
Self-Boost via Optimal Retraining: An Analysis via
Approximate Message Passing

Adel Javanmard
University of Southern California

Google Research
ajavanma@usc.edu

Rudrajit Das
Google Research

dasrudrajit@google.com

Alessandro Epasto
Google Research

aepasto@google.com

Vahab Mirrokni
Google Research

mirrokni@google.com

Abstract

Retraining a model using its own predictions together with the original, potentially
noisy labels is a well-known strategy for improving the model’s performance.
While prior works have demonstrated the benefits of specific heuristic retraining
schemes, the question of how to optimally combine the model’s predictions and
the provided labels remains largely open. This paper addresses this fundamental
question for binary classification tasks. We develop a principled framework based
on approximate message passing (AMP) to analyze iterative retraining procedures
for two ground truth settings: Gaussian mixture model (GMM) and generalized
linear model (GLM). Our main contribution is the derivation of the Bayes optimal
aggregator function to combine the current model’s predictions and the given labels,
which when used to retrain the same model, minimizes its prediction error. We also
quantify the performance of this optimal retraining strategy over multiple rounds.
We complement our theoretical results by proposing a practically usable version of
the theoretically-optimal aggregator function and demonstrate its superiority over
baseline methods under different label noise models.

1 Introduction

Learning effectively from data with noisy labels remains a significant challenge in supervised machine
learning (ML). A simple approach to mitigate the impact of label noise involves leveraging the
trained model’s own (soft or hard) predictions to ameliorate the learning process. More specifically,
prior works [25, 11, 10, 32, 9] have shown that retraining an already trained model using its own
predictions and the given labels (with which the model is initially trained) can lead to higher model
accuracy, especially when the given labels are noisy. [11, 10, 32, 9] theoretically quantify the gains
of simple retraining schemes and also provide principled explanations of why retraining is beneficial,
such as the predicted labels leading to variance-reduction, leveraging large separability of the classes,
etc. However, a key question that remains unanswered is the following:

“What is the optimal way to utilize the model’s predicted labels and the given labels?”

In this work, we address this question for binary classification problems where the underlying ground
truth model is: (i) a Gaussian mixture model (GMM), or (ii) a generalized linear model (GLM).
Further, we also analyze the effect of multiple rounds of retraining. More specifically, for a sample x,
suppose ŷ is the given noisy label and yt is the model’s predicted label at the tth round of retraining,

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

then we derive the Bayes optimal aggregator function gt(yt, ŷ) which should be used to retrain the
model in the (t + 1)th round in order to minimize its prediction error. Our analysis technique is very
different from the aforementioned prior works in this space and is based on Approximate Message
Passing (AMP) [13, 35, 18]. We believe ours is the first work that addresses this question of optimally
using the predicted and given labels. Building on our theoretical framework, we also develop an
aggregator function that can be used in practice for training with the binary cross-entropy loss.

Before stating our contributions, we need to briefly introduce the problem setting. We consider a
binary classification setting (with labels ∈ {±1}), where for each sample x, the given label ŷ is equal
to the true label y with probability 1 − p > 1

2
and the flipped label −y otherwise, independently for

each sample. In the Gaussian mixture model (GMM) case, we have x = yµ + z, where µ ∈ Rd and
z ∼ N(0,I). In the generalized linear model (GLM) case, we have P(y = 1∣x) = h(xTβ) for some
β ∈ Rd and a known function h(⋅). We are now ready to state our main contributions.

(a) We introduce and analyze an iterative retraining scheme based on Approximate Message Passing
(AMP) [13, 35, 18]; see (4)-(5) for GMM and (17)-(18) for GLM. We provide a precise characteriza-
tion of the effect of retraining in an asymptotic regime, where the ratio of the number of examples to
the feature dimension converges to a constant. In particular, we derive the state evolution recursion
for our setting – a concise deterministic recursion that captures the asymptotic behavior of the
AMP-based estimator; see (8), Theorem 3.1 for GMM and (22), Theorem 4.2 for GLM.

(b) We derive the Bayes optimal aggregator function gt(yt, ŷ) to combine the model’s prediction
yt at the tth round of retraining and the given label ŷ to be used in the (t + 1)th round of retraining
for minimizing prediction error in Theorems 3.2 and 4.3 for GMM and GLM, respectively. To our
knowledge, ours is the first work to analyze the optimal way to use the predicted and given labels for
any retraining-like idea in any setting.

(c) Based on our theoretical analysis, we develop a strategy that can be used in practice to combine the
given labels and predictions for training any model with the binary cross-entropy loss (Section 5). We
show that our method outperforms existing retraining baselines under different label noise models.

2 Related Work

(i) Retraining (fully supervised setting). [9] theoretically analyze the idea of retraining a model
with only its predicted hard labels and not reusing the given labels when they are noisy; they call this
“full retraining”. [9] also propose “consensus-based retraining” which is the process of retraining
only using the samples for which the predicted label matches the given label. Another related idea is
“self-distillation” (SD) [15, 26], where a teacher model’s predicted soft (and not hard) labels are used
to train a student model having the same architecture as the teacher. [25] empirically demonstrate
that SD can improve performance when the given labels are noisy. [11, 10] theoretically analyze the
benefits of one round of SD in the presence of noisy labels, while [32] analyze the effect of multiple
rounds of SD in a setting similar to [10]. [39] do a statistical analysis of SD in the asymptotic limit,
compare the effect of soft labels & hard labels, and also investigate the effect of multiple rounds of SD.
But unlike us, [39] do not analyze the optimal way to combine given labels and model predictions.

(ii) Self-training (ST). In the semi-supervised setting, ST [38, 43, 23] is the process of iteratively
training a model wherein it is initially trained using the labeled samples, then labeling the unlabeled
samples, followed by retraining the model on the labeled samples as well as the unlabeled samples on
which the model is confident. This process is often repeated a few times. While this sounds similar
to retraining, our work is in the fully supervised setting and retraining does not particularly rely on
the model’s confidence. See [2] for a survey on ST and some related approaches. There is also a
significant amount of theoretical work on characterizing the efficacy of ST and related approaches
[7, 34, 21, 8, 31, 41, 44]; but these results are not in the presence of noisy labels. Furthermore, there
are empirical ideas related to ST in the context of label noise [37, 40, 17, 30, 24, 16].

(iii) Approximate Message Passing. Due to lack of space, we defer this to Appendix A.

Notation: We use the boldface symbols to denote vectors and matrices. The ℓ2 norm of a vector
v is denoted by ∥v∥ℓ2 . For any n ∈ N, the set {1, . . . , n} is denoted by [n]. With a slight abuse
of notation, we use P(X) to indicate the probability mass function (for discrete random variable
X) as well as the probability density function (for continuous variable X). We write

p→ to denote

2

convergence ‘in probability’. Φ(z) = 1
√
2π ∫

z
−∞

e−(u
2
/2)du denotes the standard gaussian CDF. A

function ψ ∶ Rp ↦ R is said to be pseudo-Lipschitz (of order 2) if for all u,v ∈ Rp, we have
∣ψ(u) − ψ(v)∣ ≤ L(1 + ∥u∥ + ∥v∥)∥u − v∥ for some constant L.

3 Gaussian Mixture Model (GMM)

Data model. We assume the training data {(xi, yi)}ni=1 are generated i.i.d according to a Gaussian
mixture model. In this model, each data point belongs to one of two classes {±1} with corresponding
probabilities π+, π−, such that π+ + π− = 1. Denoting by yi ∈ {−1,+1} the label for data point i, the
features vectors xi ∈ Rd, for i ∈ [n], are generated independently as

x = yµ + z, (1)

where z ∼ N(0,I). In other words the mean of features vectors are ±µ depending on its class.
Throughout, we denote the features matrix and the labels vector by

X = [x1∣ . . . ∣xn]T ∈ Rn×d, y = [y1, . . . , yn]T ∈ Rn .

The learner does not observe the labels yi, rather she has access to features vectors xi and noisy
labels ŷi which are generated according to the following model:

ŷi = {
yi with probability 1 − p ,
−yi with probability p ,

(2)

where p < 1
2

is the mislabeling or label flipping probability. Let ŷ = [ŷ1, . . . , ŷn]T ∈ Rn denote the
vector of the observed noisy labels.

Standard linear classifier model. Let us first consider the following simple classifier model:

θ̂ = 1

n
XTŷ. (3)

The above model has been used before in [9, 7].1 For a given point x, the model’s soft prediction is
xTθ̂ and its predicted label is sign(xTθ̂).
In this work, we consider a slightly different model inspired by Approximate Message Passing (AMP).
Since our focus is on retraining over multiple rounds, we will delineate this as an iterative procedure.

3.1 Retraining Framework Inspired by Approximate Message Passing

For ease of exposition, we begin by giving a high-level outline of the retraining process. At iteration
t of the process, let θt ∈ Rd denote the current model and yt ∈ Rn denote the vector of the soft
predictions of the model on the training data. In the next iteration, the algorithm combines yt and
the observed noisy labels ŷ using the function gt to obtain gt(yt, ŷ) which are the target labels for
retraining in the (t + 1)th iteration. We refer to gt as aggregator function and keep it general for now.
We will later discuss different options for gt, including the Bayes-optimal choice.

Let us now delve into the details. With an aggregator function gt, we have the following update rule
for t ≥ 0:

θt+1 = 1√
n
XTgt(yt, ŷ) −Ctθ

t (model-update step), (4)

yt+1 = 1√
n
Xθt+1 − gt(yt, ŷ) d

n
(soft-prediction step). (5)

The function gt is applied entry wise, i.e., gt(yt, ŷ) is the vector whose ith (i ∈ [n]) entry is given by
gt(yti , ŷi). The coefficient Ct ∈ R is given by

Ct =
1

n

n

∑
i=1

∂gt
∂y
(y, ŷi)∣

y=yt
i

(6)

1As mentioned in [9], this is a reasonable simplification of the least squares’ solution for analysis purposes.

3

We initialize this process with g0(⋅, ŷ) = ŷ; notice that C0 = 0.

There are two crucial differences from the standard model in (3): (i) instead of having a normalization
factor of 1/n in the model-update step, we split it between the model-update and soft-prediction steps
in our process by incorporating a factor of 1/

√
n at each step. Note that the scaling of the estimator

does not matter since the predicted labels only depend on the direction of the estimator. (ii) we have
‘memory correction’ terms (−Ctθ

t and −gt(yt, ŷ) d
n

) in both steps.

The updates (4) and (5) are in the form of Approximate Message Passing (AMP), which was
introduced by adapting ideas from graphical models (belief propagation) and statistical physics to
estimation problems [13, 35, 18]. The memory correction terms −Ctθ

t and −gt(yt, ŷ) d
n

(also called
‘Onsager’ correction in statistical physics and the AMP literature) can be thought of as a momentum
term, and plays a key role in ensuring that the asymptotic distributions of (θt,yt) are Gaussian. To
build some insight on the role of these memory terms, note that the data matrix X is fixed across
iterations, and so θt, yt and X are correlated, which induces some bias in the estimates. The
memory terms are designed specifically to act as debiasing terms to compensate for this dependence.
Specifically, the effect of these corrections is the same as an iterative procedure without these terms,
wherein the data matrix is resampled at every iteration, making it independent from the current
estimates (as pointed out by [4, 12]). Of course the latter is not a practical algorithm, since the data
matrix is fixed, but it is shown that both will have the same limiting behavior.

3.2 Analysis of the Retraining Process

Assumption 1 We assume the following:

• As n, d→∞, the ratio d/n→ α ∈ (0,∞).

• The empirical distributions of the entries of (
√
dµ) (recall ±µ are the class means; see (1))

converges weakly to a probability distribution νM on R with bounded second moment. Let
γ2 = EνM

[M2].

• The function gt ∶ R × R↦ R is Lipschitz continuous.

We first characterize the test error of a model θ under our data model.

Test classification error. For a model θ, its predicted label for a test point x is given by sign(xTθ).
Therefore, the classification error amounts to (recall that Φ(u) = 1

√
2π ∫

u
−∞

e−t
2
/2dt):

Pe(θ) = P(yxTθ < 0) = P(y(yµT + zT)θ < 0) = P(yzTθ < −µTθ) = Φ(− µTθ

∥θ∥ℓ2
) . (7)

State evolution. A remarkable property of AMP algorithms is that their high-dimensional behavior
admits an exact description. In essence, the vectors θt,yt have asymptotically i.i.d. Gaussian entries
in the asymptotic regime (Assumption 2), at fixed t. The mean and variance of θt,yt can be computed
through a deterministic recursion called state evolution. The validity of state evolution has been
proved for a broad class of random matrices. Before describing it for our current setting, we establish
some notation.

Let Y be a random variable distributed as original labels, namely P(Y = 1) = π+ and P(Y = −1) = π−.
Also, let Ŷ be a random variable distributed as noisy labels, namely P(Ŷ = Y) = (1 − p) and
P(Ŷ = −Y) = p. The state evolution involves sequence of deterministic quantities (mt, σt)t≥0
defined by the following recursions:

m̄t = γ
√
αmt, σ̄2

t = α(m2
t + σ2

t)

mt+1 =
γ√
α

E{gt(m̄tY + σ̄tG, Ŷ)Y }, σ2
t+1 = E{g2t (m̄tY + σ̄tG, Ŷ)} , (8)

where G ∼ N(0,1) is independent of other random variables. The next theorem (proved in Ap-
pendix B) implies that the the empirical distribution of {(

√
dµi, θ

t
i)}di=1 converges weakly to the

probability distribution of (M, mt

γ
M + σtG), where (mt, σt) are given by the state evolution se-

quence. As a consequence, it can be used to characterize the limiting behavior of Pe(θ) (test error of
the model) in terms of state evolution sequence.

