
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

AGENTQUEST: BENCHMARKING LLM AND VLM
AGENTS ON LONG-HORIZON INTERACTIVE TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) and Vision Language Models (VLMs) possess
extensive knowledge and exhibit promising reasoning abilities, however, they still
struggle to perform well in complex, dynamic environments. Real-world tasks re-
quire handling intricate interactions, advanced spatial reasoning, long-term plan-
ning, and continuous exploration of new strategies—areas in which we lack ef-
fective methodologies for comprehensively evaluating these capabilities. To ad-
dress this gap, we introduce AgentQuest, a novel benchmark designed to assess
the agentic capabilities of LLMs and VLMs through a diverse set of challenging
games. Our benchmark incorporates a range of existing reinforcement learning
environments with varying levels of difficulty, including tasks that are solvable by
non-expert humans in seconds to extremely challenging ones that may take years
to master (e.g., the NetHack Learning Environment). We devise fine-grained met-
rics to measure performance and conduct an extensive evaluation of several pop-
ular open-source and closed-source LLMs and VLMs. Our findings indicate that
while current models achieve partial success in the easier games, they struggle sig-
nificantly with more challenging tasks. Notably, we observe severe deficiencies
in vision-based decision-making, as models perform worse when visual represen-
tations of the environments are provided. We release AgentQuest as an open and
user-friendly benchmark to facilitate future research and development in the agen-
tic community.

1 INTRODUCTION

Recent successes of Large Language Models (LLMs) have renewed interest in building general-
purpose agents capable of autonomously achieving complex goals Yang et al. (2023). LLMs possess
vast knowledge across domains (Brown, 2020; Hendrycks et al., 2020), can reason in specific scenar-
ios (Wei et al., 2022a; Shinn et al., 2023; Rein et al., 2023), and can reliably follow human instruc-
tions in simple settings (Ouyang et al., 2022). These abilities suggest that LLMs have the potential
to become efficient agents, capable of autonomously performing a wide range of human tasks that
require sequential decision making. In the present day, however, state-of-the-art models continue to
exhibit persistent failure modes on many of the skills that are crucial for autonomous real-world in-
teraction. For example, LLMs fail to act robustly in dynamic environments, and they cannot reliably
learn from mistakes, reason about space and time, or plan over long time horizons (Xing et al., 2024;
Yamada et al., 2023; Kambhampati et al., 2024). Improving our understanding of LLM capabilities
through rigorous, safe evaluations is key for assessing the risks and limitations of deploying agentic
LLMs in the real world.

Current agentic benchmarks evaluate LLM performance in settings that involve no more than a
few dozen rounds of interaction between a model and an environment, e.g., solving simple office
tasks (Wang et al., 2024), navigating the Internet (Zhou et al., 2023), and resolving GitHub is-
sues (Jimenez et al., 2023). New agentic prompting frameworks and improvements to short-horizon
reasoning via LLMs like OpenAI o1 have led to dramatic and fast-paced gains in state-of-the-art per-
formance on these benchmarks (OpenAI, 2024b; Wang et al., 2023; Fernando et al., 2023; Hu et al.,
2024). However, many realistic tasks require orders of magnitude more interactions (Pignatiello
et al., 2020; Wansink & Sobal, 2007).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: An overview of the AgentQuest Benchmark for evaluating LLMs on long-context
interactive tasks. Submissions of new inference-time methods for improving the capabilities of an
existing model via an “agentic strategy” need only modify the agent.py file. Similarly, bench-
marking a new model zero-shot can be done by adjusting a configuration file in client.py. The
agent class includes a prompt builder to manage observation history, and a client that abstracts the
complexities of various APIs and model-serving frameworks. The env wrapper.py file standard-
izes interaction across settings, and the evaluator executes agents and collects performance metrics.

In this paper, we argue that the next frontier for language and vision-language model capabilities lies
in long-horizon reasoning and decision-making. To that end, we propose AgentQuest, a benchmark
and framework that aggregates a diverse set of complex reinforcement learning game environments
into a unified testbed for research on long-context LLMs. Games have historically served as highly
effective metrics for evaluating progress in deep reinforcement learning research (Bellemare et al.,
2013; Silver et al., 2018; Schrittwieser et al., 2020; Vinyals et al., 2019). By aggregating many
different game environments into a single evaluation, we look to spur progress on developing truly
generalist agents that can meaningfully address embodied, real world tasks. Specifically AgentQuest
enables seamless running of LLM and VLM agents on BabyAI, Crafter, TextWorld, Baba Is AI,
MiniHack, and NetHack (Chevalier-Boisvert et al., 2019; Hafner, 2021; Côté et al., 2019; Cloos
et al., 2024; Samvelyan et al., 2021; Küttler et al., 2020). These environments have lightweight
simulators, ensuring that the benchmark is affordable for the research community. Furthermore,
while all of these games are long-horizon, they span a broad range of difficulty levels, from tasks
where we see fair zero-shot performance by state-of-the-art long-context models (BabyAI) to those
where even specialized neural models trained on billions of in-domain datapoints make very limited
progress (NetHack) (Piterbarg et al., 2024; Klissarov et al., 2023; Wołczyk et al., 2024). AgentQuest
is difficult to solve through simple memorization – all of the environments used in the benchmark
are procedurally generated, and encountering the same instance of an environment twice is unlikely.

Using the six proposed environments, we evaluate the capabilities of various popular LLMs and
VLMs. We employ a fine-grained metric that captures how close each model is to completing a task,
which gives us a thorough understanding of the resulting trajectories. In our qualitative analysis, we
study the agents’ capabilities for spatial reasoning, systematic exploration, long-term planning, and
discovering environment dynamics. We find that the current top LLMs show promise on the simplest
tasks but completely fail to make meaningful progress on the more difficult tasks, such as MiniHack
and NetHack. Some of the models exhibit knowledge about the game from pre-training but fail to
use it in practice. For example, in NetHack, GPT-4o often dies from the consumption of rotten food,
even though, when prompted, it correctly identifies it as very dangerous. Furthermore, we study the
impact of the input representation. Although the majority of the environments were created with
vision in mind, we find that multimodal LLMs perform much worse when also presented with an

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

image of the environment rather than a textual-only description of the observation. This suggests
that reliable vision-based decision-making is currently far outside our reach.

Our results show that AgentQuest is a very difficult benchmark that still allows us to observe fine-
grained progress in crucial areas such as long-term planning, spatial reasoning and navigation. We
share the codebase and open the benchmark for external submissions. We summarize our contribu-
tions as follows:

• AgentQuest, a suite of six reinforcement learning environments for testing the agentic ca-
pabilities of long-context LLMs. We provide a fine-grained metric for model evaluation,
and we develop a novel data-informed progression system for NetHack.

• Baseline evaluations of state-of-the-art LLMs on AgentQuest using zero-shot prompting, in
both Language-Vision and Language-only modalities. We show that while models exhibit
decent performance on easier games, all are very far from solving the hardest game in the
benchmark, NetHack. We observe that the performance drops further when images of the
environment are presented, suggesting severe problems with VLM decision-making.

• We perform a qualitative analysis of the results across capabilities such as spatial reasoning,
systematic exploration, and long-term planning. We identify an intriguing knowing-doing
gap where the models cannot employ the knowledge they possess.

• An open-source toolkit for benchmarking long-context models on AgentQuest. This toolkit
enables researchers and practitioners to quickly evaluate model performance. While the
baseline evaluations performed in this paper are zero-shot, the AgentQuest toolkit sup-
ports inference-time prompting strategies like chain-of-thought (Wei et al., 2022b), few-
shot learning, and more.

2 AGENTQUEST

AgentQuest is a benchmark and framework that aims to improve our understanding of whether ex-
isting long-context LLMs are agentic, i.e., whether they can be used to automate complex activities
that require sequential decision-making. It supports model evaluation on challenging reinforcement
learning environments that test skills such as long-term planning, spatial reasoning, and the ability
to deduce the mechanics of the environment.

By design, the AgentQuest framework explicitly decouples inference-time prompting strategies
from underlying models. The goal of this design choice is two-fold: (1) to facilitate rapid prototyp-
ing of inference-time methods for improving model performance on long-context decision-making
beyond zero-shot prompting and (2) to ensure that model evaluations are consistent and rigorous.

In the remainder of this section, we introduce the game environments evaluated in the benchmark
and we discuss our protocols for model submission to the AgentQuest Benchmark Leaderboard1.

2.1 ENVIRONMENTS

AgentQuest evaluates long-context models as agents on the games described below.

BabyAI. (Chevalier-Boisvert et al., 2019; Carta et al., 2023) A simple, two-dimensional grid-world
in which the agent has to solve tasks of varying complexity described in natural language (e.g.,
“go to the blue ball, then pick up the grey key”). Agents are tested across five different types of
navigation tasks, see Appendix A.

Crafter. (Hafner, 2021) A Minecraft-inspired grid environment where the player has to explore,
gather resources and craft items to ensure their survival. Agents are evaluated based on the number
of achieved milestones, such as discovering new resources and crafting tools, see Appendix B.

TextWorld. (Côté et al., 2019) An entirely text-based game with no visual component, where the
agent has to explore mazes and interact with everyday objects through natural language (e.g., “cook
potato with oven”). Unlike the other environments in AgentQuest, TextWorld is not a grid-world.
Models are evaluated on three different tasks, see Appendix C.

1This Leaderboard will open to the public at the time of publication.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 1: The tested skills, time horizons, and complexities of interactive decision-making tasks
evaluated in AgentQuest. Compared to existing benchmarks, AgentQuest provides infrastructure
for evaluating model reasoning and decision-making on harder, longer time-horizon interactive set-
tings. The evaluated tasks span a range of difficulties.

Skills BabyAI TextWorld Crafter Baba Is AI MiniHack NLE

Navigation ✔ ✔ ✔ ✔ ✔ ✔

Exploration ✔ ✔ ✔ ✔ ✔ ✔

Resource Management ✗ ✔ ✔ ✗ ✔ ✔

Complex Credit Assignment ✗ ✗ ✔ ✔ ✔ ✔

Deducing Env. Dynamics ✗ ✗ ✗ ✔ ✔ ✔

Long-term Planning ✗ ✗ ✗ ✔ ✔ ✔

Turns to Complete 101 102 103 102 102 104–105

Time to Master for Humans Seconds Minutes Hours Hours Hours Years

Baba Is AI. (Cloos et al., 2024) An environment based on the popular puzzle video game Baba
Is You. The player manipulates the rules of the game world by pushing word blocks, altering how
objects interact. Agents are tested on 40 puzzles, see Appendix D.

MiniHack. (Samvelyan et al., 2021) MiniHack is a multi-task framework built on top of the NetHack
Learning Environment (Küttler et al., 2020). We select five different tasks, Maze, Corridor, Corridor-
Battle, Boxoban, and Quest. Collectively, they assess a wide range of skills, including exploration,
navigation, long-term planning, and resource management, see Appendix E.

NetHack Learning Environment (NLE) (Küttler et al., 2020) is based on the classic roguelike
game NetHack, known for its extreme difficulty and complexity. Success in NetHack demands both
long-term strategic planning, since a winning game can involve hundreds of thousands of steps, as
well as short-term tactics to fight hordes of monsters. Accurate credit assignment is also crucial
to understanding which actions contributed to success or failure. It takes human players years to
master NetHack without accessing external guides. Notably, we find that research shows that LLMs
can answer questions about the game mechanics and optimal strategies (see Appendix F.5), but they
fail to apply this knowledge in practice. See Appendix F for more details.

