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Abstract

We propose a new method to adaptively modify the rhythm of a

given speech signal. We train a masked convolutional encoder-

decoder network to generate this attention map via a stochastic

version of the mean absolute error loss function. Our model

also predicts the length of the target speech signal using the en-

coder embeddings, which determines the number of time steps

for the decoding operation. During testing, we use the learned

attention map as a proxy for the frame-wise similarity matrix

between the given input speech and an unknown target speech

signal. In an open-loop fashion, we compute a warping path

for rhythm modification. Our experiments demonstrate that this

adaptive framework achieves similar performance as the fully

supervised dynamic time warping algorithm on both voice con-

version and emotion conversion tasks. We also show that the

modified speech utterances achieve high user quality ratings,

thus highlighting the practical utility of our method.

1. Introduction

Human speech is a rich and varied mode of communication that

encompasses both semantic information and the mood/intent

of the speaker. The latter attribute is primarily conveyed by

prosodic features, such as pitch, energy, and speaking rhythm.

Many open problems in speech rely on a deeper understand-

ing of and ability to manipulate these prosodic features. Con-

sider voice conversion and emotion conversion systems. Pitch

and energy modifications can be used to inject emotional cues

into the neutral speech or to change the overall speaking

style [1, 2, 3, 4, 5]. Prosodic features are also used to evaluate

the quality of human machine dialog systems [6], and they play

a significant role in speaker identification and recognition [7].

Rhythm, in particular, plays a crucial role in conveying emo-

tions [8] and in diagnosing human speech pathologies [9].

While there are many approaches for automated pitch and

energy modification [10, 11, 12, 13, 14], comparatively little

progress has been made in changing the rhythm of a speech

utterance. In fact, rhythm is difficult to manipulate because,

unlike pitch or energy, there is no explicit coding for the rel-

ative duration of phonemes across the utterance. Rather, this

information is implicitly defined and varies dramatically across

speakers and utterances. As a result, rhythm modification meth-

ods either require considerable user supervision or they are

geared towards aligning to known speech signals. Even prior

work on quantifying the transitory behavior of rhythm [15] is

limited and requires a priori alignment of the audio files.

Perhaps the earliest duration modification method is the

time-domain pitch synchronous overlap and add (TD-PSOLA)

algorithm [16]. TD-PSOLA modifies the pitch and duration of

a speech signal by replicating and interpolating between indi-

vidual frames centered at the peaks of auto-correlation signal.

However, the user must manually specify both the portion of

speech to modify and the exact manner in which it should be

altered. Methods such as [17, 18] take a more user-friendly and

performative approach to modify the pitch and rhythm, but they

still require manual input to guide the process. An alternate ap-

proach to changing rhythm is a framewise alignment between

a source utterance and a given target. Here, the most common

approach is Dynamic Time Warping (DTW) [19]. It is a dy-

namic programming approach to align two sequences of differ-

ent lengths. DTW requires both, the source and target speech

which renders it unusable for generative modeling.

Finally, recent advancements in deep learning have led to a

new generation of neural vocoders that disentangle the seman-

tic content from the speaking style [20, 21, 22]. These vocoders

can alter the speaking rate via the learned style embeddings.

While these models represent seminal contributions to speech

synthesis, the latent representations are learned in an unsuper-

vised manner, which makes it difficult for the user to control the

output speaking style. Another drawback is that these methods

require large amounts of data and computational resources for

adequate model training and speech generation [23, 24].

In this paper, we introduce an automated and adaptive

speech duration modification scheme. Our approach combines

the structured simplicity of dynamic decoding with the repre-

sentation capabilities of deep neural networks. Namely, we

model the alignment between a source and target utterance via

a latent attention map; these maps are used as replacement of

the similarity matrix for backtracking. We train a masked con-

volutional encoder-decoder network to estimate these attention

maps using a stochastic mean absolute error (MAE) formula-

tion. Unlike the conventional DTW [19] algorithm, once trained

our framework operates in an open-loop fashion on the source

utterance without needing access to the target. We demonstrate

our framework on a voice conversion task using the CMU-

Arctic dataset [25] and on three multi-speaker emotion con-

version tasks using the VESUS dataset [26]. Our experiments

confirm that the proposed model can perform adaptive duration

modification with limited training data and minimal distortion.

2. Method

Our technique uses an attention based encoder-decoder frame-

work to process an input sequence and produce another se-

quence as output. Specifically, the input sequences used in our

model are the Mel-frequency representation of a speech signal.