4

Theorem 3.1 Let (θt,yt)t≥0 be the AMP iterates given by (4)-(5). Also let (mt, σt)t≥0 be the state
evolution recursions given by (8). Then under Assumption 1, for any pseudo-Lipschitz function
ψ ∶ R2 → R the following holds almost surely for t ≥ 0:

lim
n→∞

∣1
d

d

∑
i=1

ψ(θti ,
√
dµi) − E [ψ(mt

γ
M + σtG,M)]∣ = 0 , (9)

where G ∼ N(0,1), M ∼ νM (see second bullet point of Assumption 1) are independent. Recall
that g0(⋅, ŷ) = ŷ, which corresponds to the initialization of state evolution recursion with m1 =
γ(1 − 2p)/

√
α and σ1 = 1. In addition, we have almost surely:

lim
n→∞

Pe(θt) = Φ
⎛
⎝
− mtγ√

m2
t + σ2

t

⎞
⎠
. (10)

3.3 Optimal Choice of Aggregator Functions

In the AMP iterations (4) and (5), θt is the model estimate and yt is the soft predictions vector at
iteration t. We will now discuss some examples of the aggregator function gt; in particular, these
examples describe the retraining methods proposed in [9]:2

• Full retraining [9]: In this case, gt(yt, ŷ) = sign(yt) for t ≥ 1. So in this type of retraining,
the noisy labels are not used and only the current model’s predicted labels are used.

• Consensus-based retraining [9]: Here, gt(yt, ŷ) = ŷ1(ytŷ > 0) for t ≥ 1. Thus, retraining
is done only using the samples for which the predicted label matches the noisy label.

Note that the result of Theorem 3.1 does not apply to these examples directly, because the gt’s here are
not Lipschitz. However, we can approximate them by Lipschitz functions, see (37) and Appendix F
for further details.

In this section, we aim to derive the optimal choice of aggregator functions. Note that from Equa-
tion (10), the test error of θt is an increasing function of mt/σt. Suppose that the retraining is run
for t iterations, so m̄t, σ̄t are determined. The optimal aggregator is the one that maximizes mt/σt.
Recalling the state evolution (8), we have

m2
t+1

σ2
t+1

= γ
2

α

E{gt(m̄tY + σ̄tG, Ŷ)Y }2

E{g2t (m̄tY + σ̄tG, Ŷ)}
≤ γ

2

α
E{(2qt − 1)2} , (11)

with qt ∶= P(Y = 1∣m̄tY + σ̄tG, Ŷ). The above inequality holds because by the law of iterated
expectations, we have

E{gt(m̄tY + σ̄tG, Ŷ)Y } = E{gt(m̄tY + σ̄tG, Ŷ)E{Y ∣m̄tY + σ̄tG, Ŷ }}
= E{gt(m̄tY + σ̄tG, Ŷ)(2qt − 1)} ,

and so (11) follows from Cauchy-Schwarz inequality. Also, the upper bound is achieved when gt is
(any scaling of) 2qt − 1. Therefore, for this optimal choice of g∗t we have

mt+1 =
γ√
α

E{(g∗t (m̄tY + σ̄tG, Ŷ))
2}, σ2

t+1 = E{(g∗t (m̄tY + σ̄tG, Ŷ))
2} , (12)

and so mt+1 = γ
√
α
σ2
t+1. We let ηt ∶= mt

σt
and so

mt =
√
α

γ
η2t , σt =

√
α

γ
ηt, m̄t = αη2t , σ̄2

t =
α2

γ2
η2t (η2t + 1) . (13)

Therefore, we can write the state evolution and the optimal aggregator, only in terms of ηt. We
formally state it in the next theorem (proved in Appendix C).

2It is worth mentioning that [9] analyze the simple model in (3) and not our AMP-based model.

5

Theorem 3.2 Recall that π+, π− are the class probabilities and p is the label flipping probability.
The optimal aggregator functions for the AMP-based procedure in (4)-(5) is given by:

g∗t (y, ŷ) =
2

1 + (p
1−p
)ŷ exp (− 2γ2y

α(η2
t+1)
)π−
π+

− 1 , (14)

for t ≥ 1 (recall that g∗0(⋅, ŷ) = ŷ). In addition, we have:

Pe(θt) pÐ→ Φ
⎛
⎝
− γηt√

η2t + 1
⎞
⎠
,

where (ηt)t≥1 is given by the following state evolution recursion:

η2t+1 =
γ2

α
E

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎛
⎝
g∗t (αη2t Y +

α

γ
ηt

√
η2t + 1G, Ŷ)

⎞
⎠

2⎫⎪⎪⎪⎬⎪⎪⎪⎭
, (15)

with initialization η1 = γ(1 − 2p)/
√
α.

We perform some simulations in Appendix E to verify our theory, and compare the performance of
optimal aggregator with the full retraining and the consensus-bases retraining schemes. Note that in
the noiseless regime (p = 0), the optimal aggregator becomes g∗t (y,1) = 1 and g∗y(y,−1) = −1 which
is expected because in this regime, ŷ is the ground truth label.

Discussion. The state evolution sequence (ηt)t≥0 in (15) can be rewritten as η2t+1 = F (η2t) with

F (u) = γ
2

α
E{(g̃ (γ2 u

1+u
Y + γ

√
u

1+u
G, Ŷ))

2

} , g̃(y, ŷ) = 2

1 + (p
1−p
)ŷe−2y π−

π+

− 1 . (16)

In Figure 1, we illustrate an example of this mapping along with the sequence (ηt)t≥1 (Cobweb
diagram). As can be observed from the figure (and also formalized in Proposition 3.3), the mapping
F is non-decreasing. When η1 is small, the sequence ηt increases, while if η1 is large, the sequence
decreases. Since the test error decreases as η increases, this leads to an interesting observation: if the
initial model is poor, retraining helps improve its performance, but if the initial model is already good,
retraining can actually hurt its performance. We formalize this observation in the next proposition
(proved in Appendix D).

Proposition 3.3 The following statements hold:

(i) The function F defined in (16) is non-decreasing on [0,∞). Also, it has at least one fixed point,
i.e., there exists a solution to η2 = F (η2). Let η2∗ be the smallest fixed point. If η1 ≤ η∗ then the state
evolution sequence (ηt)t≥1 is non-decreasing, and hence retraining reduces the test error.

(ii) Suppose that γ2 ≥
√

πα
2

. A sufficient condition for the sequence (ηt)t≥1 to be non-decreasing is

that p ∈ [p∗, 12), with p∗ < 1
2

being the unique solution of the equation: Φ(−γ2
(1−2p)

√
γ2(1−2p)2+α

) = p.

4 Generalized Linear Model (GLM)

Consider a data matrix X ∈ Rn×d, with rows x1, . . . ,xn ∼ N(0,Id/n),3 and corresponding labels
y = [y1, . . . , yn]⊺ ∈ Rn generated with the following probabilistic rule:

P(yi = 1∣xi) = h(xT
i β) ,

for a known link function h. However, the learner observes noisy labels ŷ = [ŷ1, . . . , ŷn]T ∈ Rn,
where the ŷi’s follow the same noise model as (2) with p being the label flipping probability. We also
define ĥp(z) ∶= (1 − p)h(z) + p(1 − h(z)). Note that P(ŷi = 1∣xi) = ĥp(xT

i β).

3The scaling of 1/n in the covariance matrix is for ease of exposition. Our analysis can be extended even if the
covariance matrix is Id at the cost of more tedious exposition.

6

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

Figure 1: Cobweb plot for the state evolution in Theorem 3.1, with two initializations: (small)
η1 = 0.2 and (large) η = 1. Here, γ = 1.5, p = 0.3, α = 2, π+ = 0.3, π− = 0.7.

AMP-based update rule: Similar to the AMP-based iterative update rule for GMM in (4)-(5), we
progressively update our classifier βt at iteration t with an aggregator function gt as follows:

βt+1 = XTgt(yt, ŷ) −Ctβ
t, (17)

yt+1 = Xβt+1 − gt(yt, ŷ) d
n
. (18)

Similar to the GMM case, the aggregator function gt is applied entry wise, the Onsager coefficient
Ct ∈ R is given by

Ct =
1

n

n

∑
i=1

∂gt
∂y
(y, ŷi)∣

y=yt
i

,

and the process is initialized with g0(⋅, ŷ) = ŷ.

We track the performance of the classifier βt via its test error. For a model θ, its predicted label for a
test point x is given by sign(xTθ). We first state the assumptions needed for our subsequent results.

Assumption 2 We assume the following:

• As n, d→∞, the ratio d/n→ α ∈ (0,∞).

• The empirical distributions of the entries of β converges weakly to a probability distribution
πβ̄ on R with bounded second moment. Let γ2 = Eπβ̄

[β̄2].

• The function gt ∶ R × R↦ R is Lipschitz continuous.

Our next lemma (proved in Appendix G) characterizes the test error of a model θ.

Lemma 4.1 For a model θ, define its test error Pe(θ) ∶= P(yxTθ < 0), where (x, y) is generated
from the GLM. Define ρ ∶= βTθ/(∥β∥ℓ2 ∥θ∥ℓ2). Then,

Pe(θ) = F (ρ) ∶= E
⎡⎢⎢⎢⎢⎣
Φ
⎛
⎝

ρZ√
1 − ρ2

⎞
⎠
(1 − h(

√
αγZ)) +Φ

⎛
⎝
−ρZ√
1 − ρ2

⎞
⎠
h(
√
αγZ)

⎤⎥⎥⎥⎥⎦
, (19)

with Z ∼ N(0,1). In addition, F is a decreasing function, if h(u) > h(−u), for all u > 0.

State evolution. We will describe state evolution just as we did for the GMM case. The state
evolution parameters (µt, σt)t≥1 are recursively defined by:

µ1 =
2

αγ2
E[Zĥp(Z)], σ1 =

√
α

µt+1 = E [E(Z ∣Zt, Ŷ) − E(Z ∣Zt)
Var(Z ∣Zt)

gt(Zt, Ŷ)] , σ2
t+1 = αE [g2t (Zt, Ŷ)] , (20)

7

where Z ∼ N(0, αγ2) and Zt = µtZ + σtG, where G ∼ N(0,1) is independent of other random
variables. In addition, Ŷ ∈ {−1,+1} with P(Ŷ = 1) = ĥp(Z). Using the joint Gaussianity of (Zt, Z),
we can calculate E(Z ∣Zt) and Var(Z ∣Zt) more explicitly, as follows:

E(Z ∣Zt) =
αµtγ

2

σ2
t + αµ2

tγ
2
Zt, Var(Z ∣Zt) =

ασ2
t γ

2

σ2
t + αµ2

tγ
2
. (21)

Using these identities, we can rewrite the state evolution recursion as:

µ1 =
2

αγ2
E[Zĥp(Z)], σ1 =

√
α, (22)

µt+1 = (
1

αγ2
+ µ

2
t

σ2
t

)E [E(Z ∣Zt, Ŷ)gt(Zt, Ŷ)] −
µt

σ2
t

E [Ztgt(Zt, Ŷ)] , σ2
t+1 = αE(g2t (Zt, Ŷ)) .

The next theorem establishes that for every fixed t, the asymptotic behavior of βt is precisely
characterized by the state evolution recursion, which in turn precisely provides the limiting behavior
of the test error of βt, for every fixed iteration t. The proof largely follows from the analysis of
generalized AMP (GAMPs) algorithm proposed by [35] along with Stein’s lemma to further simplify
the state evolution recursion (similar to [27, Proposition 3.1]). Please refer to Appendix H for further
details and initialization of the state evolution.

Theorem 4.2 Let (βt,yt)t≥0 be the AMP iterates given by (17)-(18). Also let (µt, σt)t≥0 be the
state evolution recursions given by (22). Then under Assumption 2, for any pseudo-Lipschitz function
ψ ∶ R2 → R the following holds almost surely for t ≥ 0:

lim
n→∞

∣1
d

d

∑
i=1

ψ(βt
i , βi) − E [ψ(µtβ̄ +

σt√
α
G, β̄)]∣ = 0 , (23)

where G ∼ N(0,1) and β̄ ∼ πβ̄ (see second bullet point of Assumption 2) are independent. Recall
that g0(⋅, ŷ) = ŷ, which corresponds to the initialization of state evolution recursion with µ1 =
2

αγ2 E[Zĥp(Z)] where Z ∼ N(0, αγ2), and σ1 =
√
α. In addition, we have almost surely,

lim
n→∞

Pe(βt) = F
⎛
⎜
⎝

ηtγ√
η2t γ

2 + 1
α

⎞
⎟
⎠
, (24)

where ηt = µt/σt and F (ρ) is given by (19).

Optimal choice of aggregator functions gt. Using Equation 24, and since F is a decreasing function,
the optimal gt is the one that, fixing the history of the algorithm, maximizes ηt+1. Invoking the state
evolution (20), we have

η2t+1 ∶=
µ2
t+1

σ2
t+1

=
E (E(Z∣Zt,Ŷ)−E(Z∣Zt)

Var(Z∣Zt)
gt(Zt, Ŷ))

2

αE(g2t (Zt, Ŷ))
≤ 1

α
E
⎛
⎝
[E(Z ∣Zt, Ŷ) − E(Z ∣Zt)

Var(Z ∣Zt)
]
2⎞
⎠
,

using the Cauchy-Schwarz inequality. The optimal aggregator for which the equality happens in the
above equation, is when the aggregator is (any deterministic scalar) of

g∗t (Zt, Ŷ) =
E(Z ∣Zt, Ŷ) − E(Z ∣Zt)

Var(Z ∣Zt)
=

E(Z ∣Zt, Ŷ)
ασ2

t γ
2

σ2
t +αµ2

tγ
2

−
µt

σ2
t

Zt = (
1

αγ2
+
µ2
t

σ2
t

)E(Z ∣Zt, Ŷ) −
µt

σ2
t

Zt . (25)

We give a more explicit characterization of the optimal aggregator in the next proposition, by writing
E(Z ∣Z,Ŷ) explicitly using the Bayes rule. We also show that the state evolution for the optimal
aggregator can be written directly in terms of ηt = µt/σt.

