
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DEPTH EXTRAPOLATION OF DECODERS TRAINED ON
NESTED STRUCTURES

Anonymous authors
Paper under double-blind review

ABSTRACT

Reasoning problems with deeply nested formal statements are challenging for
humans and machines alike. We investigate how next-token predictors learn such
structures, and whether they extrapolate to more deeply nested cases, within a
single inference pass. A case study of Boolean logic simplification demonstrates
that a specialized decoder Transformer seems to perform well when it overfits, but
fails at extrapolating. To understand if this limitation is universal, we propose a
theoretical grounding of memorization in a self-attention head. We apply this the-
ory to a simpler problem: completion of a bounded stack of parentheses. From the
theoretical construction we derive a closed-form model that perfectly fits a single
sequence training set. We prove that it also completes any out-of-sample paren-
theses prefix, regardless of the context depth. In contrast, we observe that decoder
Transformers trained with gradient descent on this task fail at depth extrapolation.
Gradient-trained decoders demand large samples and a high-dimensional embed-
ding space to achieve high accuracy on test sets nearly as deep as the training set.
However, when the gap between training and test depths widens, gradient-trained
models fail.

1 INTRODUCTION

Decoder Transformers Radford et al. (2018) exhibit emerging reasoning capabilities (Wei et al., 2022a;
Polu and Sutskever, 2020; Bubeck et al., 2023; Trinh et al., 2024; Reid et al., 2024). Extrapolating
reasoning capabilities to tasks that are harder than already solved problems would unblock major
scientific breakthroughs. Measuring whether a machine can reason on problems of unbounded
difficulty raises fundamental questions about fair assessment of models’ performance. Measurements
of basic capabilities of neural networks has historically followed the methodology of evaluations on
independently and identically distributed unseen data (Vapnik, 1998). However, the internet-extracted
massive training sets cover most of human knowledge. Therefore, many reported evaluations of
generalization possibly use non-independent test data, raising questions about the validity of the
reported performances Mialon et al. (2023); Schaeffer et al. (2024). In a parallel stream of work,
(Delétang et al., 2023; Kazemnejad et al., 2024) have studied Transformers’ extrapolation to larger
context windows. To study extrapolation to harder-than-observed reasoning problems, we focus on
decoder Transformers’ handling of nested structures (e.g. Boolean expressions), where we use depth
as a measure of complexity. We ask: do decoder Transformers trained on data nested up to depth q
perform well on deeper test data?

In a motivating case study in Section 2, we experiment on Boolean expression simplification (Mc-
Cluskey, 1956). The synthetic data we generate are minimal examples of reasoning with nested
structures. We observe that general purpose Large Language Models (LLMs) struggle with such
nested data as the test data gets deeper, especially if they use a single pass of generation. Our
experiments on a controlled dataset suggest that memorization is a primary driver of performance:
in-sample performance far exceeds out-of-sample’s. But overfit models fail at depth extrapolation.
These findings raise multiple questions: is memorization the only mechanism to handle nested struc-
tures? We know that generalization in the standard sense is not in conflict with memorization (Belkin,
2021; Stephenson et al., 2021; Tirumala et al., 2022; Feldman, 2020), but what about extrapolation:
can a Transformer that fits the data perfectly also reliably extrapolate to more deeply nested problems?
The theoretical results presented in Section 3 pinpoint a regime where models perfectly fit the training
data and are also stable in unseen data.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

We apply the proposed construction to a simple Dyck language. Dyck languages encapsulate the bare-
bone of hierarchy in Boolean expressions and other nested structures, and are also used to represent
context-free grammars (Chomsky, 1956). In Section 4 we build a solution of next-token prediction
trained on a single sequence. The closed-form solution not only memorizes the training sequence,
but also solves the balanced parentheses completion problem on more nested out-of-sample data.
This suggests that Transformers with a single generation pass are not universally incapable of depth
extrapolation. In contrast, our numerical experiments show that the gradient-trained Transformers
fail at finding such a solution. Instead, the trained models demand lots of data, high embedding
dimensions and many layers for fitting the training set and performing in-sample completion well.
The model also performs well on out-of-sample test sets of lower or equal depth, yet it fails at
generalizing to deeper samples. This indicates an implicit bias of gradient-based training to finding
solutions with limited depth extrapolation.

2 TRANSFORMERS SIMPLIFY NESTED BOOLEAN EXPRESSIONS WHEN THEY
OVERFIT. DO THEY ALSO EXTRAPOLATE?

Simplifying entangled information into simpler logic is a critical capability for reasoning on complex
tasks. Simple expressions reconcile conflicts in complex logic. They are easier to understand and
verify by humans, and require lower effort for human or a machine to answer questions about the
underlying data. To simplify Boolean expressions, McCluskey (1956) relies on the truth table of the
expression, and performs searches in the exponentially large (in the variable count) stored table for
prime implicants. The more practical ‘simplifying inside-out’ method suffers exponential computation
in the expression’s depth. State-of-the-art LLMs fail at this task when the expression’s depth is large
in a single inference step. If multiple inferences are allowed, they articulate a chain-of-thought which
follows the inside-out logic, but small errors often propagate throughout the chain, leading to incorrect
conclusions. Here we examine the outcome of a single inference pass of a (pre-)trained decoder
Transformer on data of known and bounded depth. We compare in-sample versus out-of-sample
performance, when data is stratified by depth. We emphasize that our goal is not to build the best
inference logic to solve the problem efficiently. Our goal is to show-case depth extrapolation (or lack
thereof) of a next-token predictor.

