Self-Boost via Optimal Retraining: An Analysis via Approximate Message Passing

Adel Javanmard

University of Southern California Google Research ajavanma@usc.edu

Rudrajit Das

Google Research dasrudrajit@google.com

Alessandro Epasto

Google Research aepasto@google.com

Vahab Mirrokni

Google Research mirrokni@google.com

Abstract

Retraining a model using its own predictions together with the original, potentially noisy labels is a well-known strategy for improving the model's performance. While prior works have demonstrated the benefits of specific heuristic retraining schemes, the question of how to optimally combine the model's predictions and the provided labels remains largely open. This paper addresses this fundamental question for binary classification tasks. We develop a principled framework based on approximate message passing (AMP) to analyze iterative retraining procedures for two ground truth settings: Gaussian mixture model (GMM) and generalized linear model (GLM). Our main contribution is the derivation of the Bayes optimal aggregator function to combine the current model's predictions and the given labels, which when used to retrain the same model, minimizes its prediction error. We also quantify the performance of this optimal retraining strategy over multiple rounds. We complement our theoretical results by proposing a practically usable version of the theoretically-optimal aggregator function and demonstrate its superiority over baseline methods under different label noise models.

1 Introduction

Learning effectively from data with noisy labels remains a significant challenge in supervised machine learning (ML). A simple approach to mitigate the impact of label noise involves leveraging the trained model's own (soft or hard) predictions to ameliorate the learning process. More specifically, prior works [25, 11, 10, 32, 9] have shown that **retraining** an already trained model using its own predictions and the given labels (with which the model is initially trained) can lead to higher model accuracy, especially when the given labels are noisy. [11, 10, 32, 9] theoretically quantify the gains of simple retraining schemes and also provide principled explanations of why retraining is beneficial, such as the predicted labels leading to variance-reduction, leveraging large separability of the classes, etc. However, a key question that remains unanswered is the following:

"What is the optimal way to utilize the model's predicted labels and the given labels?"

In this work, we address this question for binary classification problems where the underlying ground truth model is: (i) a Gaussian mixture model (GMM), or (ii) a generalized linear model (GLM). Further, we also analyze the effect of multiple rounds of retraining. More specifically, for a sample \boldsymbol{x} , suppose $\widehat{\boldsymbol{y}}$ is the given noisy label and \boldsymbol{y}^t is the model's predicted label at the t^{th} round of retraining,

then we derive the Bayes optimal aggregator function $g_t(y^t, \widehat{y})$ which should be used to retrain the model in the $(t+1)^{\text{th}}$ round in order to minimize its prediction error. Our analysis technique is very different from the aforementioned prior works in this space and is based on Approximate Message Passing (AMP) [13, 35, 18]. We believe ours is the *first work* that addresses this question of optimally using the predicted and given labels. Building on our theoretical framework, we also develop an aggregator function that can be used in practice for training with the binary cross-entropy loss.

Before stating our contributions, we need to briefly introduce the problem setting. We consider a binary classification setting (with labels $\in \{\pm 1\}$), where for each sample \boldsymbol{x} , the given label $\widehat{\boldsymbol{y}}$ is equal to the true label y with probability $1-p>\frac{1}{2}$ and the flipped label -y otherwise, independently for each sample. In the Gaussian mixture model (GMM) case, we have $\boldsymbol{x}=y\boldsymbol{\mu}+\boldsymbol{z}$, where $\boldsymbol{\mu}\in\mathbb{R}^d$ and $\boldsymbol{z}\sim \mathsf{N}(\mathbf{0},\boldsymbol{I})$. In the generalized linear model (GLM) case, we have $\mathbb{P}(y=1|\boldsymbol{x})=h(\boldsymbol{x}^\mathsf{T}\boldsymbol{\beta})$ for some $\boldsymbol{\beta}\in\mathbb{R}^d$ and a known function $h(\cdot)$. We are now ready to state our **main contributions**.

- (a) We introduce and analyze an iterative retraining scheme based on *Approximate Message Passing (AMP)* [13, 35, 18]; see (4)-(5) for GMM and (17)-(18) for GLM. We provide a precise characterization of the effect of retraining in an asymptotic regime, where the ratio of the number of examples to the feature dimension converges to a constant. In particular, we derive the *state evolution* recursion for our setting a concise deterministic recursion that captures the asymptotic behavior of the AMP-based estimator; see (8), Theorem 3.1 for GMM and (22), Theorem 4.2 for GLM.
- (b) We derive the Bayes optimal aggregator function $g_t(y^t,\widehat{y})$ to combine the model's prediction y^t at the t^{th} round of retraining and the given label \widehat{y} to be used in the $(t+1)^{th}$ round of retraining for minimizing prediction error in Theorems 3.2 and 4.3 for GMM and GLM, respectively. To our knowledge, ours is the first work to analyze the optimal way to use the predicted and given labels for any retraining-like idea in any setting.
- (c) Based on our theoretical analysis, we develop a strategy that can be used in practice to combine the given labels and predictions for training any model with the binary cross-entropy loss (Section 5). We show that our method outperforms existing retraining baselines under different label noise models.

2 Related Work

- (i) **Retraining (fully supervised setting).** [9] theoretically analyze the idea of retraining a model with only its predicted hard labels and not reusing the given labels when they are noisy; they call this "full retraining". [9] also propose "consensus-based retraining" which is the process of retraining only using the samples for which the predicted label matches the given label. Another related idea is "self-distillation" (SD) [15, 26], where a teacher model's predicted *soft* (and not hard) labels are used to train a student model having the same architecture as the teacher. [25] empirically demonstrate that SD can improve performance when the given labels are noisy. [11, 10] theoretically analyze the benefits of one round of SD in the presence of noisy labels, while [32] analyze the effect of multiple rounds of SD in a setting similar to [10]. [39] do a statistical analysis of SD in the asymptotic limit, compare the effect of soft labels & hard labels, and also investigate the effect of multiple rounds of SD. But unlike us, [39] do not analyze the optimal way to combine given labels and model predictions.
- (ii) **Self-training (ST).** In the semi-supervised setting, ST [38, 43, 23] is the process of iteratively training a model wherein it is initially trained using the labeled samples, then labeling the unlabeled samples, followed by retraining the model on the labeled samples as well as the unlabeled samples on which the model is confident. This process is often repeated a few times. While this sounds similar to retraining, our work is in the *fully supervised* setting and retraining does not particularly rely on the model's confidence. See [2] for a survey on ST and some related approaches. There is also a significant amount of theoretical work on characterizing the efficacy of ST and related approaches [7, 34, 21, 8, 31, 41, 44]; but these results are not in the presence of noisy labels. Furthermore, there are empirical ideas related to ST in the context of label noise [37, 40, 17, 30, 24, 16].
- (iii) Approximate Message Passing. Due to lack of space, we defer this to Appendix A.

Notation: We use the boldface symbols to denote vectors and matrices. The ℓ_2 norm of a vector \boldsymbol{v} is denoted by $\|\boldsymbol{v}\|_{\ell_2}$. For any $n \in \mathbb{N}$, the set $\{1,\ldots,n\}$ is denoted by [n]. With a slight abuse of notation, we use $\mathbb{P}(X)$ to indicate the probability mass function (for discrete random variable X) as well as the probability density function (for continuous variable X). We write $\stackrel{p}{\rightarrow}$ to denote

convergence 'in probability'. $\Phi(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-(u^2/2)} du$ denotes the standard gaussian CDF. A function $\psi : \mathbb{R}^p \to \mathbb{R}$ is said to be pseudo-Lipschitz (of order 2) if for all $u, v \in \mathbb{R}^p$, we have $|\psi(u) - \psi(v)| \le L(1 + ||u|| + ||v||) ||u - v||$ for some constant L.

3 Gaussian Mixture Model (GMM)

Data model. We assume the training data $\{(\boldsymbol{x}_i,y_i)\}_{i=1}^n$ are generated i.i.d according to a Gaussian mixture model. In this model, each data point belongs to one of two classes $\{\pm 1\}$ with corresponding probabilities π_+ , π_- , such that $\pi_+ + \pi_- = 1$. Denoting by $y_i \in \{-1, +1\}$ the label for data point i, the features vectors $\boldsymbol{x}_i \in \mathbb{R}^d$, for $i \in [n]$, are generated independently as

$$x = y\mu + z,\tag{1}$$

where $z \sim N(0, I)$. In other words the mean of features vectors are $\pm \mu$ depending on its class. Throughout, we denote the features matrix and the labels vector by

$$X = [x_1|\dots|x_n]^\mathsf{T} \in \mathbb{R}^{n \times d}, \quad y = [y_1,\dots,y_n]^\mathsf{T} \in \mathbb{R}^n.$$

The learner does not observe the labels y_i , rather she has access to features vectors x_i and noisy labels \widehat{y}_i which are generated according to the following model:

$$\widehat{y}_i = \begin{cases} y_i & \text{with probability } 1 - p, \\ -y_i & \text{with probability } p, \end{cases}$$
 (2)

where $p < \frac{1}{2}$ is the mislabeling or label flipping probability. Let $\widehat{\boldsymbol{y}} = [\widehat{y}_1, \dots, \widehat{y}_n]^\mathsf{T} \in \mathbb{R}^n$ denote the vector of the observed noisy labels.

Standard linear classifier model. Let us first consider the following simple classifier model:

$$\widehat{\boldsymbol{\theta}} = \frac{1}{n} \boldsymbol{X}^{\mathsf{T}} \widehat{\boldsymbol{y}}. \tag{3}$$

The above model has been used before in [9, 7]. For a given point x, the model's soft prediction is $x^T \widehat{\theta}$ and its predicted label is $sign(x^T \widehat{\theta})$.

In this work, we consider a slightly different model inspired by Approximate Message Passing (AMP). Since our focus is on retraining over multiple rounds, we will delineate this as an iterative procedure.

3.1 Retraining Framework Inspired by Approximate Message Passing

For ease of exposition, we begin by giving a high-level outline of the retraining process. At iteration t of the process, let $\boldsymbol{\theta}^t \in \mathbb{R}^d$ denote the current model and $\boldsymbol{y}^t \in \mathbb{R}^n$ denote the vector of the soft predictions of the model on the training data. In the next iteration, the algorithm combines \boldsymbol{y}^t and the observed noisy labels $\widehat{\boldsymbol{y}}$ using the function g_t to obtain $g_t(\boldsymbol{y}^t, \widehat{\boldsymbol{y}})$ which are the target labels for retraining in the $(t+1)^{\text{th}}$ iteration. We refer to g_t as aggregator function and keep it general for now. We will later discuss different options for g_t , including the Bayes-optimal choice.

Let us now delve into the details. With an aggregator function g_t , we have the following update rule for $t \ge 0$:

$$\boldsymbol{\theta}^{t+1} = \frac{1}{\sqrt{n}} \boldsymbol{X}^{\mathsf{T}} g_t(\boldsymbol{y}^t, \widehat{\boldsymbol{y}}) - C_t \boldsymbol{\theta}^t$$
 (model-update step), (4)

$$\boldsymbol{y}^{t+1} = \frac{1}{\sqrt{n}} \boldsymbol{X} \boldsymbol{\theta}^{t+1} - g_t(\boldsymbol{y}^t, \widehat{\boldsymbol{y}}) \frac{d}{n}$$
 (soft-prediction step). (5)

The function g_t is applied entry wise, i.e., $g_t(\boldsymbol{y}^t, \widehat{\boldsymbol{y}})$ is the vector whose i^{th} $(i \in [n])$ entry is given by $g_t(y_i^t, \widehat{y}_i)$. The coefficient $C_t \in \mathbb{R}$ is given by

$$C_t = \frac{1}{n} \sum_{i=1}^n \frac{\partial g_t}{\partial y} (y, \widehat{y}_i) \Big|_{y=y_i^t}$$
 (6)

¹As mentioned in [9], this is a reasonable simplification of the least squares' solution for analysis purposes.

We initialize this process with $g_0(\cdot, \widehat{y}) = \widehat{y}$; notice that $C_0 = 0$.

There are two crucial differences from the standard model in (3): (i) instead of having a normalization factor of 1/n in the model-update step, we split it between the model-update and soft-prediction steps in our process by incorporating a factor of $1/\sqrt{n}$ at each step. Note that the scaling of the estimator does not matter since the predicted labels only depend on the direction of the estimator. (ii) we have 'memory correction' terms $(-C_t\theta^t$ and $-g_t(\boldsymbol{y}^t,\widehat{\boldsymbol{y}})\frac{d}{n})$ in both steps.

The updates (4) and (5) are in the form of Approximate Message Passing (AMP), which was introduced by adapting ideas from graphical models (belief propagation) and statistical physics to estimation problems [13, 35, 18]. The memory correction terms $-C_t\theta^t$ and $-g_t(\boldsymbol{y}^t,\widehat{\boldsymbol{y}})\frac{d}{n}$ (also called 'Onsager' correction in statistical physics and the AMP literature) can be thought of as a momentum term, and plays a key role in ensuring that the asymptotic distributions of $(\theta^t, \boldsymbol{y}^t)$ are Gaussian. To build some insight on the role of these memory terms, note that the data matrix \boldsymbol{X} is fixed across iterations, and so θ^t , \boldsymbol{y}^t and \boldsymbol{X} are correlated, which induces some bias in the estimates. The memory terms are designed specifically to act as debiasing terms to compensate for this dependence. Specifically, the effect of these corrections is the same as an iterative procedure without these terms, wherein the data matrix is resampled at every iteration, making it independent from the current estimates (as pointed out by [4, 12]). Of course the latter is not a practical algorithm, since the data matrix is fixed, but it is shown that both will have the same limiting behavior.

3.2 Analysis of the Retraining Process

Assumption 1 We assume the following:

- As $n, d \to \infty$, the ratio $d/n \to \alpha \in (0, \infty)$.
- The empirical distributions of the entries of $(\sqrt{d}\mu)$ (recall $\pm \mu$ are the class means; see (1)) converges weakly to a probability distribution ν_M on $\mathbb R$ with bounded second moment. Let $\gamma^2 = \mathbb E_{\nu_M}[M^2]$.
- The function $g_t : \mathbb{R} \times \mathbb{R} \mapsto \mathbb{R}$ is Lipschitz continuous.

We first characterize the test error of a model θ under our data model.

Test classification error. For a model θ , its predicted label for a test point x is given by $\operatorname{sign}(x^{\mathsf{T}}\theta)$. Therefore, the classification error amounts to (recall that $\Phi(u) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{u} e^{-t^2/2} dt$):

$$P_e(\boldsymbol{\theta}) = \mathbb{P}(y\boldsymbol{x}^{\mathsf{T}}\boldsymbol{\theta} < 0) = \mathbb{P}(y(y\boldsymbol{\mu}^{\mathsf{T}} + \boldsymbol{z}^{\mathsf{T}})\boldsymbol{\theta} < 0) = \mathbb{P}(y\boldsymbol{z}^{\mathsf{T}}\boldsymbol{\theta} < -\boldsymbol{\mu}^{\mathsf{T}}\boldsymbol{\theta}) = \Phi\left(-\frac{\boldsymbol{\mu}^{\mathsf{T}}\boldsymbol{\theta}}{\|\boldsymbol{\theta}\|_{\ell_2}}\right). \tag{7}$$

State evolution. A remarkable property of AMP algorithms is that their high-dimensional behavior admits an *exact description*. In essence, the vectors θ^t , y^t have asymptotically i.i.d. Gaussian entries in the asymptotic regime (Assumption 2), at fixed t. The mean and variance of θ^t , y^t can be computed through a deterministic recursion called *state evolution*. The validity of state evolution has been proved for a broad class of random matrices. Before describing it for our current setting, we establish some notation.

Let Y be a random variable distributed as original labels, namely $\mathbb{P}(Y=1)=\pi_+$ and $\mathbb{P}(Y=-1)=\pi_-$. Also, let \widehat{Y} be a random variable distributed as noisy labels, namely $\mathbb{P}(\widehat{Y}=Y)=(1-p)$ and $\mathbb{P}(\widehat{Y}=-Y)=p$. The state evolution involves sequence of deterministic quantities $(m_t,\sigma_t)_{t\geq 0}$ defined by the following recursions:

$$\bar{m}_t = \gamma \sqrt{\alpha} m_t, \quad \bar{\sigma}_t^2 = \alpha (m_t^2 + \sigma_t^2)$$

$$m_{t+1} = \frac{\gamma}{\sqrt{\alpha}} \mathbb{E} \left\{ g_t(\bar{m}_t Y + \bar{\sigma}_t G, \widehat{Y}) Y \right\}, \quad \sigma_{t+1}^2 = \mathbb{E} \left\{ g_t^2(\bar{m}_t Y + \bar{\sigma}_t G, \widehat{Y}) \right\}, \tag{8}$$

where $G \sim \mathsf{N}(0,1)$ is independent of other random variables. The next theorem (proved in Appendix B) implies that the empirical distribution of $\{(\sqrt{d}\mu_i, \theta_i^t)\}_{i=1}^d$ converges weakly to the probability distribution of $(M, \frac{m_t}{\gamma}M + \sigma_t G)$, where (m_t, σ_t) are given by the state evolution sequence. As a consequence, it can be used to characterize the limiting behavior of $P_e(\theta)$ (test error of the model) in terms of state evolution sequence.

Theorem 3.1 Let $(\theta^t, y^t)_{t\geq 0}$ be the AMP iterates given by (4)-(5). Also let $(m_t, \sigma_t)_{t\geq 0}$ be the state evolution recursions given by (8). Then under Assumption 1, for any pseudo-Lipschitz function $\psi : \mathbb{R}^2 \to \mathbb{R}$ the following holds almost surely for $t \geq 0$:

$$\lim_{n \to \infty} \left| \frac{1}{d} \sum_{i=1}^{d} \psi(\theta_i^t, \sqrt{d\mu_i}) - \mathbb{E} \left[\psi \left(\frac{m_t}{\gamma} M + \sigma_t G, M \right) \right] \right| = 0, \tag{9}$$

where $G \sim N(0,1)$, $M \sim \nu_M$ (see second bullet point of Assumption 1) are independent. Recall that $g_0(\cdot, \widehat{y}) = \widehat{y}$, which corresponds to the initialization of state evolution recursion with $m_1 = \gamma(1-2p)/\sqrt{\alpha}$ and $\sigma_1 = 1$. In addition, we have almost surely:

$$\lim_{n \to \infty} P_e(\boldsymbol{\theta}^t) = \Phi\left(-\frac{m_t \gamma}{\sqrt{m_t^2 + \sigma_t^2}}\right). \tag{10}$$

3.3 Optimal Choice of Aggregator Functions

In the AMP iterations (4) and (5), θ^t is the model estimate and y^t is the soft predictions vector at iteration t. We will now discuss some examples of the *aggregator* function g_t ; in particular, these examples describe the retraining methods proposed in [9]:²

- Full retraining [9]: In this case, $g_t(\boldsymbol{y}^t, \widehat{\boldsymbol{y}}) = \operatorname{sign}(\boldsymbol{y}^t)$ for $t \ge 1$. So in this type of retraining, the noisy labels are not used and only the current model's predicted labels are used.
- Consensus-based retraining [9]: Here, $g_t(\boldsymbol{y}^t, \widehat{\boldsymbol{y}}) = \widehat{\boldsymbol{y}}\mathbb{1}(\boldsymbol{y}^t\widehat{\boldsymbol{y}} > 0)$ for $t \ge 1$. Thus, retraining is done only using the samples for which the predicted label matches the noisy label.