Theorem 4.3 The optimal aggregator functions in the AMP-based procedure is given by:

g∗t (y, ŷ) = (
1

αγ2
+ η2t)

∫
∞

−∞
ze−

η2
t z2

2 +
yz
α (ĥp(z))

1+ŷ
2 (1 − ĥp(z))

1−ŷ
2 e
− z2

2αγ2 dz

∫
∞

−∞
e−

η2
t
z2

2 +
yz
α (ĥp(z))

1+ŷ
2 (1 − ĥp(z))

1−ŷ
2 e
− z2

2αγ2 dz
− y
α
, (26)

8

for t ≥ 1, and g∗0(⋅, ŷ) = ŷ, where (ηt)t≥1 is given by the following state evolution recursion:

η1 =
2

α3/2γ2
E[Zĥp(Z)], η2t+1 =

1

α
E
⎧⎪⎪⎨⎪⎪⎩
(g∗t (αη2tZ + αηtG, Ŷ))

2⎫⎪⎪⎬⎪⎪⎭
, (27)

where Z ∼ N(0, αγ2) and G ∼ N(0,1) are independent of each other. In addition, Ŷ ∈ {−1,+1}
with P(Ŷ = 1∣Z) = ĥp(Z).

The proof of Theorem 4.3 is in Appendix I. Similar trends to those described after Theorem 3.2 also
hold in the context of GLMs. In Appendix J, we present a detailed discussion of a special case of
Theorem 4.3, specifically when the link function h is the sign function, along with additional remarks.

We discuss extension of our theory to the multi-class case and non-linear models in Appendix K.

5 Experiments

We show that extensions of the optimal g∗t derived in Theorem 3.2 is very effective for improving the
performance of standard linear probing (i.e., fitting a linear layer on top of a pretrained model) [1, 22]
as well as full network training with the cross-entropy loss for binary classification in the presence
of label noise. Here we consider two label noise models: (a) the uniform noise model in (2) with p
being the label flipping probability, and (b) a non-uniform noise model where P(ŷi = −1∣yi = +1) = p
and P(ŷi = +1∣yi = −1) = q with p ≠ q (independently for all i ∈ [n]). We adapt the derivation
in (34) (in the proof Theorem 3.2) by considering general means and variances (instead of symmetric
means and equal variances as in (34)) obtained by fitting a bimodal GMM on the distribution of the
unnormalized logits (∈ (−∞,∞)) of the training set. Suppose the means and variances of the peaks
corresponding to the positive and negative logits are (µ+, σ2

+) and (µ−, σ2
−), respectively. As shown

in Appendix M, the aggregators we obtain here for logit z and given label ŷ are the following for

(a) uniform noise model: g(z, ŷ) =
2

1 + (p
1−p)

ŷ
exp ((z−µ+)

2

2σ2+
−
(z−µ−)2

2σ2−
)
π−
π+

− 1, (28)

(b) non-uniform noise model: g(z, ŷ) =
2

1 + (q(1−q)
p(1−p))

1/2
(

pq
(1−p)(1−q))

ŷ/2
exp ((z−µ+)

2

2σ2+
−
(z−µ−)2

2σ2−
)
π−
π+

− 1,

with g(z, ŷ) being the soft prediction we use for training in the next round. We call our method using
the aggregation functions defined in (28) BayesMix RT, where RT is an abbreviation for retraining
as used in [9]. Note that these aggregation functions are specific to the noise model and also depend
on the noise model’s parameters (e.g., p, q), which may not be always available and easy to estimate.
So we propose the following simpler aggregation function that can be used under more general noise
models (e.g., sample-dependent noise) and in scenarios where the noise model is not known:

gsimple(z, ŷ) =
2

1 + γŷ exp ((z−µ+)
2

2σ2+
−
(z−µ−)2

2σ2−
)
π−
π+

− 1, (29)

where γ ∈ (0,1) is a constant which can be tuned (and gsimple(z, ŷ) is the soft prediction we
use for training in the next round). Essentially, (29) replaces the (p

1−p
) term in (a) of (28) by a

(tunable) constant γ. In our experiments, we fix γ to 0.7 throughout without any tuning, thereby
ensuring no reliance on the knowledge of the underlying noise model. We call our method using
gsimple(z, ŷ) BayesMix-Simple RT and also propose to use it for full-network training.4 We compare
BayesMix RT/BayesMix-Simple RT with full RT and consensus-based RT proposed in [9].

For all our experiments, we use the body of a ResNet-50 model pretrained on ImageNet. In linear
probing, we train only the linear head attached on top of the (frozen) pretrained body, while in full
network training, we train the body as well as the linear head. We consider two datasets available on
TensorFlow: (i) MedMNIST Pneumonia [42] which is a medical binary classification dataset, and (ii)
Food 101 [6] which is a multi-class food-based classification dataset, but we use only two similar
classes, for e.g., pho vs. ramen (because both are broth-based dishes). All the results are averaged
over 3 runs. The experimental details are deferred to Appendix N due to lack of space.

Linear probing. We run each method for 10 iterations. In Tables 1 and 2, we list the average
test accuracies of full RT, consensus-based RT, and BayesMix RT (28) after 1 and 10 iterations for
4It is worth clarifying that all our aggregation functions depend on the class prior probabilities π+ and π−.

9

MedMNIST Pneumonia corrupted by the uniform noise model with p = 0.45 (note that this is a
high degree of label noise) and the non-uniform noise model with p = 0.45 and q = 0.2, respectively.
Note that BayesMix RT is better than full RT and consensus-based RT after 10 iterations. Further,
in Table 6 (Appendix L), we conduct an ablation study on the uniform noise model to compare
the three RT methods at different values of p. Next, in Table 7 (Appendix L), we compare full RT,
consensus-based RT, and BayesMix-Simple RT (29) on MedMNIST Pneumonia corrupted by an
adversarial noise model described in Appendix L.

Full network training. As mentioned earlier, we propose to use BayesMix-Simple RT (29) for full
network training. We run full RT, consensus-based RT, and BayesMix-Simple RT for 3 iterations.5
In Tables 3 and 4, we list the average test accuracies of each method after 1 and 3 iterations for
Food-101 pho vs. ramen corrupted by uniform noise with p = 0.4 and Food-101 spaghetti bolognese
vs. spaghetti carbonara corrupted by non-uniform noise with p = 0.45 and q = 0.2, respectively. Note
that BayesMix-Simple RT is significantly better than full RT and consensus-based RT here (in fact,
the latter two methods do not yield any gains here).

Table 1: Linear probing and uniform noise (p = 0.45): Average test accuracies ± standard
deviation for MedMNIST Pneumonia. In the first iteration of retraining, consensus-based RT
performs the best, but at the tenth iteration, BayesMix RT performs the best.

Iteration # Full RT Consensus-based RT BayesMix RT (ours)
0 (initial model) 64.58 ± 3.07 64.58 ± 3.07 64.58 ± 3.07
1 67.15 ± 4.28 (2.57 ↑) 68.32 ± 1.88 (3.74 ↑) 65.06 ± 2.55 (0.48 ↑)
10 68.06 ± 3.78 (3.48 ↑) 70.03 ± 0.73 (5.45 ↑) 71.42 ± 2.43 (6.84 ↑)

Table 2: Linear probing and non-uniform noise (p = 0.45, q = 0.2): Average test accuracies
± standard deviation for MedMNIST Pneumonia. BayesMix RT performs the best.

Iteration # Full RT Consensus-based RT BayesMix RT (ours)
0 (initial model) 71.79 ± 1.71 71.79 ± 1.71 71.79 ± 1.71
1 77.62 ± 3.43 (5.83 ↑) 77.85 ± 2.69 (6.06 ↑) 82.63 ± 2.02 (10.84 ↑)
10 79.74 ± 3.40 (7.95 ↑) 82.85 ± 1.44 (11.06 ↑) 84.39 ± 0.79 (12.60 ↑)

Table 3: Full network training and uniform noise (p = 0.4): Average test accura-
cies ± standard deviation for Food-101 pho vs. ramen (both are broth-based dishes).
BayesMix-Simple RT is the clear winner; in fact, the other two RT methods do not lead to
any improvements.

Iteration # Full RT Consensus-based RT BayesMix-Simple RT (ours)
0 (initial model) 61.13 ± 3.39 61.13 ± 3.39 61.13 ± 3.39
1 59.07 ± 5.44 (2.06 ↓) 59.33 ± 4.83 (1.80 ↓) 66.73 ± 3.72 (5.60 ↑)
3 57.67 ± 7.47 (3.46 ↓) 58.47 ± 6.78 (2.66 ↓) 70.67 ± 4.65 (9.54 ↑)

Table 4: Full network training and non-uniform noise (p = 0.45, q = 0.2): Average test
accuracies ± standard deviation for Food-101 spaghetti bolognese vs. spaghetti carbonara (both
are spaghetti dishes). Again, BayesMix-Simple RT is the clear winner.

Iteration # Full RT Consensus-based RT BayesMix-Simple RT (ours)
0 (initial model) 65.45 ± 2.22 65.45 ± 2.22 65.45 ± 2.22
1 61.35 ± 7.31 (4.10 ↓) 61.30 ± 4.48 (4.15 ↓) 74.55 ± 3.75 (9.10 ↑)
3 56.50 ± 7.74 (8.95 ↓) 59.70 ± 5.57 (5.75 ↓) 80.30 ± 5.58 (14.85 ↑)

6 Conclusion

In this paper, we analyzed optimal model retraining by deriving the Bayes optimal aggregator function
to combine the given labels and model predictions for binary classification. Our framework quantified
the performance of this strategy over multiple retraining iterations. We also proposed a practical
variant and showed that it outperforms existing baselines under different label noise models. In the
future, we would like to extend our results to the multi-class classification setting and theoretically
analyze more general label noise models.

5Note that training an entire deep network is much more computationally expensive than linear probing.

10

Acknowledgments

AJ was partially supported by the Sloan fellowship in mathematics, the NSF CAREER Award DMS-
1844481, the NSF Award DMS-2311024, an Amazon Faculty Research Award, an Adobe Faculty
Research Award, and an iORB grant from USC Marshall School of Business.

References

[1] G. Alain and Y. Bengio. Understanding intermediate layers using linear classifier probes. arXiv
preprint arXiv:1610.01644, 2016.

[2] M.-R. Amini, V. Feofanov, L. Pauletto, E. Devijver, and Y. Maximov. Self-training: A survey.
arXiv preprint arXiv:2202.12040, 2022.

[3] J. Barbier, F. Krzakala, N. Macris, L. Miolane, and L. Zdeborová. Optimal errors and phase
transitions in high-dimensional generalized linear models. Proceedings of the National Academy
of Sciences, 116(12):5451–5460, 2019.

[4] M. Bayati and A. Montanari. The dynamics of message passing on dense graphs, with appli-
cations to compressed sensing. IEEE Transactions on Information Theory, 57(2):764–785,
2011.

[5] M. Bayati and A. Montanari. The lasso risk for gaussian matrices. IEEE Transactions on
Information Theory, 58(4):1997–2017, 2011.

[6] L. Bossard, M. Guillaumin, and L. Van Gool. Food-101 – mining discriminative components
with random forests. In European Conference on Computer Vision, 2014.

[7] Y. Carmon, A. Raghunathan, L. Schmidt, J. C. Duchi, and P. S. Liang. Unlabeled data improves
adversarial robustness. Advances in neural information processing systems, 32, 2019.

[8] Y. Chen, C. Wei, A. Kumar, and T. Ma. Self-training avoids using spurious features under
domain shift. Advances in Neural Information Processing Systems, 33:21061–21071, 2020.

[9] R. Das, I. S. Dhillon, A. Epasto, A. Javanmard, J. Mao, V. Mirrokni, S. Sanghavi, and P. Zhong.
Retraining with predicted hard labels provably increases model accuracy. In International
Conference on Machine Learning. PMLR, 2025.

[10] R. Das and S. Sanghavi. Understanding self-distillation in the presence of label noise. In
International Conference on Machine Learning, pages 7102–7140. PMLR, 2023.

[11] B. Dong, J. Hou, Y. Lu, and Z. Zhang. Distillation ≈ early stopping? harvesting dark knowledge
utilizing anisotropic information retrieval for overparameterized neural network. arXiv preprint
arXiv:1910.01255, 2019.

[12] D. L. Donoho, A. Javanmard, and A. Montanari. Information-theoretically optimal com-
pressed sensing via spatial coupling and approximate message passing. IEEE transactions on
information theory, 59(11):7434–7464, 2013.

[13] D. L. Donoho, A. Maleki, and A. Montanari. Message-passing algorithms for compressed
sensing. Proceedings of the National Academy of Sciences, 106(45):18914–18919, 2009.

[14] O. Y. Feng, R. Venkataramanan, C. Rush, R. J. Samworth, et al. A unifying tutorial on
approximate message passing. Foundations and Trends® in Machine Learning, 15(4):335–536,
2022.

[15] T. Furlanello, Z. Lipton, M. Tschannen, L. Itti, and A. Anandkumar. Born again neural networks.
In International Conference on Machine Learning, pages 1607–1616. PMLR, 2018.