2.1 DATA GENERATION AND STRATIFICATION ALONG DEPTH

We consider Boolean expressions formed using a random generator from a fixed number of variables
p0, p1, p2, p3 and operators &, |,¬ nested at a desired depth within parentheses. Our generator
(pseudo-code in Appendix 5.1.2) creates Boolean expressions containing k nested clauses of maxi-
mum depth q, by dynamically calling the random_clause generator of lower depth and joining
left and right expressions of lower depth using either & or |with equal probability. At depth zero,
random_clause returns either one of the variables or its negation. We use simplify_logic
from sympy.logic.boolalg as an oracle, to map each complex Boolean expression into a
simplified expression. Each equality of a complex expression and its simplified version constitute
one sequence in our dataset. For example, with k = 3, q = 3 one such sequence is

< start > ((((p3 & p3) & (true | ¬p2))& (¬p2 & p0))) | (((¬p3 & p1) & (true& ¬p2)))
& (((p0 & p2) & ((p3 | true) | (¬p3 | ¬ p3)))) = p0 & p3 & ¬ p2 < end >

The symbols { p0, p1, p2, p3, < start >, < end >, &, |, ¬, =, false, true, (,)} are
tokenized. We use a long concatenation of tokenized equalities to train models on.

2.2 NUMERICAL FINDINGS ON IN-SAMPLE AND OUT-OF-SAMPLE DEEPER EXPRESSIONS

Preliminary findings on logic simplification with LLMs. As a point of reference, we prompt a
general purpose LLMs to simplify a Boolean expressions (see Appendix 5.1.1). When a large stack
of such expressions are passed, the model performs a single inference on each and gets almost all
wrong. When the model is given a single simplification task, it often returns correct simplifications
for shallow expressions of depth q = 1. However, as the expression gets deeper q ≥ 3, even when
articulating the correct chain-of-thoughts (Wei et al., 2022b), LLMs return mostly incorrect answers.
Train and test split and model training. We generate a random sample of Boolean expressions and

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

q = 2 q = 3 q = 4 q = 5
Training depth

100

101

Ac
cu

ra
cy

 (%
) Evaluation set

 q = 3 out-of-sample
 q = 3 in-sample
 q = 6 out-of-sample
 q = 6 in-sample

Boolean expression simplification

Figure 1: Accuracy of Boolean simplification (here in log-scale) shows the gap between in-sample
and out-of-sample evaluations and also the failure to extrapolate to deeper test sets, here q = 6.

their simplified forms given 5 clauses and a maximum nested depth q. We define as out-of-sample
all expressions with simplified form (right-hand-side of equality) in a held-out set of 128 randomly
selected expressions. In-sample data are expressions with simplified forms excluded from the set
of 128 held-out. We train a d = 1024 dimensional model with a context length of n = 1024, h = 8
heads and L = 8 layers: ≈ ·108 parameters in total. We train models for 105 steps on 214 ≈ 1.6 104

batches from 109 length sequences. We align the minibatches to start at < start > and be 1024
tokens long. The minibatches do not necessarily end on a < end > token. The exact values of these
parameters are not chosen for performance optimization, as our goal in this section is simply to
show-case tensions between memorization and depth extrapolation.
Evaluation data and metrics. To evaluate a model, we feed the model with expressions starting
with < start > and ending with =. We generate next tokens until < end > is met. Provided that
the number of tokens in the new expression is lower than in the tokenized left-hand-side, we decode
the obtained expression and the true value. We use equals method from sympy to verify equality
on 10, 000 samples. We report in Figure 1 accuracy of Boolean expression simplification for in and
out-of sample expressions of depth q = 3 and q = 6.
Observations. We observe that the model trained on q = 3 data performs best at q = 3, for both
out-of-sample (blue, 9%) and in-sample (red, 68%) testing. The in-sample evaluation task is designed
to measure fit to data, or memorization and regurgitation of training sequences. We also note that
accuracy reported for test sets of depth q = 3, both in and out-of sample, is the highest across
different training depths when q = 3. This indicates that whether tested in-sample or out-of-sample,
performance is best near the training set’s depth. Finally, tests on deeper q = 6 examples show
overall lower performance as compared to q = 3. The in-sample performance seems to increase as q
approaches the target value q = 6, while out-of-sample accuracy fluctuates around 1%.
We studied simplification of Boolean expressions an example of reasoning task. We observed that
when successful, next-token predictors rely heavily on memorization. Overfit models have high
in-sample performance but they fail at extrapolation to harder tasks with deeper nested expressions.
Is this finding universal across all nested data? Is it a property of Transformer model architecture? Or
is it an implicit bias of the training method we used? To answer these questions, in the next Section
we review mechanisms of sequence fitting and generation in a single attention head. Section 4 applies
the construction of Section 3 to the simplest example of nested structure: completion of Dyck words.
For this problem (1) We demonstrate that a closed-form Transformer is capable of completing any
bounded parenthesis sequence. (2) We empirically compare performance in terms of model size
and sample complexity of the closed-form solution with gradient trained models, on deeper than
in-sample test sets.