Note that the result of Theorem 3.1 does not apply to these examples directly, because the g_t 's here are not Lipschitz. However, we can approximate them by Lipschitz functions, see (37) and Appendix F for further details.

In this section, we aim to derive the *optimal choice of aggregator functions*. Note that from Equation (10), the test error of θ^t is an increasing function of m_t/σ_t . Suppose that the retraining is run for t iterations, so $\bar{m}_t, \bar{\sigma}_t$ are determined. The optimal aggregator is the one that maximizes m_t/σ_t . Recalling the state evolution (8), we have

$$\frac{m_{t+1}^2}{\sigma_{t+1}^2} = \frac{\gamma^2}{\alpha} \frac{\mathbb{E}\{g_t(\bar{m}_t Y + \bar{\sigma}_t G, \widehat{Y})Y\}^2}{\mathbb{E}\{g_t^2(\bar{m}_t Y + \bar{\sigma}_t G, \widehat{Y})\}} \le \frac{\gamma^2}{\alpha} \mathbb{E}\{(2q_t - 1)^2\},\tag{11}$$

with $q_t := \mathbb{P}(Y = 1 | \bar{m}_t Y + \bar{\sigma}_t G, \widehat{Y})$. The above inequality holds because by the law of iterated expectations, we have

$$\mathbb{E}\{g_t(\bar{m}_tY + \bar{\sigma}_tG, \widehat{Y})Y\} = \mathbb{E}\{g_t(\bar{m}_tY + \bar{\sigma}_tG, \widehat{Y}) \mathbb{E}\{Y | \bar{m}_tY + \bar{\sigma}_tG, \widehat{Y}\}\}$$
$$= \mathbb{E}\{g_t(\bar{m}_tY + \bar{\sigma}_tG, \widehat{Y})(2q_t - 1)\},$$

and so (11) follows from Cauchy-Schwarz inequality. Also, the upper bound is achieved when g_t is (any scaling of) $2q_t - 1$. Therefore, for this optimal choice of g_t^* we have

$$m_{t+1} = \frac{\gamma}{\sqrt{\alpha}} \mathbb{E}\left\{ \left(g_t^* (\bar{m}_t Y + \bar{\sigma}_t G, \widehat{Y}) \right)^2 \right\}, \quad \sigma_{t+1}^2 = \mathbb{E}\left\{ \left(g_t^* (\bar{m}_t Y + \bar{\sigma}_t G, \widehat{Y}) \right)^2 \right\}, \quad (12)$$

and so $m_{t+1} = \frac{\gamma}{\sqrt{\alpha}} \sigma_{t+1}^2$. We let $\eta_t := \frac{m_t}{\sigma_t}$ and so

$$m_t = \frac{\sqrt{\alpha}}{\gamma} \eta_t^2, \quad \sigma_t = \frac{\sqrt{\alpha}}{\gamma} \eta_t, \quad \bar{m}_t = \alpha \eta_t^2, \quad \bar{\sigma}_t^2 = \frac{\alpha^2}{\gamma^2} \eta_t^2 (\eta_t^2 + 1). \tag{13}$$

Therefore, we can write the state evolution and the optimal aggregator, only in terms of η_t . We formally state it in the next theorem (proved in Appendix C).

²It is worth mentioning that [9] analyze the simple model in (3) and not our AMP-based model.

Theorem 3.2 Recall that π_+, π_- are the class probabilities and p is the label flipping probability. The optimal aggregator functions for the AMP-based procedure in (4)-(5) is given by:

$$g_t^*(y,\widehat{y}) = \frac{2}{1 + \left(\frac{p}{1-p}\right)^{\widehat{y}} \exp\left(-\frac{2\gamma^2 y}{\alpha(\eta_t^2 + 1)}\right) \frac{\pi_-}{\pi_+}} - 1, \tag{14}$$

for $t \ge 1$ (recall that $g_0^*(\cdot, \widehat{y}) = \widehat{y}$). In addition, we have:

$$P_e(\boldsymbol{\theta}^t) \stackrel{p}{\longrightarrow} \Phi\left(-\frac{\gamma \eta_t}{\sqrt{\eta_t^2 + 1}}\right),$$

where $(\eta_t)_{t\geq 1}$ is given by the following state evolution recursion:

$$\eta_{t+1}^2 = \frac{\gamma^2}{\alpha} \mathbb{E} \left\{ \left(g_t^* \left(\alpha \eta_t^2 Y + \frac{\alpha}{\gamma} \eta_t \sqrt{\eta_t^2 + 1} G, \widehat{Y} \right) \right)^2 \right\}, \tag{15}$$

with initialization $\eta_1 = \gamma(1-2p)/\sqrt{\alpha}$.

We perform some simulations in Appendix E to verify our theory, and compare the performance of optimal aggregator with the full retraining and the consensus-bases retraining schemes. Note that in the noiseless regime (p = 0), the optimal aggregator becomes $g_t^*(y, 1) = 1$ and $g_y^*(y, -1) = -1$ which is expected because in this regime, \widehat{y} is the ground truth label.

Discussion. The state evolution sequence $(\eta_t)_{t\geq 0}$ in (15) can be rewritten as $\eta_{t+1}^2 = F(\eta_t^2)$ with

$$F(u) = \frac{\gamma^2}{\alpha} \mathbb{E}\left\{ \left(\tilde{g} \left(\gamma^2 \frac{u}{1+u} Y + \gamma \sqrt{\frac{u}{1+u}} G, \widehat{Y} \right) \right)^2 \right\}, \quad \tilde{g}(y, \widehat{y}) = \frac{2}{1 + \left(\frac{p}{1-p} \right) \widehat{y} e^{-2y} \frac{\pi_-}{\pi_+}} - 1.$$
 (16)

In Figure 1, we illustrate an example of this mapping along with the sequence $(\eta_t)_{t\geq 1}$ (Cobweb diagram). As can be observed from the figure (and also formalized in Proposition 3.3), the mapping F is non-decreasing. When η_1 is small, the sequence η_t increases, while if η_1 is large, the sequence decreases. Since the test error decreases as η increases, this leads to an interesting observation: if the initial model is poor, retraining helps improve its performance, but if the initial model is already good, retraining can actually hurt its performance. We formalize this observation in the next proposition (proved in Appendix D).

Proposition 3.3 *The following statements hold:*

- (i) The function F defined in (16) is non-decreasing on $[0, \infty)$. Also, it has at least one fixed point, i.e., there exists a solution to $\eta^2 = F(\eta^2)$. Let η_*^2 be the smallest fixed point. If $\eta_1 \le \eta_*$ then the state evolution sequence $(\eta_t)_{t \ge 1}$ is non-decreasing, and hence retraining reduces the test error.
- (ii) Suppose that $\gamma^2 \ge \sqrt{\frac{\pi \alpha}{2}}$. A sufficient condition for the sequence $(\eta_t)_{t \ge 1}$ to be non-decreasing is that $p \in [p_*, \frac{1}{2})$, with $p_* < \frac{1}{2}$ being the unique solution of the equation: $\Phi\left(\frac{-\gamma^2(1-2p)}{\sqrt{\gamma^2(1-2p)^2+\alpha}}\right) = p$.

4 Generalized Linear Model (GLM)

Consider a data matrix $X \in \mathbb{R}^{n \times d}$, with rows $x_1, \dots, x_n \sim \mathsf{N}(0, I_d/n),^3$ and corresponding labels $y = [y_1, \dots, y_n]^{\mathsf{T}} \in \mathbb{R}^n$ generated with the following probabilistic rule:

$$\mathbb{P}(y_i = 1 | \boldsymbol{x}_i) = h(\boldsymbol{x}_i^\mathsf{T} \boldsymbol{\beta}),$$

for a known link function h. However, the learner observes noisy labels $\widehat{\boldsymbol{y}} = [\widehat{y}_1, \dots, \widehat{y}_n]^\mathsf{T} \in \mathbb{R}^n$, where the \widehat{y}_i 's follow the same noise model as (2) with p being the label flipping probability. We also define $\widehat{h}_p(z) \coloneqq (1-p)h(z) + p(1-h(z))$. Note that $\mathbb{P}(\widehat{y}_i = 1|\boldsymbol{x}_i) = \widehat{h}_p(\boldsymbol{x}_i^\mathsf{T}\boldsymbol{\beta})$.

³The scaling of 1/n in the covariance matrix is for ease of exposition. Our analysis can be extended even if the covariance matrix is I_d at the cost of more tedious exposition.

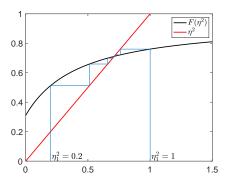


Figure 1: Cobweb plot for the state evolution in Theorem 3.1, with two initializations: (small) $\eta_1 = 0.2$ and (large) $\eta = 1$. Here, $\gamma = 1.5$, p = 0.3, $\alpha = 2$, $\pi_+ = 0.3$, $\pi_- = 0.7$.

AMP-based update rule: Similar to the AMP-based iterative update rule for GMM in (4)-(5), we progressively update our classifier β^t at iteration t with an aggregator function g_t as follows:

$$\boldsymbol{\beta}^{t+1} = \boldsymbol{X}^{\mathsf{T}} g_t(\boldsymbol{y}^t, \widehat{\boldsymbol{y}}) - C_t \boldsymbol{\beta}^t, \tag{17}$$

$$\boldsymbol{y}^{t+1} = \boldsymbol{X}\boldsymbol{\beta}^{t+1} - g_t(\boldsymbol{y}^t, \widehat{\boldsymbol{y}}) \frac{d}{n}. \tag{18}$$

Similar to the GMM case, the aggregator function g_t is applied entry wise, the Onsager coefficient $C_t \in \mathbb{R}$ is given by

$$C_t = \frac{1}{n} \sum_{i=1}^{n} \frac{\partial g_t}{\partial y} (y, \widehat{y}_i) \Big|_{y=y_i^t},$$

and the process is initialized with $g_0(\cdot, \widehat{y}) = \widehat{y}$

We track the performance of the classifier β^t via its test error. For a model θ , its predicted label for a test point x is given by $sign(x^T\theta)$. We first state the assumptions needed for our subsequent results.

Assumption 2 We assume the following:

- As $n, d \to \infty$, the ratio $d/n \to \alpha \in (0, \infty)$.
- The empirical distributions of the entries of β converges weakly to a probability distribution $\pi_{\bar{\beta}}$ on \mathbb{R} with bounded second moment. Let $\gamma^2 = \mathbb{E}_{\pi_{\bar{\beta}}}[\bar{\beta}^2]$.
- The function $q_t : \mathbb{R} \times \mathbb{R} \mapsto \mathbb{R}$ is Lipschitz continuous.

Our next lemma (proved in Appendix G) characterizes the test error of a model θ .

Lemma 4.1 For a model θ , define its test error $P_e(\theta) := \mathbb{P}(yx^{\mathsf{T}}\theta < 0)$, where (x, y) is generated from the GLM. Define $\rho := \beta^{\mathsf{T}}\theta/(\|\beta\|_{\ell_2}\|\theta\|_{\ell_2})$. Then,

$$P_{e}(\boldsymbol{\theta}) = F(\rho) := \mathbb{E}\left[\Phi\left(\frac{\rho Z}{\sqrt{1 - \rho^{2}}}\right) \left(1 - h(\sqrt{\alpha}\gamma Z)\right) + \Phi\left(\frac{-\rho Z}{\sqrt{1 - \rho^{2}}}\right) h(\sqrt{\alpha}\gamma Z)\right], \quad (19)$$

with $Z \sim N(0,1)$. In addition, F is a decreasing function, if h(u) > h(-u), for all u > 0.

State evolution. We will describe state evolution just as we did for the GMM case. The state evolution parameters $(\mu_t, \sigma_t)_{t \ge 1}$ are recursively defined by:

$$\mu_{1} = \frac{2}{\alpha \gamma^{2}} \mathbb{E}[Z\hat{h}_{p}(Z)], \quad \sigma_{1} = \sqrt{\alpha}$$

$$\mu_{t+1} = \mathbb{E}\left[\frac{\mathbb{E}(Z|Z_{t},\widehat{Y}) - \mathbb{E}(Z|Z_{t})}{\operatorname{Var}(Z|Z_{t})} g_{t}(Z_{t},\widehat{Y})\right], \quad \sigma_{t+1}^{2} = \alpha \mathbb{E}\left[g_{t}^{2}(Z_{t},\widehat{Y})\right], \quad (20)$$

where $Z \sim \mathsf{N}(0, \alpha \gamma^2)$ and $Z_t = \mu_t Z + \sigma_t G$, where $G \sim \mathsf{N}(0, 1)$ is independent of other random variables. In addition, $\widehat{Y} \in \{-1, +1\}$ with $\mathbb{P}(\widehat{Y} = 1) = \widehat{h}_p(Z)$. Using the joint Gaussianity of (Z_t, Z) , we can calculate $\mathbb{E}(Z|Z_t)$ and $\mathsf{Var}(Z|Z_t)$ more explicitly, as follows:

$$\mathbb{E}(Z|Z_t) = \frac{\alpha \mu_t \gamma^2}{\sigma_t^2 + \alpha \mu_t^2 \gamma^2} Z_t, \qquad \text{Var}(Z|Z_t) = \frac{\alpha \sigma_t^2 \gamma^2}{\sigma_t^2 + \alpha \mu_t^2 \gamma^2}. \tag{21}$$

Using these identities, we can rewrite the state evolution recursion as:

$$\mu_1 = \frac{2}{\alpha \gamma^2} \mathbb{E}[Z\hat{h}_p(Z)], \quad \sigma_1 = \sqrt{\alpha}, \tag{22}$$

$$\mu_{t+1} = \left(\frac{1}{\alpha \gamma^2} + \frac{\mu_t^2}{\sigma_t^2}\right) \mathbb{E}\left[\mathbb{E}(Z|Z_t, \widehat{Y})g_t(Z_t, \widehat{Y})\right] - \frac{\mu_t}{\sigma_t^2} \mathbb{E}\left[Z_t g_t(Z_t, \widehat{Y})\right], \quad \sigma_{t+1}^2 = \alpha \mathbb{E}(g_t^2(Z_t, \widehat{Y})).$$

The next theorem establishes that for every fixed t, the asymptotic behavior of β^t is precisely characterized by the state evolution recursion, which in turn precisely provides the limiting behavior of the test error of β^t , for every fixed iteration t. The proof largely follows from the analysis of generalized AMP (GAMPs) algorithm proposed by [35] along with Stein's lemma to further simplify the state evolution recursion (similar to [27, Proposition 3.1]). Please refer to Appendix H for further details and initialization of the state evolution.

Theorem 4.2 Let $(\beta^t, y^t)_{t\geq 0}$ be the AMP iterates given by (17)-(18). Also let $(\mu_t, \sigma_t)_{t\geq 0}$ be the state evolution recursions given by (22). Then under Assumption 2, for any pseudo-Lipschitz function $\psi : \mathbb{R}^2 \to \mathbb{R}$ the following holds almost surely for $t \geq 0$:

$$\lim_{n \to \infty} \left| \frac{1}{d} \sum_{i=1}^{d} \psi(\beta_i^t, \beta_i) - \mathbb{E} \left[\psi \left(\mu_t \bar{\beta} + \frac{\sigma_t}{\sqrt{\alpha}} G, \bar{\beta} \right) \right] \right| = 0,$$
 (23)

where $G \sim \mathsf{N}(0,1)$ and $\bar{\beta} \sim \pi_{\bar{\beta}}$ (see second bullet point of Assumption 2) are independent. Recall that $g_0(\cdot,\widehat{y}) = \widehat{y}$, which corresponds to the initialization of state evolution recursion with $\mu_1 = \frac{2}{\alpha\gamma^2} \mathbb{E}[Z\hat{h}_p(Z)]$ where $Z \sim \mathsf{N}(0,\alpha\gamma^2)$, and $\sigma_1 = \sqrt{\alpha}$. In addition, we have almost surely,

$$\lim_{n \to \infty} P_e(\beta^t) = F\left(\frac{\eta_t \gamma}{\sqrt{\eta_t^2 \gamma^2 + \frac{1}{\alpha}}}\right),\tag{24}$$

where $\eta_t = \mu_t/\sigma_t$ and $F(\rho)$ is given by (19).

Optimal choice of aggregator functions g_t . Using Equation 24, and since F is a decreasing function, the optimal g_t is the one that, fixing the history of the algorithm, maximizes η_{t+1} . Invoking the state evolution (20), we have

$$\eta_{t+1}^2 \coloneqq \frac{\mu_{t+1}^2}{\sigma_{t+1}^2} = \frac{\mathbb{E}\left(\frac{\mathbb{E}(Z|Z_t,\widehat{Y}) - \mathbb{E}(Z|Z_t)}{\operatorname{Var}(Z|Z_t)} g_t(Z_t,\widehat{Y})\right)^2}{\alpha \, \mathbb{E}(g_t^2(Z_t,\widehat{Y}))} \leq \frac{1}{\alpha} \, \mathbb{E}\left(\left[\frac{\mathbb{E}(Z|Z_t,\widehat{Y}) - \mathbb{E}(Z|Z_t)}{\operatorname{Var}(Z|Z_t)}\right]^2\right),$$

using the Cauchy-Schwarz inequality. The optimal aggregator for which the equality happens in the above equation, is when the aggregator is (any deterministic scalar) of

$$g_t^*(Z_t, \widehat{Y}) = \frac{\mathbb{E}(Z|Z_t, \widehat{Y}) - \mathbb{E}(Z|Z_t)}{\operatorname{Var}(Z|Z_t)} = \frac{\mathbb{E}(Z|Z_t, \widehat{Y})}{\frac{\alpha\sigma_t^2 \gamma^2}{\sigma_t^2 + \alpha\mu_t^2 \gamma^2}} - \frac{\mu_t}{\sigma_t^2} Z_t = \left(\frac{1}{\alpha\gamma^2} + \frac{\mu_t^2}{\sigma_t^2}\right) \mathbb{E}(Z|Z_t, \widehat{Y}) - \frac{\mu_t}{\sigma_t^2} Z_t.$$
(25)

We give a more explicit characterization of the optimal aggregator in the next proposition, by writing $\mathbb{E}(Z|Z,\widehat{Y})$ explicitly using the Bayes rule. We also show that the state evolution for the optimal aggregator can be written directly in terms of $\eta_t = \mu_t/\sigma_t$.