[16] A. Goel, Y. Jiao, and J. Massiah. Pars: Pseudo-label aware robust sample selection for learning
with noisy labels. arXiv preprint arXiv:2201.10836, 2022.

11

[17] J. Han, P. Luo, and X. Wang. Deep self-learning from noisy labels. In Proceedings of the
IEEE/CVF international conference on computer vision, pages 5138–5147, 2019.

[18] A. Javanmard and A. Montanari. State evolution for general approximate message passing
algorithms, with applications to spatial coupling. Information and Inference: A Journal of the
IMA, 2(2):115–144, 2013.

[19] Y. Kabashima, F. Krzakala, M. Mézard, A. Sakata, and L. Zdeborová. Phase transitions and
sample complexity in bayes-optimal matrix factorization. IEEE Transactions on information
theory, 62(7):4228–4265, 2016.

[20] M. Kendall, A. Stuart, and J. Ord. Vol. 1: Distribution theory. London [etc.]: Arnold [etc.],
1994.

[21] A. Kumar, T. Ma, and P. Liang. Understanding self-training for gradual domain adaptation. In
International conference on machine learning, pages 5468–5479. PMLR, 2020.

[22] A. Kumar, A. Raghunathan, R. Jones, T. Ma, and P. Liang. Fine-tuning can distort pretrained
features and underperform out-of-distribution. arXiv preprint arXiv:2202.10054, 2022.

[23] D.-H. Lee et al. Pseudo-label: The simple and efficient semi-supervised learning method for
deep neural networks. In Workshop on challenges in representation learning, ICML, volume 3,
page 896. Atlanta, 2013.

[24] J. Li, R. Socher, and S. C. Hoi. Dividemix: Learning with noisy labels as semi-supervised
learning. arXiv preprint arXiv:2002.07394, 2020.

[25] Y. Li, J. Yang, Y. Song, L. Cao, J. Luo, and L.-J. Li. Learning from noisy labels with distillation.
In Proceedings of the IEEE International Conference on Computer Vision, pages 1910–1918,
2017.

[26] H. Mobahi, M. Farajtabar, and P. Bartlett. Self-distillation amplifies regularization in hilbert
space. Advances in Neural Information Processing Systems, 33:3351–3361, 2020.

[27] M. Mondelli and R. Venkataramanan. Approximate message passing with spectral initialization
for generalized linear models. In International Conference on Artificial Intelligence and
Statistics, pages 397–405. PMLR, 2021.

[28] A. Montanari, Y. Eldar, and G. Kutyniok. Graphical models concepts in compressed sensing.
Compressed Sensing, pages 394–438, 2012.

[29] A. Montanari and R. Venkataramanan. Estimation of low-rank matrices via approximate
message passing. The Annals of Statistics, 49(1), 2021.

[30] D. T. Nguyen, C. K. Mummadi, T. P. N. Ngo, T. H. P. Nguyen, L. Beggel, and T. Brox. Self:
Learning to filter noisy labels with self-ensembling. arXiv preprint arXiv:1910.01842, 2019.

[31] S. Oymak and T. C. Gulcu. Statistical and algorithmic insights for semi-supervised learning
with self-training. arXiv preprint arXiv:2006.11006, 2020.

[32] D. Pareek, S. S. Du, and S. Oh. Understanding the gains from repeated self-distillation. Advances
in Neural Information Processing Systems, 37:7759–7796, 2024.

[33] A. Perry, A. S. Wein, A. S. Bandeira, and A. Moitra. Message-passing algorithms for synchro-
nization problems over compact groups. Communications on Pure and Applied Mathematics,
71(11):2275–2322, 2018.

[34] A. Raghunathan, S. M. Xie, F. Yang, J. Duchi, and P. Liang. Understanding and mitigating the
tradeoff between robustness and accuracy. arXiv preprint arXiv:2002.10716, 2020.

[35] S. Rangan. Generalized approximate message passing for estimation with random linear mixing.
In 2011 IEEE International Symposium on Information Theory Proceedings, pages 2168–2172.
IEEE, 2011.

12

[36] S. Rangan and A. K. Fletcher. Iterative estimation of constrained rank-one matrices in noise.
In 2012 IEEE international symposium on information theory proceedings, pages 1246–1250.
IEEE, 2012.

[37] S. Reed, H. Lee, D. Anguelov, C. Szegedy, D. Erhan, and A. Rabinovich. Training deep neural
networks on noisy labels with bootstrapping. arXiv preprint arXiv:1412.6596, 2014.

[38] H. Scudder. Probability of error of some adaptive pattern-recognition machines. IEEE Transac-
tions on Information Theory, 11(3):363–371, 1965.

[39] K. Takanami, T. Takahashi, and A. Sakata. The effect of optimal self-distillation in noisy
gaussian mixture model. arXiv preprint arXiv:2501.16226, 2025.

[40] D. Tanaka, D. Ikami, T. Yamasaki, and K. Aizawa. Joint optimization framework for learning
with noisy labels. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 5552–5560, 2018.

[41] C. Wei, K. Shen, Y. Chen, and T. Ma. Theoretical analysis of self-training with deep networks
on unlabeled data. arXiv preprint arXiv:2010.03622, 2020.

[42] J. Yang, R. Shi, D. Wei, Z. Liu, L. Zhao, B. Ke, H. Pfister, and B. Ni. Medmnist v2-a large-scale
lightweight benchmark for 2d and 3d biomedical image classification. Scientific Data, 10(1):41,
2023.

[43] D. Yarowsky. Unsupervised word sense disambiguation rivaling supervised methods. In 33rd
annual meeting of the association for computational linguistics, pages 189–196, 1995.

[44] S. Zhang, M. Wang, S. Liu, P.-Y. Chen, and J. Xiong. How does unlabeled data improve
generalization in self-training? a one-hidden-layer theoretical analysis. arXiv preprint
arXiv:2201.08514, 2022.

13

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Theoretical claims are in Sections 3 and 4. Experiments are in Section 5.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Please see the second paragraph of Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

14

Justification: All proofs are in the appendix and we have mentioned in the main paper where
each proof is in the appendix. All assumptions are clearly stated in the main paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Experimental details are in Appendix N.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

15

Answer: [No]
Justification: All our datasets are publicly available (links provided in the paper). We have
provided experimental details in Appendix N to reproduce the results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Provided in Appendix N.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Our experiments are averaged over 3 runs and we have reported the means and
standard deviations.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Please see Appendix N.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have abided by it.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: Our work is primarily theoretical and we do not foresee any direct societal
impacts of our work. So we did not discuss this in the paper.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

17

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: There are no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have done it wherever it was relevant.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

18

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets have been released.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not have any such experiments.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not relevant to this paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

19

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were not involved in the core research of this paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

Appendix

A Related Work on Approximate Message Passing

Approximate message passing (AMP) refers to a class of iterative algorithms derived through
approximation of belief propagation on dense factor graphs [4, 28]. AMP algorithms were first
proposed for estimation in linear models [13], and for GLMs [35, 18]. AMP has since been applied to a
wide range of high-dimensional statistical estimation problems including Lasso and M-estimators [5],
low rank matrix estimation [36, 19, 29], and group synchronization [33], among others. AMP
algorithms come with many appealing properties. They can easily be tailored to take advantage of
prior information on the structure of the signal, such as sparsity or other constraints. In addition, under
suitable assumptions on the data matrix, AMP theory provides precise asymptotic characterization
of the behavior of the estimator (despite the randomness of data) in the high dimensional regime
where the ratio of the number of observations to dimensions converges to a constant. Even more, for
a wide class of estimation problems, AMP is conjectured to be optimal among all polynomial-time
algorithms (see e.g. [12, 3, 29]). We refer to [14] for a survey on AMP algorithms. In this work, we
use the machinery of AMP algorithms to rigorously understand the effect of retraining a model on its
predicted labels over multiple rounds.

B Proof of Theorem 3.1

To build some intuition on the statement of the theorem and the choice of memory correction terms,
we analyze the distribution of the first few estimate of the AMP updates in (4)-(5).

Since g0(⋅, ŷ) = ŷ, we have C0 = 0 and θ1 = 1
√
n
XTŷ. Under the GMM, we have X = yµT +Z with

Zij ∼ N(0,1), independently. Fixing y, we have that ŷ and Z are independent. We write

θ1 = 1√
n
XTŷ

= (µy
T +ZT)ŷ√
n

=
√
n

d

√
dµ

yTŷ

n
+ ZTŷ√

n
. (30)

By law of large number, yTŷ
n

p→ (1 − 2p). Also under Assumption 1, n
d
→ 1

α
and the empirical

distribution of
√
dµ converges weakly to distribution of M ∼ νM . Therefore the first term in the

decomposition (30) converges to (1 − 2p) M
√
α

. Given that ŷ and Z are independent, thee second
term is distributed as N(0,1). This implies that the empirical distribution of θ1 converges weakly
to M
√
α
(1 − 2p) + G, with G ∼ N(0,1). This implies the claim of the theorem for t = 1, with

m1 = γ(1 − 2p)/
√
α and σ1 = 1.

We next characterize the distribution of ŷ1 = 1
√
n
XTθ1 − d

n
ŷ, which also sheds light on the choice of

correction term − d
n
ŷ. We have

y1 = 1

n
XXTŷ − d

n
ŷ

= 1

n
(yµT +Z)(µyT +ZT)ŷ − d

n
ŷ

= 1

n
(yyT ∥µ∥2ℓ2 +ZµyT + yµTZT +ZZT)ŷ − d

n
ŷ

= (∥µ∥2ℓ2
yTŷ

n
+ 1

n
µTZTŷ)y + ZZT

n
ŷ − d

n
ŷ +Zµ

yTŷ

n
(31)

21

By law of large number and recalling Assumption 1, we have ∥µ∥2ℓ2
yTŷ
n

p→ (1 − 2p)γ2. Also given

that Z and ŷ are independent, ZTŷ
√
n
∼ N(0,In). Since ∥µ∥2ℓ2 → γ, which is of order one, we have

1
n
µTZTŷ converges to zero.

The remaining terms in (31) can be written as ∆ ∶= (ZZT

n
− d

n
In + ZµyT

n
)ŷ. Note that the term

E(ZZT/n) = (d/n)In and so ∆ is zero mean. (This also justifies the choice of correction term
− d

n
ŷ.) In addition, by virtue of the central limit theorem, each entry ∆i is approximately normal with

variance α2 + (1 − 2p)2γ2. This implies that the empirical distribution of entries y1, converges to
m̄1Y + σ̄1G, with

m̄1 = γ2(1 − 2p), σ̄2
1 = α + γ2(1 − 2p)2 .

The proof of Theorem 3.1 follows by adapting techniques from standard AMP analysis (see e.g., [18,
29, 14]), and so omitted here. A major step in the proof to characterize the conditional distribution of
θt,yt given the previous iterates (θτ ,yτ)τ<t, and then show that the ‘non-Gaussian components’
thereof are asymptotically canceled out by the memory correction terms. A technical challenge
though is that in the AMP theory the initialization should be independent from the random matrix X .
Here the initial estimator is θ1 =XTŷ/

√
n which depends on X . The trick is to consider the AMP

updates, starting from t = 0 with θ0 = 0 and g−1(⋅, ⋅) = 0. This way, the initialization is independent
of X and by update rule (4)-(5) we have y0 = 0 and with g1(y, ŷ) = ŷ we get θ1 =XTŷ/

√
n so we

will be on the trajectory of the updates.

To derive the limit of Pe(θ), we first note that the functions ψ(x, y) = xy and ψ(x, y) = x2 are
pseudo-Lipschitz (of order 2). Therefore, using (9), the following limits hold almost surely,

lim
n→∞

1

d
∥θ∥2ℓ2 = lim

n→∞

1

d

d

∑
i=1

∣(θti)2∣ = E [(mt

γ
M + σtG)

2

] =m2
t + σ2

t ,

lim
n→∞

1√
d
µTθt = lim

n→∞

1

d

d

∑
i=1

(
√
dµiθ

t
i) = E [(mt

γ
M + σtG)M] =

mt

γ
E[M2] =mtγ ,

where we used the identity E[M2] = γ2 (second bullet point in Assumption 1). Hence, by using (7),
we obtain

lim
n→∞

Pe(θ) = lim
n→∞

Φ(−µ
Tθt

∥θ∥ℓ2
) = Φ(− lim

n→∞

µTθt

∥θ∥ℓ2
) = Φ

⎛
⎝
− mtγ√

m2
t + σ2

t

⎞
⎠
,

where the second equality is by continuity of Φ.

C Proof of Theorem 3.2

Our derivation prior to the statement of Theorem 3.2 showed that the optimal aggregator g∗t is given
by any scaling of 2qt − 1; we will set the scaling to 1 so that the output of g∗t ∈ [−1,1]. By Bayes’
rule, we have

qt(y, ŷ) ∶= P(Y = 1∣m̄tY + σ̄tG = y, Ŷ = ŷ)

=
P (G = y−m̄t

σ̄t
, Ŷ = ŷ∣Y = 1)P(Y = 1)

P (G = y−m̄tY
σ̄t

, Ŷ = ŷ)

=
P (G = y−m̄t

σ̄t
, Ŷ = ŷ∣Y = 1)P(Y = 1)

P (G = y−m̄t

σ̄t
, Ŷ = ŷ∣Y = 1)P(Y = 1) + P (G = y+m̄t

σ̄t
, Ŷ = ŷ∣Y = −1)P(Y = −1)

=
P (G = y−m̄t

σ̄t
)P (Ŷ = ŷ∣Y = 1)P(Y = 1)

P (G = y−m̄t

σ̄t
)P (Ŷ = ŷ∣Y = 1)P(Y = 1) + P (G = y+m̄t

σ̄t
)P (Ŷ = ŷ∣Y = −1)P(Y = −1)

.