3 SEQUENCE FITTING AND GENERATION IN SELF-ATTENTION

In this section, we present a general theoretical framework to show the contribution of the added
positional embeddings to sequence fitting and generation. We use a single-layer, single-head decoder

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Transformer model Chorowski et al. (2014; 2015); Radford et al. (2019), equipped with added trained
positional embeddings and tied unembedding head Edelman et al. (2022); Fu et al. (2023). This
framing isolates the key functionality of converting variable-length sequences into fixed-dimensional
vectors. We write a closed-form solution for the autoregressive loss with a single training point. The
theory presented here demonstrates how learned positional embeddings fit to data, autoregress and
generate next tokens. We reveal connections between the state variables: embedding dimension,
context length, vocabulary length. In particular, the established relationship grounds memorization in
large embedding spaces and indicates a stable regime for sequence generation. As an application of
this theory, the expression of the optimal positional embedding gives a closed-form solution that we
leverage in Section 4 to generate valid Dyck sequences, from any test prefix depths. We will see in
our numerical experiments that while this depth extrapolation capable function lies in the solutions
space, gradient trained models fail to find it.

3.1 NOTATIONS AND PROBLEM SETTING

We consider a vocabulary of t tokens, represented by integers [t] = {1, . . . , t}. We employ a decoder
model to predict the next token given the sequence of previous r ≤ n tokens seen as as context,
denoted by the tuple s = (s1, . . . , sr). Each token is embedded as a d-dimensional vector, with
E ∈ Rt×d stacking all embeddings as row vectors. The i-th row of this matrix is the embedding
of token i ∈ [t]. We use Es ∈ Rr×d to represent the embeddings of all tokens in context s. On
row i ≤ r, the matrix Es contains the embedding vector of token si: (Es)i,: = Esi,:. We define the
(row-wise) softmax operator of a matrix as softmax (X)i,j = eXi,j/

∑
k e

Xi,k , where we use the
convention exp(−∞) = 0. We introduce the causal masking matrix M, where Mi,j = 0 if i ≤ j and
Mi,j = −∞ if i > j. Given query/key/value matrices Q,K,V ∈ Rd×d, the masked self-attention
of X ∈ Rr×d is: att(X; M,Q,K) = softmax(XQKTXT +M) ∈ Rr×r. Here, X = Es +B:r

sums token and positional embeddings B ∈ Rn×d. Positional embeddings are independent from
the observed context s. After attending to context s, token embeddings are unembedded by taking
inner products with each token embedding vector Ei. Logits are viewed as a n× t matrix. Each row
contains, on its i-th column, the inner product of Ei with the d dimensional attended context vector.
Logits’ r-th row writes

logits(s)r,: = {att (Es +B)}r,: (Es +B:r)VET .

The next token ŝr+1 is drawn from the multinomial distribution parameterized by logits’ softmax:

ŝr+1 ∼ P [sr+1|s:r] = softmax {logits(s)r,:} . (1)

Parameters are optimized via the cross-entropy loss ℓ summed over prefixes of sequences in the
training set:

L =
∑
s

∑
r∈[n]

ℓ
(
softmax {logits(s)r,:} , δsr+1

)
, (2)

where δi is the one-hot indicator vector for token i: δi = [0, · · · , 0, 1
i
, 0, · · · , 0]T ∈ Rt. We are

interested in a single generation round: repeatedly applying Eq. (1) to the initial context stacked with
the predicted tokens until a stopping condition is met.

3.2 ADDED POSITIONAL EMBEDDINGS AUTOREGRESS, HIGH DIMENSIONS MEMORIZE

We analyze sequence generation by a single attention head when Eq. (1) is applied recursively. Our
goal in this theoretical study is to demonstrate the existence of a Transformer model capable of depth
extrapolation. For this, it is sufficient to prove that a simplified model fulfills the property. Hence, we
will restrict our study to a single sequence loss, which will provide an extrapolator as demonstrated in
Theorem 4.1, and we make two simplifying assumptions. (1) We use uniform attention Q = 0. For
sequences of fixed length with pre-aligned contexts, the use of the attention weights for re-alignment
of sequences is not required. For example, we will see in Section 4 that to complete parentheses
sequences, we only need to access partial sums of sequence tokens. This is performed by uniform
attention. (2) We use a value matrix proportional to the identity V = vId, to isolate the contribution
of positional embeddings to autoregression. We prove that a global optimizer of L with a single term

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

s belongs to this subset. One such attention head with added positional embeddings can perfectly fit
to a single sequence.

Under these conditions, and assuming EE⊤ ≈ It, the first-order condition on the loss L in Eq. (2)
simplifies to a system of equations. For each r ∈ [n]:

softmax
(
vr−11T

r {Es +B:r}ET
)
− δTsr+1

≈ 0 . (3)

This simplification facilitates derivation of the positional embeddings B = B(s) ∈ Rn×d from Eq.
(3), using telescoping partial sums, as a recursive relation using a free parameter γ ∈ R (calculation
detailed in Appendix 5.2):{

B1 = −Es1 + γEs2

Bi = −Esi + γ(Esi+1
−Esi) for i ≥ 2 .

(4)

The following result explains memorization in the simplified self-attention model we considered. In
virtue of the Johnson-Lindenstrauss Lemma (Dasgupta and Gupta, 2003), it allow to draw connections
between the context length n, vocabulary size t, and embedding dimension d.
Theorem 3.1. Let ε ∈ (0, 1), and s ∈ [t]n be a tuple. For d ≥ 4 log n/(ε2/2 − ε3/3), there
exists a token embedding E ∈ Rt×d such that a self-attention model as in Eq. (1), with B defined
as in Eq. (4), given any prefix of s as context, exactly completes ŝ = s with probability at least
1−nt exp{−vγ/n+2ε}. The next-token prediction cross-entropy loss value of the model is therefore
lower than 2n2t exp{−vγ/n+ 2ε}, which decays to zero for large enough γv. E can be computed
in polynomial time.