Table 1 provides an overview of the environments used in the benchmark, detailing the reasoning
and agentic capabilities required to succeed in each. This diverse set of environments positions
AgentQuest as a comprehensive benchmark for assessing the capabilities of LLM agents, making it
a valuable tool for evaluating their performance for years to come.

2.2 SUBMITTING TO THE BENCHMARK LEADERBOARD

The AgentQuest benchmark accepts two types of submissions.

New Models. Submissions may include any type of new model, such as large language models
(LLMs), vision-language models (VLMs), large-action models (LAMs), or fine-tuned versions of
existing models. The key requirement is that these models must be capable of generating actions in
natural language. By default, these models will be evaluated zero-shot.

Agentic Strategies. Submissions may propose novel inference-time prompting strategies for im-
proving the reasoning, planning, or in-context learning capability of an existing model. These strate-
gies should extend beyond simple zero-shot prompting for direct action prediction, demonstrating
more sophisticated techniques for inference-time decision-making.

3 ZERO-SHOT EVALUATION PROTOCOL

In this section, we provide a description of our protocols for evaluating state-of-the-art, long-context
LLMs and VLMs on AgentQuest. These evaluations are intended to serve as baselines for the
benchmark. As a result, they probe zero-shot performance only.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.1 EVALUATION SETTING

We aim to keep the evaluation setting simple. During each timestep of interaction, agents are
prompted to output the next action as a natural language string, conditioned on their past interaction
history in the environment. To perform successfully in AgentQuest, models must demonstrate robust
instruction-following capabilities, including reading and interpreting game rules, understanding the
action space, and producing valid actions to complete tasks effectively.

To address cases where the LLMs/VLMs output hallucinated or invalid actions, AgentQuest pro-
vides feedback to the agent indicating the action’s invalidity, it then executes a default fallback
action (such as a “do-nothing” action or a standard move like “north”), and logs the occurrence for
trajectory statistics. This ensures that the interaction remains continuous and robust while enabling
users to analyze the context and frequency of such errors in post-evaluation analysis.

A diagrammatic visualization of AgentQuest is shown in Figure 1. We conceptualize the agent as a
combination of the underlying LLM/VLM model and a particular prompting strategy. We provide a
unified client wrapper that seamlessly integrates APIs for closed-source LLMs and VLMs such as
OpenAI, Gemini, and Claude and allows users to effortlessly switch and evaluate models. For the
evaluation of locally-served models, we include native support for the vLLM library (Kwon et al.,
2023), which optimizes throughput by efficiently batching generation requests. We use multiple
seeds for each environment to ensure the statistical significance of the results.

Metrics To ensure a fair and interpretable evaluation, we introduce a standardized metric, scoring
performance on each task within a range of 0 to 100. For environments like MiniHack, BabyAI,
and Baba Is AI, each episode is scored as either 0 or 100 based on task completion. For TextWorld,
Crafter, and NetHack we use as the score a real number between 0 and 100, representing the pro-
portion of achievements toward the maximum score. For NetHack, as the game scoring system does
not adequately reflect actual progression (Wołczyk et al., 2024), we propose a novel, data-informed
progression metric, described in Appendix F.2, to better capture agent performance.

Performance AgentQuest supports highly parallelized evaluations, leveraging the lightweight simu-
lators of each of the environments in the suite. These evaluations allow multiple agents and environ-
ment instances to run concurrently with minimal computational overhead. Environment instances
run asynchronously from one another, accommodating varying observation lengths and ensuring
that agents with faster generation speeds (per action) are not affected by slower agent bottlenecks.

3.2 OBSERVATIONS

In the initial prompt, the agent is introduced to the game rules and provided with a list of avail-
able actions, each accompanied by a brief description. To prevent model overspecialization, we
design a general prompt that is not fine-tuned to any specific LLM. Subsequent prompts present the
observation-action history in a chat-based format. The game rules and observations are conveyed
from the perspective of the “user”, while prior actions are attributed to the “assistant” or “model”
role, depending on the type of model used. This structure mirrors the standard format used for fine-
tuning instruction-following LLMs. Detailed examples of game observations are included in the
appendices.

Except for TextWorld, which lacks a visual component, we evaluate all environments using two
observation modalities:

Language Only Format Observations are expressed as natural language descriptions of the envi-
ronment’s state (e.g., “a wall 5 steps ahead, a wall 2 steps to the left. . . ”). For environments without
native textual representations, we either generate descriptions using open-source language wrappers
(BabyAI (Carta et al., 2023), Crafter (Wu et al., 2023), NetHack, and MiniHack (Goodger et al.,
2023)) or develop a custom wrapper ourselves (Baba is AI, see Appendix D)

Vision-Language Format For VLMs, the observation consists of an image representing the envi-
ronment’s current state, alongside its natural language description (mentioned above). In this format,
the image corresponds only to the current observation, although we support including multiple im-
ages in the observation history.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 2: Baselines for AgentQuest. We evaluate the zero-shot performance of seven state-of-the-
art and long-context LLMs and VLMs on AgentQuest. During each timestep of interaction, models
are prompted to output the next in-game action conditioned on past interaction history. Standard
error is obtained by running multiple replicate seeds, as detailed in the Appendix.

For the most complex environments, i.e., MiniHack and NetHack, we augment the language-based
observations with a two-dimensional map rendered using ASCII characters. For all experiments, we
use a history length of 16 observations to maintain consistency across tasks. However, participants
submitting to this benchmark are allowed to modify the observation history length as needed for
their respective models and experiments.

3.3 MODELS

We evaluate a range of popular closed-source and open-source models, including Gemini-1.5-Flash
and Gemini-1.5-Pro (Reid et al., 2024), GPT-4o-mini (2024-07-18 release) and GPT-4o (2024-05-
13 release) (Achiam et al., 2023; OpenAI, 2024a), Claude 3.5 Sonnet (Anthropic, 2024), as well as
Llama 3.1 instruct (8B and 70B) (Dubey et al., 2024) and Llama 3.2 instruct (1B, 3B, 11B and 90B)
(MetaAI, 2024). Additionally, we test o1-mini (2024-09-12 release) and o1-preview (2024-09-12
release) (OpenAI, 2024b) exclusively on the NetHack environment due to budget constraints.

4 RESULTS

In Figure 2, we present the results of our experiments using the AgentQuest evaluation script for
both language-only and vision-language formats. Most leading models demonstrate fair average
progression on BabyAI, Crafter, and Baba Is AI, with GPT-4o performing best. Interestingly, the
open-source Llama 3.1 70B and Llama 3.2 90B models achieve the highest results on the Baba
Is AI language-only format, narrowly surpassing GPT-4o and Claude 3.5 Sonnet. In TextWorld,
GPT-4o and Claude 3.5 Sonnet lead, while Gemini models fail to complete any tasks, being flagged
as ‘unsafe’ by the Google Gemini API, despite the prompts containing no actual safety concerns.
The MiniHack suite proves very challenging for all models, especially the quest and boxoban tasks,
which were never solved by any model. Finally, all models flat line with NetHack, with the best-
performing model, o1-preview, achieving a meager 1.5% average game progression.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2 summarizes the aggregated results across all environments in the language-only format.
Overall, GPT-4o is the best-performing model, with an average progression of 31.62%, followed
closely by Claude 3.5 Sonnet and Llama 3.1 70B. Gemini-1.5-Pro lags behind the other large models,
partly due to its 0% performance on TextWorld. However, results differ for the vision-language
format, as shown in Table 3. Here, we observe that both GPT-4o and Llama 3.2 exhibit a decline in
performance when image observations are included, likely due to confusion arising from the added
visual input. In contrast, Gemini-1.5-Pro and Claude 3.5 Sonnet especially, maintain consistent
performance across both formats. This suggests that current multimodal Transformer architectures
are still better equipped at handling textual information than visual input, a topic we explore further
in Section 6. Additionally, Llama 3.1 70B outperforms the larger and more recent Llama 3.2 90B
in the language-only format, suggesting that the introduction of visual processing in the latter may
have negatively impacted its linguistic and reasoning capabilities. We show more detailed results
for each environment in their appendices.

Table 2: Language-Only Performance

Model Average Progress (%)

gpt-4o 32.34 ± 1.49
claude-3.5-sonnet 29.98 ± 1.98
llama-3.1-70b-it 27.88 ± 1.43
llama-3.2-90B-it 23.66 ± 1.09
gemini-1.5-pro 21.00 ± 1.18
gpt-4o-mini 17.36 ± 1.35
llama-3.1-8b-it 14.14 ± 1.51
llama-3.2-11B-it 13.54 ± 1.05
gemini-1.5-flash 9.73 ± 0.77
llama-3.2-3B-it 8.47 ± 1.12
llama-3.2-1B-it 6.32 ± 1.00

Table 3: Vision-Language Performance

Model Average Progress (%)

claude-3.5-sonnet 29.08 ± 2.21
gemini-1.5-pro 25.76 ± 1.36
gpt-4o 22.56 ± 1.44
gpt-4o-mini 15.36 ± 1.29
gemini-1.5-flash 14.94 ± 1.40
llama-3.2-90B-it 13.43 ± 1.16
llama-3.2-11B-it 6.91 ± 0.84

4.1 QUALITATIVE ANALYSIS

We conducted an analysis of the model trajectories across the environments to identify common
behaviors and challenges specific to each setting.

Spatial Reasoning While language models demonstrate some proficiency in basic navigation, they
exhibit significant limitations in more complex spatial reasoning tasks. In the BabyAI suite, we
observed significant shortcomings in the agents’ ability to place objects adjacent to other objects,
which is required in some scenarios. In NetHack and MiniHack CorridorBattle, good spatial reason-
ing is crucial during combat, as players need to maneuver within confined corridors to avoid being
surrounded by monsters. However, the agents frequently ended up cornered.

Systematic Exploration Our experiments revealed a significant weakness in the models’ ability
to explore. In TextWorld’s Coin Collector, where agents must explore a house to locate a coin,
agents often wander aimlessly, revisiting rooms they’ve already explored while missing important
areas entirely. An efficient agent would behave in DFS-like manner, methodically searching each
room, keeping track of visited areas and prioritizing unexplored spaces. The more complex quests
in MiniHack expose similar issues, with models failing to efficiently navigate maze-like structures.

Long-term planning The agents exhibit substantial deficiencies in devising and executing long-
term plans. We observe near-zero performance on MiniHack, and NLE, which both require careful
planning. In particular, we do not observe a single successful trajectory in the Boxoban logical
puzzles in MiniHack, which requires careful planning at every step in order to avoid irreversible
failures. LLMs, with the finite amount of compute available to them in a single forward pass, are
necessarily confined to solving some subset of reasoning problems. We observe that with the current
models’ depth, number of flops, and reasoning solution templates embedded in the weights, these
models cannot solve the reasoning tasks in AgentQuest. We see a notable improvement with OpenAI
o1’s chain of thought capabilities on NetHack, performing close to three times better than its closest
competitor in language-only mode Claude-3.5-Sonnet. However, its average progression of 1.57%
is still far from satisfactory.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Discovering and Leveraging Environment Dynamics Some games require inferring non-trivial
causal structure through experimentation to come up with new strategies. For example, a player
might identify a potion of paralysis by drinking it, and then realize they can use this strate-
gically by throwing such potions at enemies to incapacitate them. This kind of experimentation
and strategic thinking is crucial for success in NetHack. However, current models struggle to for-
mulate and execute such context-dependent strategies. In MiniHack Quests environments, models
fail to devise and implement multi-step strategies, such as utilizing wand of cold or ring of
levitation to cross lava rivers. In Crafter, where agents can handle basic tasks such as collect-
ing wood, crafting items, drinking water, and even engaging in combat, they fail to learn long-term
survival skills such as building shelters for protection against nocturnal threats.