(32)

Under our noise model, we have

P(Ŷ = ŷ∣Y = 1) = (1 − p)
1+ŷ
2 p

1−ŷ
2 and P(Ŷ = ŷ∣Y = −1) = (1 − p)

1−ŷ
2 p

1+ŷ
2 . (33)

22

Also, G ∼ N(0,1) and P(Y = 1) = π+ and P(Y = −1) = π−. By substituting in (32) we get

qt(y, ŷ) =
(1 − p)

1+ŷ
2 p

1−ŷ
2 e
−
(y−m̄t)2

2σ̄2
t π+

(1 − p)
1+ŷ
2 p

1−ŷ
2 e
−
(y−m̄t)2

2σ̄2
t π+ + (1 − p)

1−ŷ
2 p

1+ŷ
2 e
−
(y+m̄t)2

2σ̄2
t π−

= 1

1 + (p
1−p
)ŷe
−2y

m̄t
σ̄2
t

π−
π+

.

(34)

By invoking (13), we have
m̄t

σ̄2
t

= αη2t
α2

γ2 η
2
t (η2t + 1)

= γ2

α(η2t + 1)
,

which by plugging into (32) gives the desired result.

Next by Equation (10) we have

Pe(θt) pÐ→ Φ
⎛
⎝
− γηt√

η2t + 1
⎞
⎠
.

For the sequence (ηt)t≥1, note that by (12), we have

η2t+1 ∶=
m2

t+1

σ2
t+1

= γ
2

α
E{g∗t (m̄tY + σ̄tG, Ŷ)2} ,

which gives the result after substituting for m̄t and σ̄t from (13). Also from Theorem 3.1, we have
η1 =m1/σ1 = γ(1 − 2p)/

√
α. This concludes the proof of theorem.

D Proof of Proposition 3.3

We start by proving the monotonicity of F in (i). Since η̄ = γ2 u
1+u

is increasing in u it suffices to
show that E{g̃(η̄Y +

√
η̄Ŷ)2} is non-decreasing in η̄. Recall that g̃ is the Bayes optimal estimator

and can also be characterized as g̃(Ỹ , Ŷ) = E[Y ∣Ỹ = η̄Y +
√
η̄G, Ŷ] (see derivation 32). Hence,

E[Y g̃(Ỹ , Ŷ)] = E[g̃(Ỹ , Ŷ)2] and we can write

R(η̄) ∶= E[(Y − g̃(Ỹ , Ŷ))2] = 1 − E[g̃(Ỹ , Ŷ))2].

So we need to show thatR(η̄) is decreasing in η̄.

Next note that by Bayes-optimality of g̃ we haveR(η̄) = infg E[(Y −g(Ỹ , Ŷ))2] where the infimum
is with respect to all measurable functions g, and Ỹ = η̄Y +

√
η̄G. Now take η̄1 < η̄2. The following

holds in distribution:

η̄1Y +
√
η̄1G

d= η̄1
η̄2
(η̄2Y +

√
η̄2G) +

¿
ÁÁÀη̄1 −

η̄21
η̄2
Z ,

where G,Z ∼ N(0,1) independent of each other. We then write

R(η̄1) = E[(Y − g̃(η̄1Y +
√
η̄1G, Ŷ))2]

= E [E [(Y − g̃(η̄1

η̄2
(η̄2Y +

√
η̄2G) +

√
η̄1 − η̄2

1

η̄2
z, Ŷ))

2

]] , (35)

where the inner expectation is conditional on Z = z and the outer expectation is with respect to Z.
For a fixed z, define the function

hz(y, ŷ) = g̃
⎛
⎝

η̄1

η̄2
y +
√
η̄1 − η̄2

1

η̄2
z, ŷ
⎞
⎠
.

23

Continuing from (35) we get

R(η̄1) = E [E [(Y − hz(η̄2Y +
√
η̄2G, Ŷ))

2

]]

≥ inf
g

E [(Y − g(η̄2Y +
√
η̄2G, Ŷ))

2

]

= R(η̄2) ,

where the inequality holds since hz is measurable function. This completes the proof of the non-
decreasing nature of F .

To prove the claim about fixed points in (i), consider the function H(u) ∶= u − F (u). We have
F (0) = γ2

α
E[g̃(0, Ŷ)2] > 0 and so H(0) < 0. Also, limu→∞ F (u) = γ2

α
E[g̃(γ2Y + γ, Ŷ)2] < γ2

α
.

Hence, limu→∞H(u) = ∞ and by the intermediate value theorem, H(u) has at least a zero which
corresponds to a fixed point of F .

Let η2∗ be the smallest fixed point of F (and so H(η2∗) = 0). Then, for any η < η∗ we have H(η2) < 0
and so η2 < F (η2). This implies that if η1 < η∗, then η21 < F (η21) = η22 . Further, by monotonicity of
F , per item (i), if η2t ≤ η2t+1, then η2t+1 = F (η2t) ≤ F (η2t+1) = η2t+2, which proves that the sequence
(ηt)t≥1 is monotone non-decreasing. Hence, the first step strictly reduces the test error and the next
rounds of retraining do not increase the test error.

We next proceed with (ii). By the argument in (i), if η21 < F (η21) then the sequence (ηt)t≥1 will be
non-decreasing. To this end, we derive a lower bound on F , such that F̃ (u) < F (u), ∀u ≥ 0, and
establish condition on the label flipping probability p, so that η21 ≤ F̃ (η21) with η1 = γ

√
α
(1 − 2p).

To construct F̃ , recall that g̃ is the Bayes-optimal aggregator given by g̃(Ỹ , Ŷ) = E[Y ∣Ỹ = η̄Y +√
η̄G, Ŷ]. Using the Cauchy–Schwarz inequality for all g,

E[g̃(Ỹ , Ŷ)2] ≥ E[E[Y ∣Ỹ , Ŷ]g(Ỹ , Ŷ)]2

E[g(Ỹ , Ŷ)2]
= E[Y g(Ỹ , Ŷ)]2

E[g(Ỹ , Ŷ)2]

with g̃ being the function for which the equality occurs. By choosing, g(Ỹ , Ŷ) = sign(Ỹ), we obtain
the following lower bound:

E[g̃(η̄Y +
√
η̄G, Ŷ)2] ≥ E[Y sign(η̄Y +

√
η̄G)]2 = E[sign(η̄ +

√
η̄G)]2 ,

since Y ∈ {−1,+1} is independent of G ∼ N(0,1). This gives the following lower bound on F (u),

F (u) ∶= γ
2

α
E{g̃(γ2 u

1 + u
Y + γ

√
u

1 + u
G, Ŷ)

2

}

≥ γ
2

α
E{sign(γ2 u

1 + u
+ γ
√

u

1 + u
G)}

2

∶= F̃ (u) .

We further simplify F̃ (u) as

F̃ (u) = γ
2

α
(1 − 2P(G < −γ

√
u

1 + u
))

2

= γ
2

α
(1 − 2Φ(− γ

√
u

1 + u
))

2

.

For η1 = γ
√
α
(1 − 2p), the condition η21 ≤ F̃ (η21) is equivalent to

p ≥ Φ
⎛
⎜
⎝
−γ

¿
ÁÁÀ η21

1 + η2
⎞
⎟
⎠
= Φ
⎛
⎝
− γ2(1 − 2p)√

α + γ2(1 − 2p)2
⎞
⎠

(36)

24

We next show that there is a unique p∗ ∈ (0,1/2) for which the above inequality becomes equality.

Define the function h(p) = Φ(− γ2
(1−2p)

√
α+γ2(1−2p)2

) − p. The first two derivatives are given by

h′(p) = ϕ
⎛
⎝
− γ2(1 − 2p)√

α + γ2(1 − 2p)2
⎞
⎠

2γ2α

(α + γ2(1 − 2p)2)3/2
− 1

h′′(p) = ϕ
⎛
⎝
− γ2(1 − 2p)√

α + γ2(1 − 2p)2
⎞
⎠

2γ4α(1 − 2p)
(α + γ2(1 − 2p)2)2

+ ϕ
⎛
⎝
− γ2(1 − 2p)√

α + γ2(1 − 2p)2
⎞
⎠

12γ4α(1 − 2p)
(α + γ2(1 − 2p)2)5/2

= ϕ
⎛
⎝
− γ2(1 − 2p)√

α + γ2(1 − 2p)2
⎞
⎠

2γ4α(1 − 2p)
(α + γ2(1 − 2p)2)2

⎡⎢⎢⎢⎣
1 + 6√

α + γ2(1 − 2p)2
⎤⎥⎥⎥⎦

We have h′(1
2
) = 2γ2

√
α
ϕ(0) − 1 =

√
2
π

γ2

√
α
− 1 > 0. Also h(1

2
) = 0, so h should be negative in

neighborhood before 1/2. Since h(0) > 0, there should be a root p∗ for h in (0, 1
2
). Therefore, h has

at least two zeros, p∗ and 1
2

. Also note that h is a convex function because h′′(p) > 0, and therefore,
these are the only two zeros of h. These properties give a clear picture of the function h: it will be
positive on [0, p∗), negative on (p∗, 12) and positive afterward. Hence, condition (36), i.e., h(p) ≤ 0
holds if p ∈ [p∗, 12), which completes the proof.

E Simulations to Verify the Theory in Section 3

In Figure 2, we compare the performance of different retraining methods on synthetic data, generated
from a GMM model. The mean vector µ is generated by drawing its entries from N(0,1) indepen-
dently, and then normalize it to have ∥µ∥ℓ2 = γ. The two plots in Figure 2 correspond to different
values of label noise p and γ. In both plots, we set the sample size to n = 1000, d = nα = 800 and
the class probabilities to π+ = 0.3 and π− = 0.7. The results are averages over 10 realizations of the
setting.

The Opt-AMP is the algorithm based on AMP updates (4)-(5), with the optimal aggregator function
(14). Vanilla is the linear classifier (3) without retraining, so its performance does not vary by
iteration, and its represented by a flat line. SE is the theoretical curve based on the state evolution
recursion, FT and CT respectively denote the full-retraining and the consensus-based retraining
without the memory correction terms. (Note that the memory corrections are not well-defined in these
cases since the aggregators are not Lipschitz and not differentiable everywhere.) From these plots,
we see that there is a great match between SE predictions and the simulated data point (Opt-AMP).
We also observe the superiority of Opt-AMP over other retraining methods as well as the vanilla
estimator.

In Figures 3 and 4, we compare Opt-AMP with some ‘approximate’ versions of full-retraining
and consensus-based retraining. Recall that the aggregator functions in these cases are given by
gt(y, ŷ) = sign(y) and gt(y, ŷ) = ŷ1(yŷ > 0). Since the aggregators are not Lipschitz, the result
of Theorem 3.1 (validity of state evolution) does not apply. Even the correction terms are not
well-defined. We instead approximate these aggregators as follows:

gFTt (y, ŷ) ≈
2

1 + e−βy
− 1, gCTt (y, ŷ) ≈

ŷ

1 + e−βyŷ
. (37)

For fixed β > 0 these functions are Lipschitz and hence the state evolution will predict the limiting
behavior. As β grows these approximations become tighter. We refer to Appendix F for derivation of
curves as β →∞ and further comparison between full retraining and consensus-based retraining.

As the state evolution curves indicate, Opt-AMP outperforms the other rules significantly. Also,
as we observe in Figure 3a, for the chosen parameters, the error of full retraining increases across
iteration, indicating that sometime the retraining may hurt the performance.

F Comparison of Full Retraining and Consensus-based Retraining

As discussed after Theorem 3.2, the AMP theory requires the aggregator function to be Lipschitz.
For both, the full-retraining (gt(y, ŷ) = sign(y)) and the consensus-based retraining (gt(y, ŷ) =

25

0 2 4 6 8 10
iteration

0.1

0.15

0.2

0.25

0.3

0.35

te
st

 e
rr

or

Opt-AMP
SE
Vanilla
FT
CT

(a) p = 0.4, γ = 1.5

0 2 4 6 8 10
iteration

0.255

0.26

0.265

0.27

0.275

0.28

0.285

0.29

te
st

 e
rr

or

Opt-AMP
SE
Vanilla
FT
CT

(b) p = 0.2, γ = 1

Figure 2: Synthetic Experiments: Comparison between different retraining methods. FT
and CT respectively denote the full-retraining and the consensus-based retraining without the
memory correction terms. Vanilla is the estimator without any retraining. Here n = 1000,
d = 800, π+ = 0.3, π− = 0.7. Dots are the Opt-AMP algorithm and the solid black curve is the
state evolution.

0 2 4 6 8 10
iteration

0.25

0.3

0.35

0.4

0.45

te
st

 e
rr

or

Opt-AMP
=1
=10
=100
=

(a) p = 0.2, γ = 1

0 2 4 6 8 10
iteration

0.1

0.11

0.12

0.13

0.14

0.15

te
st

 e
rr

or

Opt-AMP
=1
=10
=100
=

(b) p = 0.2, γ = 1.5

Figure 3: State evolution curves for Opt-AMP and the ‘approximate’ full retraining with the
memory correction terms. As β grows the approximation of full retraining becomes tighter.
Here α = 0.8, π+ = 0.3, π− = 0.7.