Theorem 4.3 The optimal aggregator functions in the AMP-based procedure is given by:

$$g_t^*(y,\widehat{y}) = \left(\frac{1}{\alpha\gamma^2} + \eta_t^2\right) \frac{\int_{-\infty}^{\infty} z e^{-\frac{\eta_t^2 z^2}{2} + \frac{yz}{\alpha}} (\hat{h}_p(z))^{\frac{1+\widehat{y}}{2}} (1 - \hat{h}_p(z))^{\frac{1-\widehat{y}}{2}} e^{-\frac{z^2}{2\alpha\gamma^2}} dz}{\int_{-\infty}^{\infty} e^{-\frac{\eta_t^2 z^2}{2} + \frac{yz}{\alpha}} (\hat{h}_p(z))^{\frac{1+\widehat{y}}{2}} (1 - \hat{h}_p(z))^{\frac{1-\widehat{y}}{2}} e^{-\frac{z^2}{2\alpha\gamma^2}} dz} - \frac{y}{\alpha}, \quad (26)$$

for $t \ge 1$, and $g_0^*(\cdot, \widehat{y}) = \widehat{y}$, where $(\eta_t)_{t \ge 1}$ is given by the following state evolution recursion:

$$\eta_1 = \frac{2}{\alpha^{3/2} \gamma^2} \mathbb{E}[Z\hat{h}_p(Z)], \quad \eta_{t+1}^2 = \frac{1}{\alpha} \mathbb{E}\left\{ \left(g_t^*(\alpha \eta_t^2 Z + \alpha \eta_t G, \widehat{Y}) \right)^2 \right\}, \tag{27}$$

where $Z \sim N(0, \alpha \gamma^2)$ and $G \sim N(0, 1)$ are independent of each other. In addition, $\widehat{Y} \in \{-1, +1\}$ with $\mathbb{P}(\widehat{Y} = 1|Z) = \hat{h}_p(Z)$.

The proof of Theorem 4.3 is in Appendix I. Similar trends to those described after Theorem 3.2 also hold in the context of GLMs. In Appendix J, we present a detailed discussion of a special case of Theorem 4.3, specifically when the link function h is the sign function, along with additional remarks.

We discuss extension of our theory to the multi-class case and non-linear models in Appendix K.

5 Experiments

We show that extensions of the optimal g_t^* derived in Theorem 3.2 is very effective for improving the performance of standard linear probing (i.e., fitting a linear layer on top of a pretrained model) [1, 22] as well as full network training with the cross-entropy loss for binary classification in the presence of label noise. Here we consider two label noise models: (a) the uniform noise model in (2) with p being the label flipping probability, and (b) a non-uniform noise model where $\mathbb{P}(\widehat{y_i} = -1|y_i = +1) = p$ and $\mathbb{P}(\widehat{y_i} = +1|y_i = -1) = q$ with $p \neq q$ (independently for all $i \in [n]$). We adapt the derivation in (34) (in the proof Theorem 3.2) by considering general means and variances (instead of symmetric means and equal variances as in (34)) obtained by fitting a bimodal GMM on the distribution of the unnormalized logits ($\in (-\infty, \infty)$) of the training set. Suppose the means and variances of the peaks corresponding to the positive and negative logits are (μ_+, σ_+^2) and (μ_-, σ_-^2) , respectively. As shown in Appendix M, the aggregators we obtain here for logit z and given label \widehat{y} are the following for

(a) uniform noise model:
$$g(z, \widehat{y}) = \frac{2}{1 + \left(\frac{p}{1-p}\right)^{\widehat{y}} \exp\left(\frac{(z-\mu_+)^2}{2\sigma_+^2} - \frac{(z-\mu_-)^2}{2\sigma_-^2}\right)\frac{\pi_-}{\pi_+}} - 1,$$
 (28)

(b) non-uniform noise model:
$$g(z,\widehat{y}) = \frac{2}{1 + \left(\frac{q(1-q)}{p(1-p)}\right)^{1/2} \left(\frac{pq}{(1-p)(1-q)}\right)^{\widehat{y}/2} \exp\left(\frac{(z-\mu_+)^2}{2\sigma_+^2} - \frac{(z-\mu_-)^2}{2\sigma_-^2}\right) \frac{\pi_-}{\pi_+}} - 1,$$

with $g(z, \widehat{y})$ being the soft prediction we use for training in the next round. We call our method using the aggregation functions defined in (28) BayesMix RT, where RT is an abbreviation for retraining as used in [9]. Note that these aggregation functions are specific to the noise model and also depend on the noise model's parameters (e.g., p, q), which may not be always available and easy to estimate. So we propose the following simpler aggregation function that can be used under more general noise models (e.g., sample-dependent noise) and in scenarios where the noise model is not known:

$$g_{\text{simple}}(z,\widehat{y}) = \frac{2}{1 + \gamma^{\widehat{y}} \exp\left(\frac{(z-\mu_{+})^{2}}{2\sigma^{2}} - \frac{(z-\mu_{-})^{2}}{2\sigma^{2}}\right) \frac{\pi_{-}}{\pi_{+}}} - 1, \tag{29}$$

where $\gamma \in (0,1)$ is a constant which can be tuned (and $g_{\text{simple}}(z,\widehat{y})$ is the soft prediction we use for training in the next round). Essentially, (29) replaces the $(\frac{p}{1-p})$ term in (a) of (28) by a (tunable) constant γ . In our experiments, we fix γ to 0.7 throughout without any tuning, thereby ensuring no reliance on the knowledge of the underlying noise model. We call our method using $g_{\text{simple}}(z,\widehat{y})$ BayesMix-Simple RT and also propose to use it for full-network training.⁴ We compare BayesMix RT/BayesMix-Simple RT with full RT and consensus-based RT proposed in [9].

For all our experiments, we use the body of a ResNet-50 model pretrained on ImageNet. In linear probing, we train only the linear head attached on top of the (frozen) pretrained body, while in full network training, we train the body as well as the linear head. We consider two datasets available on TensorFlow: (i) MedMNIST Pneumonia [42] which is a medical binary classification dataset, and (ii) Food 101 [6] which is a multi-class food-based classification dataset, but we use only two similar classes, for e.g., pho vs. ramen (because both are broth-based dishes). All the results are averaged over 3 runs. The experimental details are deferred to Appendix N due to lack of space.

Linear probing. We run each method for 10 iterations. In Tables 1 and 2, we list the average test accuracies of full RT, consensus-based RT, and BayesMix RT (28) after 1 and 10 iterations for

⁴It is worth clarifying that all our aggregation functions depend on the class prior probabilities π_+ and π_- .

MedMNIST Pneumonia corrupted by the uniform noise model with p=0.45 (note that this is a high degree of label noise) and the non-uniform noise model with p=0.45 and q=0.2, respectively. Note that $BayesMix\ RT$ is better than full RT and consensus-based RT after 10 iterations. Further, in Table 6 (Appendix L), we conduct an ablation study on the uniform noise model to compare the three RT methods at different values of p. Next, in Table 7 (Appendix L), we compare full RT, consensus-based RT, and BayesMix-Simple RT (29) on MedMNIST Pneumonia corrupted by an adversarial noise model described in Appendix L.

Full network training. As mentioned earlier, we propose to use BayesMix-Simple RT (29) for full network training. We run full RT, consensus-based RT, and BayesMix-Simple RT for 3 iterations.⁵ In Tables 3 and 4, we list the average test accuracies of each method after 1 and 3 iterations for Food-101 pho vs. ramen corrupted by uniform noise with p = 0.4 and Food-101 spaghetti bolognese vs. spaghetti carbonara corrupted by non-uniform noise with p = 0.45 and q = 0.2, respectively. Note that *BayesMix-Simple RT is significantly better than full RT and consensus-based RT* here (in fact, the latter two methods do not yield any gains here).

Table 1: Linear probing and uniform noise (p = 0.45): Average test accuracies \pm standard deviation for MedMNIST Pneumonia. In the first iteration of retraining, consensus-based RT performs the best, but at the tenth iteration, BayesMix RT performs the best.

Iteration #	Full RT	Consensus-based RT	BayesMix RT (ours)
0 (initial model)	64.58 ± 3.07	64.58 ± 3.07	64.58 ± 3.07
1	$67.15 \pm 4.28 \ (2.57 \uparrow)$	$68.32 \pm 1.88 (3.74 \uparrow)$	$65.06 \pm 2.55 \ (0.48 \uparrow)$
10	$68.06 \pm 3.78 (3.48 \uparrow)$	$70.03 \pm 0.73 \ (5.45 \uparrow)$	$71.42 \pm 2.43 (6.84 \uparrow)$

Table 2: Linear probing and non-uniform noise (p = 0.45, q = 0.2): Average test accuracies \pm standard deviation for MedMNIST Pneumonia. *BayesMix RT performs the best*.

Iteration #	Full RT	Consensus-based RT	BayesMix RT (ours)
0 (initial model)	71.79 ± 1.71	71.79 ± 1.71	71.79 ± 1.71
1	$77.62 \pm 3.43 \ (5.83 \uparrow)$	$77.85 \pm 2.69 \ (6.06 \uparrow)$	$82.63 \pm 2.02 (10.84 \uparrow)$
10	$79.74 \pm 3.40 (7.95 \uparrow)$	$82.85 \pm 1.44 (11.06 \uparrow)$	84.39 \pm 0.79 (12.60 \uparrow)

Table 3: **Full network training and uniform noise** (p = 0.4): Average test accuracies \pm standard deviation for Food-101 pho vs. ramen (both are broth-based dishes). *BayesMix-Simple RT is the clear winner*; in fact, the other two RT methods do not lead to any improvements.

Iteration #	Full RT	Consensus-based RT	BayesMix-Simple RT (ours)
0 (initial model)	61.13 ± 3.39	61.13 ± 3.39	61.13 ± 3.39
1	$59.07 \pm 5.44 (2.06 \downarrow)$	$59.33 \pm 4.83 (1.80 \downarrow)$	66.73 ± 3.72 (5.60 ↑)
3	$57.67 \pm 7.47 (3.46 \downarrow)$	$58.47 \pm 6.78 (2.66 \downarrow)$	$70.67 \pm 4.65 \ (9.54 \uparrow)$

Table 4: **Full network training and non-uniform noise** (p = 0.45, q = 0.2): Average test accuracies \pm standard deviation for Food-101 spaghetti bolognese vs. spaghetti carbonara (both are spaghetti dishes). Again, *BayesMix-Simple RT is the clear winner*.

are spagnetti dishes). Figuri, Buyeshin sumpre iti is the event without				
Iteration #	Full RT	Consensus-based RT	BayesMix-Simple RT (ours)	
0 (initial model)	65.45 ± 2.22	65.45 ± 2.22	65.45 ± 2.22	
1	$61.35 \pm 7.31 (4.10 \downarrow)$	$61.30 \pm 4.48 (4.15 \downarrow)$	$74.55 \pm 3.75 \ (9.10 \uparrow)$	
3	$56.50 \pm 7.74 (8.95 \downarrow)$	$59.70 \pm 5.57 (5.75 \downarrow)$	$80.30 \pm 5.58 (14.85 \uparrow)$	

6 Conclusion

In this paper, we analyzed optimal model retraining by deriving the Bayes optimal aggregator function to combine the given labels and model predictions for binary classification. Our framework quantified the performance of this strategy over multiple retraining iterations. We also proposed a practical variant and showed that it outperforms existing baselines under different label noise models. In the future, we would like to extend our results to the multi-class classification setting and theoretically analyze more general label noise models.

⁵Note that training an entire deep network is much more computationally expensive than linear probing.

Acknowledgments

AJ was partially supported by the Sloan fellowship in mathematics, the NSF CAREER Award DMS-1844481, the NSF Award DMS-2311024, an Amazon Faculty Research Award, an Adobe Faculty Research Award, and an iORB grant from USC Marshall School of Business.

References

- [1] G. Alain and Y. Bengio. Understanding intermediate layers using linear classifier probes. *arXiv* preprint arXiv:1610.01644, 2016.
- [2] M.-R. Amini, V. Feofanov, L. Pauletto, E. Devijver, and Y. Maximov. Self-training: A survey. *arXiv preprint arXiv:2202.12040*, 2022.
- [3] J. Barbier, F. Krzakala, N. Macris, L. Miolane, and L. Zdeborová. Optimal errors and phase transitions in high-dimensional generalized linear models. *Proceedings of the National Academy* of Sciences, 116(12):5451–5460, 2019.
- [4] M. Bayati and A. Montanari. The dynamics of message passing on dense graphs, with applications to compressed sensing. *IEEE Transactions on Information Theory*, 57(2):764–785, 2011.
- [5] M. Bayati and A. Montanari. The lasso risk for gaussian matrices. *IEEE Transactions on Information Theory*, 58(4):1997–2017, 2011.
- [6] L. Bossard, M. Guillaumin, and L. Van Gool. Food-101 mining discriminative components with random forests. In *European Conference on Computer Vision*, 2014.
- [7] Y. Carmon, A. Raghunathan, L. Schmidt, J. C. Duchi, and P. S. Liang. Unlabeled data improves adversarial robustness. *Advances in neural information processing systems*, 32, 2019.
- [8] Y. Chen, C. Wei, A. Kumar, and T. Ma. Self-training avoids using spurious features under domain shift. *Advances in Neural Information Processing Systems*, 33:21061–21071, 2020.
- [9] R. Das, I. S. Dhillon, A. Epasto, A. Javanmard, J. Mao, V. Mirrokni, S. Sanghavi, and P. Zhong. Retraining with predicted hard labels provably increases model accuracy. In *International Conference on Machine Learning*. PMLR, 2025.
- [10] R. Das and S. Sanghavi. Understanding self-distillation in the presence of label noise. In International Conference on Machine Learning, pages 7102–7140. PMLR, 2023.
- [11] B. Dong, J. Hou, Y. Lu, and Z. Zhang. Distillation ≈ early stopping? harvesting dark knowledge utilizing anisotropic information retrieval for overparameterized neural network. *arXiv* preprint *arXiv*:1910.01255, 2019.
- [12] D. L. Donoho, A. Javanmard, and A. Montanari. Information-theoretically optimal compressed sensing via spatial coupling and approximate message passing. *IEEE transactions on information theory*, 59(11):7434–7464, 2013.
- [13] D. L. Donoho, A. Maleki, and A. Montanari. Message-passing algorithms for compressed sensing. *Proceedings of the National Academy of Sciences*, 106(45):18914–18919, 2009.
- [14] O. Y. Feng, R. Venkataramanan, C. Rush, R. J. Samworth, et al. A unifying tutorial on approximate message passing. *Foundations and Trends*® *in Machine Learning*, 15(4):335–536, 2022.
- [15] T. Furlanello, Z. Lipton, M. Tschannen, L. Itti, and A. Anandkumar. Born again neural networks. In *International Conference on Machine Learning*, pages 1607–1616. PMLR, 2018.
- [16] A. Goel, Y. Jiao, and J. Massiah. Pars: Pseudo-label aware robust sample selection for learning with noisy labels. arXiv preprint arXiv:2201.10836, 2022.

- [17] J. Han, P. Luo, and X. Wang. Deep self-learning from noisy labels. In *Proceedings of the IEEE/CVF international conference on computer vision*, pages 5138–5147, 2019.
- [18] A. Javanmard and A. Montanari. State evolution for general approximate message passing algorithms, with applications to spatial coupling. *Information and Inference: A Journal of the IMA*, 2(2):115–144, 2013.
- [19] Y. Kabashima, F. Krzakala, M. Mézard, A. Sakata, and L. Zdeborová. Phase transitions and sample complexity in bayes-optimal matrix factorization. *IEEE Transactions on information theory*, 62(7):4228–4265, 2016.
- [20] M. Kendall, A. Stuart, and J. Ord. Vol. 1: Distribution theory. *London [etc.]: Arnold [etc.]*, 1994.
- [21] A. Kumar, T. Ma, and P. Liang. Understanding self-training for gradual domain adaptation. In *International conference on machine learning*, pages 5468–5479. PMLR, 2020.
- [22] A. Kumar, A. Raghunathan, R. Jones, T. Ma, and P. Liang. Fine-tuning can distort pretrained features and underperform out-of-distribution. *arXiv preprint arXiv:2202.10054*, 2022.
- [23] D.-H. Lee et al. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In *Workshop on challenges in representation learning, ICML*, volume 3, page 896. Atlanta, 2013.
- [24] J. Li, R. Socher, and S. C. Hoi. Dividemix: Learning with noisy labels as semi-supervised learning. *arXiv preprint arXiv:2002.07394*, 2020.
- [25] Y. Li, J. Yang, Y. Song, L. Cao, J. Luo, and L.-J. Li. Learning from noisy labels with distillation. In *Proceedings of the IEEE International Conference on Computer Vision*, pages 1910–1918, 2017.
- [26] H. Mobahi, M. Farajtabar, and P. Bartlett. Self-distillation amplifies regularization in hilbert space. *Advances in Neural Information Processing Systems*, 33:3351–3361, 2020.
- [27] M. Mondelli and R. Venkataramanan. Approximate message passing with spectral initialization for generalized linear models. In *International Conference on Artificial Intelligence and Statistics*, pages 397–405. PMLR, 2021.
- [28] A. Montanari, Y. Eldar, and G. Kutyniok. Graphical models concepts in compressed sensing. *Compressed Sensing*, pages 394–438, 2012.
- [29] A. Montanari and R. Venkataramanan. Estimation of low-rank matrices via approximate message passing. *The Annals of Statistics*, 49(1), 2021.
- [30] D. T. Nguyen, C. K. Mummadi, T. P. N. Ngo, T. H. P. Nguyen, L. Beggel, and T. Brox. Self: Learning to filter noisy labels with self-ensembling. *arXiv preprint arXiv:1910.01842*, 2019.
- [31] S. Oymak and T. C. Gulcu. Statistical and algorithmic insights for semi-supervised learning with self-training. *arXiv preprint arXiv:2006.11006*, 2020.
- [32] D. Pareek, S. S. Du, and S. Oh. Understanding the gains from repeated self-distillation. *Advances in Neural Information Processing Systems*, 37:7759–7796, 2024.
- [33] A. Perry, A. S. Wein, A. S. Bandeira, and A. Moitra. Message-passing algorithms for synchronization problems over compact groups. *Communications on Pure and Applied Mathematics*, 71(11):2275–2322, 2018.
- [34] A. Raghunathan, S. M. Xie, F. Yang, J. Duchi, and P. Liang. Understanding and mitigating the tradeoff between robustness and accuracy. *arXiv preprint arXiv:2002.10716*, 2020.
- [35] S. Rangan. Generalized approximate message passing for estimation with random linear mixing. In 2011 IEEE International Symposium on Information Theory Proceedings, pages 2168–2172. IEEE, 2011.