Knowing-Doing Gap We observe a pronounced “knowing-doing” gap, where models execute unde-
sirable actions during gameplay despite knowledge of their negative consequences. For instance, in
NetHack, models often exit the dungeon shortly after starting the game, resulting in an instant game
termination. When queried in a separate thread about the consequences of exiting the first level in
NetHack, they correctly identify that it results in an instant death, making it is a highly undesirable
action. Similarly, although the models correctly identify that eating rotten food in NetHack can re-
sult in death, this remains a common cause of failure, underscoring a disconnect between knowledge
and decision-making. Additionally, models tend to ignore even the hints directly present in the input
prompt and die from overeating even when advised against it. To study this problem in more detail,
we prepared a questionnaire probing basic NetHack knowledge (see Appendix F.5).

5 RELATED WORK

The evaluation of large language models has historically relied on benchmarks that emphasize static,
non-interactive tasks. Benchmarks such as SuperGLUE (Wang et al., 2019), which tests general-
purpose language understanding and MMLU (Hendrycks et al., 2020), which measures massive
multitask language understanding, have been instrumental in advancing LLM research. BigBench
(Srivastava et al., 2022) further expands the scope by including a diverse set of linguistic and cog-
nitive challenges. Mathematical reasoning datasets like GSM8K and MATH (Cobbe et al., 2021;
Hendrycks et al., 2021) assess models’ abilities to solve grade-school and competition-level math
problems, while Shi et al. (2022) explore multilingual chain-of-thought reasoning. In the domain
of code understanding and generation, benchmarks such as HumanEval (Chen et al., 2021) and
CodeXGLUE (Lu et al., 2021) evaluate models capabilities in programming tasks.

These benchmarks, however, are limited to single-turn or short-context scenarios, do not require se-
quential decision-making or adaptation to changing environments and have been saturating rapidly
(Kiela et al., 2021). Static benchmarks may not fully capture the progress we are seeking, since
the research community aims to push the frontier of agentic foundation models capable of acting
in dynamic environments, using tools, planning ahead, and reasoning about their surroundings. Re-
searchers have recently investigated how LLMs use these skills to solve practical tasks, including
using computer interfaces to perform office-related chores (Wang et al., 2024; Qin et al., 2024), navi-
gating web pages (Yao et al., 2022; Zhou et al., 2023), and solve GitHub issues (Jimenez et al., 2023).
Several works studied the multi-agent capabilities of LLMs to see if they can co-operate (Gong et al.,
2023; Piatti et al., 2024) or effectively play against other agents (Jin et al., 2024; Wu et al., 2024).

In this work, we study agentic skills in the context of video games, as they offer challenges well-
tailored for human players and test skills that are useful for embodied agents. Previously, some
related works employed games to benchmark LLMs (Liu et al., 2023b; Todd et al., 2024; Wu et al.,
2023), highlighting their emphasis on problem-solving, spatial reasoning, and well-defined rules and
objectives. Some of these benchmarks, however, are already reaching saturation, with environments
like Crafter being the most challenging in their suite. In contrast, AgentQuest fills an important gap
by providing a wide range of games at varying difficulties—including the NetHack Learning Envi-
ronment (Küttler et al., 2020), which takes humans years to master. These tasks represent a rich and
granular testbed for evaluating agentic foundation models, pushing decision-making evaluations of
LLMs/VLMs to the very limit of their context lengths. Other environments such as MineDojo (Fan
et al., 2022) and MineRL (Guss et al., 2019) also present open-ended challenges for agentic capa-
bilities, their steep computational requirements and reliance on multimodal inputs make them less
practical for accessible, large-scale benchmarks.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

While AgentQuest currently focuses on evaluating single-agent foundational capabilities, future ex-
tensions could explore multi-agent collaboration environments that provide unique opportunities
to test teamwork and coordination skills in LLMs. For example, Overcook (Carroll et al., 2019;
Liu et al., 2023a) simulates a cooperative cooking environment where agents must collaborate effi-
ciently under time constraints and task dependencies, testing planning and communication abilities.
Another compelling environment is Hanabi (Bard et al., 2020), a cooperative card game where play-
ers must rely on indirect communication and inferential reasoning to achieve a shared objective
under partial observability. These environments present rich opportunities to benchmark advanced
collaboration and multi-agent decision-making skills, which are essential for broader deployment of
agentic LLMs.

6 OPEN RESEARCH PROBLEMS

Aside from its utility for model evaluations, AgentQuest also offers a test-bed for rapidly prototyp-
ing new inference-time methods for improving the agentic capabilities of LLMs and VLMs. There
are many open research problems in this space. As of the writing of this paper, some of the most per-
formant methods for improving model reasoning capabilities on short-form and/or shorter-context
problems are infeasible to apply naively to AgentQuest due to the extremely long-context nature of
tasks. Addressing these challenges could further enhance the development of stronger autonomous
agents. We highlight several key areas for future work below.

In-Context Learning and Few-Shot Prompting AgentQuest enables evaluation of In-Context
Learning (ICL) agents, which can use few-shot examples to adapt to out-of-distribution tasks. We
provide a small dataset of human demonstrations for each environment and an implementation of
few-shot conditioning in the AgentQuest codebase. The benchmark codebase also supports the
study of In-Context Reinforcement Learning (Lee et al., 2024; Laskin et al., 2022; Lin et al., 2023),
where agents learn to improve from mistakes during inference. On the large models benchmarked
in Section 4, naive few-shot learning (i.e., prompting LLM and VLM agents with examples of full
human games in-context) is extremely computationally expensive to run on AgentQuest. For exam-
ple, a single demonstration of NetHack game-play can require upwards of 700, 000 input tokens to
represent in a prompt. Despite advancements in fast inference technologies like caching and falling
API costs for long-context prompting, we found these experiments to be infeasible to conduct at
this time. Sub-selecting only the relevant parts of demonstrations via retrieval-augmented few-shot
prompting strategies (Lewis et al., 2020) might offer a way to circumvent these challenges. We leave
exploration of such methods for future work.

Advanced Reasoning Strategies Beyond simply prompting LLMs and VLMs to directly pre-
dict the next action of game-play, AgentQuest also supports the study of more advanced reasoning
techniques like chain-of-thought (Wei et al., 2022b), self-refinement (Madaan et al., 2024), and basic
planning. These methods have been demonstrated to improve model performance on shorter-context
problems. We believe them to be an exciting direction for future work on long-context reasoning and
decision-making. For example, model performance on the tasks in AgentQuest might be improved
by integrating multi-agent collaboration (Chang, 2023; Khan et al., 2024; Yao et al., 2024) and tool
usage (Shen et al., 2024; Ruan et al., 2023; Schick et al., 2024; Qin et al., 2023) in decision-making.
Additionally, incorporating memory mechanisms or reinforcement learning techniques could help
bridge the “knowing-doing” gap, enabling models to apply their knowledge effectively in practical,
long-horizon tasks. Finally, experimenting with open-ended self-improvement loops (Wang et al.,
2023; Hu et al., 2024) could lead to more adaptive and general agents (Team et al., 2023; Hughes
et al., 2024), offering a pathway toward truly autonomous systems.

Limitations of Current Vision-Language Models Despite their potential, our benchmark shows
significant variability in VLM performance. While some models, like Llama 3.2, struggle to inte-
grate visual information into coherent decision-making, others—most notably Sonnet 3.5—demon-
strate stronger performance in VLM mode. This disparity highlights significant variability in VLM
capabilities, which may stem from differences in training objectives and datasets. For example,
Sonnet 3.5’s superior performance can be attributed in part to its training on tasks involving com-
puter usage (Anthropic, 2024), which inherently require integrating visual and textual inputs for
action-based reasoning.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Recent studies have identified key limitations of VLMs that align with our findings, including bi-
ases toward natural image-text pairs, optimization for image description rather than action-oriented
reasoning, and challenges with out-of-distribution inputs (Tan et al., 2024; Tong et al., 2024; Rah-
manzadehgervi et al., 2024; Zang et al., 2024; Guan et al., 2023). These limitations are further exem-
plified in our benchmark, where grid-based image observations differ significantly from the natural
image-text pairs on which many VLMs are trained (Yu et al., 2023; Rahmanzadehgervi et al., 2024).
Moreover, the computational cost of image processing constrained our evaluation to a single image
per observation, with the remainder of the history provided in text. While this constraint may hinder
performance for some models, our results show that certain VLMs like Claude 3.5 Sonnet can still
perform robustly under these conditions.

To address these challenges, our codebase already supports multi-image observation histories, and
future iterations will incorporate video observations, which are likely better suited for the long-
horizon sequential decision-making tasks central to our benchmark. These enhancements aim to
better evaluate and leverage the potential of VLMs in complex reasoning scenarios. We plan to
introduce support for video observations once prominent models with efficient video-processing
capabilities become available, ensuring that our benchmark remains aligned with the latest advance-
ments in VLM technology.

Computational Limitations of Large Language Models Mechanistic interpretability could pro-
vide valuable insights for understanding the computational limitations of agentic LLMs. The compu-
tational expressiveness of LLMs is fundamentally linked with the ability to solve complex reasoning
problems (Wei et al., 2022a). While current models perform well on simple tasks such as navigation
and object manipulation, they struggle with more complex tasks that could require non-trivial and
general-purpose computation, for example, building a shelter or developing combat strategies. This
could be due to the models’ inability to retrieve relevant computational circuits (Olah et al., 2020),
limitations to inference-time budget (Snell et al., 2024), or representational expressivity. This raises
important questions about the scope of effectively solvable tasks for LLMs and VLMs, which is de-
pendent on factors such as model depth, context size, and the distribution shift between pre-training
and downstream tasks. Further research is needed to understand the underlying causes of these limi-
tations and to develop strategies for overcoming them, such as adaptive simulation of computational
circuits during runtime.

7 CONCLUSION

We introduce AgentQuest, a novel benchmark designed to assess the agentic capabilities of LLMs
and VLMs across a diverse set of challenging, long-horizon tasks. Through easily reproducible eval-
uation protocols, AgentQuest reveals critical shortcomings in current models, particularly in areas
such as vision-based decision-making and long-term planning, identifying clear gaps between model
performance and human-level capabilities. These deficiencies, uncovered through our qualitative
analysis, reflect the challenges faced in real-world scenarios, underscoring the practical relevance
of our benchmark for agentic applications. Our evaluation framework leverages fast, procedurally
generated environments, ensuring rigorous and fair comparisons by preventing test-set leakage, a
common issue in other benchmarks. We believe that AgentQuest will serve as a critical tool for
supporting and advancing research towards autonomous LLM agents.

