second, to verify that our method does not inadvertently cluster spurious or uninformative185

structures, we introduce a random token sampling task, where tokens are drawn uniformly from the186

tokenizer vocabulary. This allows us to assess whether the discovered patterns reflect meaningful187

structure beyond random noise.188

Encoding For encoding attention patterns, we employ the previously introduced AP-MAE model,189

using the representation of the [CLS] token as the embedding, following standard practice in encoding190

pipelines. For each target LLM, we select 10, 000 input samples per task. These samples are balanced191

such that half correspond to attention heads associated with correct predictions by the target LLM192

and the other half with incorrect predictions. In contrast to the AP-MAE training phase, we do not193

perform head subsampling in this setting.194

Clustering Clustering all task samples is challenging due to both the high dimensionality of195

the representations (512 dimensions) and the sheer scale of the data (79.2M samples for SC2 3B,196

5



126.7M for SC2 7B, and 211.2M for SC2 15B). The standard pipeline, dimensionality reduction197

with UMAP [22] followed by clustering with HDBSCAN [6], is computationally infeasible in this198

setting, as it requires pairwise distance computations across the full dataset. Instead of resorting to199

subsampling, we decompose the problem into smaller, tractable subproblems. Specifically, for each200

model head, we first reduce the representations to 8 dimensions with UMAP, and then cluster them201

with HDBSCAN. This yields up to 1920 independent clustering pipelines per model, each operating202

on approximately 110, 000 samples.203

5.2 Identified Patterns204

To assess whether repeated patterns exist and whether our clustering approach successfully captures205

them, we perform a qualitative evaluation of the resulting clusters. Figure 2 presents three groups,206

each containing five attention patterns. Panel (a) illustrates five representative clusters, providing an207

overview of the variation observed across patterns. In pattern (a)(I), we observe a prominent diagonal208

structure: the highest attention scores concentrate around the preceding few tokens, with alternating209

bands of higher and lower scores extending outward. This behavior resembles an induction head, a210

specialized mechanism that facilitates in-context learning [24]. From patterns (a)(III) and (a)(IV),211

we observe that these heads feature high attention on individual tokens, as indicated by the vertical212

attention lines. This behavior has previously been characterized as LLMs allocating disproportionate213

attention to rare words in the input sequence [27] or individual letters [18]. The high attention214

scores in (a)(III) around the diagonal in combination with the vertical lines, hint that some heads may215

exhibit multiple behaviors. In pattern (a)(III), we observe strong attention behavior reminiscent of the216

induction head, but distributed across multiple tokens. We also identify several recurring patterns217

that, to our knowledge, have not been previously documented. For instance, patterns (a)(II) and218

(a)(V) exhibit square-like structures with high attention diagonals that reappear at varying scales and219

frequencies across different heads; we highlight these two cases as representative extremes.220

In addition to capturing distinct patterns, our method demonstrates robustness to variations in the221

ordering of input tokens. Figure 2(b) illustrates five patterns grouped within the same cluster222

(Figure 2(a)(I)). Although the intensity and position of the global diagonal lines vary, the general223

pattern is preserved. AP-MAE can capture these differences in pattern locations, allowing it to handle224

changes in the ordering of input tokens. Finally, we investigate whether heads generate patterns225

regardless of inputs. To this end, we visualize the heads obtained when feeding the model with226

random noise (Figure 2c). Unlike Figures 2(a) and 2(b), only a few discernible structures emerge.227

The most recognizable case is (c)(III), which closely resembles patterns observed in Figure 2(b),228

and stands as the most similar pattern we were able to identify. Notably, the characteristic square229

structures seen in (a)(II) and (a)(V) do not appear under noisy inputs. This absence suggests that230

such square patterns may serve as strong indicators of heads engaging in meaningful computation, an231

observation that highlights a promising direction for future research.232

5.3 Pattern Distribution233

We next examine how the discovered patterns are distributed across attention heads. Figure 3 reports234

the number of clusters identified in each head. A consistent trend emerges: as model size increases, a235

subset of heads produces a broader variety of patterns. In the 3B model, most heads yield only a few236

clusters, whereas the 7B model exhibits substantial diversity, particularly in later layers. The 15B237

model shows fewer heads with high diversity compared to the 7B model, though some still capture a238

wide range of patterns. These differences in distribution suggest increasing specialization of certain239

heads, potentially enabling them to handle a broader spectrum of noisy inputs.240