- [36] S. Rangan and A. K. Fletcher. Iterative estimation of constrained rank-one matrices in noise. In 2012 IEEE international symposium on information theory proceedings, pages 1246–1250. IEEE, 2012.
- [37] S. Reed, H. Lee, D. Anguelov, C. Szegedy, D. Erhan, and A. Rabinovich. Training deep neural networks on noisy labels with bootstrapping. *arXiv preprint arXiv:1412.6596*, 2014.
- [38] H. Scudder. Probability of error of some adaptive pattern-recognition machines. *IEEE Transactions on Information Theory*, 11(3):363–371, 1965.
- [39] K. Takanami, T. Takahashi, and A. Sakata. The effect of optimal self-distillation in noisy gaussian mixture model. *arXiv preprint arXiv:2501.16226*, 2025.
- [40] D. Tanaka, D. Ikami, T. Yamasaki, and K. Aizawa. Joint optimization framework for learning with noisy labels. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 5552–5560, 2018.
- [41] C. Wei, K. Shen, Y. Chen, and T. Ma. Theoretical analysis of self-training with deep networks on unlabeled data. *arXiv* preprint arXiv:2010.03622, 2020.
- [42] J. Yang, R. Shi, D. Wei, Z. Liu, L. Zhao, B. Ke, H. Pfister, and B. Ni. Medmnist v2-a large-scale lightweight benchmark for 2d and 3d biomedical image classification. *Scientific Data*, 10(1):41, 2023.
- [43] D. Yarowsky. Unsupervised word sense disambiguation rivaling supervised methods. In 33rd annual meeting of the association for computational linguistics, pages 189–196, 1995.
- [44] S. Zhang, M. Wang, S. Liu, P.-Y. Chen, and J. Xiong. How does unlabeled data improve generalization in self-training? a one-hidden-layer theoretical analysis. *arXiv preprint arXiv:2201.08514*, 2022.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: Theoretical claims are in Sections 3 and 4. Experiments are in Section 5.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the
 contributions made in the paper and important assumptions and limitations. A No or
 NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals
 are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Please see the second paragraph of Section 6.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: All proofs are in the appendix and we have mentioned in the main paper where each proof is in the appendix. All assumptions are clearly stated in the main paper.

Guidelines

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Experimental details are in Appendix N.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
- (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [No]

Justification: All our datasets are publicly available (links provided in the paper). We have provided experimental details in Appendix N to reproduce the results.

Guidelines

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Provided in Appendix N.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Our experiments are averaged over 3 runs and we have reported the means and standard deviations.

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).

- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: Please see Appendix N.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have abided by it.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
 deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [No]

Justification: Our work is primarily theoretical and we do not foresee any direct societal impacts of our work. So we did not discuss this in the paper.

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.

- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: There are no such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We have done it wherever it was relevant.

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: No new assets have been released.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: We do not have any such experiments.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: Not relevant to this paper.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs were not involved in the core research of this paper.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

Appendix

A Related Work on Approximate Message Passing

Approximate message passing (AMP) refers to a class of iterative algorithms derived through approximation of belief propagation on dense factor graphs [4, 28]. AMP algorithms were first proposed for estimation in linear models [13], and for GLMs [35, 18]. AMP has since been applied to a wide range of high-dimensional statistical estimation problems including Lasso and M-estimators [5], low rank matrix estimation [36, 19, 29], and group synchronization [33], among others. AMP algorithms come with many appealing properties. They can easily be tailored to take advantage of prior information on the structure of the signal, such as sparsity or other constraints. In addition, under suitable assumptions on the data matrix, AMP theory provides precise asymptotic characterization of the behavior of the estimator (despite the randomness of data) in the high dimensional regime where the ratio of the number of observations to dimensions converges to a constant. Even more, for a wide class of estimation problems, AMP is conjectured to be optimal among all polynomial-time algorithms (see e.g. [12, 3, 29]). We refer to [14] for a survey on AMP algorithms. In this work, we use the machinery of AMP algorithms to rigorously understand the effect of retraining a model on its predicted labels over multiple rounds.

B Proof of Theorem 3.1

To build some intuition on the statement of the theorem and the choice of memory correction terms, we analyze the distribution of the first few estimate of the AMP updates in (4)-(5).

Since $g_0(\cdot, \widehat{y}) = \widehat{y}$, we have $C_0 = 0$ and $\theta^1 = \frac{1}{\sqrt{n}} X^\mathsf{T} \widehat{y}$. Under the GMM, we have $X = y \mu^\mathsf{T} + \mathbb{Z}$ with $Z_{ij} \sim \mathsf{N}(0,1)$, independently. Fixing y, we have that \widehat{y} and \mathbb{Z} are independent. We write

$$\theta^{1} = \frac{1}{\sqrt{n}} \mathbf{X}^{\mathsf{T}} \widehat{\mathbf{y}}$$

$$= \frac{(\mu \mathbf{y}^{\mathsf{T}} + \mathbf{Z}^{\mathsf{T}}) \widehat{\mathbf{y}}}{\sqrt{n}}$$

$$= \sqrt{\frac{n}{d}} \sqrt{d} \mu \frac{\mathbf{y}^{\mathsf{T}} \widehat{\mathbf{y}}}{n} + \frac{\mathbf{Z}^{\mathsf{T}} \widehat{\mathbf{y}}}{\sqrt{n}}.$$
(30)

By law of large number, $\frac{\mathbf{y}^T\widehat{\mathbf{y}}}{n} \stackrel{p}{\to} (1-2p)$. Also under Assumption 1, $\frac{n}{d} \to \frac{1}{\alpha}$ and the empirical distribution of $\sqrt{d}\mu$ converges weakly to distribution of $M \sim \nu_M$. Therefore the first term in the decomposition (30) converges to $(1-2p)\frac{M}{\sqrt{\alpha}}$. Given that $\widehat{\mathbf{y}}$ and \mathbb{Z} are independent, thee second term is distributed as N(0,1). This implies that the empirical distribution of $\boldsymbol{\theta}^1$ converges weakly to $\frac{M}{\sqrt{\alpha}}(1-2p)+G$, with $G \sim \text{N}(0,1)$. This implies the claim of the theorem for t=1, with $m_1=\gamma(1-2p)/\sqrt{\alpha}$ and $\sigma_1=1$.

We next characterize the distribution of $\widehat{y}^1 = \frac{1}{\sqrt{n}} X^\mathsf{T} \theta^1 - \frac{d}{n} \widehat{y}$, which also sheds light on the choice of correction term $-\frac{d}{n} \widehat{y}$. We have

$$y^{1} = \frac{1}{n} X X^{\mathsf{T}} \widehat{y} - \frac{d}{n} \widehat{y}$$

$$= \frac{1}{n} (y \mu^{\mathsf{T}} + Z) (\mu y^{\mathsf{T}} + Z^{\mathsf{T}}) \widehat{y} - \frac{d}{n} \widehat{y}$$

$$= \frac{1}{n} (y y^{\mathsf{T}} \|\mu\|_{\ell_{2}}^{2} + Z \mu y^{\mathsf{T}} + y \mu^{\mathsf{T}} Z^{\mathsf{T}} + Z Z^{\mathsf{T}}) \widehat{y} - \frac{d}{n} \widehat{y}$$

$$= \left(\|\mu\|_{\ell_{2}}^{2} \frac{y^{\mathsf{T}} \widehat{y}}{n} + \frac{1}{n} \mu^{\mathsf{T}} Z^{\mathsf{T}} \widehat{y} \right) y + \frac{Z Z^{\mathsf{T}}}{n} \widehat{y} - \frac{d}{n} \widehat{y} + Z \mu \frac{y^{\mathsf{T}} \widehat{y}}{n}$$
(31)

By law of large number and recalling Assumption 1, we have $\|\boldsymbol{\mu}\|_{\ell_2}^2 \xrightarrow{\boldsymbol{y}^T \widehat{\boldsymbol{y}}} \xrightarrow{p} (1-2p)\gamma^2$. Also given that \boldsymbol{Z} and $\widehat{\boldsymbol{y}}$ are independent, $\frac{\boldsymbol{Z}^T \widehat{\boldsymbol{y}}}{\sqrt{n}} \sim \mathsf{N}(0, \boldsymbol{I}_n)$. Since $\|\boldsymbol{\mu}\|_{\ell_2}^2 \to \gamma$, which is of order one, we have $\frac{1}{n} \boldsymbol{\mu}^T \boldsymbol{Z}^T \widehat{\boldsymbol{y}}$ converges to zero.

The remaining terms in (31) can be written as $\Delta := (\frac{ZZ^{\mathsf{T}}}{n} - \frac{d}{n} I_n + \frac{Z\mu y^{\mathsf{T}}}{n}) \widehat{y}$. Note that the term $\mathbb{E}(ZZ^{\mathsf{T}}/n) = (d/n) I_n$ and so Δ is zero mean. (This also justifies the choice of correction term $-\frac{d}{n} \widehat{y}$.) In addition, by virtue of the central limit theorem, each entry Δ_i is approximately normal with variance $\alpha^2 + (1-2p)^2 \gamma^2$. This implies that the empirical distribution of entries y^1 , converges to $\bar{m}_1 Y + \bar{\sigma}_1 G$, with

 $\bar{m}_1 = \gamma^2 (1 - 2p), \quad \bar{\sigma}_1^2 = \alpha + \gamma^2 (1 - 2p)^2.$

The proof of Theorem 3.1 follows by adapting techniques from standard AMP analysis (see e.g., [18, 29, 14]), and so omitted here. A major step in the proof to characterize the conditional distribution of θ^t, y^t given the previous iterates $(\theta^\tau, y^\tau)_{\tau < t}$, and then show that the 'non-Gaussian components' thereof are asymptotically canceled out by the memory correction terms. A technical challenge though is that in the AMP theory the initialization should be independent from the random matrix X. Here the initial estimator is $\theta^1 = X^T \widehat{y} / \sqrt{n}$ which depends on X. The trick is to consider the AMP updates, starting from t=0 with t=0 and t=0 and t=0. This way, the initialization is independent of t=0 and by update rule (4)-(5) we have t=0 and with t=0 and t=0 a

To derive the limit of $P_e(\theta)$, we first note that the functions $\psi(x,y) = xy$ and $\psi(x,y) = x^2$ are pseudo-Lipschitz (of order 2). Therefore, using (9), the following limits hold almost surely,

$$\lim_{n \to \infty} \frac{1}{d} \|\boldsymbol{\theta}\|_{\ell_2}^2 = \lim_{n \to \infty} \frac{1}{d} \sum_{i=1}^d |(\boldsymbol{\theta}_i^t)^2| = \mathbb{E}\left[\left(\frac{m_t}{\gamma}M + \sigma_t G\right)^2\right] = m_t^2 + \sigma_t^2,$$

$$\lim_{n \to \infty} \frac{1}{\sqrt{d}} \boldsymbol{\mu}^\mathsf{T} \boldsymbol{\theta}^t = \lim_{n \to \infty} \frac{1}{d} \sum_{i=1}^d (\sqrt{d}\mu_i \boldsymbol{\theta}_i^t) = \mathbb{E}\left[\left(\frac{m_t}{\gamma}M + \sigma_t G\right)M\right] = \frac{m_t}{\gamma} \mathbb{E}[M^2] = m_t \gamma,$$

where we used the identity $\mathbb{E}[M^2] = \gamma^2$ (second bullet point in Assumption 1). Hence, by using (7), we obtain

$$\lim_{n \to \infty} P_e(\boldsymbol{\theta}) = \lim_{n \to \infty} \Phi\left(-\frac{\boldsymbol{\mu}^\mathsf{T} \boldsymbol{\theta}^t}{\|\boldsymbol{\theta}\|_{\ell_2}}\right) = \Phi\left(-\lim_{n \to \infty} \frac{\boldsymbol{\mu}^\mathsf{T} \boldsymbol{\theta}^t}{\|\boldsymbol{\theta}\|_{\ell_2}}\right) = \Phi\left(-\frac{m_t \gamma}{\sqrt{m_t^2 + \sigma_t^2}}\right),$$

where the second equality is by continuity of Φ .

C Proof of Theorem 3.2

Our derivation prior to the statement of Theorem 3.2 showed that the optimal aggregator g_t^* is given by any scaling of $2q_t - 1$; we will set the scaling to 1 so that the output of $g_t^* \in [-1, 1]$. By Bayes' rule, we have

$$q_{t}(y,\widehat{y}) := \mathbb{P}(Y = 1 | \overline{m}_{t}Y + \overline{\sigma}_{t}G = y, \widehat{Y} = \widehat{y})$$

$$= \frac{\mathbb{P}\left(G = \frac{y - \overline{m}_{t}}{\overline{\sigma}_{t}}, \widehat{Y} = \widehat{y} | Y = 1\right) \mathbb{P}(Y = 1)}{\mathbb{P}\left(G = \frac{y - \overline{m}_{t}Y}{\overline{\sigma}_{t}}, \widehat{Y} = \widehat{y}\right)}$$

$$= \frac{\mathbb{P}\left(G = \frac{y - \overline{m}_{t}Y}{\overline{\sigma}_{t}}, \widehat{Y} = \widehat{y} | Y = 1\right) \mathbb{P}(Y = 1)}{\mathbb{P}\left(G = \frac{y - \overline{m}_{t}}{\overline{\sigma}_{t}}, \widehat{Y} = \widehat{y} | Y = 1\right) \mathbb{P}(Y = 1)}$$

$$= \frac{\mathbb{P}\left(G = \frac{y - \overline{m}_{t}}{\overline{\sigma}_{t}}, \widehat{Y} = \widehat{y} | Y = 1\right) \mathbb{P}(Y = 1) + \mathbb{P}\left(G = \frac{y + \overline{m}_{t}}{\overline{\sigma}_{t}}, \widehat{Y} = \widehat{y} | Y = -1\right) \mathbb{P}(Y = -1)}{\mathbb{P}\left(G = \frac{y - \overline{m}_{t}}{\overline{\sigma}_{t}}\right) \mathbb{P}\left(\widehat{Y} = \widehat{y} | Y = 1\right) \mathbb{P}(Y = 1)}$$

$$= \frac{\mathbb{P}\left(G = \frac{y - \overline{m}_{t}}{\overline{\sigma}_{t}}\right) \mathbb{P}\left(\widehat{Y} = \widehat{y} | Y = 1\right) \mathbb{P}(Y = 1) + \mathbb{P}\left(G = \frac{y + \overline{m}_{t}}{\overline{\sigma}_{t}}\right) \mathbb{P}\left(\widehat{Y} = \widehat{y} | Y = -1\right) \mathbb{P}(Y = -1)}{(32)}$$

Under our noise model, we have

$$\mathbb{P}(\widehat{Y} = \widehat{y}|Y = 1) = (1-p)^{\frac{1+\widehat{y}}{2}} p^{\frac{1-\widehat{y}}{2}} \quad \text{and} \quad \mathbb{P}(\widehat{Y} = \widehat{y}|Y = -1) = (1-p)^{\frac{1-\widehat{y}}{2}} p^{\frac{1+\widehat{y}}{2}}. \tag{33}$$

Also, $G \sim N(0,1)$ and $\mathbb{P}(Y=1) = \pi_+$ and $\mathbb{P}(Y=-1) = \pi_-$. By substituting in (32) we get

$$q_{t}(y,\widehat{y}) = \frac{(1-p)^{\frac{1+\widehat{y}}{2}}p^{\frac{1-\widehat{y}}{2}}e^{-\frac{(y-\overline{m}_{t})^{2}}{2\widehat{\sigma}_{t}^{2}}}\pi_{+}}{(1-p)^{\frac{1+\widehat{y}}{2}}p^{\frac{1-\widehat{y}}{2}}e^{-\frac{(y-\overline{m}_{t})^{2}}{2\widehat{\sigma}_{t}^{2}}}\pi_{+} + (1-p)^{\frac{1-\widehat{y}}{2}}p^{\frac{1+\widehat{y}}{2}}e^{-\frac{(y+\overline{m}_{t})^{2}}{2\widehat{\sigma}_{t}^{2}}}\pi_{-}}$$

$$= \frac{1}{1+(\frac{p}{1-p})^{\widehat{y}}e^{-2y\frac{\widehat{m}_{t}}{\widehat{\sigma}_{t}^{2}}}\frac{\pi_{-}}{\pi_{+}}}.$$
(34)

By invoking (13), we have

$$\frac{\bar{m}_t}{\bar{\sigma}_t^2} = \frac{\alpha \eta_t^2}{\frac{\alpha^2}{\gamma^2} \eta_t^2 (\eta_t^2 + 1)} = \frac{\gamma^2}{\alpha (\eta_t^2 + 1)} ,$$

which by plugging into (32) gives the desired result.

Next by Equation (10) we have

$$P_e(\boldsymbol{\theta}^t) \stackrel{p}{\longrightarrow} \Phi\left(-\frac{\gamma \eta_t}{\sqrt{\eta_t^2 + 1}}\right).$$

For the sequence $(\eta_t)_{t\geq 1}$, note that by (12), we have

$$\eta_{t+1}^2 \coloneqq \frac{m_{t+1}^2}{\sigma_{t+1}^2} = \frac{\gamma^2}{\alpha} \mathbb{E} \{ g_t^* (\bar{m}_t Y + \bar{\sigma}_t G, \widehat{Y})^2 \},\,$$

which gives the result after substituting for \bar{m}_t and $\bar{\sigma}_t$ from (13). Also from Theorem 3.1, we have $\eta_1 = m_1/\sigma_1 = \gamma(1-2p)/\sqrt{\alpha}$. This concludes the proof of theorem.

D Proof of Proposition 3.3

We start by proving the monotonicity of F in (i). Since $\bar{\eta} = \gamma^2 \frac{u}{1+u}$ is increasing in u it suffices to show that $\mathbb{E}\{\tilde{g}(\bar{\eta}Y+\sqrt{\bar{\eta}}\widehat{Y})^2\}$ is non-decreasing in $\bar{\eta}$. Recall that \tilde{g} is the Bayes optimal estimator and can also be characterized as $\tilde{g}(\tilde{Y},\widehat{Y}) = \mathbb{E}[Y|\tilde{Y}=\bar{\eta}Y+\sqrt{\bar{\eta}}G,\widehat{Y}]$ (see derivation 32). Hence, $\mathbb{E}[Y\tilde{g}(\tilde{Y},\widehat{Y})] = \mathbb{E}[\tilde{g}(\tilde{Y},\widehat{Y})^2]$ and we can write

$$\mathcal{R}(\bar{\eta}) \coloneqq \mathbb{E}[(Y - \tilde{g}(\tilde{Y}, \widehat{Y}))^2] = 1 - \mathbb{E}[\tilde{g}(\tilde{Y}, \widehat{Y}))^2].$$

So we need to show that $\mathcal{R}(\bar{\eta})$ is decreasing in $\bar{\eta}$.