ETHICS STATEMENT

This work provides a benchmark for the agentic capabilities of LLMs. We believe that experimen-
tation in simulated environments, where the behavior of the agents is easy to interpret, is crucial for
building safe agentic systems. It is important to address questions on how to ensure that the agent’s
behavior is well aligned with human intentions.

REPRODUCIBILITY STATEMENT

We strive to make all experiments in this paper fully reproducible. We share the codebase for
evaluation, which is available in the supplementary materials. We describe the full descriptions of
the evaluation schemes of the specific environments in Appendices A to F.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Anthropic. Developing a computer use model, 2024. URL https://www.anthropic.com/
news/developing-computer-use. Accessed: 2024-11-17.

Anthropic. Claude 3.5 sonnet: Enhanced intelligence and versatility, 2024. URL https://www.
anthropic.com/news/claude-3-5-sonnet. Accessed: 2024-11-18.

Nolan Bard, Jakob N Foerster, Sarath Chandar, Neil Burch, Marc Lanctot, H Francis Song, Emilio
Parisotto, Vincent Dumoulin, Subhodeep Moitra, Edward Hughes, et al. The hanabi challenge: A
new frontier for ai research. Artificial Intelligence, 280:103216, 2020.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Micah Carroll, Rohin Shah, Mark K Ho, Tom Griffiths, Sanjit Seshia, Pieter Abbeel, and Anca
Dragan. On the utility of learning about humans for human-ai coordination. Advances in neural
information processing systems, 32, 2019.

Thomas Carta, Clément Romac, Thomas Wolf, Sylvain Lamprier, Olivier Sigaud, and Pierre-Yves
Oudeyer. Grounding large language models in interactive environments with online reinforcement
learning. In International Conference on Machine Learning, pp. 3676–3713. PMLR, 2023.

Edward Y Chang. Prompting large language models with the socratic method. In 2023 IEEE
13th Annual Computing and Communication Workshop and Conference (CCWC), pp. 0351–0360.
IEEE, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan Saharia,
Thien Huu Nguyen, and Yoshua Bengio. BabyAI: First steps towards grounded language learning
with a human in the loop. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=rJeXCo0cYX.

Nathan Cloos, Meagan Jens, Michelangelo Naim, Yen-Ling Kuo, Ignacio Cases, Andrei Barbu, and
Christopher J Cueva. Baba is ai: Break the rules to beat the benchmark. In ICML 2024 Workshop
on LLMs and Cognition, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Marc-Alexandre Côté, Akos Kádár, Xingdi Yuan, Ben Kybartas, Tavian Barnes, Emery Fine, James
Moore, Matthew Hausknecht, Layla El Asri, Mahmoud Adada, et al. Textworld: A learning
environment for text-based games. In Computer Games: 7th Workshop, CGW 2018, Held in Con-
junction with the 27th International Conference on Artificial Intelligence, IJCAI 2018, Stockholm,
Sweden, July 13, 2018, Revised Selected Papers 7, pp. 41–75. Springer, 2019.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar. Minedojo: Building open-ended embodied
agents with internet-scale knowledge. Advances in Neural Information Processing Systems, 35:
18343–18362, 2022.

11

https://www.anthropic.com/news/developing-computer-use
https://www.anthropic.com/news/developing-computer-use
https://www.anthropic.com/news/claude-3-5-sonnet
https://www.anthropic.com/news/claude-3-5-sonnet
https://openreview.net/forum?id=rJeXCo0cYX


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Chrisantha Fernando, Dylan Banarse, Henryk Michalewski, Simon Osindero, and Tim Rocktäschel.
Promptbreeder: Self-referential self-improvement via prompt evolution. arXiv preprint
arXiv:2309.16797, 2023.

Ran Gong, Qiuyuan Huang, Xiaojian Ma, Hoi Vo, Zane Durante, Yusuke Noda, Zilong Zheng, Song-
Chun Zhu, Demetri Terzopoulos, Li Fei-Fei, et al. Mindagent: Emergent gaming interaction.
arXiv preprint arXiv:2309.09971, 2023.

Nikolaj Goodger, Peter Vamplew, Cameron Foale, and Richard Dazeley. A nethack learning envi-
ronment language wrapper for autonomous agents. Journal of Open Research Software, 11, 06
2023. doi: 10.5334/jors.444.

Tianrui Guan, Fuxiao Liu, Xiyang Wu, Ruiqi Xian, Zongxia Li, Xiaoyu Liu, Xijun Wang, Lichang
Chen, Furong Huang, Yaser Yacoob, et al. Hallusionbench: An advanced diagnostic suite for en-
tangled language hallucination and visual illusion in large vision-language models. arXiv preprint
arXiv:2310.14566, 2023.

William H Guss, Brandon Houghton, Nicholay Topin, Phillip Wang, Cayden Codel, Manuela
Veloso, and Ruslan Salakhutdinov. Minerl: A large-scale dataset of minecraft demonstrations.
arXiv preprint arXiv:1907.13440, 2019.

Danijar Hafner. Benchmarking the spectrum of agent capabilities. arXiv preprint arXiv:2109.06780,
2021.

Eric Hambro, Sharada Mohanty, Dmitrii Babaev, Minwoo Byeon, Dipam Chakraborty, Edward
Grefenstette, Minqi Jiang, Jo Daejin, Anssi Kanervisto, Jongmin Kim, et al. Insights from the
neurips 2021 nethack challenge. In NeurIPS 2021 Competitions and Demonstrations Track, pp.
41–52. PMLR, 2022a.

Eric Hambro, Roberta Raileanu, Danielle Rothermel, Vegard Mella, Tim Rocktäschel, Heinrich
Küttler, and Naila Murray. Dungeons and data: A large-scale nethack dataset. Advances in
Neural Information Processing Systems, 35:24864–24878, 2022b.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems. arXiv preprint
arXiv:2408.08435, 2024.

Edward Hughes, Michael Dennis, Jack Parker-Holder, Feryal Behbahani, Aditi Mavalankar, Yuge
Shi, Tom Schaul, and Tim Rocktaschel. Open-endedness is essential for artificial superhuman
intelligence. arXiv preprint arXiv:2406.04268, 2024.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Xuanfa Jin, Ziyan Wang, Yali Du, Meng Fang, Haifeng Zhang, and Jun Wang. Learning to discuss
strategically: A case study on one night ultimate werewolf. arXiv preprint arXiv:2405.19946,
2024.

Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Kaya Stechly, Mudit Verma, Siddhant
Bhambri, Lucas Saldyt, and Anil Murthy. Llms can’t plan, but can help planning in llm-modulo
frameworks. arXiv preprint arXiv:2402.01817, 2024.

Akbir Khan, John Hughes, Dan Valentine, Laura Ruis, Kshitij Sachan, Ansh Radhakrishnan, Ed-
ward Grefenstette, Samuel R Bowman, Tim Rocktäschel, and Ethan Perez. Debating with more
persuasive llms leads to more truthful answers. arXiv preprint arXiv:2402.06782, 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh Kaushik, Atticus Geiger, Zhengxuan Wu, Bertie
Vidgen, Grusha Prasad, Amanpreet Singh, Pratik Ringshia, et al. Dynabench: Rethinking bench-
marking in nlp. arXiv preprint arXiv:2104.14337, 2021.

Martin Klissarov, Pierluca D’Oro, Shagun Sodhani, Roberta Raileanu, Pierre-Luc Bacon, Pascal
Vincent, Amy Zhang, and Mikael Henaff. Motif: Intrinsic motivation from artificial intelligence
feedback. arXiv preprint arXiv:2310.00166, 2023.

Heinrich Küttler, Nantas Nardelli, Alexander Miller, Roberta Raileanu, Marco Selvatici, Edward
Grefenstette, and Tim Rocktäschel. The nethack learning environment. Advances in Neural
Information Processing Systems, 33:7671–7684, 2020.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Michael Laskin, Luyu Wang, Junhyuk Oh, Emilio Parisotto, Stephen Spencer, Richie Steigerwald,
DJ Strouse, Steven Hansen, Angelos Filos, Ethan Brooks, et al. In-context reinforcement learning
with algorithm distillation. arXiv preprint arXiv:2210.14215, 2022.

Jonathan Lee, Annie Xie, Aldo Pacchiano, Yash Chandak, Chelsea Finn, Ofir Nachum, and Emma
Brunskill. Supervised pretraining can learn in-context reinforcement learning. Advances in Neural
Information Processing Systems, 36, 2024.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:
9459–9474, 2020.

Shuang Li, Xavier Puig, Chris Paxton, Yilun Du, Clinton Wang, Linxi Fan, Tao Chen, De-An Huang,
Ekin Akyürek, Anima Anandkumar, et al. Pre-trained language models for interactive decision-
making. Advances in Neural Information Processing Systems, 35:31199–31212, 2022.

Licong Lin, Yu Bai, and Song Mei. Transformers as decision makers: Provable in-context reinforce-
ment learning via supervised pretraining. arXiv preprint arXiv:2310.08566, 2023.

Jijia Liu, Chao Yu, Jiaxuan Gao, Yuqing Xie, Qingmin Liao, Yi Wu, and Yu Wang. Llm-powered hi-
erarchical language agent for real-time human-ai coordination. arXiv preprint arXiv:2312.15224,
2023a.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. arXiv preprint
arXiv:2308.03688, 2023b.

Cong Lu, Shengran Hu, and Jeff Clune. Intelligent go-explore: Standing on the shoulders of giant
foundation models. arXiv preprint arXiv:2405.15143, 2024.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin
Clement, Dawn Drain, Daxin Jiang, Duyu Tang, et al. Codexglue: A machine learning benchmark
dataset for code understanding and generation. arXiv preprint arXiv:2102.04664, 2021.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36, 2024.

MetaAI. Llama 3.2: Revolutionizing edge ai and vision with open,
customizable models, 2024. URL https://ai.meta.com/blog/
llama-3-2-connect-2024-vision-edge-mobile-devices/. Accessed: 2024-
09-28.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
Zoom in: An introduction to circuits. Distill, 5(3):e00024–001, 2020.

13

https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

OpenAI. Hello gpt-4o, 2024a. URL https://openai.com/index/hello-gpt-4o/. Ac-
cessed: 2024-09-28.

OpenAI. Introducing openai o1 preview, September 2024b. URL https://openai.com/
index/introducing-openai-o1-preview/. Accessed: 2024-09-27.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Giorgio Piatti, Zhijing Jin, Max Kleiman-Weiner, Bernhard Schölkopf, Mrinmaya Sachan, and Rada
Mihalcea. Cooperate or collapse: Emergence of sustainability behaviors in a society of llm agents.
arXiv preprint arXiv:2404.16698, 2024.

Grant A Pignatiello, Richard J Martin, and Ronald L Hickman Jr. Decision fatigue: A conceptual
analysis. Journal of health psychology, 25(1):123–135, 2020.

Ulyana Piterbarg, Lerrel Pinto, and Rob Fergus. diff history for neural language agents. In Forty-first
International Conference on Machine Learning, 2024.

Yanzhao Qin, Tao Zhang, Yanjun Shen, Wenjing Luo, Haoze Sun, Yan Zhang, Yujing Qiao, Weipeng
Chen, Zenan Zhou, Wentao Zhang, et al. Sysbench: Can large language models follow system
messages? arXiv preprint arXiv:2408.10943, 2024.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789, 2023.