This result holds useful insights that can guide our thinking beyond the set of assumptions.
Scaling. In the probability expression above, we can substitute ε = 2 ({2/d} log n)1/2. This relation
shows how the correct completion probability increases with large embedding dimension:

P [ŝ = s] ≥ 1− nte−vγ/n(1 + 4
√
(2 log n)/d) .

Memorization. In summary, we stated that when the mixed contribution of the value operator v and
the added positional residual term γ which appear in the product vγ gets large, then the attention head
fits the observed sequence and is able to re-generate it by repeated applications of Eq. (1). Notably,
vγ ≫ 1 if both of v and γ have the same sign, for bounded |γ| and |v| ≫ 1.
Stability. If γ = −1/2 (and −v ≫ 1), the model is attractive: it completes other contexts with a
sequence of tokens that minimize distance to Es. In contrast, γ = 1/2 produces a repulsive model
which pushes completions of different prefixes away from Es. To build an intuition on stability,
consider a sequence z ∈ [t]n generated by the same model, and let cr = Esr −Ezr

. Assuming for
all r = 1 · · ·n,

v

r
1r (Es:r +B:r) = vγEsr+1

and
v

r
1r (Ez:r

+B:r) = vγEzr+1
,

we get cr+1 = µrcr with µr = (1 + [r + 1]γ)/(rγ). If γ = −1/2, µr = 1− 1/r < 1 resulting in
a contractive sequence of differences cr and if γ = 1/2, µr = 1 + 3/r > 1 and the sequence cr
diverges.
Multiple sequences. To expand the stated result to more than one sequence in all generality, it
is necessary to formulate the problem as an autoregression in V. V is not a multiple of identity
in this situation. Matrices att and B bound the condition number of the regression. A sufficient
condition for perfectly fitting (interpolating) m sequences s(1) · · · s(m) is the existence of B such that
E

s
(j)
i

+Bi’s form an orthogonal set. This suggests nm upper bounds d. The decomposition

attz(Ez +B)V = γvE
s
(j)
r+1

+ {attz − atts(j)} (Ez +B)V + atts(j) {Ez −Es(j)}V

where atts = att(Es + B), suggests that z’s completion follows the closest s(j). Discussing
relative positions of sequences s(j) and assumptions on V,B, att hold keys to characterizing the
multi-sequence problem which we defer to future work.

4 GENERATION OF A BOUNDED DYCK LANGUAGE WITH A TRANSFORMER

In this section we apply our theoretical findings and confront them with numerical experiments
on the simplest example of nested structure. Bounded Dyck words, denoted as D2N , comprise all

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

2 4 6 8 10 12 14 16
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Cu
m

ul
at

iv
e

su
m

Position

(

(

(

)

(

)

)

(

)

)

(

(

(

)

)

)

Closed-form positional embedding B(s) for s = ((()())())((())) 16
Training sequence s token embedding: Es

Positional: B(s) = Es (Esnext Es)
Prefix: ()()()
Completion s

Figure 2: Single layer attention γ = −1/2,−v ≫ 1: closed-form positional embeddings (red) and
completion (lime) of a prefix (blue) for the training sequence s (black) are represented as paths in the
space of cumulative token embeddings.

strings of length 2N of balanced parentheses. Dyck words are studied in computational linguistics
for their minimalistic representation of recursion and hierarchy in a formal language (Chomsky and
Schützenberger, 1959). Prior work studied full Transformers that learn to recognize D2N sequences
Ebrahimi et al. (2020); Yao et al. (2021); Delétang et al. (2023); Murty et al. (2023). Our focus in
the theoretical section is on a smaller set of models which we demonstrate are sufficient to solve the
problem. In theory and experiments we are interested in sequence generation in a single pass. We are
particularly interested in studying depth extrapolation. The depth of a Dyck word is the maximum
parenthesis stack size or largest cumulative sum: highest point of the lattice as in Figure 2.
The Catalan number enumerates the set of balanced parentheses of length 2N : CN = |D2N | =(
2N
N

)
/(N + 1) ≃ 4Nπ−1/2N−3/2, see Roman (2015) for a comprehensive reference. Given a short

prefix, the number of valid correct completions is exponentially large. Therefore, the autoregressive
loss of Eq. (2) must be fed an exponentially large number of data-points in order to learn to complete
any given prefix to any of the language’s full sequences. In that scenario, ambiguity on the correct
completion leads to difficulty in evaluation for this ill-posed problem. However, if our goal is not to
complete a prefix to the correct sequence, but rather to complete the prefix into a valid sequence,
then the problem is well defined. Sticking to this convention, we will show that minimizing the
autoregressive loss in Eq. (2) on a single sample (any of the D2N sequences) and in dimension one,
yields a global optimum which solves the problem with desirably high probability. We establish
the closed-form expression of this solution. However, our experiments show that the same loss
function, minimized with gradient-descent over a large training set, does not lead to learning the
single point abstraction that solves the bigger problem. The large scale of data demands large
embedding dimension (reminiscent of Theorem 3.1). But since the number of sequences in the
training set is close to CN and grows exponentially, this approach cannot lead to a viable solution
for large N . Our numerical experiments also show that the models trained with gradient descent on
small training data with only a few sequences fail at identifying the well-suited closed-form model of
Theorem 4.1.