6 Classification241

6.1 Setup242

To determine whether a target model’s prediction is correct, we treat the output of each head as a243

categorical feature, using the cluster assignment of that head for the given prediction as its value.244

This formulation yields a tractable prediction problem with between 720 features (SC2 3B) and 1920245

features (SC2 15B). We perform classification at the task level, training a dedicated predictor for each246

task. The Noise task is excluded, as it does not admit a notion of correctness.247

6



(a)

(I) (II) (III) (IV) (V)

(b)

(I) (II) (III) (IV) (V)

(c)

(I) (II) (III) (IV) (V)

Figure 2: Comparison of different clustering results: (a) examples of different patterns found by
clustering, (b) attention patterns within a single cluster, (c) attention patterns generated by noise.

0 5 10 15 20
Heads

0
5

10
15
20
25

La
ye

rs

3B (30×24)

0 5 10 15 20 25 30 35
Heads

0
5

10
15
20
25
30

7B (32×36)

0 5 10 15 20 25 30 35 40 45
Heads

0
5

10
15
20
25
30
35

15B (40×48)

50

100

150

200

Figure 3: Distribution of the number of clusters in a head

For classification, we employ a gradient boosting decision tree model, CatBoost [26]. CatBoost offers248

two key advantages for our setting: (i) it enables the computation of SHAP values [21], which we use249

to quantify the contribution of each feature (here, individual transformer heads) to the distinction250

between correct and incorrect predictions, and (ii) it natively handles categorical data, eliminating the251

need for additional preprocessing.252

6.2 Performance253

We give the results of the classification task in Figure 4 (II). We also include the performance of the254

target models in completing the next token prediction task in Figure 4 (I), to see if performance has255

an effect on our ability to correctly classify a prediction as correct or incorrect. For the classification256

task we plot the mean accuracy and the 95% confidence interval over a 10 fold cross validation using257

a 90, 10, 10 split. We see that the performance varies little between runs due to the small range of the258

95% confidence interval. The first thing we see in Figure 4 is that there is no correlation between259

classification performance, and target model performance. Next, focusing only on Figure 4(II), we260

see that some tasks are indeed harder to classify as correct than others. Tasks such as Identifier,261

Boolean Literals, and String Literals perform similarly to the Random masking task, with accuracy262

7



Identifie
rs

Boolean Literals

Strin
g Literals

Numeric Literals

Boolean Operators

Mathematical Operators

Assig
nment Operators

End of Line

Closing Bracket
Random

Tasks

0
0.1

0.3

0.5

0.7

0.9
1.0

A
cc

ur
ac

y

LLM Performance (Next Token Accuracy)

3B 7B 15B

Identifie
rs

Boolean Literals

Strin
g Literals

Numeric Literals

Boolean Operators

Mathematical Operators

Assig
nment Operators

End of Line

Closing Bracket
Random

Tasks

Mean Classification Accuracy (10-fold Cross Validation)

3B 7B 15B

(I) (II)

Figure 4: Performance of target LLMs on the studied tasks, and the accuracy of the CatBoost classifier

0 4 8 12 16 20
Heads

0

6

12

18

24

La
ye

rs

3B (30×24)

0 7 14 21 28 35
Heads

0

6

12

18

24

30

7B (32×36)

0 9 18 27 36 45
Heads

0

8

16

24

32

15B (40×48)