We further inject domain knowledge or prior into the neural

network model by restricting the scope of the attention map

between the encoded and decoded representations and strategi-

cally leverage DTW to generate intelligible speech. We provide

a brief description of the training/testing strategy followed by a
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Figure 1: Graphical model for rhythm modification. γ and θ are

the model parameters inferred during training. Attention At is

conditionally independent of target length T given X and M

discussion of the baseline methods at the end of this section.

Fig. 1 illustrates our underlying generative process. Given

an utterance X , we first estimate the length T of the (unknown)

target utterance Y and subsequently use it to estimate a mask

M for the attention map. The mask restricts the domain of the

attention vectors At at each frame t during the inference stage

to mitigate distortion. We use paired data (Xtr, Ytr) to train

a convolutional encoder-decoder network to generate the atten-

tion vectors. During testing, we first generate the attention map

from the input X and use it to produce the target speech Y .

2.1. Loss Function

Formally, let X ∈ R
D×Ts denote the frame-wise Mel filter-

bank energies extracted from the input speech. Here, D is the

number of filter banks, and Ts is the number of temporal frames

in the utterance. Similarly, we denote the target speech as Y ∈
R

D×T , where the target length T is usually different from Ts.

Our generative process for the target speech is as follows:

T ∼ Laplace(T 0
, bT ) and Yt ∼ Laplace(Y 0

t , by) ∀t, (1)

where Yt is the target Mel filter-bank energy features at time t.
We use Laplace distributions to leverage sparse nature of filter-

bank energies. The parameters {T 0, bT , Y
0

t , by} of the distri-

butions are unknown and implicitly estimated via a deep neural

network, which is parameterized by γ and θ (see Fig. 1).

By treating the unknown parameters as functions of the in-

put X , we obtain the following estimating equations for the tar-

get sequence length and frame-wise Mel filter-bank energies:

T̂ = fγ(X) and Ŷt = X ·At + fθ(X, Ŷ0:t−1). (2)

The functions fγ(·) and fθ(·, ·) correspond to the length predic-

tion and energy estimation component of the neural network.

The variable At ∈ R
Ts is an attention vector that combines

frame-wise features of the source utterance X to generate the

target frame Ŷt. Our model differs from standard sequence-to-

sequence model by treating the neural network predictions as

residuals added to input sequence itself, where these residuals

depend on input and the history of predictions Ŷ0:t−1. This au-

toregressive property allows the neural network to learn both

segmental and supra-segmental variations that can potentially

distinguish between different speakers or emotions.

During training, we use paired data (X,Y ) and maximize

the likelihood of the target speech signal with respect to the

neural network weights {θ, γ}. This likelihood can be written

P (Ŷ , T̂ |X) = P (T̂ |X)

T̂
∏

t=1

P (Ŷt|X, T̂ , Ŷ0:t−1), (3)

where, the second term in Eq. (3) can be obtained by introduc-

ing a deterministic attention mask M and marginalizing At:

P (Ŷt|X, T̂ , Ŷ0:t−1) =
∑

At

P (Ŷt, At|X, T̂ , Ŷ0:t−1,M)

=
∑

At

P (Ŷt|X, T̂ , At, Ŷ0:t−1)P (At|X, Ŷ0:t−1,M) (4)

The variable M here denotes the attention mask. We introduce

M for mathematical convenience, as it is a deterministic func-

tion of the source length Ts and the estimated length T̂ . We en-

code the attention At as a one-hot vector across the Ts frames

of the source speech. Thus, it follows a categorical distribution.

For simplicity, we model At as conditionally independent of the

target length T̂ given the mask M and the input X . Taking the

log(·) of likelihood term and combining with Eq. (4) yields:

L(θ, γ) = − log
(

∑

At

P (Ŷt, At|X, T̂ , Ŷ0:t−1,M)
)

− log
(

P (T̂ |X)
)

= − log
(

∑

At

qθ(At|X, Ŷ0:t−1,M)

qθ(At|X, Ŷ0:t−1,M)
P (Ŷt, At|X, T̂ , Ŷ0:t−1,M)

)

− log
(

P (T̂ |X)
)

≤ −
∑

At

qθ(At|X, Ŷ0:t−1,M) log
(

P (Ŷt|X,At, Ŷ0:t−1)
)

− log
(

P (T̂ |X)
)

+ KL(qθ(At)||P (At))

= −
∑

At

qθ(At|X, Ŷ0:t−1,M) log
(

P (Ŷt|X,At, Ŷ0:t−1)
)

− log
(

P (T̂ |X) − H(qθ) + const.