4.1 CLOSED-FORM SELF-ATTENTION MODELS THAT COMPLETE PARENTHESES PREFIXES

We construct self-attention models with positional embeddings as in Eq. (4), using a deterministic
token embedding in a single dimension d = 1. We follow the construction used in Theorem 3.1 but
with deterministic embeddings. Our embedding constructing is based on the observation (see Roman
(2015)) that Dyck words can be represented as paths above the y = 0 line in a plane with integer
coordinates where the x axis represents positions and the y axis at position x denotes the size of the
open parenthesis stack. This simple geometric interpretation guides our choice of embedding: ‘(’→
1 and ‘)’→ -1. Their partial cumulative sums provided by the uniform attention trace the path across
position indices. We construct positional embeddings following Eq. (4) on D2N , with γ = −1/2
and E = [1, −1]T. We visualize this construction in Figure 2 a D16 sequence (black squares), the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

102 103 104 105 106 107 108

Number of parameters

0

20

40

60

80

100

d = 16

d = 2

d = 128

d = 512

d = 1024

d = 1
Closed-form

32 completion per model size, q = 8
d, L, h

1, 1, 1
2, 1, 1
2, 1, 2
2, 2, 1
2, 2, 2
2, 4, 1
2, 4, 2
16, 1, 1
16, 1, 2
16, 1, 4
16, 2, 1
16, 2, 2
16, 2, 4
16, 4, 1
16, 4, 2
16, 4, 4
128, 1, 1
128, 1, 2
128, 1, 4
128, 2, 1
128, 2, 2
128, 2, 4
128, 4, 1

128, 4, 2
128, 4, 4
512, 1, 1
512, 1, 2
512, 1, 4
512, 2, 1
512, 2, 2
512, 2, 4
512, 4, 1
512, 4, 2
512, 4, 4
1024, 1, 1
1024, 1, 2
1024, 1, 4
1024, 2, 1
1024, 2, 2
1024, 2, 4
1024, 4, 1
1024, 4, 2
1024, 4, 4
*, 1, 1
*, 4, 4

100 101 102 103 104 105 106 107

Number of unique sequences in training set

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

32 completion per training set size

Out-of-sample, q=4
Out-of-sample, q=8
Out-of-sample, q=12
In-sample, q=4
In-sample, q=8
In-sample, q=12
Closed-form

Figure 3: Left: empirical completion rates of learned and closed form expression D32 generators, as a
function of number of parameters. Note the black diamond on the upper left corner, which represents
the high performing closed-form single layer model with d = 1. Right: performance of Transformers
in out-of-sample (full lines) and in-sample (dashed lines) data, trained on subsets of D32 with varying
number of unique sequences and depth q. Again, the upper left corner lime diamond shows the
superior performance of a closed-form single head model which gradient descent fails at identifying.

associated positional embedding (red triangles) and an example of context or prefix (blue dots) and
completion (dashed lime stars).
Theorem 4.1 (Closed-form expression attention head for D2N). Take an integer N > 0 and consider
any s ∈ D2N as the single training sequence. The one-dimensional token embedding E = [1, −1]T

and the positional embedding B = B(s) ∈ R2N×1 defined as in Eq. 4, form a self-attention model
with exactly 2N + 3 weights achieving a cross-entropy loss lower than 8N2 exp(−N).

• Memorization. If vγ > N2, a single generation pass over Eq. (1) completes any prefix s:r
of s into s with probability at least 1− 2N exp(−N).

• Generalization. With γ = −1/2 and −v > 2N2, the model completes prefixes z:r of
any sequence z ∈ D2N with arbitrary depth, into a complete D2N sequence (balanced
parentheses) with probability at least 1 − 2N exp(−N). Conversely, if γ > 0, then if
the prefix z:r has a different stack size than s’s prefix of the same size 1T

rEz:r
̸= 1T

rEs:r ,
then even with the condition vγ > N2 required for memorization, the model will fail at
generating valid Dyck sequences with high probability.

Our results provide a more compact and precise solution than the two-layer Transformers by Yao et al.
(2021), due to learned positional embeddings instead of hard-coded linear embeddings. The result
shows that completion of z:r follows the shortest path in the space of stack sizes paths representing the
parentheses stacks, until it overlaps with the cumulative sum of the training sequence s. In contrast,
the model with v > 0 will amplify a difference in stack sizes of the prefixes. We call out that the
N exp(−N) terms (smaller than 10−3 for N ≥ 10) in the probability lower bounds of this section
can be adjusted with a free parameter in the exponential for further reduction if needed. However, to
be concise we have opted for this notation.