0.0

0.1

0.2

0.3

0.4

0.5

Figure 5: Difference in mean SHAP values per cluster for the CatBoost classifiers, classifying
predictions for the End of Line task across all target sizes

scores between 55% and 60%. The best performing task is predicting the End of Line token, which263

has a mean accuracy of just over 70% for the 15B model.264

To investigate which parts of the model are needed to differentiate between a correct and incorrect265

prediction, we use the maximum difference between mean SHAP values per category at each head.266

This will highlight heads that are both strong indicators of being a correct and incorrect prediction,267

depending on the pattern we detected in them. We plot these values in Figure 5. Here we plot the268

values mentioned above for the End of Line task. We see that the plots are sparse; a small number269

of heads is enough to differentiate between correct and incorrect predictions. Furthermore, sparsity270

increases with model size, similar to the increase in classification accuracy. This allows us to highlight271

heads that are of interest when determining where LLMs make mistakes.272

Finally, we want to know if there is a difference between tasks when it comes to predicting if an LLM273

generation is correct. To investigate this, we plot the same difference between mean SHAP values274

introduced earlier for different tasks targeting the 15B model in Figure 6. Here we see that for each275

task, the SHAP values are sparse, and different heads are highlighted. Showing that different tasks276

depend on different heads to predict if they are correct.277

8



0 9 18 27 36 45
Heads

0

8

16

24

32
La

ye
rs

Identifiers

0 9 18 27 36 45
Heads

0

8

16

24

32

Numeric Literals

0 9 18 27 36 45
Heads

0

8

16

24

32

End of Line

0.0

0.1

0.2

0.3

0.4

Figure 6: Difference in mean SHAP values per cluster explaining the global effect of each pattern in
each head on the correctness classifier

7 Limitations and Open Questions278

We demonstrated that a large-scale analysis of attention patterns in LLMs offers a promising direction279

for understanding LLM behavior. Nevertheless, our study faces some limitations. Most notably,280

computational constraints required us to fix the input length to the models. This choice facilitated281

fairer comparisons across samples, ensuring that attention patterns were evaluated at a consistent282

scale, yet it does not fully capture the variability of sequence lengths. Our findings highlight that283

attention patterns can be systematically mined and are localized within LLMs. Future work should284

investigate how patterns evolve under varying input lengths, particularly for encoding and clustering.285

We adopted a vision transformer architecture due to its scalability to large datasets, robustness to noisy286

inputs, and improved generalization under potential distribution shifts between pretraining samples287

and downstream tasks. However, in deployment scenarios where efficiency is critical, convolutional288

networks may remain preferable due to their lower computational overhead. In such cases, CNNs289

could also serve as feature extractors, enabling the analysis of whether attention heads emerge as290

compositions of fundamental local patterns.291

To facilitate interpretation, we restricted our analysis to a subset of downstream tasks. Task selection292

was guided by prior knowledge of in-context learning, factual recall in model weights, and established293

mechanistic circuits, allowing us to capture a range of representative behaviors. Nonetheless, this294

choice inevitably risks overlooking behaviors that remain unknown. Future work should build on295

our findings by employing online learning techniques to mine behaviors at scale, enabling efficient296

exploration over larger data streams. Such approaches would help translate insights from mechanistic297

interpretability into more actionable benefits for real-world applications.298

Our method is designed to identify patterns rather than provide explicit explanations. It can highlight299

interesting regions of a model with relatively low computational cost. An important direction for300

future work is to combine our approach with more fine-grained mechanistic interpretability methods.301

8 Conclusion302

In this work, we analyze the attention patterns generated by LLMs. We find that certain attention303

heads exhibit only a limited set of distinct patterns, and we provide an overview of the most commonly304

observed ones. Building on this characterization, we show that the type and position of an attention305

pattern can be predictive of whether a model produces a correct or incorrect output. Using SHAP306

values, we further demonstrate that, across a large number of samples, differences in prediction307

quality can often be attributed to a small subset of attention heads. Our experiments on data collected308

from publicly available repositories highlight both the robustness of this approach to noisy inputs and309

its practical applicability in real-world settings.310

9



References311

[1] Emmanuel Ameisen, Jack Lindsey, Adam Pearce, Wes Gurnee, Nicholas L. Turner, Brian312