Next note that by Bayes-optimality of \tilde{g} we have $\mathcal{R}(\bar{\eta}) = \inf_g \mathbb{E}[(Y - g(\tilde{Y}, \widehat{Y}))^2]$ where the infimum is with respect to all measurable functions g, and $\tilde{Y} = \bar{\eta}Y + \sqrt{\bar{\eta}}G$. Now take $\bar{\eta}_1 < \bar{\eta}_2$. The following holds in distribution:

$$\bar{\eta}_1 Y + \sqrt{\bar{\eta}_1} G \stackrel{d}{=} \frac{\bar{\eta}_1}{\bar{\eta}_2} (\bar{\eta}_2 Y + \sqrt{\bar{\eta}_2} G) + \sqrt{\bar{\eta}_1 - \frac{\bar{\eta}_1^2}{\bar{\eta}_2}} Z,$$

where $G, Z \sim N(0, 1)$ independent of each other. We then write

$$\mathcal{R}(\bar{\eta}_{1}) = \mathbb{E}\left[\left(Y - \tilde{g}(\bar{\eta}_{1}Y + \sqrt{\bar{\eta}_{1}}G,\widehat{Y})\right)^{2}\right]$$

$$= \mathbb{E}\left[\mathbb{E}\left[\left(Y - \tilde{g}\left(\frac{\bar{\eta}_{1}}{\bar{\eta}_{2}}(\bar{\eta}_{2}Y + \sqrt{\bar{\eta}_{2}}G) + \sqrt{\bar{\eta}_{1} - \frac{\bar{\eta}_{1}^{2}}{\bar{\eta}_{2}}}z,\widehat{Y}\right)\right)^{2}\right]\right],$$
(35)

where the inner expectation is conditional on Z = z and the outer expectation is with respect to Z. For a fixed z, define the function

$$h_z(y,\widehat{y}) = \widetilde{g}\left(\frac{\overline{\eta}_1}{\overline{\eta}_2}y + \sqrt{\overline{\eta}_1 - \frac{\overline{\eta}_1^2}{\overline{\eta}_2}}z,\widehat{y}\right).$$

Continuing from (35) we get

$$R(\bar{\eta}_{1}) = \mathbb{E}\left[\mathbb{E}\left[\left(Y - h_{z}(\bar{\eta}_{2}Y + \sqrt{\bar{\eta}_{2}}G, \widehat{Y})\right)^{2}\right]\right]$$

$$\geq \inf_{g} \mathbb{E}\left[\left(Y - g(\bar{\eta}_{2}Y + \sqrt{\bar{\eta}_{2}}G, \widehat{Y})\right)^{2}\right]$$

$$= \mathcal{R}(\bar{\eta}_{2}),$$

where the inequality holds since h_z is measurable function. This completes the proof of the non-decreasing nature of F.

To prove the claim about fixed points in (i), consider the function $H(u) \coloneqq u - F(u)$. We have $F(0) = \frac{\gamma^2}{\alpha} \mathbb{E}[\tilde{g}(0,\widehat{Y})^2] > 0$ and so H(0) < 0. Also, $\lim_{u \to \infty} F(u) = \frac{\gamma^2}{\alpha} \mathbb{E}[\tilde{g}(\gamma^2 Y + \gamma, \widehat{Y})^2] < \frac{\gamma^2}{\alpha}$. Hence, $\lim_{u \to \infty} H(u) = \infty$ and by the intermediate value theorem, H(u) has at least a zero which corresponds to a fixed point of F.

Let η_*^2 be the smallest fixed point of F (and so $H(\eta_*^2)=0$). Then, for any $\eta<\eta_*$ we have $H(\eta^2)<0$ and so $\eta^2< F(\eta^2)$. This implies that if $\eta_1<\eta_*$, then $\eta_1^2< F(\eta_1^2)=\eta_2^2$. Further, by monotonicity of F, per item (i), if $\eta_t^2\leq \eta_{t+1}^2$, then $\eta_{t+1}^2=F(\eta_t^2)\leq F(\eta_{t+1}^2)=\eta_{t+2}^2$, which proves that the sequence $(\eta_t)_{t\geq 1}$ is monotone non-decreasing. Hence, the first step strictly reduces the test error and the next rounds of retraining do not increase the test error.

We next proceed with (ii). By the argument in (i), if $\eta_1^2 < F(\eta_1^2)$ then the sequence $(\eta_t)_{t\geq 1}$ will be non-decreasing. To this end, we derive a lower bound on F, such that $\tilde{F}(u) < F(u)$, $\forall u \geq 0$, and establish condition on the label flipping probability p, so that $\eta_1^2 \leq \tilde{F}(\eta_1^2)$ with $\eta_1 = \frac{\gamma}{\sqrt{\alpha}}(1-2p)$.

To construct \tilde{F} , recall that \tilde{g} is the Bayes-optimal aggregator given by $\tilde{g}(\tilde{Y}, \widehat{Y}) = \mathbb{E}[Y|\tilde{Y} = \bar{\eta}Y + \sqrt{\bar{\eta}}G, \widehat{Y}]$. Using the Cauchy–Schwarz inequality for all g,

$$\mathbb{E}[\tilde{g}(\tilde{Y},\widehat{Y})^2] \geq \frac{\mathbb{E}[\mathbb{E}[Y|\tilde{Y},\widehat{Y}]g(\tilde{Y},\widehat{Y})]^2}{\mathbb{E}[g(\tilde{Y},\widehat{Y})^2]} = \frac{\mathbb{E}[Yg(\tilde{Y},\widehat{Y})]^2}{\mathbb{E}[g(\tilde{Y},\widehat{Y})^2]}$$

with \tilde{g} being the function for which the equality occurs. By choosing, $g(\tilde{Y}, \hat{Y}) = \text{sign}(\tilde{Y})$, we obtain the following lower bound:

$$\mathbb{E}[\tilde{g}(\bar{\eta}Y + \sqrt{\bar{\eta}}G, \widehat{Y})^2] \ge \mathbb{E}[Y \operatorname{sign}(\bar{\eta}Y + \sqrt{\bar{\eta}}G)]^2 = \mathbb{E}[\operatorname{sign}(\bar{\eta} + \sqrt{\bar{\eta}}G)]^2,$$

since $Y \in \{-1, +1\}$ is independent of $G \sim N(0, 1)$. This gives the following lower bound on F(u),

$$\begin{split} F(u) &\coloneqq \frac{\gamma^2}{\alpha} \, \mathbb{E} \left\{ \widetilde{g} \left(\gamma^2 \frac{u}{1+u} Y + \gamma \sqrt{\frac{u}{1+u}} G, \widehat{Y} \right)^2 \right\} \\ &\ge \frac{\gamma^2}{\alpha} \, \mathbb{E} \left\{ \mathrm{sign} \left(\gamma^2 \frac{u}{1+u} + \gamma \sqrt{\frac{u}{1+u}} G \right) \right\}^2 \coloneqq \widetilde{F}(u) \,. \end{split}$$

We further simplify $\tilde{F}(u)$ as

$$\tilde{F}(u) = \frac{\gamma^2}{\alpha} \left(1 - 2\mathbb{P} \left(G < -\gamma \sqrt{\frac{u}{1+u}} \right) \right)^2 = \frac{\gamma^2}{\alpha} \left(1 - 2\Phi \left(-\gamma \sqrt{\frac{u}{1+u}} \right) \right)^2.$$

For $\eta_1 = \frac{\gamma}{\sqrt{\alpha}}(1-2p)$, the condition $\eta_1^2 \leq \tilde{F}(\eta_1^2)$ is equivalent to

$$p \ge \Phi\left(-\gamma\sqrt{\frac{\eta_1^2}{1+\eta^2}}\right) = \Phi\left(-\frac{\gamma^2(1-2p)}{\sqrt{\alpha+\gamma^2(1-2p)^2}}\right) \tag{36}$$

We next show that there is a unique $p_* \in (0, 1/2)$ for which the above inequality becomes equality. Define the function $h(p) = \Phi\left(-\frac{\gamma^2(1-2p)}{\sqrt{\alpha+\gamma^2(1-2p)^2}}\right) - p$. The first two derivatives are given by

$$h'(p) = \phi \left(-\frac{\gamma^2 (1 - 2p)}{\sqrt{\alpha + \gamma^2 (1 - 2p)^2}} \right) \frac{2\gamma^2 \alpha}{(\alpha + \gamma^2 (1 - 2p)^2)^{3/2}} - 1$$

$$h''(p) = \phi \left(-\frac{\gamma^2 (1 - 2p)}{\sqrt{\alpha + \gamma^2 (1 - 2p)^2}} \right) \frac{2\gamma^4 \alpha (1 - 2p)}{(\alpha + \gamma^2 (1 - 2p)^2)^2} + \phi \left(-\frac{\gamma^2 (1 - 2p)}{\sqrt{\alpha + \gamma^2 (1 - 2p)^2}} \right) \frac{12\gamma^4 \alpha (1 - 2p)}{(\alpha + \gamma^2 (1 - 2p)^2)^{5/2}}$$

$$= \phi \left(-\frac{\gamma^2 (1 - 2p)}{\sqrt{\alpha + \gamma^2 (1 - 2p)^2}} \right) \frac{2\gamma^4 \alpha (1 - 2p)}{(\alpha + \gamma^2 (1 - 2p)^2)^2} \left[1 + \frac{6}{\sqrt{\alpha + \gamma^2 (1 - 2p)^2}} \right]$$

We have $h'(\frac{1}{2}) = \frac{2\gamma^2}{\sqrt{\alpha}}\phi(0) - 1 = \sqrt{\frac{2}{\pi}}\frac{\gamma^2}{\sqrt{\alpha}} - 1 > 0$. Also $h(\frac{1}{2}) = 0$, so h should be negative in neighborhood before 1/2. Since h(0) > 0, there should be a root p_* for h in $(0,\frac{1}{2})$. Therefore, h has at least two zeros, p_* and $\frac{1}{2}$. Also note that h is a convex function because h''(p) > 0, and therefore, these are the only two zeros of h. These properties give a clear picture of the function h: it will be positive on $[0, p_*)$, negative on $(p_*, \frac{1}{2})$ and positive afterward. Hence, condition (36), i.e., $h(p) \le 0$ holds if $p \in [p_*, \frac{1}{2})$, which completes the proof.

E Simulations to Verify the Theory in Section 3

In Figure 2, we compare the performance of different retraining methods on synthetic data, generated from a GMM model. The mean vector μ is generated by drawing its entries from N(0,1) independently, and then normalize it to have $\|\mu\|_{\ell_2} = \gamma$. The two plots in Figure 2 correspond to different values of label noise p and γ . In both plots, we set the sample size to n = 1000, $d = n\alpha = 800$ and the class probabilities to $\pi_+ = 0.3$ and $\pi_- = 0.7$. The results are averages over 10 realizations of the setting.

The Opt-AMP is the algorithm based on AMP updates (4)-(5), with the optimal aggregator function (14). Vanilla is the linear classifier (3) without retraining, so its performance does not vary by iteration, and its represented by a flat line. SE is the theoretical curve based on the state evolution recursion, FT and CT respectively denote the full-retraining and the consensus-based retraining without the memory correction terms. (Note that the memory corrections are not well-defined in these cases since the aggregators are not Lipschitz and not differentiable everywhere.) From these plots, we see that there is a great match between SE predictions and the simulated data point (Opt-AMP). We also observe the superiority of Opt-AMP over other retraining methods as well as the vanilla estimator.

In Figures 3 and 4, we compare Opt-AMP with some 'approximate' versions of full-retraining and consensus-based retraining. Recall that the aggregator functions in these cases are given by $g_t(y,\widehat{y}) = \text{sign}(y)$ and $g_t(y,\widehat{y}) = \widehat{y}\mathbb{1}(y\widehat{y} > 0)$. Since the aggregators are not Lipschitz, the result of Theorem 3.1 (validity of state evolution) does not apply. Even the correction terms are not well-defined. We instead approximate these aggregators as follows:

$$g_t^{\mathsf{FT}}(y,\widehat{y}) \approx \frac{2}{1 + e^{-\beta y}} - 1, \quad g_t^{\mathsf{CT}}(y,\widehat{y}) \approx \frac{\widehat{y}}{1 + e^{-\beta y}\widehat{y}}.$$
 (37)

For fixed $\beta > 0$ these functions are Lipschitz and hence the state evolution will predict the limiting behavior. As β grows these approximations become tighter. We refer to Appendix F for derivation of curves as $\beta \to \infty$ and further comparison between full retraining and consensus-based retraining.

As the state evolution curves indicate, Opt-AMP outperforms the other rules significantly. Also, as we observe in Figure 3a, for the chosen parameters, the error of full retraining increases across iteration, indicating that sometime the retraining may hurt the performance.

F Comparison of Full Retraining and Consensus-based Retraining

As discussed after Theorem 3.2, the AMP theory requires the aggregator function to be Lipschitz. For both, the full-retraining $(g_t(y, \widehat{y}) = \text{sign}(y))$ and the consensus-based retraining $(g_t(y, \widehat{y}) = \text{sign}(y))$

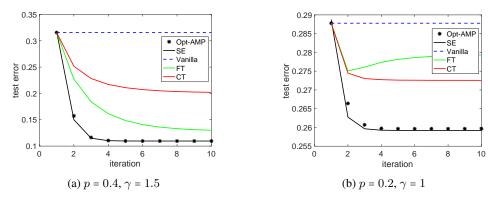


Figure 2: **Synthetic Experiments:** Comparison between different retraining methods. FT and CT respectively denote the full-retraining and the consensus-based retraining *without* the memory correction terms. Vanilla is the estimator without any retraining. Here n=1000, d=800, $\pi_+=0.3$, $\pi_-=0.7$. Dots are the Opt-AMP algorithm and the solid black curve is the state evolution.

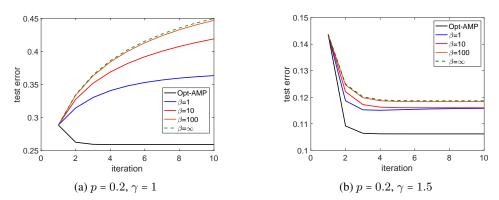


Figure 3: State evolution curves for Opt-AMP and the 'approximate' **full retraining** with the memory correction terms. As β grows the approximation of full retraining becomes tighter. Here $\alpha = 0.8$, $\pi_+ = 0.3$, $\pi_- = 0.7$.

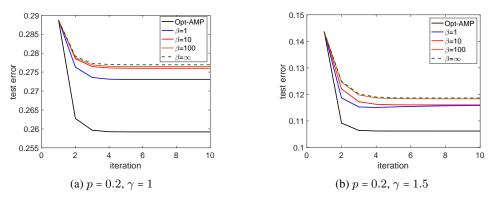


Figure 4: State evolution curves for Opt-AMP and the 'approximate' consensus-based retraining with the memory correction terms. As β grows the approximation of full retraining becomes tighter. Here $\alpha = 0.8$, $\pi_+ = 0.3$, $\pi_- = 0.7$.

 $\widehat{y}\mathbb{1}(y\widehat{y}>0)$) the aggregator functions violate this assumption. As we discussed for Figures 3 and 4, we approximate the aggregator functions by Lipschitz functions given below:

$$g_t^{\mathsf{FT}}(y,\widehat{y}) \approx \frac{2}{1 + e^{-\beta y}} - 1, \quad g_t^{\mathsf{CT}}(y,\widehat{y}) \approx \frac{\widehat{y}}{1 + e^{-\beta y\widehat{y}}}.$$
 (38)

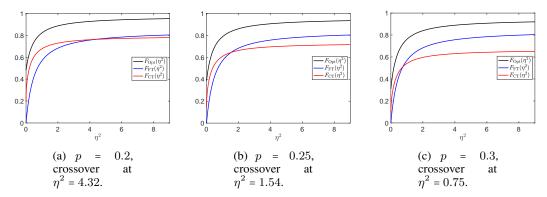


Figure 5: The AMP update mappings for optimal aggregator, full-retraining and consensus-based retraining. Here, $\gamma = 1.5$, $\alpha = 2$, $\pi_+ = 0.3$, $\pi_- = 0.7$.

For these functions, we can run the AMP iterates (the memory correction terms are well defined) and also derive the state evolution recursion to predict the asymptotic behavior of estimates across iteration. We can then take the limit of $\beta \to \infty$ to make this approximation tight. It is worth noting that the order fo limits are important; we take the limit $\beta \to \infty$ after taking the limit $n, d \to \infty$. The state evolution curves for several values of β are plotted in Figures 3-4. Here, we derive the state evolution curves for $\beta \to \infty$.

Full retraining: Consider the state evolution (8) with $g_t^{\mathsf{FT}}(y,\widehat{y})$. For fixed t, taking $\beta \to \infty$ results in the following update:

$$\bar{m}_t = \gamma \sqrt{\alpha} m_t, \quad \bar{\sigma}_t^2 = \alpha (m_t^2 + \sigma_t^2), \quad m_{t+1} = \frac{\gamma}{\sqrt{\alpha}} \mathbb{E} \{ \operatorname{sign}(\bar{m}_t Y + \bar{\sigma}_t G) Y \}, \quad \sigma_{t+1}^2 = 1.$$

Defining $\bar{\eta}_t := (\frac{\bar{m}_t}{\bar{\sigma}_t})^2$ and $\eta_t := \frac{m_t}{\sigma_t} = m_t$, the above recursion can be simplified to

$$\bar{\eta}_t = \gamma^2 \frac{\eta_t^2}{\eta_t^2 + 1} \,, \tag{39}$$

$$\eta_{t+1}^2 = \frac{\gamma^2}{\alpha} \mathbb{E}\{Y \operatorname{sign}(\sqrt{\overline{\eta_t}}Y + G)\}^2, \tag{40}$$

with initialization $\eta_1 = \gamma(1-2p)/\sqrt{\alpha}$.