4.2 NUMERICALLY LEARNING A BOUNDED DYCK LANGUAGE

Our numerical experiments offer a deeper understanding of the capabilities and limitations of
Transformers at depth generalization, on Dyck language. The role of embedding dimension, number
of layer and heads are first examined. We then study sample complexity. We numerically compare the
performance of the closed-form solution with the trained models on deeper out-of-sample test sets.
Data. Our training and test data are sampled from D32: balanced parentheses words of length 32.
Using the Catalan numbers (Roman, 2015) CN , we enumerate C16 =

(
32
16

)
/17 ≈ 3.5 · 107 such

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

words. A set of 225 ≈ 3.4 · 107 randomly generated words is split into training and test sets, using
depth of the parentheses expression as the split criterion. The training data has ≈ 2.4 · 107 samples of
depth q ≤ 8, and we report accuracy (the number of completion of prefixes into balances parentheses
sequences) on a random subset of 1024 distinct sequences from the test data where prefixes have
depth q ≥ 9. Our completion criterion consists of running the generate method to get a string of
2N = 32 characters. We then examine whether the parentheses sequence is balanced. We report
accuracy numbers evaluated on a sample of 1024 test data. Our depth-based train-test split allows
to measure depth extrapolation. It distinguishes our work from Murty et al. (2023)’s work where
uniform split of data was employed to measure generalization within the same depth.
Models. We train decoder Transformer models (similar in architecture to GPT-2, adapted from
nanoGPT (Karpathy, 2022)) with varying L = 1, 2, 4 layers, number of heads h = 1, 2, 4 and
embedding dimensions of d = 2, 16, 128, 512, 1024: all combinations where h divides d are tested.
In the Transformer model, each attention block contains a directed self-attention, which is followed
by a multi-layer perceptron (MLP) with 2-layers and 8d neurons in the hidden layer. For training the
models, we use minibatches of size 8, AdamW with learning rates between 6 · 10−6 to 6 · 10−5 runs
for a maximum of 10,000 iterations and a dropout of 0.1.
Observations. Figure 3 (left) shows that models’ best performance grows with embedding
dimension, indicating its first order influence on accuracy. Large embedding models necessitate
multiple layers and attention heads to perform well. From the performance decay of the h = L = 1
models (connected with a dotted line), we observe that the importance of L and h increases with
larger d. Models with d ≥ 128 and h ≥ 2, L = 4 hit 95 + % accuracy. Conversely, gradient trained
d = 2 models all perform poorly. Notably, the only model which reaches 100% accuracy is the
closed-form model with d = h = L = 1 , represented in our plot as a lime-color diamond with a
black contour on the upper left corner.

Sample size experiment. In a subsequent experiment, we examine how sample complexity is
impacted by depth. For this, we train the largest model with d = 1024, L = h = 4 on training
sets containing different numbers of distinct sequences. We select 10k random sequences for
k = 0, 1, 3, 5, 7 from a training set with expressions of depth q ≤ 4, 8, 12. Our test set consists of
1024 prefixes of depth at least q ≥ 13. We evaluate each of the obtained models at prefix completion
on the training set itself, to evaluate in-sample performance. These are represented as dotted lines in
Figure 3 right. They all appear on top of the plot as all models fit well to data and perform well at
in-sample completion of prefixes. We also evaluate completion accuracy on a subset of 1024 distinct
prefixes of depth at least q ≥ 13 from the test set, to measure out-of-sample performance. These
results are shown in the right plot in Figure 3 as full lines.
We observe that the gap between the dashed (in-sample accuracy) and the full lines (out-of-sample
accuracy) for small values of the training set size are large. This suggests that the most successful
large and greedy model perform well when they fit to a large training set. They do not learn functions
similar to our closed-form model presented in Section 4.1 on small samples. We empirically evaluate
the closed-form model and record a 100% accuracy on this benchmark. We represent this in Figure
3 right as a lime colored diamond on the upper left corner (single sequence for training). It is
noteworthy that the model trained on shallow sequences of depth q = 4 has very low out-of-sample
accuracy on the deep test data, even when the number of training samples is large. This suggests
that generalization to deeper expressions is harder as the gap between training data depth and test
data depth widens. For all trained models with large enough embedding dimension, the training
loss value of a Transformer model trained on a single sequence reaches machine precision’s zero.
However the models seem to identify a global minimum which does not have the desired property of
the closed-form model. This observation suggests that even with the right implicit bias in model
architecture and training data selection, gradient descent fails to find the desired optimum of the
objective function.
Completion distributions for two models. To deepen our intuition on sequence generation
behaviors of the trained models, we study generated sequences by 2 models: (1) the model trained
with a single q = 4 sample ‘(()(()())((()()()))()(()))(()())’ and (2) the model trained on 107 distinct
sequences q ≤ 8 which appears to generalize better. We examine the distribution of generated
sequences when we pass in the same context to each model in 100 independent generation trials. We
observe, see Figure 4, that (top left plot) when a prefix of the training sample is passed as input to
the single sequence model, it completes it 100 times out of 100 into the training sample and hence
achieves an accuracy of 100 / 100. However, the same model fails at completing deeper (top middle)

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

or shallower (top right) contexts. Interestingly, in both scenarios the model repeats a pattern similar
to the training sample which it has seemingly memorized. In the case of the deep context, this results
in an open stack completion. In the case of the shallow context, the generated sequence is invalid as
it contains more closed than open parentheses. The model trained on 107 samples generates a more
diverse set of sequences, yet the generated sequences for a q = 9 deep sequence (lower middle plot)
seem to show a lower accuracy. Finally, we evaluate the two models 100 times on the deepest context
of D32 with 16 open parentheses. We observe that the large sample model correctly completes the
context 52 out of 100 times, while the single sequence model fails at generating the right completion
(see Table 1 in Appendix 5.3.2).
Spectral analysis. We examine the spectrum of the value matrix (times projection transpose),
numerically obtained after training Transformers with 1 and 107 samples. We observe a low-rank
structure for the best model (see Figure 5 in Appendix 5.3.3). Large spectral elements pop out
when the model is trained on a large training set and is able to generalize, with a dominant negative
eigenvalue. This phenomenon was also reported in numerical studies by Trockman and Kolter (2023).