0 2 4 6 8 10
iteration

0.255

0.26

0.265

0.27

0.275

0.28

0.285

0.29

te
st

 e
rr

or

Opt-AMP
=1
=10
=100
=

(a) p = 0.2, γ = 1

0 2 4 6 8 10
iteration

0.1

0.11

0.12

0.13

0.14

0.15

te
st

 e
rr

or

Opt-AMP
=1
=10
=100
=

(b) p = 0.2, γ = 1.5

Figure 4: State evolution curves for Opt-AMP and the ‘approximate’ consensus-based re-
training with the memory correction terms. As β grows the approximation of full retraining
becomes tighter. Here α = 0.8, π+ = 0.3, π− = 0.7.

ŷ1(yŷ > 0)) the aggregator functions violate this assumption. As we discussed for Figures 3 and 4,
we approximate the aggregator functions by Lipschitz functions given below:

gFTt (y, ŷ) ≈
2

1 + e−βy
− 1, gCTt (y, ŷ) ≈

ŷ

1 + e−βyŷ
. (38)

26

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

(a) p = 0.2,
crossover at
η2
= 4.32.

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

(b) p = 0.25,
crossover at
η2
= 1.54.

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

(c) p = 0.3,
crossover at
η2
= 0.75.

Figure 5: The AMP update mappings for optimal aggregator, full-retraining and consensus-
based retraining. Here, γ = 1.5, α = 2, π+ = 0.3, π− = 0.7.

For these functions, we can run the AMP iterates (the memory correction terms are well defined)
and also derive the state evolution recursion to predict the asymptotic behavior of estimates across
iteration. We can then take the limit of β →∞ to make this approximation tight. It is worth noting
that the order fo limits are important; we take the limit β →∞ after taking the limit n, d→∞. The
state evolution curves for several values of β are plotted in Figures 3-4. Here, we derive the state
evolution curves for β →∞.

Full retraining: Consider the state evolution (8) with gFTt (y, ŷ). For fixed t, taking β →∞ results in
the following update:

m̄t = γ
√
αmt, σ̄2

t = α(m2
t + σ2

t), mt+1 =
γ√
α

E{sign(m̄tY + σ̄tG)Y }, σ2
t+1 = 1 .

Defining η̄t ∶= (m̄t

σ̄t
)2 and ηt ∶= mt

σt
=mt, the above recursion can be simplified to

η̄t = γ2
η2t

η2t + 1
, (39)

η2t+1 =
γ2

α
E{Y sign(

√
η̄tY +G)}2 , (40)

with initialization η1 = γ(1 − 2p)/
√
α.

Since Y ∈ {−1,+1} independent of G ∼ N(0,1), we have

E{Y sign(
√
η̄tY +G)} = E{sign(

√
η̄t +G)} = 2P(−G <

√
η̄t) = 2Φ(

√
η̄t) − 1 .

So the state evolution can be simplified as:

η2t+1 =
γ2

α

⎛
⎝
2Φ(γηt√

1 + η2t
) − 1
⎞
⎠

2

. (41)

Consensus-based retraining: Consider the state evolution (8) with gCTt (y, ŷ). For fixed t, taking
β →∞ results in the following update:

m̄t = γ
√
αmt, σ̄2

t = α(m2
t + σ2

t),

mt+1 =
γ√
α

E{Y Ŷ 1(Ŷ (m̄tY + σ̄tG) > 0)}, σ2
t+1 = E{1(Ŷ (m̄tY + σ̄tG) > 0)} .

Defining η̄t ∶= (m̄t

σ̄t
)2 and ηt ∶= mt

σt
=mt, the above recursion can be simplified to

η̄t = γ2
η2t

η2t + 1
, (42)

η2t+1 =
γ2

α

E{Y Ŷ 1(Ŷ (
√
η̄tY +G) > 0)}2

E{1(Ŷ (
√
η̄tY +G)) > 0}

, (43)

27

with initialization η1 = γ(1 − 2p)/
√
α.

Let ∆ ∶= Y Ŷ . Then P(∆ = 1) = 1 − p and P(∆ = −1) = p. Since G ∼ N(0,1) is independent of
Y, Ŷ , we have

E{Y Ŷ 1(Ŷ (
√
η̄tY +G) > 0)} = E{∆1(

√
η̄t∆ +G > 0)}

= E{∆Φ(
√
η̄t∆)}

= (1 − p)Φ(
√
η̄t) − pΦ(−

√
η̄t)

= −p +Φ(
√
η̄t) .

We also have

E{1(Ŷ (
√
η̄tY +G)) > 0} = E{P(∆

√
η̄t +G > 0)}

= E{Φ(∆
√
η̄t)}

= (1 − p)Φ(
√
η̄t) + pΦ(−

√
η̄t)

= p + (1 − 2p)Φ(
√
η̄t) .

Substituting these terms in (43), the state evolution reads:

η̄t = γ2
η2t

η2t + 1

η2t+1 =
γ2

α

(Φ(
√
η̄t) − p)2

p + (1 − 2p)Φ(
√
η̄t)

.

These derivations also provide valuable insight into full-retraining and consensus-based retraining.
We denote by FFT, FCT, and FOpt the AMP update mappings for full-retraining, consensus-based
retraining, and the Bayes-optimal aggregator, respectively. For example, the state evolution for full-
retraining is given by η2t+1 = FFT(η2t), with FFT given by (41). In Figure 5, we plot these functions
for different values of p. As we see, FOpt is uniformly larger than the other two mappings, and so the
corresponding state evolution sequence is uniformly larger than that of the other two aggregators.
Recall that the test error of θt decreases as ηt increases, and hence the optimal aggregator performs
better than the other two, at every iteration. For FFT and FCT, there is a crossover point: before this,
FCT(η2) > FFT(η2), and after it, FCT(η2) < FFT(η2). This is intuitive, because small η means
that the current model quality is poor, so the consensus-based aggregator, which takes into account
the noisy labels, works better. However, larger η means that the model quality is good enough that
full-retraining, which ignores the noisy labels, works better. Furthermore, the crossover point depends
on p: it increases as p decreases. This is also intuitive, because smaller p gives a larger range of η
where considering noisy labels in the retraining step is beneficial.

G Proof of Lemma 4.1

For a test data point (x, y), we have ŷ = sign(xTθ) and P(y = +1∣x) = h(xTβ). We let zθ ∶=√
nxTθ and zβ =

√
nxTβ. We have

Pe(θ) = P(yŷ < 0)
= P(zθ > 0, y = −1) + P(zθ < 0, y = 1)
= Ezβ[P(zθ > 0, y = −1∣zβ) + P(zθ < 0, y = 1∣zβ)]

We continue by calculating P(zθ > 0, y = −1∣zβ). Conditional on zβ, y and zθ are independent.
Therefore,

P(zθ > 0, y = −1∣zβ) = P(zθ > 0∣zβ)P(y = −1∣zβ) .

We have (zθ, zβ) ∼ N(0, [
∥θ∥2ℓ2 βTθ

βTθ ∥β∥2ℓ2
]). Hence,

zθ ∣zβ ∼ N(a, b), a = βTθ

∥β∥2ℓ2
zβ, b2 = ∥θ∥2ℓ2 −

(βTθ)2

∥β∥2ℓ2
.

28

Using this characterization, we get

P(zθ > 0∣zβ) = Φ(
a

b
) = Φ(ρ√

1 − ρ2
zβ

∥β∥ℓ2
)

Also under our data generative model, P(y = −1∣zβ) = 1 − h(zβ/
√
n). Note that zβ ∼ N(0, ∥β∥2ℓ2)

and
∥β∥ℓ2√

n
→
√
αγ, in probability. Hence, by Slutsky’s theorem,

P(zθ > 0, y = −1∣zβ) → Φ
⎛
⎝

ρZ√
1 − ρ2

⎞
⎠
(1 − h(

√
αγZ)) ,

in distribution with Z ∼ N(0,1). By a similar argument, we have

P(zθ < 0, y = 1∣zβ) → Φ
⎛
⎝
−ρZ√
1 − ρ2

⎞
⎠
h(
√
αγZ) .

Adding the previous two equations, we obtain the desired result.

We next show that F is decreasing. Using the relation Φ(−x) = 1 −Φ(x) we can write F (ρ) as:

F (ρ) = E
⎡⎢⎢⎢⎢⎣
h(
√
αγZ) +Φ

⎛
⎝

ρZ√
1 − ρ2

⎞
⎠
(1 − 2h(

√
αγZ))

⎤⎥⎥⎥⎥⎦
.

Hence,

F ′(ρ) = 1

(1 − ρ2)3/2
E
⎡⎢⎢⎢⎢⎣
Zϕ
⎛
⎝

ρZ√
1 − ρ2

⎞
⎠
(1 − 2h(

√
αγZ))

⎤⎥⎥⎥⎥⎦
,

with ϕ(u) = e−u
2
/2/
√
2π. For any z > 0, we have

zϕ
⎛
⎝

ρz√
1 − ρ2

⎞
⎠
(1 − 2h(

√
αγz)) − zϕ

⎛
⎝
−ρz√
1 − ρ2

⎞
⎠
(1 − 2h(−

√
αγz))

= 2zϕ
⎛
⎝

ρz√
1 − ρ2

⎞
⎠
(h(−

√
αγz) − h(

√
αγz)) < 0 , (44)

since z > 0 and by assumption h(u) > h(−u) for all u > 0. Also, since the Gaussian density is
symmetric, (44) implies that F ′(ρ) < 0, which completes the proof.

H Proof of Theorem 4.2

Similar to the proof of Theorem 3.1, we build some intuition by analyzing the behavior of the first
few estimate of AMP updates.

Since g0(⋅, ŷ) = ŷ, we have C0 = 0 and β1 = 1
√
n
XTŷ. Recall that under GLM setting the entries

of X are i.i. gaussian. Therefore, to analyze the distribution of β1, we use the rotation invariance
of Gaussian distribution, and without loss of generality we take β = ∥β∥ℓ2 e1. We then have P(ŷ =

1∣x) = ĥp(∥β∥ℓ2 x1). Also, β1 = [⟨x
(1), ŷ⟩
XT
−1ŷ

] where we used the decomposition X = [x(1)∣X−1].

Note that ŷ and X−1 are independent since β = ∥β∥ℓ2 e1. Hence, XT
−1ŷ ∼ N(0,Id−1), given that the

entries of X−1 are i.i.d drawn from N(0,1/n).

For the first entry, we write x(1) = z0/
√
n where z0 ∼ N(0,1). Then ⟨x(1), ŷ⟩ = 1

√
n
⟨z0, ŷ⟩. Note

that the variables z0,iŷi are i.i.d and

µ ∶= E[z0,iŷi] = E [Z0(2ĥp(
√
αγZ0) − 1)] = 2E [Z0ĥp(

√
αγZ0)] ,

with Z0 ∼ N(0,1). Also σ2 ∶= Var[z0,iŷi] = 1− 4E [Z0ĥp(
√
αγZ0)]

2

. By the central limit theorem,

(⟨x(1), ŷ⟩ −
√
nµ) converges in distribution to N(0, σ2). Writing it differently, ⟨e1,β1 −

√
n µβ
∥β∥ℓ2

⟩

29

converges in distribution to N(0, σ2) with e1 = (1,0, . . . ,0) ∈ Rd. In addition, by Assumption 2,
√
n

∥β∥ℓ2
→ 1
√
αγ

, and the the empirical distribution of the entries of β converges weakly to β̄ ∼ πβ̄ . This

implies that the empirical distribution of entries of β1 converges in distribution to µ
√
αγ
β̄ +G with

G ∼ N(0,1) independent of β̄, which verifies the claim of the theorem for t = 1 with

µ1 =
µ√
αγ
= 2√

αγ
E [Z0ĥp(

√
αγZ0)] =

2

αγ2
E [Zĥp(Z)] , σ1 =

√
α , (45)

with Z ∼ N(0, αγ2).
The formal proof largely follows from the analysis of generalized AMP (GAMP) algorithm [35],
which given an initial estimate β1, iteratively produces estimates β and yt of β and Xβ as follows:

βt+1 =XTgt(yt, ŷ) −Ctft(βt) Ct =
1

n

n

∑
i=1

∂gt
∂y
(yti , ŷi)

yt+1 =Xβt+1 −Btgt(yt, ŷ) Bt =
1

n

d

∑
j=1

∂ft
∂y
(βt

i)

where gt ∶ R2 → R and ft ∶ R→ R are Lipschitz in their first argument. Suppose that

1

n

⎡⎢⎢⎢⎢⎣

∥β∥2ℓ2 βTβ1

βTβ1 ∥β1∥2
ℓ2

⎤⎥⎥⎥⎥⎦

p→Σ1 .

With Σ1, the state evolution parameters µt ∈ R, σt ∈ R≥0,Σt ∈ R2×2 are recursively defined by

µt+1 = E(∂zgt(Zt, Ŷ (Z))), σ2
t+1 = E(gt(Zt, Ŷ (Z))2), (46)

Σt+1 = [αE(β̄2) αE(β̄ft+1(µt+1β̄ + σt+1Gt+1))
αE(β̄ft+1(µt+1β̄ + σt+1Gt+1)) αE(ft+1(µt+1β̄ + σt+1Gt+1)2)

] , (47)

where (Z,Zt) ∼ N(0,Σt), and Ŷ = Ŷ (Z) ∈ {−1,+1} with P(Ŷ = 1∣Z) = ĥp(Z). In addition,
Gt+1 ∼ N(0,1) independent of β̄ ∼ πβ̄ .

Similar to [27, Proposition 3.1], Stein’s lemma can be used to further simplify the state evolution.
Define

µZ,t =
Σt

2,1

Σt
1,1

, σ2
Z,t =Σt

2,2 −
(Σt

1,2)2

Σt
1,1

, (48)

and let Zt
d= µZ,tZ + σZ,tG with G ∼ N(0,1) independent of Z. Then, the state evolution can be

characterized by the sequence (µt, σt)t≥0 with

µt+1 = E(E(Z ∣Zt, Ŷ) − E(Z ∣Zt)
Var(Z ∣Zt)

gt(Zt, Ŷ)) , σ2
t+1 = E(gt(Zt, Ŷ)2) . (49)

It is proved that the state evolution recursion precisely characterize the asymptotic behavior of the
GAMP update as stated in the next theorem. We refer to [35] or [14] for a formal proof.