Pooyan Rahmanzadehgervi, Logan Bolton, Mohammad Reza Taesiri, and Anh Totti Nguyen. Vision
language models are blind. arXiv preprint arXiv:2407.06581, 2024.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al.
A generalist agent. arXiv preprint arXiv:2205.06175, 2022.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-
baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gem-
ini 1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. arXiv preprint arXiv:2311.12022, 2023.

Jingqing Ruan, Yihong Chen, Bin Zhang, Zhiwei Xu, Tianpeng Bao, Hangyu Mao, Ziyue Li, Xingyu
Zeng, Rui Zhao, et al. Tptu: Task planning and tool usage of large language model-based ai
agents. In NeurIPS 2023 Foundation Models for Decision Making Workshop, 2023.

Mikayel Samvelyan, Robert Kirk, Vitaly Kurin, Jack Parker-Holder, Minqi Jiang, Eric Hambro,
Fabio Petroni, Heinrich Küttler, Edward Grefenstette, and Tim Rocktäschel. Minihack the planet:
A sandbox for open-ended reinforcement learning research. arXiv preprint arXiv:2109.13202,
2021.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. Advances in Neural Information Processing Systems, 36, 2024.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

14

https://openai.com/index/hello-gpt-4o/
https://openai.com/index/introducing-openai-o1-preview/
https://openai.com/index/introducing-openai-o1-preview/


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hugging-
gpt: Solving ai tasks with chatgpt and its friends in hugging face. Advances in Neural Information
Processing Systems, 36, 2024.

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang, Suraj Srivats, Soroush Vosoughi,
Hyung Won Chung, Yi Tay, Sebastian Ruder, Denny Zhou, et al. Language models are multi-
lingual chain-of-thought reasoners. arXiv preprint arXiv:2210.03057, 2022.

Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: an autonomous agent with dynamic
memory and self-reflection. arXiv preprint arXiv:2303.11366, 2(5):9, 2023.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):1140–
1144, 2018.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. arXiv preprint
arXiv:2206.04615, 2022.

Weihao Tan, Ziluo Ding, Wentao Zhang, Boyu Li, Bohan Zhou, Junpeng Yue, Haochong Xia,
Jiechuan Jiang, Longtao Zheng, Xinrun Xu, et al. Towards general computer control: A mul-
timodal agent for red dead redemption ii as a case study. In ICLR 2024 Workshop on Large
Language Model (LLM) Agents, 2024.

Adaptive Agent Team, Jakob Bauer, Kate Baumli, Satinder Baveja, Feryal Behbahani, Avishkar
Bhoopchand, Nathalie Bradley-Schmieg, Michael Chang, Natalie Clay, Adrian Collister, et al.
Human-timescale adaptation in an open-ended task space. arXiv preprint arXiv:2301.07608,
2023.

Graham Todd, Tim Merino, Sam Earle, and Julian Togelius. Missed connections: Lateral thinking
puzzles for large language models. arXiv preprint arXiv:2404.11730, 2024.

Shengbang Tong, Zhuang Liu, Yuexiang Zhai, Yi Ma, Yann LeCun, and Saining Xie. Eyes wide
shut? exploring the visual shortcomings of multimodal llms. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 9568–9578, 2024.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. nature, 575(7782):350–354, 2019.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. Superglue: A stickier benchmark for general-purpose language
understanding systems. Advances in neural information processing systems, 32, 2019.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv:2305.16291, 2023.

Zilong Wang, Yuedong Cui, Li Zhong, Zimin Zhang, Da Yin, Bill Yuchen Lin, and Jingbo Shang.
Officebench: Benchmarking language agents across multiple applications for office automation.
arXiv preprint arXiv:2407.19056, 2024.

Brian Wansink and Jeffery Sobal. Mindless eating: The 200 daily food decisions we overlook.
Environment and Behavior, 39(1):106–123, 2007.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language
models. arXiv preprint arXiv:2206.07682, 2022a.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022b.

Maciej Wołczyk, Bartłomiej Cupiał, Mateusz Ostaszewski, Michał Bortkiewicz, Michał Zajac, Raz-
van Pascanu, Łukasz Kuciński, and Piotr Miłoś. Fine-tuning reinforcement learning models is
secretly a forgetting mitigation problem. arXiv preprint arXiv:2402.02868, 2024.

Shuang Wu, Liwen Zhu, Tao Yang, Shiwei Xu, Qiang Fu, Yang Wei, and Haobo Fu. Enhance
reasoning for large language models in the game werewolf. arXiv preprint arXiv:2402.02330,
2024.

Yue Wu, Xuan Tang, Tom M Mitchell, and Yuanzhi Li. Smartplay: A benchmark for llms as
intelligent agents. arXiv preprint arXiv:2310.01557, 2023.

Mingzhe Xing, Rongkai Zhang, Hui Xue, Qi Chen, Fan Yang, and Zhen Xiao. Understanding the
weakness of large language model agents within a complex android environment. In Proceedings
of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 6061–
6072, 2024.

Yutaro Yamada, Yihan Bao, Andrew K Lampinen, Jungo Kasai, and Ilker Yildirim. Evaluating
spatial understanding of large language models. arXiv preprint arXiv:2310.14540, 2023.

Hui Yang, Sifu Yue, and Yunzhong He. Auto-gpt for online decision making: Benchmarks and
additional opinions. arXiv preprint arXiv:2306.02224, 2023.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. Advances in Neural Information Pro-
cessing Systems, 35:20744–20757, 2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in Neural Information Processing Systems, 36, 2024.

Lili Yu, Bowen Shi, Ramakanth Pasunuru, Benjamin Muller, Olga Golovneva, Tianlu Wang, Arun
Babu, Binh Tang, Brian Karrer, Shelly Sheynin, et al. Scaling autoregressive multi-modal models:
Pretraining and instruction tuning. arXiv preprint arXiv:2309.02591, 2(3), 2023.

Yuhang Zang, Hanlin Goh, Josh Susskind, and Chen Huang. Overcoming the pitfalls of vision-
language model finetuning for ood generalization. arXiv preprint arXiv:2401.15914, 2024.

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for build-
ing autonomous agents. arXiv preprint arXiv:2307.13854, 2023.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A BABY AI

BabyAI (Chevalier-Boisvert et al., 2019) is a research platform designed to study grounded language
learning and instruction following in artificial agents. It consists of a suite of 2D grid world envi-
ronments with increasing levels of complexity. In these environments, an agent navigates through
rooms and interacts with various objects like doors, keys, balls, and boxes of different colors. The
agent receives natural language instructions, called “missions”, which describe tasks it needs to com-
plete, such as picking up specific objects or navigating to certain locations. Many existing works on
decision-making have studied model performance on this environment (Reed et al., 2022; Li et al.,
2022). We use it as a historically relevant environment that we expect to be relatively easy to solve.

A.1 BABYAI-TEXT

We evaluate the agents on 5 tasks introduced in BabyAI-Text (Carta et al., 2023), which provides a
description of each observation instead of a symbolic representation. A textual description consists
of a list of template descriptions with the following structure:

• ”You see a <object> <location>” if the object is a key, a ball, a box or a wall.

• ”You see a(n) open/closed door <location>” , if the agent sees a door.

• ”You carry a <object>”, if the agent carries an object.

A.2 BABYAI RESULTS

We provide BabyAI results for LLM and VLM mode in Tables 4 and 5. Errors are computed with 25
seeds for each of the 5 tasks of BabyAI. GPT-4o leads, closely followed by Llama 3.1 70B. When
vision is added to the observation, GPT4o all models performance decrease, except for Gemini-1.5-
Pro, whose performance remains stable.

Table 4: LLM Performance on BabyAI

Model Average Progress (%)
gpt-4o 77.60 ± 3.73
llama-3.1-70B-it 73.20 ± 3.96
gemini-1.5-pro 58.40 ± 4.41
llama-3.2-90B-it 55.20 ± 4.45
claude-3.5-sonnet 52.00 ± 7.07
gpt-4o-mini 50.40 ± 4.47
llama-3.2-11B-it 32.80 ± 4.20
llama-3.1-8B-it 30.00 ± 6.48
gemini-1.5-flash 25.60 ± 3.90
llama-3.2-3B-it 10.00 ± 4.24
llama-3.2-1B-it 6.00 ± 3.36

Table 5: VLM Performance on BabyAI

Model Average Progress (%)
gpt-4o 62.00 ± 4.34
gemini-1.5-pro 58.40 ± 4.41
claude-3.5-sonnet 50.00 ± 7.07
gemini-1.5-flash 43.20 ± 4.43
gpt-4o-mini 38.00 ± 4.34
llama-3.2-90B-it 28.20 ± 4.02
llama-3.2-11B-it 10.40 ± 2.73

A.3 OBSERVATIONS

Example of instruction prompt and observation for BabyAI

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

You are an agent playing a simple navigation game. Your goal is to open the yellow door. The following are the
possible actions you can take in the game, followed by a short description of each action:

turn left: turn to the left,
turn right: turn to the right,
go forward: take one step forward,
pick up: pick up the object below you,
drop: drop the object that you are holding,
toggle: manipulate the object in front of you.

In a moment I will present you an observation.

Tips:
- Once the desired object you want to interact or pickup in front of you, you can use the ’toggle’ action to interact
with it.
- It doesn’t make sense to repeat the same action over and over if the observation doesn’t change.

PLAY!

Current Observation:

a wall 5 steps forward
a wall 2 steps left
a red key 1 step right and 1 step forward
a blue key 1 step right
a yellow key 2 steps right and 3 steps forward
a green key 2 steps right and 1 step forward
a red box 2 steps right
a blue ball 3 steps right and 4 steps forward
a blue box 3 steps right and 1 step forward
a blue box 3 steps right

Image observation provided.

Go forward

B CRAFTER

Crafter (Hafner, 2021) is an open-source 2D survival game designed specifically for research on
strong generalization, deep exploration, and long-term reasoning in reinforcement learning. It is a
Minecraft-inspired, procedurally generated environment that combines resource gathering, craft-
ing, and combat elements. Additionally, the game includes a comprehensive set of tasks and
achievements, enabling researchers to evaluate agent performance across multiple objectives and
time scales. To enable interaction with language models we use the same language wrapper as
proposed in Wu et al. (2023).

Figure 3: Crafter’s examples of unique procedurally generated maps.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

B.1 CRAFTER RESULTS

We provide Crafter results for LLM and VLM format in Tables 6 and 7, standard errors are computed
using 10 seeds. GPT4o leads in language-only mode, and Gemini-1.5-Pro leads in vision-language
mode. Surprisingly, Llama 3.2 90B performance decreases very sharply when images are added,
getting worse average progress than its smaller 11B model.