≤ −
∑

At

qθ(At|X, Ŷ0:t−1,M) log
(

P (Ŷt|X,At, Ŷ0:t−1)
)

− log
(

P (T̂ |X) + const.

(5)

The distribution qθ(·) above is an approximating distribution for

the attention vectors implemented by a convolutional network.

The first inequality uses the convexity of the− log function, and

the second inequality comes from the fact that entropy H(qθ) ≥

0. Notice that we have implicitly assumed P (At|X, Ŷ0:t−1,M)
has a uniform distribution over the masked region as a non-

informative prior. This is a reasonable assumption given that

the masking process reduces the attention domain to a small re-

gion. However, qθ is not penalized for deviating from this uni-

form distribution prior during training. This flexibility allows

the network to learn realistic attention vectors during autore-

gressive decoding. Eq. (5) can be easily translated into a neural

network loss function which we minimize for {θ, γ}:

L(θ, γ) = λ1 × EAt∼qθ

[

log
(

P (Ŷt|X,At, Ŷ0:t−1)
)]

+ λ2 × log
(

P (T̂ |X)
)

= λ1 × EAt

[

∥Ŷt − Y
0

t ∥1
]

+λ2 × ∥T̂ − T
0∥1 (6)
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Figure 2: Model architecture used for the sequence-to-sequence speech generation. The encoder and decoder modules consist of 10

identical blocks. Projection layers are simple feed-forward layers without any non-linearity to project input features in high dimension.

where λ1 and λ2 are the model hyperparameters that adjusts

the trade-off between the two objectives and contains the vari-

ances of the Laplace distributions. Notice that the loss in Eq. (6)

computes an expectation over the attention maps. We use the

Monte-Carlo estimate by sampling from the attention map at

each time-step. The training procedure is therefore stochastic

in nature due to this random sampling from the attention map.

2.2. Convolutional sequence-to-sequence model

We use a masked convolutional sequence-to-sequence model to

learn the duration transformation from one domain to another.

Fig. 2 shows the interplay between the encoder, decoder and

modified attention modules of our deep neural network. The

architecture is adapted from [27] by adding residual connec-

tions to the final layer and reconfiguring the attention module.

The encoder in Fig. 2 is a stack of gated convolutions which

performs two tasks: (i) approximating the length of the target

sequence and (ii) learning appropriate representation for the de-

coding process. We insert an attention module between the en-

coder and decoder layers to leverage locality constraint during

the generation of the output sequence. Notice that, a general

attention map uses the entire input sequence to decode a single

frame of the output sequence. Therefore, we apply a masking

strategy inspired by Itakura parallelogram of DTW framework

which acts as a prior knowledge over the difference in speaking

rates between the source and target domains. Masked convo-

lutions were initially proposed by [27] for language modeling.

This architecture allows the network to exploit local continuity

of speech and can be trained faster than a conventional RNN or

LSTM while also requiring fewer learnable parameters. These

advantages are important in cases of limited training data.

2.3. Masking

We use the mask M to constrain the scope of the attention

mechanism to be similar in time-scale to the input. This pro-

cedure is important for two reasons. From a speech quality per-

spective, large local swings in speaking rate may generate un-

intelligible speech. From an estimation perspective, the speech

utterances contains hundreds (sometimes thousands) of frames.

Slope 2 Slope 1.6 Slope 1.2

Figure 3: Binary attention masks with 3 different slopes.

It is difficult to robustly train a deep network to generate such

long attention vectors based on smaller datasets.

These masks are derived from Itakura parallelogram [28],

as illustrated in Fig. 3 and is different from [29] due to hard cut-

off in scope. The slope of the Itakura parallelogram specifies the

minimum and maximum speaking rates that the reconstructed

utterances are allowed to possess in comparison to the input

speech. In this paper, we fixed the minimum and maximum

variation in speaking rate to 0.8 and 1.25, respectively, based

on empirical observations of the training data.

2.4. DTW Back-Tracking

Our final step uses the learned attention map as a proxy for the

DTW similarity matrix. This strategy allows us to train the

model on a relatively small dataset (e.g., 2-3 hours) and still

generate intelligible speech during open-loop modification of

new utterances. Formally, we apply a dynamic programming

operation to the attention maps produced by the neural network

to get a path of alignment from source to target. To avoid skip-

ping phonemes, we constrain the dynamic programming path to

take at most one horizontal or vertical step at a time while back-

tracking. Once estimated, the path informs a reorganization of

the source utterance frames via localized contraction and dila-

tion operations. Following this reorganization, the target speech

is synthesized via the WORLD vocoder [30].