Theorem H.1 Let (βt,yt)t≥0 be the AMP iterates given by (17)-(18). Also let (µt, σt)t≥0 be the
state evolution recursions given by (22). Then, for any pseudo-Lipschitz function ψ ∶ R2 → R the
following holds almost surely for t ≥ 0:

lim
n→∞

∣1
d

d

∑
i=1

ψ(βt
i , βi) − E [ψ(µtβ̄ + σtG, β̄)]∣ = 0 ,

lim
n→∞

RRRRRRRRRRR

1

n

n

∑
j=1

ψ(yti , ŷi) − E [ψ(µZ,tZ + σZ,tG̃, Ŷ (Z))]
RRRRRRRRRRR
= 0 ,

where G ∼ N(0,1) and β̄ ∼ πβ̄ independently.

30

A challenge in applying Theorem H.1 is that it requires the initialization to be independent of the
random matrix X , a property that does not hold for β1 = XTŷ. The trick is that we consider the
AMP updates, starting from t = 0 with initialization β0 = 0 and g−1(⋅, ⋅) = 0, so the initialization is
independent of X . By the update rules, we get y0 = 0 and β1 =XTŷ, if we define g0(y, ŷ) = ŷ (and
so C0 = 0). In other words, in the next iteration we get our previous initialization. This way we can
apply Theorem H.1. Note that

1

n

⎡⎢⎢⎢⎢⎣

∥β∥2ℓ2 βTβ0

βTβ0 ∥β0∥2
ℓ2

⎤⎥⎥⎥⎥⎦

p→Σ0 = [αγ
2 0

0 0
] .

From (48), we have µZ,0 = σZ,0 = 0 and so by (49), we get

µ1 = E (E(Z ∣Z0, Ŷ) − E(Z ∣Z0)
Var(Z ∣Z0)

g0(Z0, Ŷ))

= E (E(Z ∣Ŷ)
αγ2

Ŷ) = 1

αγ2
E(Ŷ Z)

= 1

αγ2
E(2(ĥp(Z) − 1)Z) =

2

αγ2
E(Zĥp(Z))

where we used the fact that Z0 = 0 in this case (since µZ,0 = σZ,0 = 0) and g0(y, ŷ) = ŷ. In addition,
σ2
1 = E(g0(Z0, Ŷ)2) = 1. This is consistent with (45) where we applied the change of variable√
ασt → σt.

Next to obtain the state evolution recursion for t > 1, we recall the construction of Σt from (47), and
take ft to be the identity functions, by which we obtain

Σt = [αγ
2 αµtγ

2

αµtγ
2 α(µ2

tγ
2 + σ2

t)
] . (50)

By invoking (48), we have

µZ,t =
αµtγ

2

αγ2
= µt, σ2

Z,t = α(µ2
tγ

2 + σ2
t) −

(αµtγ
2)2

αγ2
= ασ2

t .

Hence, in the state evolution (49), we have Zt
d= µtZ +

√
ασtG, with Z ∼ N(0, αγ2). This results

in (20) after the change of variable
√
ασt → σt, and so Theorem 4.2 follows from the result of

Theorem H.1.

We next derive the limit of Pe(θ). As we showed in the proof of Theorem 3.1, functions ψ(x, y) = xy
and ψ(x, y) = x2 are pseudo-Lipschitz (of order 2). Therefore, using (23), the following limits hold
almost surely,

lim
n→∞

1

d
∥βt∥2

ℓ2
= lim

n→∞

1

d

d

∑
i=1

∣(βt
i)2∣ = E

⎡⎢⎢⎢⎢⎣
(µtβ̄ +

σt√
α
G)

2⎤⎥⎥⎥⎥⎦
= µ2

t E[β̄2] + σ
2
t

α
= µ2

tγ
2 + σ

2
t

α
,

lim
n→∞

1

d
∥β∥2ℓ2 = lim

n→∞

1

d

d

∑
i=1

∣(βi)2∣ = E[β̄2] = γ2 ,

lim
n→∞

1

d
βTβt = lim

n→∞

1

d

d

∑
i=1

(βiβ
t
i) = E [(µtβ̄ +

σt√
α
G) β̄] = µt E[β̄2] = µtγ

2 ,

where we used the identity E[β̄2] = γ2 (second bullet point in Assumption 2). Therefore, defining
ρt ∶= βTβt/(∥β∥ℓ2 ∥β

t∥
ℓ2
), we have

lim
n→∞

ρt =
µtγ

2

γ
√
µ2
tγ

2 + σ2
t

α

= ηtγ√
η2t γ

2+ 1
α

.

Next by Lemma 4.1 and continuity of function F , we have

lim
n→∞

Pe(βt) = lim
n→∞

F (ρt) = F (lim
n→∞

ρt) = F
⎛
⎜
⎝

ηtγ√
η2t γ

2 + 1
α

⎞
⎟
⎠
,

which concludes the proof.

31

I Proof of Theorem 4.3

The proof follows from (25) and an explicit derivation of E(Z ∣Zt, Ŷ). By Bayes rule,

P(Z = z∣Zt = zt, Ŷ = ŷ) =
P(Zt = zt, Ŷ = ŷ∣Z = z)P(Z = z)

∫
∞

−∞
P(Zt = zt, Ŷ = ŷ∣Z = z)P(Z = z)dz

=
1

√
2πσt

e
−
(zt−µtz)2

2σ2
t ĥp(z)

1+ŷ
2 (1 − ĥp(z))

1−ŷ
2

1
√
2παγ

e
− z2

2αγ2

∫
∞

−∞
1

√
2πσt

e
−
(zt−µtz)2

2σ2
t ĥp(z)

1+ŷ
2 (1 − ĥp(z))

1−ŷ
2

1
√
2παγ

e
− z2

2αγ2 dz

Therefore,

E(Z ∣Zt, Ŷ) = ∫
∞

−∞
ze
−
(u−µtz)2

2σ2
t ĥp(z)

1+ŷ
2 (1 − ĥp(z))

1−ŷ
2 e
− z2

2αγ2 dz

∫
∞

−∞
e
−
(u−µtz)2

2σ2
t ĥp(z)

1+ŷ
2 (1 − ĥp(z))

1−ŷ
2 e
− z2

2αγ2 dz

, (51)

which after substituting in (25), results in

g∗t (u, ŷ) = (
1

αγ2
+ µ

2
t

σ2
t

) ∫
∞

−∞
ze
−
(u−µtz)2

2σ2
t ĥp(z)

1+ŷ
2 (1 − ĥp(z))

1−ŷ
2 e
− z2

2αγ2 dz

∫
∞

−∞
e
−
(u−µtz)2

2σ2
t ĥp(z)

1+ŷ
2 (1 − ĥp(z))

1−ŷ
2 e
− z2

2αγ2 dz

− µt

σ2
t

u , (52)

In addition, using the characterization of g∗t in (25), the state evolution (22) can be written as

µ1 =
2

αγ2
E[Zĥp(Z)], σ1 =

√
α ,

µt+1 =
1

α
E{g∗t (µtZ + σtG, Ŷ)2} , σ2

t+1 = αµt+1 , (53)

with Z ∼ N(0, αγ2) and G ∼ N(0,1) independent of each other. In addition, Ŷ ∈ {−1,+1} with
P(Ŷ = 1∣Z) = ĥp(Z), and g∗0(⋅, ŷ) = ŷ.

We next note that by Equation 24, the test error depends on ηt = µt/σt. We proceed by writing the
state evolution (53) in terms of ηt. Note ηt+1 = µt+1

σt+1
=
√

µt+1
α

. By substituting for µt+1 = αη2t+1 and
σt =
√
αµt = αηt we arrive at

η2t+1 =
1

α
E{g∗t (αη2tZ + αηtG, Ŷ)2} , η1 =

2

α3/2γ2
E[Zĥp(Z)] .

The optimal aggregator (52) can also be written in terms of ηt as

g∗t (u, ŷ) = (
1

αγ2
+ η2t)

∫
∞

−∞
ze−

1
2 (

u
αηt
−ηtz)

2

ĥp(z)
1+ŷ
2 (1 − ĥp(z))

1−ŷ
2 e
− z2

2αγ2 dz

∫
∞

−∞
e−

1
2 (

u
αηt
−ηtz)2 ĥp(z)

1+ŷ
2 (1 − ĥp(z))

1−ŷ
2 e
− z2

2αγ2 dz
− u
α

= (1

αγ2
+ η2t)

∫
∞

−∞
ze−

η2
t z2

2 +uz
α ĥp(z)

1+ŷ
2 (1 − ĥp(z))

1−ŷ
2 e
− z2

2αγ2 dz

∫
∞

−∞
e−

η2
t
z2

2 +uz
α ĥp(z)

1+ŷ
2 (1 − ĥp(z))

1−ŷ
2 e
− z2

2αγ2 dz
− u
α

Finally, replacing u by y gives us the desired result.

J Special Case: Sign Link Function

In this section, we specialize the result of Theorem 4.3 to sign link function namely h(z) = 1+sign(z)
2

.
In this case y = sign(xTβ).

32

0 2 4 6 8 10
iteration

0.3

0.32

0.34

0.36

0.38

0.4

te
st

 e
rr

or

Opt-AMP
SE
Vanilla
FT
CT

(a) p = 0.2, n = 10K, d = 5K

0 0.5 1 1.5 2
0

0.5

1

1.5

2

(b) Cobweb plot for the state evo-
lution (56) in GLM setting

Figure 6: Synthetic Experiments: (a) Comparison between different retraining methods under
GLM setting with link function h(z) = (1 + sign(z))/2. FT and CT respectively denote the
full-retraining and the consensus-based retraining without the memory correction terms. Vanilla
is the estimator without any retraining. (b) Cobweb plot for the state evolution mapping in
(56).

Proposition J.1 Under the GLM setting with h(z) = 1+sign(z)
2

, the optimal aggregator functions in
the AMP procedure are given by:

g∗t (u, ŷ) =
1

st
⋅
(1 − 2p)ŷ

√
2
π
e−

u2s2t
2α2

1 + (1 − 2p)ŷ(2Φ(ust
α
) − 1)

, (54)

for t ≥ 1, and g̃0(⋅, ŷ) = ŷ, where s2t = (1α + η
2
t)−1 and the sequence (ηt)t≥1 is given by the following

state evolution recursion:

η1 =
1 − 2p
α

√
2

π
, (55)

η2t+1 =
1

α
E{g∗t (αη2tZ + αηtG, Ŷ)2} , (56)

with Z ∼ N(0, α) and G ∼ N(0,1) independent of each other. In addition, Ŷ ∈ {−1,+1} with
P(Ŷ = 1∣Z) = 1

2
+ 1−2p

2
sign(Z).

For the estimators βt given by the AMP updates (17)-(18), with the optimal aggregator function (54),
the following holds almost surely

lim
n→∞

Pe(βt) = 1

π
cos−1

⎛
⎜
⎝

ηt√
η2t + 1

α

⎞
⎟
⎠
. (57)

Figure 6a compares various retraining methods on synthetic GLM data, with β drawn from N(0,1),
n = 1000, d = 500, and label flip probability p = 0.2. Results are averaged over 10 runs.

Opt-AMP uses AMP updates with the optimal aggregator. Vanilla is a linear classifier without
retraining, shown as a flat line. SE is the theoretical state evolution curve. FT and CT are full-
retraining and consensus-based retraining methods without memory corrections, which are undefined
here due to non-Lipschitz, non-differentiable aggregators. The plots show close agreement between
SE predictions and Opt-AMP, and demonstrate the superior performance of Opt-AMP over other
methods and the vanilla estimator.

In Figure 6b, we plot the cobweb plot for the state evolution (55)-(56). As we see the state evolution
map is increasing and has at least one fixed point. Further, similar to the GMM setting, when η1 is
small (the initial model is poor), retraining helps improve its performance. However, if η1 is large
(above the fixed point) and so the initial estimator is already good enough, then retraining can actually
hurt its performance.

33

J.1 Proof of Proposition J.1

Consider the GLM setting with h(z) = 1+sign(z)
2

. In this case, ĥp(z) = 1
2
+ 1−2p

2
sign(z). Also, note

that the data generative process does not depend on γ (recall that ∥β∥2ℓ2 /d → γ2), since the sign
function is invariant to scaling. Hence, for simplicity we take γ = 1.

Before proceeding with this case, we derive an alternative expression for the optimal aggregator
functions. We define the shorthand s2t = (1α + η

2
t)−1 and mt = u

α
s2t . Also let f(z) = ĥp(z)

1+ŷ
2 (1 −

ĥp(z))
1−ŷ
2 , where the explicit dependence on the parameters p and ŷ is omitted in the notation for

simplicity. The function g∗t given by (54) can be written in terms of this notation as

g∗t (u, ŷ) =
1

s2t

∫ zf(z)e
−
(z−mt)2

2s2
t dz

∫ f(z)e
−
(z−mt)2

2s2
t dz

− u
α

Let Zt =mt + stZ with Z ∼ N(0,1). Then,

g∗t (u, ŷ) =
1

s2t

E[Ztf(Zt)]
E[f(Zt)]

− u
α

= 1

s2t

E[(mt + stZ)f(mt + stZ)]
E[f(mt + stZ)]

− u
α

= mt

s2t
− u
α
+ 1

s2t

E[stZf(mt + stZ)]
E[f(mt + stZ)]

= 1

st

E[Zf(mt + stZ)]
E[f(mt + stZ)]

. (58)

For the case of sign link function, where h(z) = 1+sign(z)
2

, the function f(z) can be written as

f(z) = ĥp(z)
1+ŷ
2 (1 − ĥp(z))

1−ŷ
2 = 1

2
+ 1 − 2p

2
sign(ŷz).