Table 6: LLM Performance on Crafter

Model Average Progress (%)
gpt-4o 33.10 ± 2.32
claude-3.5-sonnet 32.73 ± 3.20
llama-3.2-90B-it 31.69 ± 1.36
llama-3.1-70B-it 31.31 ± 2.68
gemini-1.5-pro 30.21 ± 2.86
llama-3.2-11B-it 26.20 ± 3.30
llama-3.1-8B-it 25.45 ± 3.23
gemini-1.5-flash 20.00 ± 0.74
gpt-4o-mini 12.72 ± 1.13
llama-3.2-3B-it 17.27 ± 2.79
llama-3.2-1B-it 12.73 ± 1.91

Table 7: VLM Performance on Crafter

Model Average Progress (%)
claude-3.5-sonnet 37.27 ± 3.14
gemini-1.5-pro 33.50 ± 2.07
gpt-4o 26.81 ± 3.74
llama-3.2-11B-it 23.63 ± 1.48
gemini-1.5-flash 20.70 ± 4.43
gpt-4o-mini 19.91 ± 3.13
llama-3.2-90B-it 10.00 ± 1.13

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

B.2 OBSERVATIONS

You are an agent playing Crafter. The following are the only valid actions you can take in the game, followed by a
short description of each action:

Noop: do nothing,
Move West: move west on flat ground,
Move East: move east on flat ground,
Move North: move north on flat ground,
Move South: move south on flat ground,
Do: Multiuse action to collect material, drink from lake and hit creature in front,
Sleep: sleep when energy level is below maximum,
Place Stone: place a stone in front,
Place Table: place a table,
Place Furnace: place a furnace,
Place Plant: place a plant,
Make Wood Pickaxe: craft a wood pickaxe with a nearby table and wood in inventory,
Make Stone Pickaxe: craft a stone pickaxe with a nearby table, wood, and stone in inventory,
Make Iron Pickaxe: craft an iron pickaxe with a nearby table and furnace, wood, coal, and iron in inventory,
Make Wood Sword: craft a wood sword with a nearby table and wood in inventory,
Make Stone Sword: craft a stone sword with a nearby table, wood, and stone in inventory,
Make Iron Sword: craft an iron sword with a nearby table and furnace, wood, coal, and iron in inventory.

These are the game achievements you can get:

1. Collect Wood
2. Place Table
3. Eat Cow
4. Collect Sampling
5. Collect Drink
6. Make Wood Pickaxe
7. Make Wood Sword
8. Place Plant
9. Defeat Zombie
10. Collect Stone
11. Place Stone
12. Eat Plant
13. Defeat Skeleton
14. Make Stone Pickaxe
15. Make Stone Sword
16. Wake Up
17. Place Furnace
18. Collect Coal
19. Collect Iron
20. Make Iron Pickaxe
21. Make Iron Sword
22. Collect Diamond

In a moment I will present a history of actions and observations from the game. Your goal is to get as
far as possible by completing all the achievements.
PLAY!

Current Observation:

Your status:
- health: 9/9
- food: 9/9
- drink: 9/9
- energy: 9/9

You have nothing in your inventory.

You see:
- grass 1 steps to your west
- tree 3 steps to your north-west
- cow 3 steps to your west

You face grass at your front.

Image observation provided.

Move West

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

B.3 ANALYSIS OF VLM PERFORMANCE IN THE CRAFTER ENVIRONMENT

To investigate the agentic capabilities of VLMs in visually complex environments, we focused on
the Crafter environment, a simplified 2D version of Minecraft. The environment uses tiled 2D tex-
tures to render scenes, which may be out-of-distribution for many VLMs. To address this potential
limitation, we introduced an augmented version of the environment where scenes are rendered in
3D using Minecraft’s 3D models and textures. This approach leverages data types more likely to be
present in the training datasets of VLMs, given the abundance of interleaved text and images about
Minecraft on the web.

Results Surprisingly, the switch to 3D rendering did not improve VLM performance. In some
cases, performance on the 3D-rendered environment was slightly worse than on the original 2D
textures. This result challenges the hypothesis that familiarity with Minecraft-like 3D data in training
datasets would lead to better performance. Instead, it suggests that VLMs may struggle with agentic
tasks for reasons unrelated to the type of visual texture or rendering style.

Discussion Our findings indicate that current VLM models may not be well-suited for complex
vision-based reasoning tasks, even when provided with familiar visual contexts. The lack of im-
provement with 3D rendering suggests that factors other than texture familiarity, such as limitations
in spatial reasoning or task-specific adaptation, may play a more significant role in their underper-
formance. While these preliminary results are insightful, further experimentation is necessary to
draw stronger conclusions.

Figure 4: Crafter’s example of 3d scene visualization with Minecraft 3d models and textures.

Table 8: Average Progress of VLMs in Crafter Across Rendering Types

Model 3d textures(%) 2d textures(%)
claude-3.5-sonnet 25.45 ± 4.18 37.27 ± 3.14
gemini-1.5-pro 30.45 ± 3.08 33.50 ± 2.07
gpt-4o 24.55 ± 3.65 26.81 ± 3.74
gemini-1.5-flash 19.09 ± 2.78 20.70 ± 4.43
gpt-4o-mini 17.27 ± 2.38 19.91 ± 3.13
llama-3.2-11B-it 15.90 ± 1.15 23.63 ± 1.48
llama-3.2-90B-it 12.27 ± 1.44 10.00 ± 1.13

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

C TEXTWORLD

TextWorld (Côté et al., 2019) is a text-based game environment developed by Microsoft Research
that allows for the creation and customization of interactive fiction games. In our experiments, we
utilize three specific games from the TextWorld domain: “Treasure Hunter”, “The Cooking Game”,
and “Coin Collector”. Each task can be generated with different levels of difficulty by changing
number of rooms, enabling obstacles and including distractor rooms. We use the generation rules
introduced in Lu et al. (2024).

C.1 TREASURE HUNTER

In Treasure Hunter, we create a challenging maze-like environment with 20 rooms. The game is
set to the maximum difficulty level of 30, introducing locked doors and containers that must be
manipulated to locate the target object. To increase complexity, we remove the solution description
and filter out tasks that can be solved optimally in 20 steps or fewer. This setup requires the agent to
navigate a complex space, interact with various objects, and devise strategies to overcome obstacles
in its quest to find the treasure.

C.2 THE COOKING GAME

The Cooking Game presents a culinary challenge set across 13 rooms. We maximize the complexity
by including up to 5 ingredients and enabling all additional challenging options. The agent must
navigate through doors, process food items using tools like knives, and cook ingredients using var-
ious methods such as grilling, frying, and roasting. This game tests the agent’s ability to plan and
execute multi-step processes in a dynamic environment, simulating the complexities of real-world
cooking tasks.

C.3 COIN COLLECTOR

Coin Collector features an expansive environment with 40 rooms, including potential distractor
rooms to increase navigation difficulty. Similar to Treasure Hunter, we remove the solution descrip-
tion to enhance the challenge. The optimal path from the agent’s starting point to the target is set
to 20 steps, requiring efficient exploration and decision-making. This game tests the agent’s ability
to navigate large spaces, avoid distractions, and efficiently reach its goal in a complex, maze-like
structure.

Figure 5: TextWorld interface along with visualization.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

C.4 TEXTWORLD RESULTS

In Table 9, we provide results for TextWorld. Standard errors are computed using 20 seeds for each
of the 3 tasks. GPT-4o once again leads, obtaining more than twice the average progression of its
closest competitor Llama 3.1 70B. The coin collector task was by far the most challenging, with
GPT-4o managing to solve it only once out of 20 attempts. Gemini models’ APIs often failed to
return completions on textworld, flagging the inputs as ”unsafe”, despite there being absolutely no
real safety concerns in the textworld gameplays. This made it impossible to complete a full round
of evaluation on the Gemini models, thus we marked them as 0% progression.

Table 9: LLM Performance on Textworld

Model Average Progress (%)
claude-3.5-sonnet 42.06 ± 5.41
gpt-4o 39.31 ± 5.24
llama-3.1-70B-it 15.00 ± 4.61
gpt-4o-mini 12.25 ± 3.55
llama-3.2-90B-it 11.18 ± 2.98
llama-3.2-11B-it 6.67 ± 2.17
gemini-1.5-flash 0.00 ± 0.00
gemini-1.5-pro 0.00 ± 0.00

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

C.5 OBSERVATIONS

You are an agent playing TextWorld, a text-based adventure game where you navigate through different rooms,
interact with objects, and solve puzzles.

Your goal is to first find the recipe, find and prepare food according to the recipe, and finally prepare and
eat the meal.

Here are the available commands:

look: describe the current room
goal: print the goal of this game
inventory: print player’s inventory
go dir : move the player north, east, south or west. You can only go to directions indicated with an exit or a door.
examine ...: examine something more closely
eat ...: eat edible food
open ...: open a door or a container. You need to open a closed door before you can go through it.
drop ...: drop an object onto the floor
take ...: take an object that is visible
put ... on ...: place an object on a supporter
take ... from ...: take an object from a container or a supporter
insert ... into ...: place an object into a container
lock ... with ...: lock a door or a container with a key
unlock ... with ...: unlock a door or a container with a key
cook ... with ...: cook cookable food with something providing heat
slice ... with ...: slice cuttable food with something sharp
chop ... with ...: chop cuttable food with something sharp
dice ... with ...: dice cuttable food with something sharp
prepare meal: combine ingredients from inventory into a meal.

You can only prepare meals in the Kitchen.
- You can examine the cookbook to see the recipe when it is visible.
- The BBQ is for grilling things, the stove is for frying things, the oven is for roasting things. Cooking ingredients
in the wrong way will lead to a failure of the game.
- Once you have got processed ingredients and the appropriate cooking tool ready, cook all of them according to
the recipe.
- There are two conditions to correctly cook something (grill/fry/roast):
a) the ingredient you want to cook is in your inventory and
b) there is a suitable cooking tool in the room, and then use ‘cook . . . with . . . ’ command.
- When you need to chop/slice/dice ingredients, you need to take the knife and the ingredient in your inventory
and then ‘slice/chop/dice ... with knife’
- Make sure to first process the food (chop/slice/dice) before you try to cook them.
- When you have all the ingredients (that got processed or cooked according to the menu), you can ‘prepare meal’
in the kitchen and then ‘eat meal’ to win the game.
- The ingredients should EXACTLY match the color in the recipe, but if the recipe doesn’t specify color, any color
would be fine. When you ‘take ... with ...’, use the EXACT name you see.
- You don’t need to examine the container/supporter (e.g. toolbox) when it says something like ”there isn’t a thing
on it”/”has nothing on it”

You have 80 steps to complete the task. Restarting is forbidden.

PLAY!

-= Street =-
You find yourself in a street. An usual kind of place.

There is a closed sliding door leading north. There is an exit to the south.

-= Street =-0/1

open sliding door

D BABA IS AI

Baba Is AI is a benchmark environment based on the puzzle game ”Baba Is You”. In this gridworld
game, players interact with various objects and textual rule blocks to achieve specific goals. The
unique aspect of Baba Is AI is that the rules of the game can be manipulated and rearranged by the
player, creating a dynamic environment where agents must identify relevant objects and rules and
then manipulate them to change or create new rules to succeed. This benchmark allows researchers
to explore a broader notion of generalization compared to current benchmarks, as it requires agents

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

to not only learn and follow the rules but also to combine previously seen rules in novel ways.
Agents are tested on 40 different puzzle levels.

Figure 6: One of the Baba Is AI puzzles, where the agent has to break the “wall is stop” rule, create
new rule “door is win” and go to green door to solve the task.

D.1 BABA IS AI LANGUAGE WRAPPER

To enable interaction with language models, we made a custom language wrapper for Baba Is AI.
It constructs language observation from active rules and creates a description by formatting object
positions relative to the player. We don’t provide the solution for the agent and don’t specify grid
boundaries in the text-only experiments.

D.2 BABA IS AI RESULTS

We provide the Baba Is AI results for LLM and VLM mode in Tables 10 and 11. Standard errors are
computed using 5 seeds for each of the 40 Baba Is AI tasks. Surprisingly, the Llama models lead,
with Llama 3.2 90B surpassing GPT-4o by a 10% margin in language-only mode. Once again, when
vision is added, model performance suffers, with only Gemini-1.5-Pro remaining stable.