We train our model using mini-batch gradient descent and

the Adam optimizer [31] with a fixed learning rate of 10−4

and a batch size of 16. The input X are 80-dimensional Mel-

filterbank energies spanning 0-8 kHz. The projection layer ex-

pands this input to 256 dimensions. Both the encoder and de-

coder consist of 10 convolutional layers, each followed by a



gated linear unit. Given the small dataset size, we use data aug-

mentation to mitigate over-fitting. Specifically, we reverse the

input-output sequences and randomly extract intervals of vari-

able size (with probability 0.5) from the full speech utterance.

Algorithm 1: Strategy for model training

1 function trainModelParameters (X,Y );

Input : filterbank energies (X ∈ R
D×Ts , Y ∈ R

D×Tt )

Output: model parameters (θ, γ)

2 if epoch < MaxEpochs then

3 for minibatch do

4 Predict target length T̂ = fγ(X) and create

the mask M ∈ R
Ts×Tt ;

5 Estimate A ∈ R
Ts×Tt using masked

convolution and sample u ∼ U(0, 1);

6 if u < 0.2 then

7 Sample a ∈ R
Ts from ATs

;

8 Reconstruct using:

Ŷt = X · a+ fθ(X,Y0:t−1);

9 else

10 Reconstruct using:

Ŷt = X ·ATs
+ fθ(X,Y0:t−1);

11 end

12 Compute prediction errors and update

parameters;

13 end

14 epoch← epoch + 1;

15 end

16 return trainedModel;

2.5. Training and Testing Strategy

During training, we optimize Eq. 6 based on the Mel filterbank

energies Y and utterance durations T from paired input-output

utterances. The forward pass through the network (Fig. 2) pro-

cesses the input frames and generates an embedding to pre-

dict the target sequence length T̂ . The embedding is also used

to generate an attention vector as a categorical distribution at

each decoder step inside the specified masked region. We use a

stochastic sampling procedure for the attention vector, in which

we randomly mix between a single sample from the distribution

qθ and the MAP estimate. Empirically, this strategy provides

robustness to sub-optimal local minima (see Alg. 1).

During testing, we rely on the predicted length to gener-

ate the attention map and the target frames. We also use a MAP

strategy, rather than the stochastic mixing procedure. Once gen-

erated, we use the attention map as a proxy for the DTW simi-

larity matrix; using a Viterbi alignment procedure, we rearrange

the input frames to produce the modified speech (Alg.2).

2.6. Baseline Comparison Methods

We compare our convolutional encoder with two commonly

used sequence-to-sequence frameworks: (i) Gated Recurrent

Unit or GRU model [32], and (ii) Transformer model [33]. Due

to space limitations, further details of the baseline architectures

and training strategy have been omitted from the paper.

Algorithm 2: Strategy for model testing (i.e., open-

loop duration modification)

1 function modifyDuration (X);

Input : filter-bank energy (X ∈ R
D×Ts and Y0)

Output: alignments ((x1, y1), (x2, y2), ...)

2 Predict length of target sequence T̂t = fγ(X);

3 Create attention mask M ∈ R
Ts×T̂t and Set t = 0;

4 if t < T̂t then

5 Using mask Mt, X , and Y0:t−1 estimate At;

6 Using X , Y0:t−1, and At, predict Yt;

7 t← t+ 1;

8 end

9 Run DTW backtracking on the attention matrix A;

10 return (alignments (x1, y1), (x2, y2), ...(xn, yn));
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Figure 4: Length prediction errors (↓) across different models.

3. Experimental Results

We evaluate our rhythm modification framework on two pub-

licly available multi-speaker datasets: CMU-ARCTIC [25] for

voice morphing and VESUS [26] for emotion conversion.

3.1. Data and Conversion Tasks

The CMU-ARCTIC database has 4 American English speakers

(two male, two female), who we paired by gender for voice

conversion. Of the resulting 2264 sentence pairs, we train our

model and the baselines using 2164 utterances and reserve the

remaining 100 utterances (random 50-50 split) for validation

and testing of the open-loop modification properties.

VESUS is an emotional speech corpus containing utter-

ances in 4 emotion classes: neutral, angry, happy, and sad.