Using this expression in (58), we get

g∗t (u, ŷ) =
1

st

E{Zf(mt + stZ)}
E{f(mt + stZ)}

= 1

st
⋅ (1 − 2p)E[Zsign(ŷ(mt + stZ))]
1 + (1 − 2p)E[sign(ŷ(mt + stZ))]

(59)

To calculate the expectation in the numerator, we write

E{Zsign(mt + stZ)} = ∫
∞

−mt/st
z
e−z

2
/2

√
2π
− ∫

−mt/st

−∞
z
e−z

2
/2

√
2π

= ∫
∞

−mt/st
z
e−z

2
/2

√
2π
+ ∫

mt/st

∞
z
e−z

2
/2

√
2π
= 2√

2π
e
−

m2
t

2s2
t .

To compute the expectation in the denominator, we write

E{sign(mt + stZ)} = ∫
∞

−mt/st

e−z
2
/2

√
2π

dz − ∫
−mt/st

−∞

e−z
2
/2

√
2π

dz = 2Φ(mt/st) − 1 .

Substituting the previous two identities in (59), we obtain

g∗t (u, ŷ) =
1

st
⋅
(1 − 2p)ŷ

√
2/πe

−
m2

t
2s2

t

1 + (1 − 2p)ŷ(2Φ(mt

st
) − 1)

= 1

st
⋅
(1 − 2p)ŷ

√
2
π
e−

u2s2t
2α2

1 + (1 − 2p)ŷ(2Φ(ust
α
) − 1)

. (60)

34

Next note that (55) and (56) follows from Theorem 4.3 where we can calculate η1 explicitly as (note
that γ = 1 in the current case)

η1 =
2

α3/2
E[Zĥp(Z)]

= 2

α3/2
E [Z(1

2
+ 1 − 2p

2
sign(Z))]

= 1 − 2p
α3/2

E[∣Z ∣] = 1 − 2p
αγ

E[∣Z0∣] =
√

2

π

1 − 2p
α

.

To prove (57), note that under the GLM setting with sing link function, the true label of a features
vector x is given by y = sign(xTβ), while the prediction by a model βt are given by sign(xTβt).
Hence, Pe(βt) = P(⟨x,βt⟩⟨x,β⟩ < 0). Since x ∼ N(0,Id/n), letting Z1 =

√
n⟨x,β⟩/ ∥β∥ℓ2 and

Z2 =
√
n⟨x,βt⟩/ ∥βt∥

ℓ2
, we have (Z1, Z2) ∼ N(0, [

1 ρ
ρ 1

]) with ρ = ⟨βt,β⟩
∥β∥ℓ2

∥βt∥ℓ2
. Hence,

Pe(βt) = P(Z1Z2 < 0) =
1

π
cos−1(ρ) .

See e.g. [20, Section 15.10]. Using the result of Theorem 4.2,we have

ρ
p→ µtγ

2

γ
√
µ2
tγ

2 + σ2
t

α

= µtγ√
µ2
tγ

2 + σ2
t

α

= ηtγ√
η2t γ

2 + 1
α

= ηt√
η2t + 1

α

,

since γ = 1. This completes the proof.

K Extension of Theory to the Multi-Class Case and Non-Linear Models

Extension of theory to multi-class case. This can be done by following similar ideas in the binary
case, but will be heavier in notation and will involve more tedious analysis. Here we outline how this
extension can be made for the GMM case in Section 3. We first describe the setting. We define a
matrix Y ∈ Rn×k, where n is the number of samples and k is the number of classes, using one-hot
encoding, where column i has 1 for the samples belonging to class i and 0 otherwise. Next, we
define M ∈ Rk×d where row i is the mean feature vector of class i. Eq. (1) then transforms to
X = Y M + Z, where Z is random noise; so this is a low rank matrix (Y M is of rank k) plus
noise. We can then generalize the AMP iterations for this low-rank model. The forms of eqs. (4)
and (5) in this case will be the same with gt redefined appropriately for the matrix case (here it will
be applied row-wise instead of coordinate-wise). Also the coefficient Ct in (6) will now be a k × k
matrix, defined similarly using the Jacobian of gt instead of derivative. Likewise, the state evolution
recursion (8) will be of the same form, with the modification that mt, σt, m̄t, σ̄t are now vectors of
length k. The insights from the analysis will be similar but the analysis will be on multi-dimensional
objects. A similar extension can be made for GLMs in Section 4, where β should now be defined as
a matrix of size k × d. The extension here for the AMP iterates (17), (18) and the state evolution (22)
are similar to the GMM case described above.

Extension of theory to non-linear models. We note that the AMP techniques can be used to analyze
the statistical behavior of more general M-estimators (see for e.g., [14]). The corresponding update
rule will involve applying the aggregator function (aggregating current predictions and the given
noisy labels) as well as a gradient descent type of update (similar to eq. (4)). The exact details of
these updates and the analysis will be quite tedious and are left for future work.

35

L Remaining Empirical Results

In Table 5, we list the average test accuracies of full RT, consensus-based RT, and BayesMix RT (28)
after 1 and 10 iterations for Food-101 pho vs. ramen corrupted by the uniform noise model with
p = 0.45. In Table 6, we perform an ablation study to compare these three RT methods at different
values of p for the same dataset. Note that BayesMix RT performs the best for larger values of p, i.e.,
in the high label noise regime, whereas consensus-based RT performs the best for smaller values of
p.6

Table 5: Linear probing and uniform noise (p = 0.45): Average test accuracies ± standard
deviation for Food-101 pho vs. ramen with p = 0.45. In the first iteration, consensus-based RT
is the best, but at the tenth iteration, BayesMix RT is the best by a big margin.

Iteration # Full RT Consensus-based RT BayesMix RT (ours)
0 (initial model) 58.13 ± 2.54 58.13 ± 2.54 58.13 ± 2.54
1 61.33 ± 2.54 (3.20 ↑) 63.60 ± 3.22 (5.47 ↑) 60.53 ± 3.27 (2.40 ↑)
10 62.60 ± 2.12 (4.47 ↑) 64.87 ± 4.07 (6.74 ↑) 76.60 ± 6.00 (18.47 ↑)

Table 6: Linear probing under uniform noise with different values of p: Average test
accuracies ± standard deviation for Food-101 pho vs. ramen after 10 iterations of full RT,
consensus-based RT, and BayesMix RT. Observe that BayesMix RT performs the best for larger
values of p, i.e., the more challenging high-noise regime, whereas consensus-based RT performs
the best for smaller values of p.
p Initial training Full RT Consensus-based RT BayesMix RT (ours)

0.45 58.13 ± 2.54 62.60 ± 2.12 64.87 ± 4.07 76.60 ± 6.00
0.40 67.53 ± 3.88 74.60 ± 6.57 79.87 ± 6.32 83.00 ± 1.30
0.35 73.20 ± 2.29 79.27 ± 4.34 86.00 ± 3.77 85.33 ± 0.50
0.30 79.47 ± 1.65 83.13 ± 3.55 87.33 ± 2.00 85.40 ± 0.57

Adversarial noise model. Now we consider a much harder noise model wherein an adversary gets to
determine the “important” samples and flip their labels. The adversary determines important samples
by training the same model which will be trained by us, but with clean labels instead and orders
the samples in the decreasing order of the absolute value of the unnormalized logits. Note that a
higher logit absolute value implies that the model is very confident on the sample, so flipping the
label of such a sample would be more detrimental to the model’s training as it would need to adjust
the decision boundary by a large amount for this incorrectly labeled sample. The adversary then
flips the labels of the top α fraction of the samples with largest absolute values of the unnormalized
logits. Under this adversarial noise model with α = 0.25 for MedMNIST Pneumonia, we compare
BayesMix-Simple RT (29) with full RT and consensus-based RT after 1 and 10 iterations in Table 7
(again, the table below lists the average test accuracies).

Table 7: Linear probing and adversarial noise: Average test accuracies ± standard deviation
for MedMNIST Pneumonia. BayesMix-Simple RT performs the best.

Iteration # Full RT Consensus-based RT BayesMix-Simple RT (ours)
0 (initial model) 63.94 ± 1.51 63.94 ± 1.51 63.94 ± 1.51
1 66.83 ± 1.93 (2.89 ↑) 66.77 ± 1.78 (2.83 ↑) 67.15 ± 1.83 (3.21 ↑)
10 73.77 ± 0.79 (9.83 ↑) 76.76 ± 2.51 (12.82 ↑) 78.04 ± 1.98 (14.10 ↑)

M Derivation of the Aggregator used in Experiments

Here we show the derivation of (28) used in our experiments. This is a straightforward extension of
(32), (34) (in Appendix C) with means and variances of the Gaussians corresponding to the positive
and negative logits being (µ+, σ2

+) and (µ−, σ2
−), respectively. Specifically, letting z denote the logit

6Please note that real data may not necessarily follow the GMM setting in Section 3, so BayesMix RT being the
optimal strategy is not necessary.

36

and Y and Ŷ denote the ground truth label and observed label random variables, respectively, we
have (following the derivation of (32)):

g(z, ŷ) =

2P (G = z−µ+
σ+
)P (Ŷ = ŷ∣Y = 1)P(Y = 1)

P (G = z−µ+
σ+
)P (Ŷ = ŷ∣Y = 1)P(Y = 1) + P (G = z−µ−

σ−
)P (Ŷ = ŷ∣Y = −1)P(Y = −1)

− 1. (61)

(Notice that unlike (32), we dropped the dependence on t to lighten the notation.) Again, G ∼ N(0,1)
and P(Y = 1) = π+ and P(Y = −1) = π−. Also, under the uniform noise model, P (Ŷ = ŷ∣Y = 1)
and P (Ŷ = ŷ∣Y = −1) are the same as (33). This can be extended to the non-uniform noise model as
well, where P(Ŷ = −1∣Y = +1) = p and P(Ŷ = +1∣Y = −1) = q, to get:

P(Ŷ = ŷ∣Y = 1) = (1 − p)
1+ŷ
2 p

1−ŷ
2 and P(Ŷ = ŷ∣Y = −1) = (1 − q)

1−ŷ
2 q

1+ŷ
2 . (62)

Using all of this in (61) followed by some algebraic simplification gives us (28).

N Experimental Details

Here we provide details about our experiments.

Our experiments were done using TensorFlow and Keras on one 128 GB CPU and one 40 GB A100
GPU (per run). For initial training as well as for each iteration of retraining, the optimizer is Adam
(with default values of β1 = 0.9 and β2 = 0.999) with batch size = 32 & number of epochs = 10
for linear probing and batch size = 128 & number of epochs = 2 for full network training.7 We
also apply weight decay = 0.1 in the case of full network training to mitigate overfitting.8 We tune
the learning rate by monitoring the accuracy on a small clean validation set (i.e., the labels of the
validation set are not corrupted). For settings where we already know that the given labels will be
noisy, we can manually clean up a small part of the dataset and use that as the validation set to mitigate
overfitting. In each case, we first tune the learning rate for initial training; denote this by η0. Then for
each retraining method, we tune the learning rate for the first iteration and use it for all subsequent
iterations; denote this by η1.9 Note that we use the same value of η0 for all the retraining methods.
Also recall that in the adversarial noise model described in Appendix L, the adversary initially trains
the model with clean labels to determine the samples whose labels it wishes to flip. The adversary’s
training details are the same as described above; let us denote its learning rate, which is also tuned, by
ηadv. We tune ηadv, η0 and η1 from {5 × 10−3,10−3,5 × 10−4,10−4,5 × 10−5,10−5,5 × 10−6,10−6}.

1. MedMNIST Pneumonia (https://www.tensorflow.org/datasets/catalog/
pneumonia_mnist): This has 4708 training examples and comes with a validation set of
size 200. The test set consists of 624 examples.

2. Food-101 (https://www.tensorflow.org/datasets/catalog/food101): Each class
in Food-101 has 750 training examples; so the total number of examples for two classes
(pho vs. ramen and spaghetti bolognese vs. spaghetti carbonara) is 1500. Out of these 1500
examples, we randomly select 100 examples as our validation set. The test set consists of
500 examples in total.

7Note that training an entire deep network is much more computationally expensive than linear probing.
8Note full network training is much more prone to overfitting than linear probing.
9We observed that one learning rate for initial training and retraining does not work well.

37

https://www.tensorflow.org/datasets/catalog/pneumonia_mnist
https://www.tensorflow.org/datasets/catalog/pneumonia_mnist
https://www.tensorflow.org/datasets/catalog/food101

	Introduction
	Related Work
	Gaussian Mixture Model (GMM)
	Retraining Framework Inspired by Approximate Message Passing
	Analysis of the Retraining Process
	Optimal Choice of Aggregator Functions

	Generalized Linear Model (GLM)
	Experiments
	Conclusion
	Related Work on Approximate Message Passing
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Proposition 3.3
	Simulations to Verify the Theory in Section 3
	Comparison of Full Retraining and Consensus-based Retraining
	Proof of Lemma 4.1
	Proof of Theorem 4.2
	Proof of Theorem 4.3
	Special Case: Sign Link Function
	Proof of Proposition J.1

	Extension of Theory to the Multi-Class Case and Non-Linear Models
	Remaining Empirical Results
	Derivation of the Aggregator used in Experiments
	Experimental Details