Table 10: LLM Performance on BabaIsAI

Model Average Progress (%)
llama-3.2-90B-it 43.90 ± 3.47
llama-3.1-70B-it 40.00 ± 3.42
claude-3.5-sonnet 37.50 ± 4.42
gpt-4o 33.66 ± 3.30
gemini-1.5-pro 32.02 ± 3.26
llama-3.1-8B-it 18.33 ± 3.53
llama-3.2-3B-it 17.50 ± 3.47
gpt-4o-mini 15.60 ± 2.53
llama-3.2-11B-it 15.60 ± 2.50
gemini-1.5-flash 12.80 ± 2.33
llama-3.2-1B-it 10.83 ± 2.84

Table 11: VLM Performance on BabaIsAI

Model Average Progress (%)
claude-3.5-sonnet 34.45 ± 4.36
gemini-1.5-pro 31.40 ± 3.24
llama-3.2-90B-it 21.90 ± 2.89
gpt-4o 18.62 ± 2.72
gpt-4o-mini 16.41 ± 2.59
gemini-1.5-flash 8.30 ± 1.93
llama-3.2-11B-it 5.76 ± 1.63

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

D.3 OBSERVATIONS

Baba Is You is a puzzle game where you can manipulate the rules of each level. The following are the possible
actions you can take in the game, followed by a short description of each action:

idle: wait for one step,
up: take one step up,
right: take one step to the right,
down: take one step down,
left: take one step to the left.

Tips:
- Examine the level carefully, noting all objects and text blocks present.
- Identify the current rules, which are formed by text blocks in the format ”[Subject] IS [Property]” (e.g. ”BABA
IS YOU”).
- Consider how you can change or create new rules by moving text blocks around.
- Remember that you can only move objects or text that are not defined as ”STOP” or similar immovable
properties.
- Your goal is usually to reach an object defined as ”WIN”, but this can be changed.
- Think creatively about how changing rules can alter the properties and behaviors of objects in unexpected ways.
- If stuck, try breaking apart existing rules or forming completely new ones.
- Sometimes the solution involves making yourself a different object or changing what counts as the win condition.

PLAY!

Current Observation:

Active rules:
baba is you

Objects on the map:

rule ‘is‘ 1 step to the left and 1 step up
rule ‘win‘ 1 step up
rule ‘key‘ 1 step to the left
key 1 step to the right and 2 steps down
ball 2 steps to the right and 3 steps down
rule ‘baba‘ 2 step to the left and 4 steps down
rule ‘is‘ 1 step to the left and 4 steps down
rule ‘you‘ 4 steps down
rule ‘ball‘ 2 steps to the right and 4 steps down

Image observation provided.

left

E MINIHACK

MiniHack (Samvelyan et al., 2021) is a powerful sandbox framework built on top of the
NLE (Küttler et al., 2020) that enables researchers to easily design rich and diverse environments
for RL. It provides a flexible platform for creating custom RL tasks ranging from simple grid-world
navigation to complex, procedurally generated worlds with intricate game mechanics. The frame-
work allows users to define environments using a human-readable description language or a simple
Python interface, giving fine-grained control over environment elements such as terrain, objects,
monsters, and traps. MiniHack offers a diverse array of tasks, which can be broadly categorized
into three main groups: Navigation Tasks, Skill Acquisition Tasks, and Ported Tasks. To enable
interaction with language models, we use NetHack Language Wrapper described in the NetHack
Appendix F.

From the MiniHack Navigation Tasks, we picked Maze 9x9, Maze 15x15, Corridor and Corridor-
Battle, which challenge the agent to reach the goal position by overcoming various difficulties on
their way, such as fighting monsters in corridors and navigating through complex or procedurally
generated mazes. These tasks feature a relatively small action space, i.e., movement towards 8
compass directions, and based on the environment, search, kick, open, and eat actions.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Figure 7: Examples of MiniHack Corridor task.

Figure 8: Example of MiniHack CorridorBattle task.

From the MiniHack Skill Acquisition Tasks, we picked Quest (with three different difficulty levels,
Easy, Medium, and Hard), which challenges the agent to use objects found in the environment to
cross a lava river (these objects can provide levitation or freezing abilities), fight monsters, navigate
through rooms or mazes and towards the end of the quest use a wand of death to defeat a powerful
monster guarding the goal location.

Figure 9: Example of MiniHack Quest Hard task.

We additionally test the agents on MiniHack Boxoban. This family of environments is an adaptation
of the Boxoban puzzle game, which itself is inspired by the classic Sokoban. These environments
present a challenging puzzle-solving task within the MiniHack framework, leveraging the NetHack
game mechanics. The primary goal in MiniHack Boxoban is to push four boulders (MiniHack’s
equivalent of boxes) onto four designated goal locations, which are represented by fountains. This
task requires strategic thinking and planning, as the agent must carefully maneuver the boulders
through the environment without getting them stuck in corners or against walls.

We provide MiniHack results for LLM and VLM mode in Tables 12 and 13, standard errors were
computed using 5 seeds for each task. Here, GPT-4o and a Gemini-1.5-Pro equal each other both
in language-only and vision-language mode, with both models only managing to complete some of
the corridor and corridor battle tasks. None of the other models solved any task.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Figure 10: Example of MiniHack Boxoban Hard task.

Table 12: LLM Performance on MiniHack

Model Average Progress (%)
claude-3.5-sonnet 15.00 ± 5.65
gpt-4o 10.00 ± 4.74
gpt-4o-mini 10.00 ± 4.74
llama-3.1-70B-it 7.50 ± 4.16
gemini-1.5-pro 5.00 ± 3.45
llama-3.1-8B-it 5.00 ± 3.45
gemini-1.5-flash 5.00 ± 3.45
llama-3.2-1B-it 5.00 ± 3.45
llama-3.2-11B-it 2.50 ± 2.47
llama-3.2-3B-it 2.50 ± 2.47

Table 13: VLM Performance on MiniHack

Model Average Progress (%)
claude-3.5-sonnet 22.50 ± 6.60
gpt-4o 5.00 ± 3.44
gemini-1.5-pro 5.00 ± 3.44
llama-3.2-90B-it 2.50 ± 2.47
gpt-4o-mini 2.50 ± 2.47
gemini-1.5-flash 2.50 ± 2.47
llama-3.2-11B-it 2.50 ± 2.47

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

E.1 OBSERVATIONS

You are an agent playing MiniHack. The following are the possible actions you can take in the game, followed by
a short description of each action:
north: move north,
east: move east,
south: move south,
west: move west,
northeast: move northeast,
southeast: move southeast,
southwest: move southwest,
northwest: move northwest,
far north: move far north,
far east: move far east,
far south: move far south,
far west: move far west,
far northeast: move far northeast,
far southeast: move far southeast,
far southwest: move far southwest,
far northwest: move far northwest,
down: go down the stairs,
wait: rest one move while doing nothing,
more: display more of the message,
apply: apply (use) a tool,
close: close an adjacent door,
eat: eat something,
force: force a lock,
kick: kick an enemy or a locked door or chest,
loot: loot a box on the floor,
open: open an adjacent door,
pickup: pick up things at the current location if there are any,
pray: pray to the gods for help,
puton: put on an accessory,
quaff: quaff (drink) something,
search: search for hidden doors and passages,
zap: zap a wand.

In a moment I will present a history of actions and observations from the game.

Your goal is to explore the level, fight monsters, and navigate rooms and mazes to ultimately reach the
stairs down.

PLAY!

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Current Observation:

statistics:
Strength: 18/18
Dexterity: 15
Constitution: 18
Intelligence: 8
Wisdom: 10
Charisma: 8
Depth: 1
Gold: 0
HP: 15/15
Energy: 2/2
AC: 4
XP: 1/0
Time: 1
Position: 27—9
Hunger: Not Hungry
Monster Level: 0
Encumbrance: Unencumbered
Dungeon Number: 0
Level Number: 1
Score: 0
Alignment: Lawful
Condition: None

inventory:
a: a +0 katana (weapon in hand)
b: a +0 wakizashi (alternate weapon; not wielded)
c: a +0 yumi
d: 42 +0 ya (in quiver)
e: an uncursed rustproof +0 splint mail (being worn)

message:

language observation:
lava near eastnortheast, east, and southeast
area of lava near eastsoutheast
horizontal wall near southeast and south
vertical wall near southwest and west
horizontal wall very near north, northeast, and northwest
goblin adjacent south
horn adjacent west
newt adjacent northwest

cursor:
Yourself a samurai

Image observation provided.

south

F NETHACK LEARNING ENVIRONMENT

The NetHack Learning Environment (NLE) (Küttler et al., 2020) is a scalable, procedurally gen-
erated, stochastic, rich, and challenging environment designed to drive long-term research in RL
on problems such as exploration, planning, skill acquisition, and language-conditioned RL. Built
around the classic and highly complex terminal roguelike game NetHack, NLE provides a complex
and dynamic environment where agents must navigate through procedurally generated dungeons,
interact with hundreds of entity types, and learn to overcome various challenges.

The goal of the player is to descend through procedurally generated dungeon levels while killing
monsters, solving puzzles, and gathering better equipment in order to retrieve the Amulet of Yen-
dor and finally ascend back to the surface to win the game. NetHack is notoriously challenging,
even for human players. Mastering the game can take years even with online resources like the

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

NetHack Wiki. Success in NetHack demands long-term strategic planning, as a winning game can
involve hundreds of thousands of steps, as well as short-term tactics to fight hordes of monsters.
Accurate credit assignment is also crucial to understanding which actions contributed to success
or failure. NetHack has already been used extensively as a testbed for RL agents (Wołczyk et al.,
2024; Piterbarg et al., 2024; Hambro et al., 2022b); tabula-rasa RL agents particularly struggle due
to sparse reward, complex credit assignment, extremely long-time-horizon, and high stochasticity
of the game. The current state-of-the-art agent still remains a hand-coded symbolic policy (Hambro
et al., 2022a).

F.1 NETHACK LANGUAGE WRAPPER

The NetHack Language Wrapper (Goodger et al., 2023) is a tool designed to interface with
the NLE and MiniHack by translating non-language observations into text-based representations.
This wrapper, converts various NLE observations such as glyphs, blstats, tty_chars,
inv_letters, inv_strs, and tty_cursor into readable text equivalents. For example, it
transforms the visual display of the game environment into a textual description, including details
about the surroundings, inventory, and player statistics. The wrapper also supports text-based ac-
tions, allowing users to interact with the environment using commands like wait, apply, and
north, which are then converted into the discrete actions required by the NLE. This functionality
enables easier interaction with the NetHack environment, particularly for language models.