Since $Y \in \{-1, +1\}$ independent of $G \sim N(0, 1)$, we have

$$\mathbb{E}\{Y\operatorname{sign}(\sqrt{\bar{\eta}_t}Y+G)\} = \mathbb{E}\{\operatorname{sign}(\sqrt{\bar{\eta}_t}+G)\} = 2\mathbb{P}(-G < \sqrt{\bar{\eta}_t}) = 2\Phi(\sqrt{\bar{\eta}_t}) - 1.$$

So the state evolution can be simplified as:

$$\eta_{t+1}^2 = \frac{\gamma^2}{\alpha} \left(2\Phi \left(\frac{\gamma \eta_t}{\sqrt{1 + \eta_t^2}} \right) - 1 \right)^2. \tag{41}$$

Consensus-based retraining: Consider the state evolution (8) with $g_t^{\mathsf{CT}}(y, \widehat{y})$. For fixed t, taking $\beta \to \infty$ results in the following update:

$$\bar{m}_t = \gamma \sqrt{\alpha} m_t, \quad \bar{\sigma}_t^2 = \alpha (m_t^2 + \sigma_t^2),$$

$$m_{t+1} = \frac{\gamma}{\sqrt{\alpha}} \mathbb{E} \{ Y \widehat{Y} \mathbb{1} (\widehat{Y} (\bar{m}_t Y + \bar{\sigma}_t G) > 0) \}, \quad \sigma_{t+1}^2 = \mathbb{E} \{ \mathbb{1} (\widehat{Y} (\bar{m}_t Y + \bar{\sigma}_t G) > 0) \}.$$

Defining $\bar{\eta}_t \coloneqq (\frac{\bar{m}_t}{\bar{\sigma}_t})^2$ and $\eta_t \coloneqq \frac{m_t}{\sigma_t} = m_t$, the above recursion can be simplified to

$$\bar{\eta}_t = \gamma^2 \frac{\eta_t^2}{n_t^2 + 1} \,,$$
 (42)

$$\eta_{t+1}^2 = \frac{\gamma^2}{\alpha} \frac{\mathbb{E}\{Y\widehat{Y}\mathbb{1}(\widehat{Y}(\sqrt{\overline{\eta}_t}Y + G) > 0)\}^2}{\mathbb{E}\{\mathbb{1}(\widehat{Y}(\sqrt{\overline{\eta}_t}Y + G)) > 0\}},$$
(43)

with initialization $\eta_1 = \gamma(1-2p)/\sqrt{\alpha}$.

Let $\Delta := Y\widehat{Y}$. Then $\mathbb{P}(\Delta = 1) = 1 - p$ and $\mathbb{P}(\Delta = -1) = p$. Since $G \sim \mathsf{N}(0,1)$ is independent of Y, \widehat{Y} , we have

$$\mathbb{E}\{Y\widehat{Y}\mathbb{1}(\widehat{Y}(\sqrt{\overline{\eta_t}}Y+G)>0)\} = \mathbb{E}\{\Delta\mathbb{1}(\sqrt{\overline{\eta_t}}\Delta+G>0)\}$$
$$= \mathbb{E}\{\Delta\Phi(\sqrt{\overline{\eta_t}}\Delta)\}$$
$$= (1-p)\Phi(\sqrt{\overline{\eta_t}}) - p\Phi(-\sqrt{\overline{\eta_t}})$$
$$= -p + \Phi(\sqrt{\overline{\eta_t}}).$$

We also have

$$\mathbb{E}\{\mathbb{1}(\widehat{Y}(\sqrt{\overline{\eta_t}}Y+G))>0\} = \mathbb{E}\{\mathbb{P}(\Delta\sqrt{\overline{\eta_t}}+G>0)\}$$

$$= \mathbb{E}\{\Phi(\Delta\sqrt{\overline{\eta_t}})\}$$

$$= (1-p)\Phi(\sqrt{\overline{\eta_t}})+p\Phi(-\sqrt{\overline{\eta_t}})$$

$$= p+(1-2p)\Phi(\sqrt{\overline{\eta_t}}).$$

Substituting these terms in (43), the state evolution reads:

$$\bar{\eta}_t = \gamma^2 \frac{\eta_t^2}{\eta_t^2 + 1}$$

$$\eta_{t+1}^2 = \frac{\gamma^2}{\alpha} \frac{(\Phi(\sqrt{\bar{\eta}_t}) - p)^2}{p + (1 - 2p)\Phi(\sqrt{\bar{\eta}_t})}.$$

These derivations also provide valuable insight into full-retraining and consensus-based retraining. We denote by $F_{\rm FT}$, $F_{\rm CT}$, and $F_{\rm Opt}$ the AMP update mappings for full-retraining, consensus-based retraining, and the Bayes-optimal aggregator, respectively. For example, the state evolution for full-retraining is given by $\eta_{t+1}^2 = F_{\rm FT}(\eta_t^2)$, with $F_{\rm FT}$ given by (41). In Figure 5, we plot these functions for different values of p. As we see, $F_{\rm Opt}$ is uniformly larger than the other two mappings, and so the corresponding state evolution sequence is uniformly larger than that of the other two aggregators. Recall that the test error of θ^t decreases as η_t increases, and hence the optimal aggregator performs better than the other two, at every iteration. For $F_{\rm FT}$ and $F_{\rm CT}$, there is a crossover point: before this, $F_{\rm CT}(\eta^2) > F_{\rm FT}(\eta^2)$, and after it, $F_{\rm CT}(\eta^2) < F_{\rm FT}(\eta^2)$. This is intuitive, because small η means that the current model quality is poor, so the consensus-based aggregator, which takes into account the noisy labels, works better. However, larger η means that the model quality is good enough that full-retraining, which ignores the noisy labels, works better. Furthermore, the crossover point depends on p: it increases as p decreases. This is also intuitive, because smaller p gives a larger range of η where considering noisy labels in the retraining step is beneficial.

G Proof of Lemma 4.1

For a test data point (x, y), we have $\widehat{y} = \operatorname{sign}(x^{\mathsf{T}} \theta)$ and $\mathbb{P}(y = +1 | x) = h(x^{\mathsf{T}} \beta)$. We let $z_{\theta} := \sqrt{n} x^{\mathsf{T}} \theta$ and $z_{\beta} = \sqrt{n} x^{\mathsf{T}} \beta$. We have

$$P_{e}(\boldsymbol{\theta}) = \mathbb{P}(y\widehat{y} < 0)$$

$$= \mathbb{P}(z_{\boldsymbol{\theta}} > 0, y = -1) + \mathbb{P}(z_{\boldsymbol{\theta}} < 0, y = 1)$$

$$= \mathbb{E}_{z_{\boldsymbol{\theta}}}[\mathbb{P}(z_{\boldsymbol{\theta}} > 0, y = -1|z_{\boldsymbol{\theta}}) + \mathbb{P}(z_{\boldsymbol{\theta}} < 0, y = 1|z_{\boldsymbol{\theta}})]$$

We continue by calculating $\mathbb{P}(z_{\theta} > 0, y = -1|z_{\beta})$. Conditional on z_{β} , y and z_{θ} are independent. Therefore,

$$\mathbb{P}(z_{\theta} > 0, y = -1|z_{\theta}) = \mathbb{P}(z_{\theta} > 0|z_{\theta})\mathbb{P}(y = -1|z_{\theta}).$$

We have $(z_{\theta}, z_{\beta}) \sim \mathsf{N}(0, \begin{bmatrix} \|\boldsymbol{\theta}\|_{\ell_2}^2 & \boldsymbol{\beta}^\mathsf{T}\boldsymbol{\theta} \\ \boldsymbol{\beta}^\mathsf{T}\boldsymbol{\theta} & \|\boldsymbol{\beta}\|_{\ell_2}^2 \end{bmatrix}$). Hence,

$$z_{\boldsymbol{\theta}}|z_{\boldsymbol{\beta}} \sim \mathsf{N}(a,b), \quad a = \frac{\boldsymbol{\beta}^\mathsf{T} \boldsymbol{\theta}}{\|\boldsymbol{\beta}\|_{\ell_2}^2} z_{\boldsymbol{\beta}}, \quad b^2 = \|\boldsymbol{\theta}\|_{\ell_2}^2 - \frac{(\boldsymbol{\beta}^\mathsf{T} \boldsymbol{\theta})^2}{\|\boldsymbol{\beta}\|_{\ell_2}^2}.$$

Using this characterization, we get

$$\mathbb{P}(z_{\theta} > 0|z_{\beta}) = \Phi(\frac{a}{b}) = \Phi(\frac{\rho}{\sqrt{1-\rho^2}} \frac{z_{\beta}}{\|\beta\|_{\ell_2}})$$

Also under our data generative model, $\mathbb{P}(y = -1|z_{\beta}) = 1 - h(z_{\beta}/\sqrt{n})$. Note that $z_{\beta} \sim N(0, \|\beta\|_{\ell_2}^2)$ and $\frac{\|\beta\|_{\ell_2}}{\sqrt{n}} \to \sqrt{\alpha}\gamma$, in probability. Hence, by Slutsky's theorem,

$$\mathbb{P}(z_{\theta} > 0, y = -1|z_{\beta}) \to \Phi\left(\frac{\rho Z}{\sqrt{1-\rho^2}}\right) (1 - h(\sqrt{\alpha}\gamma Z)),$$

in distribution with $Z \sim N(0,1)$. By a similar argument, we have

$$\mathbb{P}(z_{\theta} < 0, y = 1|z_{\beta}) \to \Phi\left(\frac{-\rho Z}{\sqrt{1-\rho^2}}\right) h(\sqrt{\alpha}\gamma Z).$$

Adding the previous two equations, we obtain the desired result.

We next show that F is decreasing. Using the relation $\Phi(-x) = 1 - \Phi(x)$ we can write $F(\rho)$ as:

$$F(\rho) = \mathbb{E}\left[h(\sqrt{\alpha}\gamma Z) + \Phi\left(\frac{\rho Z}{\sqrt{1-\rho^2}}\right)(1-2h(\sqrt{\alpha}\gamma Z))\right].$$

Hence,

$$F'(\rho) = \frac{1}{(1-\rho^2)^{3/2}} \mathbb{E} \left[Z\phi \left(\frac{\rho Z}{\sqrt{1-\rho^2}} \right) (1 - 2h(\sqrt{\alpha}\gamma Z)) \right],$$

with $\phi(u) = e^{-u^2/2}/\sqrt{2\pi}$. For any z > 0, we have

$$z\phi\left(\frac{\rho z}{\sqrt{1-\rho^2}}\right)(1-2h(\sqrt{\alpha}\gamma z))-z\phi\left(\frac{-\rho z}{\sqrt{1-\rho^2}}\right)(1-2h(-\sqrt{\alpha}\gamma z))$$

$$=2z\phi\left(\frac{\rho z}{\sqrt{1-\rho^2}}\right)(h(-\sqrt{\alpha}\gamma z)-h(\sqrt{\alpha}\gamma z))<0,$$
(44)

since z > 0 and by assumption h(u) > h(-u) for all u > 0. Also, since the Gaussian density is symmetric, (44) implies that $F'(\rho) < 0$, which completes the proof.

H Proof of Theorem 4.2

Similar to the proof of Theorem 3.1, we build some intuition by analyzing the behavior of the first few estimate of AMP updates.

Since $g_0(\cdot, \widehat{y}) = \widehat{y}$, we have $C_0 = 0$ and $\beta^1 = \frac{1}{\sqrt{n}} X^T \widehat{y}$. Recall that under GLM setting the entries of X are i.i. gaussian. Therefore, to analyze the distribution of β^1 , we use the rotation invariance of Gaussian distribution, and without loss of generality we take $\beta = \|\beta\|_{\ell_2} e_1$. We then have $\mathbb{P}(\widehat{y} = 0)$

$$1|\boldsymbol{x}) = \hat{h}_p(\|\boldsymbol{\beta}\|_{\ell_2} x_1)$$
. Also, $\boldsymbol{\beta}^1 = \begin{bmatrix} \langle \boldsymbol{x}^{(1)}, \widehat{\boldsymbol{y}} \rangle \\ \boldsymbol{X}_{-1}^T \widehat{\boldsymbol{y}} \end{bmatrix}$ where we used the decomposition $\boldsymbol{X} = [\boldsymbol{x}^{(1)} | \boldsymbol{X}_{-1}]$.

Note that \widehat{y} and X_{-1} are independent since $\beta = \|\beta\|_{\ell_2} e_1$. Hence, $X_{-1}^{\mathsf{T}} \widehat{y} \sim \mathsf{N}(0, I_{d-1})$, given that the entries of X_{-1} are i.i.d drawn from $\mathsf{N}(0, 1/n)$.

For the first entry, we write $x^{(1)} = z_0/\sqrt{n}$ where $z_0 \sim N(0,1)$. Then $\langle x^{(1)}, \widehat{y} \rangle = \frac{1}{\sqrt{n}} \langle z_0, \widehat{y} \rangle$. Note that the variables $z_{0,i}\widehat{y}_i$ are i.i.d and

$$\mu := \mathbb{E}[z_{0,i}\widehat{y}_i] = \mathbb{E}\left[Z_0\left(2\hat{h}_p\left(\sqrt{\alpha}\gamma Z_0\right) - 1\right)\right] = 2\,\mathbb{E}\left[Z_0\hat{h}_p\left(\sqrt{\alpha}\gamma Z_0\right)\right],$$

with $Z_0 \sim \mathsf{N}(0,1)$. Also $\sigma^2 \coloneqq \mathsf{Var}[z_{0,i}\widehat{y}_i] = 1 - 4 \mathbb{E}\left[Z_0\hat{h}_p\left(\sqrt{\alpha}\gamma Z_0\right)\right]^2$. By the central limit theorem, $(\langle \boldsymbol{x}^{(1)}, \widehat{\boldsymbol{y}} \rangle - \sqrt{n}\mu)$ converges in distribution to $\mathsf{N}(0,\sigma^2)$. Writing it differently, $\langle \boldsymbol{e}_1, \boldsymbol{\beta}^1 - \sqrt{n}\frac{\mu\boldsymbol{\beta}}{\|\boldsymbol{\beta}\|_{\ell_2}}\rangle$

converges in distribution to $N(0, \sigma^2)$ with $e_1 = (1, 0, \dots, 0) \in \mathbb{R}^d$. In addition, by Assumption 2, $\frac{\sqrt{n}}{\|\beta\|_{\ell_2}} \to \frac{1}{\sqrt{\alpha}\gamma}$, and the the empirical distribution of the entries of β converges weakly to $\bar{\beta} \sim \pi_{\bar{\beta}}$. This implies that the empirical distribution of entries of β^1 converges in distribution to $\frac{\mu}{\sqrt{\alpha}\gamma}\bar{\beta} + G$ with $G \sim N(0,1)$ independent of $\bar{\beta}$, which verifies the claim of the theorem for t=1 with

$$\mu_1 = \frac{\mu}{\sqrt{\alpha}\gamma} = \frac{2}{\sqrt{\alpha}\gamma} \mathbb{E}\left[Z_0 \hat{h}_p(\sqrt{\alpha}\gamma Z_0)\right] = \frac{2}{\alpha\gamma^2} \mathbb{E}\left[Z \hat{h}_p(Z)\right], \qquad \sigma_1 = \sqrt{\alpha}, \tag{45}$$

with $Z \sim N(0, \alpha \gamma^2)$.

The formal proof largely follows from the analysis of generalized AMP (GAMP) algorithm [35], which given an initial estimate β^1 , iteratively produces estimates β and y^t of β and $X\beta$ as follows:

$$\boldsymbol{\beta}^{t+1} = \boldsymbol{X}^{\mathsf{T}} g_t(\boldsymbol{y}^t, \widehat{\boldsymbol{y}}) - C_t f_t(\boldsymbol{\beta}^t) \qquad C_t = \frac{1}{n} \sum_{i=1}^n \frac{\partial g_t}{\partial \boldsymbol{y}} (y_i^t, \widehat{y}_i)$$
$$\boldsymbol{y}^{t+1} = \boldsymbol{X} \boldsymbol{\beta}^{t+1} - B_t g_t(\boldsymbol{y}^t, \widehat{\boldsymbol{y}}) \qquad B_t = \frac{1}{n} \sum_{i=1}^d \frac{\partial f_t}{\partial \boldsymbol{y}} (\boldsymbol{\beta}_i^t)$$

where $g_t : \mathbb{R}^2 \to \mathbb{R}$ and $f_t : \mathbb{R} \to \mathbb{R}$ are Lipschitz in their first argument. Suppose that

$$\frac{1}{n} \begin{bmatrix} \|\boldsymbol{\beta}\|_{\ell_2}^2 & \boldsymbol{\beta}^\mathsf{T} \boldsymbol{\beta}^1 \\ \boldsymbol{\beta}^\mathsf{T} \boldsymbol{\beta}^1 & \|\boldsymbol{\beta}^1\|_{\ell_2}^2 \end{bmatrix} \stackrel{p}{\to} \boldsymbol{\Sigma}^1.$$

With Σ^1 , the state evolution parameters $\mu_t \in \mathbb{R}$, $\sigma_t \in \mathbb{R}_{>0}$, $\Sigma^t \in \mathbb{R}^{2\times 2}$ are recursively defined by

$$\mu_{t+1} = \mathbb{E}(\partial_z g_t(Z_t, \widehat{Y}(Z))), \quad \sigma_{t+1}^2 = \mathbb{E}(g_t(Z_t, \widehat{Y}(Z))^2), \tag{46}$$

$$\mu_{t+1} = \mathbb{E}(\partial_z g_t(Z_t, \widehat{Y}(Z))), \quad \sigma_{t+1}^2 = \mathbb{E}(g_t(Z_t, \widehat{Y}(Z))^2), \tag{46}$$

$$\Sigma^{t+1} = \begin{bmatrix} \alpha \, \mathbb{E}(\bar{\beta}^2) & \alpha \, \mathbb{E}(\bar{\beta} f_{t+1}(\mu_{t+1} \bar{\beta} + \sigma_{t+1} G_{t+1})) \\ \alpha \, \mathbb{E}(\bar{\beta} f_{t+1}(\mu_{t+1} \bar{\beta} + \sigma_{t+1} G_{t+1})) & \alpha \, \mathbb{E}(f_{t+1}(\mu_{t+1} \bar{\beta} + \sigma_{t+1} G_{t+1})^2) \end{bmatrix}, \tag{47}$$

where $(Z, Z_t) \sim \mathsf{N}(0, \Sigma_t)$, and $\widehat{Y} = \widehat{Y}(Z) \in \{-1, +1\}$ with $\mathbb{P}(\widehat{Y} = 1|Z) = \hat{h}_p(Z)$. In addition, $G_{t+1} \sim N(0,1)$ independent of $\bar{\beta} \sim \pi_{\bar{\beta}}$.

Similar to [27, Proposition 3.1], Stein's lemma can be used to further simplify the state evolution. Define

$$\mu_{Z,t} = \frac{\Sigma_{2,1}^t}{\Sigma_{1,1}^t}, \quad \sigma_{Z,t}^2 = \Sigma_{2,2}^t - \frac{(\Sigma_{1,2}^t)^2}{\Sigma_{1,1}^t}, \tag{48}$$

and let $Z_t \stackrel{d}{=} \mu_{Z,t}Z + \sigma_{Z,t}G$ with $G \sim \mathsf{N}(0,1)$ independent of Z. Then, the state evolution can be characterized by the sequence $(\mu_t, \sigma_t)_{t \geq 0}$ with

$$\mu_{t+1} = \mathbb{E}\left(\frac{\mathbb{E}(Z|Z_t,\widehat{Y}) - \mathbb{E}(Z|Z_t)}{\operatorname{Var}(Z|Z_t)}g_t(Z_t,\widehat{Y})\right), \quad \sigma_{t+1}^2 = \mathbb{E}(g_t(Z_t,\widehat{Y})^2). \tag{49}$$

It is proved that the state evolution recursion precisely characterize the asymptotic behavior of the GAMP update as stated in the next theorem. We refer to [35] or [14] for a formal proof.