Chen, Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael313

Sklar, Adly Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas314

Henighan, Adam Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam315

Zimmerman, Kelley Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. Circuit tracing:316

Revealing computational graphs in language models. Transformer Circuits Thread, 2025. URL317

https://transformer-circuits.pub/2025/attribution-graphs/methods.html.318

[2] Usman Anwar, Abulhair Saparov, Javier Rando, Daniel Paleka, Miles Turpin, Peter Hase,319

Ekdeep Singh Lubana, Erik Jenner, Stephen Casper, Oliver Sourbut, Benjamin L. Edelman,320

Zhaowei Zhang, Mario Günther, Anton Korinek, Jose Hernandez-Orallo, Lewis Hammond,321

Eric J Bigelow, Alexander Pan, Lauro Langosco, Tomasz Korbak, Heidi Chenyu Zhang, Ruiqi322

Zhong, Sean O hEigeartaigh, Gabriel Recchia, Giulio Corsi, Alan Chan, Markus Anderljung,323

Lilian Edwards, Aleksandar Petrov, Christian Schroeder de Witt, Sumeet Ramesh Motwani,324

Yoshua Bengio, Danqi Chen, Philip Torr, Samuel Albanie, Tegan Maharaj, Jakob Nicolaus Foer-325

ster, Florian Tramèr, He He, Atoosa Kasirzadeh, Yejin Choi, and David Krueger. Foundational326

challenges in assuring alignment and safety of large language models. Transactions on Machine327

Learning Research, 2024. ISSN 2835-8856. URL https://openreview.net/forum?id=328

oVTkOs8Pka. Survey Certification, Expert Certification.329

[3] Tanja Baeumel, Daniil Gurgurov, Yusser al Ghussin, Josef van Genabith, and Simon Os-330

termann. Modular arithmetic: Language models solve math digit by digit. arXiv preprint331

arXiv:2508.02513, 2025.332

[4] Nora Belrose, Zach Furman, Logan Smith, Danny Halawi, Igor Ostrovsky, Lev McKinney,333

Stella Biderman, and Jacob Steinhardt. Eliciting latent predictions from transformers with the334

tuned lens. arXiv preprint arXiv:2303.08112, 2023.335

[5] Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Con-336

erly, Nick Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu,337

Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex338

Tamkin, Karina Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter,339

Tom Henighan, and Christopher Olah. Towards monosemanticity: Decomposing language340

models with dictionary learning. Transformer Circuits Thread, 2023. https://transformer-341

circuits.pub/2023/monosemantic-features/index.html.342

[6] Ricardo J. G. B. Campello, Davoud Moulavi, and Joerg Sander. Density-based clustering343

based on hierarchical density estimates. In Jian Pei, Vincent S. Tseng, Longbing Cao, Hiroshi344

Motoda, and Guandong Xu, editors, Advances in Knowledge Discovery and Data Mining, pages345

160–172, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. ISBN 978-3-642-37456-2.346

[7] Arthur Conmy, Augustine Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adrià347

Garriga-Alonso. Towards automated circuit discovery for mechanistic interpretability. In348

A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances in349

Neural Information Processing Systems, volume 36, pages 16318–16352. Curran Associates,350

Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/351

34e1dbe95d34d7ebaf99b9bcaeb5b2be-Paper-Conference.pdf.352

[8] Hoagy Cunningham, Aidan Ewart, Logan Riggs, Robert Huben, and Lee Sharkey. Sparse autoen-353

coders find highly interpretable features in language models. arXiv preprint arXiv:2309.08600,354

2023.355

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,356

Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,357

Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image358

recognition at scale. In International Conference on Learning Representations, 2021. URL359

https://openreview.net/forum?id=YicbFdNTTy.360

[10] Jacob Dunefsky, Philippe Chlenski, and Neel Nanda. Transcoders find interpretable llm feature361

circuits. Advances in Neural Information Processing Systems, 37:24375–24410, 2024.362