Each utterance contains 10 crowd-sourced ratings of emotional

saliency For robustness, we only use utterances that are cor-

rectly annotated by at least half of the listeners. We consider

three neutral-emotional conversion tasks as follows:

• Neutral to Angry: 2385 utterances for training, 72 for vali-

dation and, 61 for testing.

• Neutral to Happy: 2431 utterances for training, 43 for vali-

dation and, 43 for testing.

• Neutral to Sad: 2371 utterances for training, 75 for valida-

tion and, 63 for testing.

Due to the smaller sample size, we pretrain the models on

CMU-ARCTIC and fine-tune it for emotion conversion.
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Figure 5: Alignment similarity (↑) between attention and DTW.

3.2. Length Prediction

As a sanity check, we compare the predicted utterance length by

our framework with that of the ground truth parallel utterance.

Fig. 4 shows the error in predicting the length ratio in a ms/sec

format. Notice that, our framework mispredicts the utterance

lengths by only 40ms/sec and 65ms/sec (on average) on CMU-

ARCTIC and VESUS, respectively. Duration prediction is par-

ticularly challenging on VESUS due to marked differences be-

tween neutral and emotional utterances. The median prediction

error for GRU model is in the range of 400−600ms per second

of the input utterance. The Transformer fares relatively well

in comparison to GRU because of its ability to establish long-

range dependency. However, our framework performs slightly

better, perhaps due to the multi-task setup and the fusion of deep

representation with Bayesian regularization.

3.3. Attention Alignment

Next, we compare the open-loop alignment estimated via the

attention map with the supervised DTW algorithm where both

utterances are known. To compare the warping paths, we code

the horizontal, diagonal, and vertical moves of the backtrack-

ing procedure into three classes. We then compute the edit

distance between the attention map and DTW-based alignment

schemes. Fig. 5 illustrates the match ratio normalized by the

average length of sequences. As seen, the match ratio varies

between 0.70 and 0.85, which suggests that our convolutional

model can readily learn the general characteristics of duration

modification. The GRU model performs poorly in this task due

to its inability to learn sequence transformations across 100s

of frames. The Transformer model does a little better than the

GRU on this task, but still underperforms our method, likely

due to the small training dataset. Our proposed model performs

best because of the Itakura masking constraint and its reduced

parameterization, which permits learning in small-data regimes.

Thus, our method can be used as a tool for manipulation of

speaking rate at both, local and global scale.

3.4. Ablation Analysis: Removing Itakura masking

There are multiple components in the proposed model which

work in synchronised manner to produce naturally sounding

speech. In addition to the generative modeling, the two most

important augmentations we have made to the masked convolu-

tional network pipeline are: (i) using Itakura masking for atten-

tion map and (ii) using an attention weighted residual connec-

tion in the final layer. Therefore, we perform ablation exper-

iments to understand the relative significance of each of these
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Figure 6: (a) Length prediction of target utterances (↓) and (b)

measuring similarity of attention map (↑) to DTW cost matrix.

Model is trained without mask constraint on attention map.
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Figure 7: (a) Length prediction of target utterances (↓) and (b)

measuring similarity of attention map (↑) to DTW cost matrix.

Model is trained without residual connection in decoder layer.

augmentations. Our first experiment removes masking from the

attention layers. Fig. 6 shows the model’s performance on target

length prediction and approximating the DTW similarity ma-

trix. The results in Fig. 6(a) indicate that the length prediction

performance is roughly similar to the proposed model. This is

expected because, the encoder part of the network is exactly

same. The attention map is constrained only in the encoder-to-

decoder transition. Hence, it estimates length with a relatively

small error (in ms/sec). The match ratio metric however, (shown

in Fig. 6(b)) is considerably worse. Itakura masking procedure

acts as a good inductive bias/prior on the attention map because

the speech rate do not fluctuate drastically in human conversa-

tions. Therefore, our localization scheme for the attention map

is crucial to improve the edit distance in our model.

3.5. Ablation Analysis: Removing Residual connection

Our second ablation experiment involves removing the attention

weighted residual connection from the final layer of decoder.

Fig. 7(a) shows that the model is able to estimate the target se-

quence lengths with a relatively low error rate. We attribute this

to the fact that the encoder portion is same as proposed model.

The match ratio (Fig. 7(b)) in this experiment is slightly better

than the no-masking results but, worse than the proposed model.