0 5 10 15 20 25 30
Position

0

2

4

6

8

10

Cu
m

ul
at

iv
e

su
m

Accuracy = 100/100
Completion: 100/100
Context

0 5 10 15 20 25 30
Position

0

2

4

6

8

10

12

14

16
Accuracy = 0/100

Completion: 46/100
Completion: 44/100
Completion: 8/100
Completion: 1/100
Context

0 5 10 15 20 25 30
Position

2

0

2

4

6

8
Accuracy = 0/100

Completion: 100/100
Context

Trained on 1 sample

0 5 10 15 20 25 30
Position

0

2

4

6

8

10

Cu
m

ul
at

iv
e

su
m

Accuracy = 99/100
Completion: 1/100
Completion: 1/100
Completion: 1/100
Completion: 1/100
Context

0 5 10 15 20 25 30
Position

0

2

4

6

8

10
Accuracy = 96/100

Completion: 2/100
Completion: 1/100
Completion: 1/100
Completion: 1/100
Context

0 5 10 15 20 25 30
Position

0

2

4

6

8

10
Accuracy = 100/100

Completion: 1/100
Completion: 1/100
Completion: 1/100
Completion: 1/100
Context

Trained on 107 samples

Figure 4: Completions of a few contexts by the model trained on 1 and 107 sequence training sets.
Context are chosen as a prefix of the single sequence training data (left), a deeper than training data:
depth q = 9 (middle) and a shallow but not a prefix of the single sequence training (right). The
top row represent completions by the model trained a single q = 4 sequence. The bottom row are
completions by models trained on 107 samples of depth q ≤ 8.

5 DISCUSSION

To study reasoning on harder than training set tasks we conducted a controlled experiment on
simplifying Boolean expressions. We stratified the data by depth of expressions. Evaluations on
deep expressions show that a specialized model can overfit the data but struggles at extrapolating
to deeper nested expressions. We showed on a simpler problem (Dyck completion) that there exists
Transformers capable of depth generalization. Yet, gradient-based pre-training seems to fail at
identifying them. Our findings raise further research questions. First, can the closed-form solution be
expanded and its generalization power discussed when it interpolates multiple sequences of bounded
lengths? Can it cover other bracket types, Boolean logic, propositional, fuzzy and temporal logic?
Second, the characterization of the more stable solutions which generalize in addition to interpolating
can hold keys to biasing gradient trained models to reach such solutions. Finally, if extrapolation in
a single pass appears to be out-of reach, how do we optimize cost of training models on larger and
deeper synthetic training sets, versus calling inference routines multiple times?

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Mikhail Belkin. Fit without fear: remarkable mathematical phenomena of deep learning through the
prism of interpolation. Acta Numerica, 30:203–248, 2021.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence:
Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Noam Chomsky. Three models for the description of language. IRE Transactions on information
theory, 2(3):113–124, 1956.

Noam Chomsky and Marcel P Schützenberger. The algebraic theory of context-free languages. In
Studies in Logic and the Foundations of Mathematics, volume 26, pages 118–161. Elsevier, 1959.

Jan Chorowski, Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. End-to-end con-
tinuous speech recognition using attention-based recurrent nn: First results. arXiv preprint
arXiv:1412.1602, 2014.

Jan Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, and Yoshua Bengio.
Attention-based models for speech recognition. Advances in neural information processing
systems, 28, 2015.

Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of johnson and lindenstrauss.
Random Structures & Algorithms, 22(1):60–65, 2003.

Grégoire Delétang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot Catt,
Chris Cundy, Marcus Hutter, Shane Legg, Joel Veness, et al. Neural networks and the chomsky
hierarchy. International Conference on Learning Representations (ICLR), 2023.

Javid Ebrahimi, Dhruv Gelda, and Wei Zhang. How can self-attention networks recognize dyck-
n languages? In Findings of the Association for Computational Linguistics: EMNLP, page
4301–4306, 2020.

Benjamin L Edelman, Surbhi Goel, Sham Kakade, and Cyril Zhang. Inductive biases and variable
creation in self-attention mechanisms. In International Conference on Machine Learning, pages
5793–5831. PMLR, 2022.

Vitaly Feldman. Does learning require memorization? a short tale about a long tail. In Proceedings
of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pages 954–959, 2020.

Hengyu Fu, Tianyu Guo, Yu Bai, and Song Mei. What can a single attention layer learn? a study
through the random features lens. arXiv preprint arXiv:2307.11353, 2023.

Adi Haviv, Ori Ram, Ofir Press, Peter Izsak, and Omer Levy. Transformer language models without
positional encodings still learn positional information. arXiv preprint arXiv:2203.16634, 2022.

Andrej Karpathy. Nanogpt. https://github.com/karpathy/nanoGPT, 2022.

Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Payel Das, and Siva Reddy.
The impact of positional encoding on length generalization in transformers. Advances in Neural
Information Processing Systems, 36, 2024.

Edward J McCluskey. Minimization of boolean functions. The Bell System Technical Journal, 35(6):
1417–1444, 1956.

Grégoire Mialon, Clémentine Fourrier, Craig Swift, Thomas Wolf, Yann LeCun, and Thomas Scialom.
Gaia: a benchmark for general ai assistants. arXiv preprint arXiv:2311.12983, 2023.