Theorem H.1 Let $(\beta^t, y^t)_{t\geq 0}$ be the AMP iterates given by (17)-(18). Also let $(\mu_t, \sigma_t)_{t\geq 0}$ be the state evolution recursions given by (22). Then, for any pseudo-Lipschitz function $\psi: \mathbb{R}^2 \to \mathbb{R}$ the *following holds almost surely for* $t \ge 0$ *:*

$$\lim_{n\to\infty} \left| \frac{1}{d} \sum_{i=1}^d \psi(\beta_i^t, \beta_i) - \mathbb{E} \left[\psi \left(\mu_t \bar{\beta} + \sigma_t G, \bar{\beta} \right) \right] \right| = 0,$$

$$\lim_{n\to\infty} \left| \frac{1}{n} \sum_{i=1}^{n} \psi(y_i^t, \widehat{y}_i) - \mathbb{E} \left[\psi \left(\mu_{Z,t} Z + \sigma_{Z,t} \widetilde{G}, \widehat{Y}(Z) \right) \right] \right| = 0,$$

where $G \sim N(0,1)$ and $\bar{\beta} \sim \pi_{\bar{\beta}}$ independently.

A challenge in applying Theorem H.1 is that it requires the initialization to be independent of the random matrix \boldsymbol{X} , a property that does not hold for $\boldsymbol{\beta}^1 = \boldsymbol{X}^T \widehat{\boldsymbol{y}}$. The trick is that we consider the AMP updates, starting from t=0 with initialization $\boldsymbol{\beta}^0 = \mathbf{0}$ and $g_{-1}(\cdot,\cdot) = 0$, so the initialization is independent of \boldsymbol{X} . By the update rules, we get $\boldsymbol{y}^0 = \mathbf{0}$ and $\boldsymbol{\beta}^1 = \boldsymbol{X}^T \widehat{\boldsymbol{y}}$, if we define $g_0(\boldsymbol{y},\widehat{\boldsymbol{y}}) = \widehat{\boldsymbol{y}}$ (and so $C_0 = 0$). In other words, in the next iteration we get our previous initialization. This way we can apply Theorem H.1. Note that

$$\frac{1}{n} \begin{bmatrix} \|\boldsymbol{\beta}\|_{\ell_2}^2 & \boldsymbol{\beta}^\mathsf{T} \boldsymbol{\beta}^0 \\ \boldsymbol{\beta}^\mathsf{T} \boldsymbol{\beta}^0 & \|\boldsymbol{\beta}^0\|_{\ell_2}^2 \end{bmatrix} \stackrel{p}{\to} \boldsymbol{\Sigma}^0 = \begin{bmatrix} \alpha \gamma^2 & 0 \\ 0 & 0 \end{bmatrix}.$$

From (48), we have $\mu_{Z,0} = \sigma_{Z,0} = 0$ and so by (49), we get

$$\mu_{1} = \mathbb{E}\left(\frac{\mathbb{E}(Z|Z_{0},\widehat{Y}) - \mathbb{E}(Z|Z_{0})}{\operatorname{Var}(Z|Z_{0})}g_{0}(Z_{0},\widehat{Y})\right)$$

$$= \mathbb{E}\left(\frac{\mathbb{E}(Z|\widehat{Y})}{\alpha\gamma^{2}}\widehat{Y}\right) = \frac{1}{\alpha\gamma^{2}}\mathbb{E}(\widehat{Y}Z)$$

$$= \frac{1}{\alpha\gamma^{2}}\mathbb{E}(2(\hat{h}_{p}(Z) - 1)Z) = \frac{2}{\alpha\gamma^{2}}\mathbb{E}(Z\hat{h}_{p}(Z))$$

where we used the fact that $Z_0=0$ in this case (since $\mu_{Z,0}=\sigma_{Z,0}=0$) and $g_0(y,\widehat{y})=\widehat{y}$. In addition, $\sigma_1^2=\mathbb{E}(g_0(Z_0,\widehat{Y})^2)=1$. This is consistent with (45) where we applied the change of variable $\sqrt{\alpha}\sigma_t\to\sigma_t$.

Next to obtain the state evolution recursion for t > 1, we recall the construction of Σ^t from (47), and take f_t to be the identity functions, by which we obtain

$$\Sigma^{t} = \begin{bmatrix} \alpha \gamma^{2} & \alpha \mu_{t} \gamma^{2} \\ \alpha \mu_{t} \gamma^{2} & \alpha (\mu_{t}^{2} \gamma^{2} + \sigma_{t}^{2}) \end{bmatrix}. \tag{50}$$

By invoking (48), we have

$$\mu_{Z,t} = \frac{\alpha \mu_t \gamma^2}{\alpha \gamma^2} = \mu_t, \quad \sigma_{Z,t}^2 = \alpha (\mu_t^2 \gamma^2 + \sigma_t^2) - \frac{(\alpha \mu_t \gamma^2)^2}{\alpha \gamma^2} = \alpha \sigma_t^2.$$

Hence, in the state evolution (49), we have $Z_t \stackrel{d}{=} \mu_t Z + \sqrt{\alpha} \sigma_t G$, with $Z \sim N(0, \alpha \gamma^2)$. This results in (20) after the change of variable $\sqrt{\alpha} \sigma_t \rightarrow \sigma_t$, and so Theorem 4.2 follows from the result of Theorem H.1.

We next derive the limit of $P_e(\theta)$. As we showed in the proof of Theorem 3.1, functions $\psi(x,y) = xy$ and $\psi(x,y) = x^2$ are pseudo-Lipschitz (of order 2). Therefore, using (23), the following limits hold almost surely,

$$\lim_{n \to \infty} \frac{1}{d} \|\boldsymbol{\beta}^t\|_{\ell_2}^2 = \lim_{n \to \infty} \frac{1}{d} \sum_{i=1}^d |(\beta_i^t)^2| = \mathbb{E}\left[\left(\mu_t \bar{\beta} + \frac{\sigma_t}{\sqrt{\alpha}}G\right)^2\right] = \mu_t^2 \mathbb{E}[\bar{\beta}^2] + \frac{\sigma_t^2}{\alpha} = \mu_t^2 \gamma^2 + \frac{\sigma_t^2}{\alpha},$$

$$\lim_{n \to \infty} \frac{1}{d} \|\boldsymbol{\beta}\|_{\ell_2}^2 = \lim_{n \to \infty} \frac{1}{d} \sum_{i=1}^d |(\beta_i)^2| = \mathbb{E}[\bar{\beta}^2] = \gamma^2,$$

$$\lim_{n \to \infty} \frac{1}{d} \boldsymbol{\beta}^\mathsf{T} \boldsymbol{\beta}^t = \lim_{n \to \infty} \frac{1}{d} \sum_{i=1}^d (\beta_i \boldsymbol{\beta}_i^t) = \mathbb{E}\left[\left(\mu_t \bar{\beta} + \frac{\sigma_t}{\sqrt{\alpha}}G\right)\bar{\beta}\right] = \mu_t \mathbb{E}[\bar{\beta}^2] = \mu_t \gamma^2,$$

where we used the identity $\mathbb{E}[\bar{\beta}^2] = \gamma^2$ (second bullet point in Assumption 2). Therefore, defining $\rho^t \coloneqq \boldsymbol{\beta}^\mathsf{T} \boldsymbol{\beta}^t / (\|\boldsymbol{\beta}\|_{\ell_2} \|\boldsymbol{\beta}^t\|_{\ell_2})$, we have

$$\lim_{n \to \infty} \rho_t = \frac{\mu_t \gamma^2}{\gamma \sqrt{\mu_t^2 \gamma^2 + \frac{\sigma_t^2}{\alpha}}} = \frac{\eta_t \gamma}{\sqrt{\eta_t^2 \gamma^2 + \frac{1}{\alpha}}}.$$

Next by Lemma 4.1 and continuity of function F, we have

$$\lim_{n \to \infty} P_e(\beta^t) = \lim_{n \to \infty} F(\rho_t) = F(\lim_{n \to \infty} \rho_t) = F\left(\frac{\eta_t \gamma}{\sqrt{\eta_t^2 \gamma^2 + \frac{1}{\alpha}}}\right),$$

which concludes the proof.

I Proof of Theorem 4.3

The proof follows from (25) and an explicit derivation of $\mathbb{E}(Z|Z_t,\widehat{Y})$. By Bayes rule,

$$\mathbb{P}(Z=z|Z_t=z_t,\widehat{Y}=\widehat{y}) = \frac{\mathbb{P}(Z_t=z_t,\widehat{Y}=\widehat{y}|Z=z)\mathbb{P}(Z=z)}{\int_{-\infty}^{\infty} \mathbb{P}(Z_t=z_t,\widehat{Y}=\widehat{y}|Z=z)\mathbb{P}(Z=z)\mathrm{d}z} \\
= \frac{\frac{1}{\sqrt{2\pi}\sigma_t}e^{-\frac{(z_t-\mu_tz)^2}{2\sigma_t^2}}\hat{h}_p(z)^{\frac{1+\widehat{y}}{2}}(1-\hat{h}_p(z))^{\frac{1-\widehat{y}}{2}}\frac{1}{\sqrt{2\pi}\alpha\gamma}e^{-\frac{z^2}{2\alpha\gamma^2}}}{\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma_t}e^{-\frac{(z_t-\mu_tz)^2}{2\sigma_t^2}}\hat{h}_p(z)^{\frac{1+\widehat{y}}{2}}(1-\hat{h}_p(z))^{\frac{1-\widehat{y}}{2}}\frac{1}{\sqrt{2\pi}\alpha\gamma}e^{-\frac{z^2}{2\alpha\gamma^2}}\mathrm{d}z}$$

Therefore,

$$\mathbb{E}(Z|Z_t,\widehat{Y}) = \frac{\int_{-\infty}^{\infty} z e^{-\frac{(u-\mu_t z)^2}{2\sigma_t^2}} \hat{h}_p(z)^{\frac{1+\widehat{y}}{2}} (1-\hat{h}_p(z))^{\frac{1-\widehat{y}}{2}} e^{-\frac{z^2}{2\alpha\gamma^2}} dz}{\int_{-\infty}^{\infty} e^{-\frac{(u-\mu_t z)^2}{2\sigma_t^2}} \hat{h}_p(z)^{\frac{1+\widehat{y}}{2}} (1-\hat{h}_p(z))^{\frac{1-\widehat{y}}{2}} e^{-\frac{z^2}{2\alpha\gamma^2}} dz},$$
(51)

which after substituting in (25), results in

$$g_t^*(u,\widehat{y}) = \left(\frac{1}{\alpha\gamma^2} + \frac{\mu_t^2}{\sigma_t^2}\right) \frac{\int_{-\infty}^{\infty} z e^{-\frac{(u-\mu_t z)^2}{2\sigma_t^2}} \hat{h}_p(z)^{\frac{1+\widehat{y}}{2}} (1 - \hat{h}_p(z))^{\frac{1-\widehat{y}}{2}} e^{-\frac{z^2}{2\alpha\gamma^2}} dz}{\int_{-\infty}^{\infty} e^{-\frac{(u-\mu_t z)^2}{2\sigma_t^2}} \hat{h}_p(z)^{\frac{1+\widehat{y}}{2}} (1 - \hat{h}_p(z))^{\frac{1-\widehat{y}}{2}} e^{-\frac{z^2}{2\alpha\gamma^2}} dz} - \frac{\mu_t}{\sigma_t^2} u,$$
 (52)

In addition, using the characterization of g_t^* in (25), the state evolution (22) can be written as

$$\mu_{1} = \frac{2}{\alpha \gamma^{2}} \mathbb{E}[Z\hat{h}_{p}(Z)], \quad \sigma_{1} = \sqrt{\alpha},$$

$$\mu_{t+1} = \frac{1}{\alpha} \mathbb{E}\{g_{t}^{*}(\mu_{t}Z + \sigma_{t}G, \widehat{Y})^{2}\}, \quad \sigma_{t+1}^{2} = \alpha \mu_{t+1},$$
(53)

with $Z \sim \mathsf{N}(0, \alpha \gamma^2)$ and $G \sim \mathsf{N}(0, 1)$ independent of each other. In addition, $\widehat{Y} \in \{-1, +1\}$ with $\mathbb{P}(\widehat{Y} = 1|Z) = \hat{h}_p(Z)$, and $g_0^*(\cdot, \widehat{y}) = \widehat{y}$.

We next note that by Equation 24, the test error depends on $\eta_t = \mu_t/\sigma_t$. We proceed by writing the state evolution (53) in terms of η_t . Note $\eta_{t+1} = \frac{\mu_{t+1}}{\sigma_{t+1}} = \sqrt{\frac{\mu_{t+1}}{\alpha}}$. By substituting for $\mu_{t+1} = \alpha \eta_{t+1}^2$ and $\sigma_t = \sqrt{\alpha \mu_t} = \alpha \eta_t$ we arrive at

$$\eta_{t+1}^2 = \frac{1}{\alpha} \mathbb{E} \{ g_t^* (\alpha \eta_t^2 Z + \alpha \eta_t G, \widehat{Y})^2 \}, \quad \eta_1 = \frac{2}{\alpha^{3/2} \gamma^2} \mathbb{E} [Z \hat{h}_p(Z)].$$

The optimal aggregator (52) can also be written in terms of η_t as

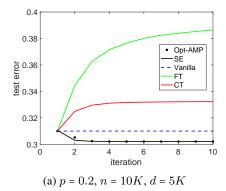
$$g_t^*(u,\widehat{y}) = \left(\frac{1}{\alpha\gamma^2} + \eta_t^2\right) \frac{\int_{-\infty}^{\infty} z e^{-\frac{1}{2}(\frac{u}{\alpha\eta_t} - \eta_t z)^2} \hat{h}_p(z)^{\frac{1+\widehat{y}}{2}} (1 - \hat{h}_p(z))^{\frac{1-\widehat{y}}{2}} e^{-\frac{z^2}{2\alpha\gamma^2}} dz}{\int_{-\infty}^{\infty} e^{-\frac{1}{2}(\frac{u}{\alpha\eta_t} - \eta_t z)^2} \hat{h}_p(z)^{\frac{1+\widehat{y}}{2}} (1 - \hat{h}_p(z))^{\frac{1-\widehat{y}}{2}} e^{-\frac{z^2}{2\alpha\gamma^2}} dz} - \frac{u}{\alpha}$$

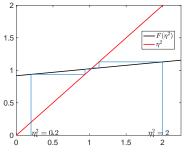
$$= \left(\frac{1}{\alpha\gamma^2} + \eta_t^2\right) \frac{\int_{-\infty}^{\infty} z e^{-\frac{\eta_t^2 z^2}{2} + \frac{uz}{\alpha}} \hat{h}_p(z)^{\frac{1+\widehat{y}}{2}} (1 - \hat{h}_p(z))^{\frac{1-\widehat{y}}{2}} e^{-\frac{z^2}{2\alpha\gamma^2}} dz}{\int_{-\infty}^{\infty} e^{-\frac{\eta_t^2 z^2}{2} + \frac{uz}{\alpha}} \hat{h}_p(z)^{\frac{1+\widehat{y}}{2}} (1 - \hat{h}_p(z))^{\frac{1-\widehat{y}}{2}} e^{-\frac{z^2}{2\alpha\gamma^2}} dz} - \frac{u}{\alpha}$$

Finally, replacing u by y gives us the desired result.

J Special Case: Sign Link Function

In this section, we specialize the result of Theorem 4.3 to sign link function namely $h(z) = \frac{1+\operatorname{sign}(z)}{2}$. In this case $y = \operatorname{sign}(x^{\mathsf{T}}\beta)$.





(b) Cobweb plot for the state evolution (56) in GLM setting

Figure 6: **Synthetic Experiments:** (a) Comparison between different retraining methods under GLM setting with link function $h(z) = (1 + \operatorname{sign}(z))/2$. FT and CT respectively denote the full-retraining and the consensus-based retraining *without* the memory correction terms. Vanilla is the estimator without any retraining. (b) Cobweb plot for the state evolution mapping in (56).

Proposition J.1 Under the GLM setting with $h(z) = \frac{1+\operatorname{sign}(z)}{2}$, the optimal aggregator functions in the AMP procedure are given by:

$$g_t^*(u,\widehat{y}) = \frac{1}{s_t} \cdot \frac{(1-2p)\widehat{y}\sqrt{\frac{2}{\pi}}e^{-\frac{u^2s_t^2}{2\alpha^2}}}{1+(1-2p)\widehat{y}(2\Phi(\frac{us_t}{\alpha})-1)},$$
(54)

for $t \ge 1$, and $\tilde{g}_0(\cdot, \hat{y}) = \hat{y}$, where $s_t^2 = (\frac{1}{\alpha} + \eta_t^2)^{-1}$ and the sequence $(\eta_t)_{t \ge 1}$ is given by the following state evolution recursion:

$$\eta_1 = \frac{1 - 2p}{\alpha} \sqrt{\frac{2}{\pi}},\tag{55}$$

$$\eta_{t+1}^2 = \frac{1}{\alpha} \mathbb{E} \{ g_t^* (\alpha \eta_t^2 Z + \alpha \eta_t G, \widehat{Y})^2 \}, \qquad (56)$$

with $Z \sim \mathsf{N}(0,\alpha)$ and $G \sim \mathsf{N}(0,1)$ independent of each other. In addition, $\widehat{Y} \in \{-1,+1\}$ with $\mathbb{P}(\widehat{Y} = 1|Z) = \frac{1}{2} + \frac{1-2p}{2}\mathrm{sign}(Z)$.

For the estimators β^t given by the AMP updates (17)-(18), with the optimal aggregator function (54), the following holds almost surely

$$\lim_{n \to \infty} P_e(\boldsymbol{\beta}^t) = \frac{1}{\pi} \cos^{-1} \left(\frac{\eta_t}{\sqrt{\eta_t^2 + \frac{1}{\alpha}}} \right). \tag{57}$$

Figure 6a compares various retraining methods on synthetic GLM data, with β drawn from N(0,1), n = 1000, d = 500, and label flip probability p = 0.2. Results are averaged over 10 runs.