Therefore, we can confidently say both Itakura masking scheme

and residual connection helps in approximating DTW similar-

ity matrix. Further, the presence of residual connection is ex-

tremely useful in providing a good gradient signal for the con-

volutional network to learn prediction of target frames. Since

the linguistic content of input and target utterances are same, it

further allows the neural network to inherit input speech prop-

erties which is helpful in auto-regressive generation mode.

3.6. Component-Wise Duration Analysis

Fig. 8 compares the differences in duration between the con-

verted utterances and the ground truth targets for vowels, con-
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Figure 9: Preference score (in %) of proposed method (↑) rela-

tive to the input with ground-truth as reference (crowd-sourced).

sonants and short pauses. We use the Penn Phonetic Forced

Alignment tool [34] to get the text and speech alignment. As

seen in Fig. 8, our method faithfully modifies the duration of

vowels and consonants, but it is less effective with short pauses.

This trend is intuitive, as our model relies on replication of

the frames determined by the backtracking on similarity map.

Therefore, it cannot create pauses if these frames do not exist in

the source utterances. Nonetheless, our model consistently es-

timates the difference between vowels and consonants duration

across multiple tasks, which corroborates our claim of develop-

ing a general purpose speech rate manipulation framework.

3.7. Rhythm Similarity Assessment

To evaluate the rhythm of modified speech, we design a crowd-

sourcing based preference test scheme. In this experiment, the

evaluators are asked to listen the ground-truth speech as a ref-

erence. It is then followed by a selection task between the un-

modified (source) and the modified utterance, whichever has the

highest perceptual similarity to the reference in terms of speak-

ing rate modulation. The results of this experiment are demon-

strated in Fig. 9. We can note that, the similarity scores are in

the range of 60-80% which is relatively high, considering that

source and ground-truth utterances have duration difference in

the order of 100-200ms only. CMU-VC task has the highest

similarity score mainly because of the long utterances that allow

the listeners to discern the differences in an effective manner.

Figure 10: Crowd-sourced MOS (↑) of generated speech

(hatched bars) vs the ground-truth samples from each task

(shaded left) and baseline transformer model (shaded middle).

3.8. Speech Reconstruction Quality

Finally, we use crowd sourcing to obtain a mean opinion score

(MOS) for the re-synthesized speech quality of the testing utter-

ances. The crowd sourcing was performed using Amazon me-

chanical turk (AMT). We collect 5 listener ratings for each con-

verted utterance in the test set, and we also add clean (ground-

truth) along with some noisy/distorted utterances to the con-

verted samples set to get the baseline scores and flag non-

invested listeners and bots on AMT. As seen in Fig. 10, our

method achieves an average MOS between 3.7− 4.0 across the

four tasks (rightmost bars). Further, the ground-truth baseline

score of each task (leftmost bars) are in the range of 4.5 − 5,

whereas the MOS score of speech generated by transformer

model (middle bars) are in the range of 2 − 3. It shows the

superiority of proposed model over transformer baseline. We

note that CMU-ARCTIC task has the lowest MOS, possibly

due to longer and more complex utterances. Interestingly, the

MOS is unaffected by errors in length prediction, as evidenced

by the VESUS neutral-angry emotion conversion task. Thus,

our model provides a robust way to alter speech characteristics.

4. Conclusions

We have introduced a new framework for adaptive rhythm mod-

ification. Our model used an attention based convolutional

encoder-decoder architecture to estimate attention maps which

associate frames of the input speech with frames of the target

speech. The attention maps are modeled as latent variables in a

graphical framework, which lead to a stochastic formulation of

the mean absolute error (MAE) loss for model training. During

testing, the attention map is directly used as an approximation

of the similarity matrix for a DTW-style backtracking proce-

dure. We evaluated our framework on a voice conversion and

three separate emotion conversion tasks using CMU-ARCTIC

and VESUS corpora. Our evaluation metrics are the L1 dis-

tance for target length prediction, and an edit distance based

matching ratio for path similarity. Our proposed model out-

performed existing seq-2-seq models designed solely on trans-

former and LSTM architectures in both metrics. Further, we

ablate our proposed model’s performance against simpler ver-

sions of it, i.e., no residual connection and no Itakura masking

scheme. These ablations showed that removing either of these

components leads to poor match ratio performance. Overall,

our framework produced similar duration modification as the

vanilla DTW, but without requiring access to the target utter-

ance. Finally, we showed that the re-synthesized speech had

similar naturalness to most state-of-the-art neural vocoders.
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