10

https://transformer-circuits.pub/2025/attribution-graphs/methods.html
https://openreview.net/forum?id=oVTkOs8Pka
https://openreview.net/forum?id=oVTkOs8Pka
https://openreview.net/forum?id=oVTkOs8Pka
https://proceedings.neurips.cc/paper_files/paper/2023/file/34e1dbe95d34d7ebaf99b9bcaeb5b2be-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/34e1dbe95d34d7ebaf99b9bcaeb5b2be-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/34e1dbe95d34d7ebaf99b9bcaeb5b2be-Paper-Conference.pdf
https://openreview.net/forum?id=YicbFdNTTy


[11] Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,363

Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep364

Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt,365

Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and366

Chris Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread,367

2021. https://transformer-circuits.pub/2021/framework/index.html.368

[12] Xuyang Ge, Fukang Zhu, Wentao Shu, Junxuan Wang, Zhengfu He, and Xipeng Qiu. Auto-369

matically identifying local and global circuits with linear computation graphs. In ICML 2024370

Workshop on Mechanistic Interpretability, 2024. URL https://openreview.net/forum?371

id=b8sq8Y5VFo.372

[13] Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers373

are key-value memories. arXiv preprint arXiv:2012.14913, 2020.374

[14] Nicholas Goldowsky-Dill, Chris MacLeod, Lucas Sato, and Aryaman Arora. Localizing model375

behavior with path patching. arXiv preprint arXiv:2304.05969, 2023.376

[15] Michael Hanna, Ollie Liu, and Alexandre Variengien. How does gpt-2 compute greater-than?:377

Interpreting mathematical abilities in a pre-trained language model. Advances in Neural378

Information Processing Systems, 36:76033–76060, 2023.379

[16] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked380

autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on381

computer vision and pattern recognition, pages 16000–16009, 2022.382

[17] Jonathan Katzy, Razvan Mihai Popescu, Arie van Deursen, and Maliheh Izadi. The heap: A383

contamination-free multilingual code dataset for evaluating large language models. In Proceed-384

ings 2nd ACM international conference on AI Foundation Models and Software Engineering385

(FORGE 2025). ACM, 2025. URL https://arxiv.org/abs/2501.09653.386

[18] Tom Lieberum, Matthew Rahtz, János Kramár, Neel Nanda, Geoffrey Irving, Rohin Shah, and387

Vladimir Mikulik. Does circuit analysis interpretability scale? evidence from multiple choice388

capabilities in chinchilla. arXiv preprint arXiv:2307.09458, 2023.389

[19] Jack Lindsey, Wes Gurnee, Emmanuel Ameisen, Brian Chen, Adam Pearce, Nicholas L.390

Turner, Craig Citro, David Abrahams, Shan Carter, Basil Hosmer, Jonathan Marcus, Michael391

Sklar, Adly Templeton, Trenton Bricken, Callum McDougall, Hoagy Cunningham, Thomas392

Henighan, Adam Jermyn, Andy Jones, Andrew Persic, Zhenyi Qi, T. Ben Thompson, Sam393

Zimmerman, Kelley Rivoire, Thomas Conerly, Chris Olah, and Joshua Batson. On the394

biology of a large language model. Transformer Circuits Thread, 2025. URL https:395

//transformer-circuits.pub/2025/attribution-graphs/biology.html.396

[20] Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Noua-397

mane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, Tianyang Liu, Max Tian,398

Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian Wang, Qian Liu, Dmitry Abulkhanov,399

Indraneil Paul, Zhuang Li, Wen-Ding Li, Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo,400

Evgenii Zheltonozhskii, Nii Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan401

Su, Xuanli He, Manan Dey, Edoardo Abati, Yekun Chai, Niklas Muennighoff, Xiangru Tang,402

Muhtasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank Mishra,403

Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas Patry, Canwen404

Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet, Jennifer Robinson, Car-405

olyn Jane Anderson, Nicolas Chapados, Mostofa Patwary, Nima Tajbakhsh, Yacine Jernite,406

Carlos Muñoz Ferrandis, Lingming Zhang, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro407

von Werra, and Harm de Vries. Starcoder 2 and the stack v2: The next generation, 2024. URL408

https://arxiv.org/abs/2402.19173.409

[21] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions.410

Advances in neural information processing systems, 30, 2017.411

[22] L. McInnes, J. Healy, and J. Melville. UMAP: Uniform Manifold Approximation and Projection412

for Dimension Reduction. ArXiv e-prints, February 2018.413

11

https://openreview.net/forum?id=b8sq8Y5VFo
https://openreview.net/forum?id=b8sq8Y5VFo
https://openreview.net/forum?id=b8sq8Y5VFo
https://arxiv.org/abs/2501.09653
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://transformer-circuits.pub/2025/attribution-graphs/biology.html
https://arxiv.org/abs/2402.19173


[23] Yaniv Nikankin, Anja Reusch, Aaron Mueller, and Yonatan Belinkov. Arithmetic without algo-414

rithms: Language models solve math with a bag of heuristics. In The Thirteenth International415

Conference on Learning Representations, 2025. URL https://openreview.net/forum?416

id=O9YTt26r2P.417

[24] Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom418

Henighan, Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain,419

Deep Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson420

Kernion, Liane Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Ka-421

plan, Sam McCandlish, and Chris Olah. In-context learning and induction heads. CoRR,422

abs/2209.11895, 2022. URL https://doi.org/10.48550/arXiv.2209.11895.423

[25] Gonçalo Paulo, Stepan Shabalin, and Nora Belrose. Transcoders beat sparse autoencoders for424

interpretability. arXiv preprint arXiv:2501.18823, 2025.425

[26] Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and426

Andrey Gulin. Catboost: unbiased boosting with categorical features. Advances in neural427

information processing systems, 31, 2018.428

[27] Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov. Analyzing multi-429

head self-attention: Specialized heads do the heavy lifting, the rest can be pruned. In Anna430

Korhonen, David Traum, and Lluís Màrquez, editors, Proceedings of the 57th Annual Meeting431

of the Association for Computational Linguistics, pages 5797–5808, Florence, Italy, July432

2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1580. URL https:433

//aclanthology.org/P19-1580/.434

[28] Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt.435

Interpretability in the wild: a circuit for indirect object identification in GPT-2 small. In436

The Eleventh International Conference on Learning Representations, 2023. URL https:437

//openreview.net/forum?id=NpsVSN6o4ul.438

[29] Yunzhi Yao, Shaohan Huang, Li Dong, Furu Wei, Huajun Chen, and Ningyu Zhang. Kformer:439

Knowledge injection in transformer feed-forward layers. In CCF International Conference on440

Natural Language Processing and Chinese Computing, pages 131–143. Springer, 2022.441

[30] Yunzhi Yao, Ningyu Zhang, Zekun Xi, Mengru Wang, Ziwen Xu, Shumin Deng, and Hua-442

jun Chen. Knowledge circuits in pretrained transformers. Advances in Neural Information443

Processing Systems, 37:118571–118602, 2024.444

12

https://openreview.net/forum?id=O9YTt26r2P
https://openreview.net/forum?id=O9YTt26r2P
https://openreview.net/forum?id=O9YTt26r2P
https://doi.org/10.48550/arXiv.2209.11895
https://aclanthology.org/P19-1580/
https://aclanthology.org/P19-1580/
https://aclanthology.org/P19-1580/
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul

	Introduction
	Related Works
	Experimental Setting
	AP-MAE
	Generalizability
	Ablation Study - Logarithmic Scaling

	Pattern mining
	Setup
	Identified Patterns
	Pattern Distribution

	Classification
	Setup
	Performance

	Limitations and Open Questions
	Conclusion