Opt-AMP uses AMP updates with the optimal aggregator. Vanilla is a linear classifier without retraining, shown as a flat line. SE is the theoretical state evolution curve. FT and CT are full-retraining and consensus-based retraining methods without memory corrections, which are undefined here due to non-Lipschitz, non-differentiable aggregators. The plots show close agreement between SE predictions and Opt-AMP, and demonstrate the superior performance of Opt-AMP over other methods and the vanilla estimator.

In Figure 6b, we plot the cobweb plot for the state evolution (55)-(56). As we see the state evolution map is increasing and has at least one fixed point. Further, similar to the GMM setting, when η_1 is small (the initial model is poor), retraining helps improve its performance. However, if η_1 is large (above the fixed point) and so the initial estimator is already good enough, then retraining can actually hurt its performance.

J.1 Proof of Proposition J.1

Consider the GLM setting with $h(z) = \frac{1+\mathrm{sign}(z)}{2}$. In this case, $\hat{h}_p(z) = \frac{1}{2} + \frac{1-2p}{2}\mathrm{sign}(z)$. Also, note that the data generative process does not depend on γ (recall that $\|\beta\|_{\ell_2}^2/d \to \gamma^2$), since the sign function is invariant to scaling. Hence, for simplicity we take $\gamma = 1$.

Before proceeding with this case, we derive an alternative expression for the optimal aggregator functions. We define the shorthand $s_t^2 = (\frac{1}{\alpha} + \eta_t^2)^{-1}$ and $m_t = \frac{u}{\alpha} s_t^2$. Also let $f(z) = \hat{h}_p(z)^{\frac{1+\widehat{y}}{2}} (1 - \hat{h}_p(z))^{\frac{1-\widehat{y}}{2}}$, where the explicit dependence on the parameters p and \widehat{y} is omitted in the notation for simplicity. The function g_t^* given by (54) can be written in terms of this notation as

$$g_t^*(u, \widehat{y}) = \frac{1}{s_t^2} \frac{\int z f(z) e^{-\frac{(z - m_t)^2}{2s_t^2}} dz}{\int f(z) e^{-\frac{(z - m_t)^2}{2s_t^2}} dz} - \frac{u}{\alpha}$$

Let $Z_t = m_t + s_t Z$ with $Z \sim N(0, 1)$. Then,

$$g_t^*(u,\widehat{y}) = \frac{1}{s_t^2} \frac{\mathbb{E}[Z_t f(Z_t)]}{\mathbb{E}[f(Z_t)]} - \frac{u}{\alpha}$$

$$= \frac{1}{s_t^2} \frac{\mathbb{E}[(m_t + s_t Z) f(m_t + s_t Z)]}{\mathbb{E}[f(m_t + s_t Z)]} - \frac{u}{\alpha}$$

$$= \frac{m_t}{s_t^2} - \frac{u}{\alpha} + \frac{1}{s_t^2} \frac{\mathbb{E}[s_t Z f(m_t + s_t Z)]}{\mathbb{E}[f(m_t + s_t Z)]}$$

$$= \frac{1}{s_t} \frac{\mathbb{E}[Z f(m_t + s_t Z)]}{\mathbb{E}[f(m_t + s_t Z)]}.$$
(58)

For the case of sign link function, where $h(z) = \frac{1+\operatorname{sign}(z)}{2}$, the function f(z) can be written as

$$f(z) = \hat{h}_p(z)^{\frac{1+\widehat{y}}{2}} (1 - \hat{h}_p(z))^{\frac{1-\widehat{y}}{2}} = \frac{1}{2} + \frac{1-2p}{2} \operatorname{sign}(\widehat{y}z).$$

Using this expression in (58), we get

$$g_t^*(u,\widehat{y}) = \frac{1}{s_t} \frac{\mathbb{E}\{Zf(m_t + s_t Z)\}}{\mathbb{E}\{f(m_t + s_t Z)\}}$$

$$= \frac{1}{s_t} \cdot \frac{(1 - 2p) \mathbb{E}[Z\operatorname{sign}(\widehat{y}(m_t + s_t Z))]}{1 + (1 - 2p) \mathbb{E}[\operatorname{sign}(\widehat{y}(m_t + s_t Z))]}$$
(59)

To calculate the expectation in the numerator, we write

$$\mathbb{E}\{Z \operatorname{sign}(m_t + s_t Z)\} = \int_{-m_t/s_t}^{\infty} z \frac{e^{-z^2/2}}{\sqrt{2\pi}} - \int_{-\infty}^{-m_t/s_t} z \frac{e^{-z^2/2}}{\sqrt{2\pi}}$$
$$= \int_{-m_t/s_t}^{\infty} z \frac{e^{-z^2/2}}{\sqrt{2\pi}} + \int_{\infty}^{m_t/s_t} z \frac{e^{-z^2/2}}{\sqrt{2\pi}} = \frac{2}{\sqrt{2\pi}} e^{-\frac{m_t^2}{2s_t^2}}.$$

To compute the expectation in the denominator, we write

$$\mathbb{E}\{\operatorname{sign}(m_t + s_t Z)\} = \int_{-m_t/s_t}^{\infty} \frac{e^{-z^2/2}}{\sqrt{2\pi}} dz - \int_{-\infty}^{-m_t/s_t} \frac{e^{-z^2/2}}{\sqrt{2\pi}} dz = 2\Phi(m_t/s_t) - 1.$$

Substituting the previous two identities in (59), we obtain

$$g_t^*(u,\widehat{y}) = \frac{1}{s_t} \cdot \frac{(1-2p)\widehat{y}\sqrt{2/\pi}e^{-\frac{m_t^2}{2s_t^2}}}{1+(1-2p)\widehat{y}(2\Phi(\frac{m_t}{s_t})-1)}$$

$$= \frac{1}{s_t} \cdot \frac{(1-2p)\widehat{y}\sqrt{\frac{2}{\pi}}e^{-\frac{u^2s_t^2}{2\alpha^2}}}{1+(1-2p)\widehat{y}(2\Phi(\frac{us_t}{\alpha})-1)}.$$
(60)

Next note that (55) and (56) follows from Theorem 4.3 where we can calculate η_1 explicitly as (note that $\gamma = 1$ in the current case)

$$\eta_1 = \frac{2}{\alpha^{3/2}} \mathbb{E}[Z\hat{h}_p(Z)]$$

$$= \frac{2}{\alpha^{3/2}} \mathbb{E}\Big[Z\Big(\frac{1}{2} + \frac{1 - 2p}{2}\operatorname{sign}(Z)\Big)\Big]$$

$$= \frac{1 - 2p}{\alpha^{3/2}} \mathbb{E}[|Z|] = \frac{1 - 2p}{\alpha\gamma} \mathbb{E}[|Z_0|] = \sqrt{\frac{2}{\pi}} \frac{1 - 2p}{\alpha}.$$

To prove (57), note that under the GLM setting with sing link function, the true label of a features vector \boldsymbol{x} is given by $y = \operatorname{sign}(\boldsymbol{x}^\mathsf{T}\boldsymbol{\beta})$, while the prediction by a model $\boldsymbol{\beta}^t$ are given by $\operatorname{sign}(\boldsymbol{x}^\mathsf{T}\boldsymbol{\beta}^t)$. Hence, $P_e(\boldsymbol{\beta}^t) = \mathbb{P}(\langle \boldsymbol{x}, \boldsymbol{\beta}^t \rangle \langle \boldsymbol{x}, \boldsymbol{\beta} \rangle < 0)$. Since $\boldsymbol{x} \sim \mathsf{N}(0, \boldsymbol{I}_d/n)$, letting $Z_1 = \sqrt{n}\langle \boldsymbol{x}, \boldsymbol{\beta} \rangle / \|\boldsymbol{\beta}\|_{\ell_2}$ and

$$Z_2 = \sqrt{n} \langle \boldsymbol{x}, \boldsymbol{\beta}^t \rangle / \left\| \boldsymbol{\beta}^t \right\|_{\ell_2}, \text{ we have } (Z_1, Z_2) \sim \mathsf{N} \big(0, \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix} \big) \text{ with } \rho = \frac{\langle \boldsymbol{\beta}^t, \boldsymbol{\beta} \rangle}{\|\boldsymbol{\beta}\|_{\ell_2} \|\boldsymbol{\beta}^t\|_{\ell_2}}. \text{ Hence,}$$

$$P_e(\beta^t) = \mathbb{P}(Z_1 Z_2 < 0) = \frac{1}{\pi} \cos^{-1}(\rho).$$

See e.g. [20, Section 15.10]. Using the result of Theorem 4.2, we have

$$\rho \stackrel{p}{\to} \frac{\mu_t \gamma^2}{\gamma \sqrt{\mu_t^2 \gamma^2 + \frac{\sigma_t^2}{\alpha}}} = \frac{\mu_t \gamma}{\sqrt{\mu_t^2 \gamma^2 + \frac{\sigma_t^2}{\alpha}}} = \frac{\eta_t \gamma}{\sqrt{\eta_t^2 \gamma^2 + \frac{1}{\alpha}}} = \frac{\eta_t}{\sqrt{\eta_t^2 + \frac{1}{\alpha}}}$$

since $\gamma = 1$. This completes the proof.

K Extension of Theory to the Multi-Class Case and Non-Linear Models

Extension of theory to multi-class case. This can be done by following similar ideas in the binary case, but will be heavier in notation and will involve more tedious analysis. Here we outline how this extension can be made for the GMM case in Section 3. We first describe the setting. We define a matrix $Y \in \mathbb{R}^{n \times k}$, where n is the number of samples and k is the number of classes, using one-hot encoding, where column i has 1 for the samples belonging to class i and 0 otherwise. Next, we define $M \in \mathbb{R}^{k \times d}$ where m is the mean feature vector of class m in Eq. (1) then transforms to m is a low rank matrix (m is of rank m plus noise. We can then generalize the AMP iterations for this low-rank model. The forms of eqs. (4) and (5) in this case will be the same with m redefined appropriately for the matrix case (here it will be applied row-wise instead of coordinate-wise). Also the coefficient m in (6) will now be a m in m matrix, defined similarly using the Jacobian of m instead of derivative. Likewise, the state evolution recursion (8) will be of the same form, with the modification that m in m in

Extension of theory to non-linear models. We note that the AMP techniques can be used to analyze the statistical behavior of more general M-estimators (see for e.g., [14]). The corresponding update rule will involve applying the aggregator function (aggregating current predictions and the given noisy labels) as well as a gradient descent type of update (similar to eq. (4)). The exact details of these updates and the analysis will be quite tedious and are left for future work.

L Remaining Empirical Results

In Table 5, we list the average test accuracies of full RT, consensus-based RT, and BayesMix RT (28) after 1 and 10 iterations for Food-101 pho vs. ramen corrupted by the uniform noise model with p=0.45. In Table 6, we perform an ablation study to compare these three RT methods at different values of p for the same dataset. Note that BayesMix RT performs the best for larger values of p, i.e., in the high label noise regime, whereas consensus-based RT performs the best for smaller values of p.

Table 5: **Linear probing and uniform noise** (p = 0.45): Average test accuracies \pm standard deviation for Food-101 pho vs. ramen with p = 0.45. In the first iteration, consensus-based RT is the best, but at the tenth iteration, BayesMix RT is the best by a big margin.

Iteration #	Full RT	Consensus-based RT	BayesMix RT (ours)
0 (initial model)	58.13 ± 2.54	58.13 ± 2.54	58.13 ± 2.54
1	$61.33 \pm 2.54 (3.20 \uparrow)$	63.60 ± 3.22 (5.47 ↑)	$60.53 \pm 3.27 (2.40 \uparrow)$
10	$62.60 \pm 2.12 (4.47 \uparrow)$	$64.87 \pm 4.07 (6.74 \uparrow)$	$76.60 \pm 6.00 \ (18.47 \uparrow)$

Table 6: **Linear probing under uniform noise with different values of** p: Average test accuracies \pm standard deviation for Food-101 pho vs. ramen after 10 iterations of full RT, consensus-based RT, and BayesMix RT. Observe that BayesMix RT performs the best for larger values of p, i.e., the more challenging high-noise regime, whereas consensus-based RT performs the best for smaller values of p.

p	Initial training	Full RT	Consensus-based RT	BayesMix RT (ours)
0.45	58.13 ± 2.54	62.60 ± 2.12	64.87 ± 4.07	76.60 ± 6.00
0.40	67.53 ± 3.88	74.60 ± 6.57	79.87 ± 6.32	83.00 ± 1.30
0.35	73.20 ± 2.29	79.27 ± 4.34	86.00 ± 3.77	85.33 ± 0.50
0.30	79.47 ± 1.65	83.13 ± 3.55	87.33 ± 2.00	85.40 ± 0.57

Adversarial noise model. Now we consider a much harder noise model wherein an adversary gets to determine the "important" samples and flip their labels. The adversary determines important samples by training the same model which will be trained by us, but with clean labels instead and orders the samples in the decreasing order of the absolute value of the unnormalized logits. Note that a higher logit absolute value implies that the model is very confident on the sample, so flipping the label of such a sample would be more detrimental to the model's training as it would need to adjust the decision boundary by a large amount for this incorrectly labeled sample. The adversary then flips the labels of the top α fraction of the samples with largest absolute values of the unnormalized logits. Under this adversarial noise model with $\alpha = 0.25$ for MedMNIST Pneumonia, we compare BayesMix-Simple RT (29) with full RT and consensus-based RT after 1 and 10 iterations in Table 7 (again, the table below lists the average test accuracies).

Table 7: **Linear probing and adversarial noise:** Average test accuracies \pm standard deviation for MedMNIST Pneumonia. *BayesMix-Simple RT performs the best.*

Iteration #	Full RT	Consensus-based RT	BayesMix-Simple RT (ours)
0 (initial model)	63.94 ± 1.51	63.94 ± 1.51	63.94 ± 1.51
1	$66.83 \pm 1.93 (2.89 \uparrow)$	$66.77 \pm 1.78 (2.83 \uparrow)$	67.15 ± 1.83 (3.21 ↑)
10	$73.77 \pm 0.79 (9.83 \uparrow)$	$76.76 \pm 2.51 (12.82 \uparrow)$	$78.04 \pm 1.98 (14.10 \uparrow)$

M Derivation of the Aggregator used in Experiments

Here we show the derivation of (28) used in our experiments. This is a straightforward extension of (32), (34) (in Appendix C) with means and variances of the Gaussians corresponding to the positive and negative logits being (μ_+, σ_+^2) and (μ_-, σ_-^2) , respectively. Specifically, letting z denote the logit

⁶Please note that real data may not necessarily follow the GMM setting in Section 3, so BayesMix RT being the optimal strategy is not necessary.

and Y and \widehat{Y} denote the ground truth label and observed label random variables, respectively, we have (following the derivation of (32)):

$$g(z,\widehat{y}) =$$

$$\frac{2\mathbb{P}\left(G = \frac{z - \mu_{+}}{\sigma_{+}}\right)\mathbb{P}\left(\widehat{Y} = \widehat{y}|Y = 1\right)\mathbb{P}(Y = 1)}{\mathbb{P}\left(G = \frac{z - \mu_{+}}{\sigma_{+}}\right)\mathbb{P}\left(\widehat{Y} = \widehat{y}|Y = 1\right)\mathbb{P}(Y = 1) + \mathbb{P}\left(G = \frac{z - \mu_{-}}{\sigma_{-}}\right)\mathbb{P}\left(\widehat{Y} = \widehat{y}|Y = -1\right)\mathbb{P}(Y = -1)} - 1. \quad (61)$$

(Notice that unlike (32), we dropped the dependence on t to lighten the notation.) Again, $G \sim \mathsf{N}(0,1)$ and $\mathbb{P}(Y=1)=\pi_+$ and $\mathbb{P}(Y=-1)=\pi_-$. Also, under the uniform noise model, $\mathbb{P}\left(\widehat{Y}=\widehat{y}|Y=1\right)$ and $\mathbb{P}\left(\widehat{Y}=\widehat{y}|Y=-1\right)$ are the same as (33). This can be extended to the non-uniform noise model as well, where $\mathbb{P}(\widehat{Y}=-1|Y=+1)=p$ and $\mathbb{P}(\widehat{Y}=+1|Y=-1)=q$, to get:

$$\mathbb{P}(\widehat{Y} = \widehat{y}|Y = 1) = (1 - p)^{\frac{1 + \widehat{y}}{2}} p^{\frac{1 - \widehat{y}}{2}} \quad \text{and} \quad \mathbb{P}(\widehat{Y} = \widehat{y}|Y = -1) = (1 - q)^{\frac{1 - \widehat{y}}{2}} q^{\frac{1 + \widehat{y}}{2}}. \tag{62}$$

Using all of this in (61) followed by some algebraic simplification gives us (28).

N Experimental Details

Here we provide details about our experiments.

Our experiments were done using TensorFlow and Keras on one 128 GB CPU and one 40 GB A100 GPU (per run). For initial training as well as for each iteration of retraining, the optimizer is Adam (with default values of $\beta_1 = 0.9$ and $\beta_2 = 0.999$) with batch size = 32 & number of epochs = 10 for linear probing and batch size = 128 & number of epochs = 2 for full network training. We also apply weight decay = 0.1 in the case of full network training to mitigate overfitting. We tune the learning rate by monitoring the accuracy on a small *clean* validation set (i.e., the labels of the validation set are not corrupted). For settings where we already know that the given labels will be noisy, we can manually clean up a small part of the dataset and use that as the validation set to mitigate overfitting. In each case, we first tune the learning rate for initial training; denote this by η_0 . Then for each retraining method, we tune the learning rate for the first iteration and use it for all subsequent iterations; denote this by η_1 . Note that we use the same value of η_0 for all the retraining methods. Also recall that in the adversarial noise model described in Appendix L, the adversary initially trains the model with clean labels to determine the samples whose labels it wishes to flip. The adversary's training details are the same as described above; let us denote its learning rate, which is also tuned, by $\eta_{\rm adv}$. We tune $\eta_{\rm adv}$, η_0 and η_1 from $\{5 \times 10^{-3}, 10^{-3}, 5 \times 10^{-4}, 10^{-4}, 5 \times 10^{-5}, 10^{-5}, 5 \times 10^{-6}, 10^{-6}\}$.

- MedMNIST Pneumonia (https://www.tensorflow.org/datasets/catalog/pneumonia_mnist): This has 4708 training examples and comes with a validation set of size 200. The test set consists of 624 examples.
- 2. Food-101 (https://www.tensorflow.org/datasets/catalog/food101): Each class in Food-101 has 750 training examples; so the total number of examples for two classes (pho vs. ramen and spaghetti bolognese vs. spaghetti carbonara) is 1500. Out of these 1500 examples, we randomly select 100 examples as our validation set. The test set consists of 500 examples in total.

⁷Note that training an entire deep network is much more computationally expensive than linear probing.

⁸Note full network training is much more prone to overfitting than linear probing.

⁹We observed that one learning rate for initial training and retraining does not work well.