(a) NetHack progression by dungeon level reached (b) NetHack progression by experience level

Figure 11

F.2 NEW NETHACK PROGRESSION SYSTEM

NetHack features an in-game scoring system that rewards players for actions such as killing mon-
sters, identifying objects, eating food, collecting gold and items, and ultimately ascending in the

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

game. However, we argue that this scoring system does not effectively capture true game progres-
sion, as players can win the game with scores ranging from a few hundred thousand to several
million points. To address this limitation, we developed a novel, data-informed progression metric
using a dataset of human-played NetHack games (Hambro et al., 2022b). Specifically, we recorded
the dungeon levels and experience levels achieved in each game, as well as whether the game re-
sulted in an ascension. Utilizing these statistics, we constructed a data-centric progression system
where each data point represents the probability of a human player winning the game after reach-
ing a specific dungeon level or experience level. The resulting progression curves are presented in
Figure 11. For practical purposes, we define Dungeon Level 1 (Dlvl:1) and Experience Level 1 as
representing 0% progression, corresponding to the game’s starting point, and ascension as 100%
progression. The agent’s overall progress is thus determined by the highest progression achieved
between the dungeon level and experience level attained.

F.3 NETHACK RESULTS

We provide NetHack results for LLM and VLM mode in Tables 14 and 15. Standard errors are
computed using 5 seeds. o1-preview achieves the highest progression out of all the tested models.
However, it is still very far from making any significant progression in the game. The best indi-
vidual run was achieved by Gemini-1.5-Pro vision-language mode, reaching dungeon level 3 and
experience level 4.

Table 14: Language-Only Performance on NLE

Model Average Progress (%)

o1-preview 1.57 ± 0.40
claude-3.5-sonnet 0.58 ± 0.52
gpt-4o 0.37 ± 0.37
o1-mini 0.36 ± 0.24
llama-3.1-70B-it 0.35 ± 0.35
llama-3.1-8B-it 0 ± 0
gemini-1.5-pro 0.31 ± 0.31
gpt-4o-mini 0 ± 0
gemini-1.5-flash 0 ± 0
llama-3.2-90B-it 0 ± 0
llama-3.2-11B-it 0 ± 0
llama-3.2-3B-it 0 ± 0
llama-3.2-1B-it 0 ± 0

Table 15: Vision-Language Performance on
NLE

Model Average Progress (%)

claude-3.5-sonnet 1.16 ± 0.42
gemini-1.5-pro 0.48 ± 0.48
gpt-4o 0.37 ± 0.37
gpt-4o-mini 0 ± 0
gemini-1.5-flash 0 ± 0
llama-3.2-11B-it 0 ± 0
gemini-1.5-flash 0 ± 0
llama-3.2-90B-it 0 ± 0
llama-3.2-11B-it 0 ± 0

F.4 OBSERVATION

Despite having a language wrapper that describes its observations (Goodger et al., 2023), NetHack
is not meant to be played with language only, thus we provided the ASCII map in language mode
and the RGB tiles map in vision-language mode. In the LLM context, we only keep information that
is important to be kept in the long term, i.e., the game message and language observation. Agent
stats and inventory are only needed in the current step, so we do not keep them in the context. This
is done also to prevent the context length of NetHack to explode out of control.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

You are an agent playing NetHack.
The following are the possible actions you can take in the game, followed by a short description of each action:

north: move north,
east: move east,
south: move south,
west: move west,
northeast: move northeast,
southeast: move southeast,
southwest: move southwest,
northwest: move northwest,
far north: move far north,
far east: move far east,
far south: move far south,
far west: move far west,
far northeast: move far northeast,
far southeast: move far southeast,
far southwest: move far southwest,
far northwest: move far northwest,
up: go up a staircase,
down: go down a staircase (tip: you can only go down if you are standing on the stairs),
wait: rest one move while doing nothing,
more: display more of the message (tip: ONLY ever use when current message ends with –More–),
annotate: leave a note about the level,
apply: apply (use) a tool,
call: name a monster or object, or add an annotation,
cast: cast a spell,
close: close an adjacent door,
open: open an adjacent door,
dip: dip an object into something,
drop: drop an item,
droptype: drop specific item types (specify in the next prompt),
eat: eat something (tip: replenish food when hungry),
esc: exit menu or message,
engrave: engrave writing on the floor (tip: Elbereth),
enhance: advance or check weapons skills,
fire: fire ammunition from quiver,
fight: fight a monster (even if you only guess one is there),
force: force a lock,
[...]
read: read a scroll or spellbook,
remove: remove an accessory,
rub: rub a lamp or a stone,
search: search for hidden doors and passages,
swap: swap wielded and secondary weapons,
takeoff: take off one piece of armor,
takeoffall: take off all armor,
teleport: teleport to another level (if you have the ability),
throw: throw something (e.g. a dagger or dart),
travel: travel to a specific location on the map (tip: in the next action, specify <or for stairs, { for fountain, and
for altar),
twoweapon: toggle two-weapon combat,
untrap: untrap something,
wear: wear a piece of armor,
wield: wield a weapon,
wipe: wipe off your face,
zap: zap a wand,

Tips:
- When the message asks for a completion, such as: ”What do you want to eat? [d or ?*]”, you should respond
with a single character corresponding to the item you want to eat/use.
- For example, ”What do you want to eat? [dgh or ?*]” -¿ Possible answers are ”d”, ”g”, or ”h” to eat the
associated food.
- When the message asks for a direction, such as: ”In what direction?” you should respond with a direction.
- When the message has –More– at the end, your next action should be ”more” to see the rest of the message.
- Explore the environment to find the stairs down to the next level.
- Always carefully read the last message to understand the current state of the game and decide your next action
accordingly.
- If you keep moving in the same direction, you will eventually hit a wall and stop moving. Your message might
be: ”It’s solid stone”, or ”It’s a wall”. Change your action to move in another direction to continue exploring the
environment.
- Read the language observation carefully and look at ascii map or image observation provided to decide the next
action to take and where to move next.
- You can attack monsters by moving into them.

In a moment I will present a history of actions and observations from the game.
Your goal is to get as far as possible in the game.

PLAY!

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Current Observation:

statistics:
Strength: 14/14
Dexterity: 9

Constitution: 11
Intelligence: 8
Wisdom: 15
Charisma: 18
Depth: 1
Gold: 0
HP: 16/16
Energy: 6/6
AC: 3
XP: 1/0
Time: 1
Position: 54—14
Hunger: Not Hungry
Monster Level: 0
Encumbrance: Unencumbered
Dungeon Number: 0
Level Number: 1
Score: 0
Alignment: Lawful
Condition: None

inventory:
a: a +1 long sword (weapon in hand)
b: a +1 lance (alternate weapon; not wielded)
c: an uncursed +1 ring mail (being worn)
d: an uncursed +0 helmet (being worn)
e: an uncursed +0 small shield (being worn)
f: an uncursed +0 pair of leather gloves (being worn)
g: 11 uncursed apples
h: 10 uncursed carrots

message:
Salutations Agent, welcome to NetHack! You are a lawful female human Knight.

language observation:
vertical closed door far east
dark area far east
scroll labeled THARR near eastsoutheast
horizontal wall near southeast and south
dark area near west
vertical wall very near southwest
vertical open door very near west
horizontal wall adjacent north, northeast, and northwest
tame pony adjacent southeast

cursor:
Yourself a knight

Image observation provided.

west

F.5 LLMS POSSESS EXTENSIVE NETHACK KNOWLEDGE

Agents need extensive knowledge to play NetHack effectively. Skilled players leverage their under-
standing of the game, acquired through hours of gameplay, while new players often rely on written

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

resources online, such as the NetHack Wiki. We use a questionnaire to test if LLMs possess some
of this knowledge and assess if agents can apply it. The questions are as follows:

1. Are there any consequences of eating rotten food in NetHack? (Answer: It might lead to
blindness, hallucination or even instant death.)

2. Are there any consequences of eating too much food in NetHack? (Answer: The player
character might choke on the food and die.)

3. What happens when you ascend the stairs on level 1 of NetHack? (Answer: It leads to
instant game over.)

4. Is it a good idea to use an invisibility wand on a monster in NetHack? (Answer: No, as it
will be harder to fight them.)

5. Is it a good idea to pray to an angered god in NetHack? (Answer: No, the god will punish
the player.)

These questions test a fundamental understanding of the game mechanics, particularly focusing on
behaviors that new players may mistakenly attempt and should be avoided.

We summarize each LLM’s responses in the tables below. For each question, we assess whether the
response is accurate, whether the conclusion is correct (i.e., the LLM recognizes the need to avoid
such behavior), and whether the agent successively avoids these mistakes.

LLM Q1 Q2 Q3 Q4 Q5

GPT 4o
Correct ✔ ✔ ∼ ✔ ✔

Conclusion ✔ ✔ ✔ ✔ ✔

Behaviour ✗ ✔ ✗ N/A ✔

GPT 4o-mini
Correct ∼ ✗ ✔ ✗ ✔

Conclusion ✔ ✔ ✔ ✔ ✔

Behaviour ✗ ✔ ✔ N/A N/A

Gemini 1.5-flash
Correct ✗ ✗ ✗ ✗ ✔

Conclusion ✔ ✗ ✗ ✗ ✔

Behaviour ✔ ✔ ✗ N/A N/A

Gemini 1.5-pro
Correct ✔ ∼ ✗ ✔ ✔

Conclusion ✔ ✔ ✗ ✔ ✔

Behaviour ✔ ✔ ✗ N/A N/A

Llama 3.1 70B Instruct
Correct ✔ ✗ ✔ ✗ ✔

Conclusion ✔ ✗ ✗ ✔ ✔

Behaviour ✗ ✗ ✗ ✗ ✗

Llama 3.2 11B Instruct
Correct ✗ ✗ ✗ ✗ ✔

Conclusion ✔ ✗ ✗ ✔ ✔

Behaviour ✗ ✗ ✗ N/A N/A

Llama 3.2 90B Instruct
Correct ✔ ∼ ✔ ✗ ✔

Conclusion ✔ ✔ ✔ ✔ ✔

Behaviour ✗ ✔ ✗ N/A N/A

Table 16: Comparison of each LLMs (ability to apply) knowledge in Nethack. We manually grade
the responses to each question based on the correctness of the response given (i.e. does the response
match information from the Nethack wiki), the correctness of their conclusion (i.e. does the LLM
correctly identify that such behaviour should be avoided), and whether an LLM agent’s behaviour
during evaluation is consistent with the ground truth (i.e. does the agent successfully avoid the
behaviours indicated in the questions). For answers that are partially correct, we award a ∼. We
record behaviour as N/A when the agent does not encounter scenarios where knowledge of the
corresponding question should be applied.

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

We observe that while generally the LLMs understand to avoid common mistakes, regardless of
whether their reasoning is completely correct, they still struggle to consistently exploit that knowl-
edge. Agents will often consume rotten food and prematurely exit the game by ascending the steps
on the first level. This illustrates a gap between LLM agents ability to exploit knowledge in practice.

36


	Introduction
	AgentQuest
	Environments
	Submitting to the Benchmark Leaderboard

	Zero-Shot Evaluation Protocol
	Evaluation Setting
	Observations
	Models

	Results
	Qualitative analysis

	Related Work
	Open Research Problems
	Conclusion
	Baby AI
	BabyAI-Text
	BabyAI Results
	Observations

	Crafter
	Crafter Results
	Observations
	Analysis of VLM Performance in the Crafter Environment

	TextWorld
	Treasure Hunter
	The Cooking Game
	Coin Collector
	TextWorld Results
	Observations

	Baba Is AI
	Baba Is AI Language Wrapper
	Baba Is AI Results
	Observations

	MiniHack
	Observations

	NetHack Learning Environment
	NetHack Language Wrapper
	New NetHack Progression System
	NetHack Results
	Observation
	LLMs possess extensive NetHack knowledge