Shikhar Murty, Pratyusha Sharma, Jacob Andreas, and Christopher D Manning. Grokking of
hierarchical structure in vanilla transformers. arXiv preprint arXiv:2305.18741, 2023.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem proving.
arXiv preprint arXiv:2009.03393, 2020.

10

https://github.com/karpathy/nanoGPT

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-baptiste
Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gemini
1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

Steven Roman. An introduction to Catalan numbers. Bitkhauser, 2015.

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities of large language
models a mirage? Advances in Neural Information Processing Systems, 36, 2024.

Cory Stephenson, Suchismita Padhy, Abhinav Ganesh, Yue Hui, Hanlin Tang, and SueYeon Chung.
On the geometry of generalization and memorization in deep neural networks. International
Conference on Learning Representations, ICLR, 2021.

Kushal Tirumala, Aram Markosyan, Luke Zettlemoyer, and Armen Aghajanyan. Memorization
without overfitting: Analyzing the training dynamics of large language models. Advances in Neural
Information Processing Systems, 35:38274–38290, 2022.

Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He, and Thang Luong. Solving olympiad geometry
without human demonstrations. Nature, 625(7995):476–482, 2024.

Asher Trockman and J Zico Kolter. Mimetic initialization of self-attention layers. In International
Conference on Machine Learning, pages 34456–34468. PMLR, 2023.

Vladimir Vapnik. Statistical learning theory. 1998.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models.
Transactions on Machine Learning Research, 2022a.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022b.

Shunyu Yao, Binghui Peng, Christos Papadimitriou, and Karthik Narasimhan. Self-attention networks
can process bounded hierarchical languages. The 59th Annual Meeting of the Association for
Computational Linguistics (ACL), 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

APPENDIX

5.1 BOOLEAN EXPRESSION SIMPLIFICATION

5.1.1 LLM EXAMPLE

GPT-4 returns correct simplifications for 9 out of 10 samples for simplifying logical expressions with
2 clauses of depth 1. However, with 5 clauses of depths q = 3, the model correctly accomplishes 0
out of 10 tasks. Example: Can you simplify the following Boolean expression?
(((¬p2|¬p2)|(false|(false&false))))&(((false&true)|((p3|p3)&(¬p3|¬p2))))
&(((p2|¬p2)&((¬p0&¬p1)|(p3|¬p2))))|(((¬p0|(p1&¬p3))|(p2&(p2|p3))))
&(((¬p1|p1)&(p1|false)))

GPT-4: To simplify the provided boolean expression, we’ll analyze and simplify each
subexpression and then combine them into a final simplified form:
Original Expression:

(((¬p2|¬p2)|(false|(false&false))))&(((false&true)|((p3|p3)&(¬p3|¬p2))))
&(((p2|¬p2)&((¬p0&¬p1)|(p3|¬p2))))|(((¬p0|(p1&¬p3))|(p2&(p2|p3))))
&(((¬p1|p1)&(p1|false)))

Simplification Steps:

1. Simplify subexpressions:
• ¬p2|¬p2 simplifies to ¬p2.
• false|(false&false) simplifies to false.
• false&true simplifies to false.
• p3|p3 simplifies to p3.
• p2|¬p2 simplifies to true (this is a tautology).
• ¬p1|p1 simplifies to true (also a tautology).
• p1|false simplifies to p1.

2. Reconstruct expression using simplified components:
• The first section simplifies to ¬p2&((false|(p3&(¬p3|¬p2)))&true)
• Using the simplifications, p3&(¬p3|¬p2) reduces to p3&¬p2.
• The overall expression becomes:

(¬p2&(p3&¬p2))|((¬p0|(p1&¬p3))|(p2&(p2|p3)))&true&p1

• p2&(p2|p3) simplifies to p2.

3. Further combine and simplify:
• ¬p2&(p3&¬p2) simplifies to p3&¬p2 (since ¬p2&¬p2 is just ¬p2).
• Combine the remaining parts:

(p3&¬p2)|((¬p0|(p1&¬p3))|p2)&true&p1

• Since true&p1 is just p1, simplify to:

(p3&¬p2)|((¬p0|p1)|p2)&p1

• Further simplification yields:

((p3&¬p2)|¬p0|p2)&p1

Final Simplified Expression:((p3&¬p2)|¬p0|p2)&p1. This is the simplified version of the
complex boolean expression you provided. Let me know if you need any further clarification
on the steps!

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Note: The correct solution is p1|(p3&¬p2)

5.1.2 RANDOM BOOLEAN EXPRESSION GENERATOR

We stack a list of clauses with random joins defined as

random_join (a, b) =
{
a & b with probability 1/2

a | b with probability 1/2.
(5)

We want to generate a random logical clause with true, false, p1, · · · p3 where p1, · · · p3 are
Boolean variables. We generate random logical clauses of a given maximum depth q with recursive
calls to a function random_clause defined on variables = {true, false, p1,¬p1 · · · p3,¬p3}
recursively as in Algorithm 5.1.2. Given a desired number of clauses k in an expression, we call
random_clause k times and random join the k expressions, each of which has maximum depth q.

Algorithm 1 Random Boolean clause generator
1: function RANDOM_CLAUSE(q)
2: if q ≤ 0 then
3: return choice(variables)
4: else
5: left← choice([random_clause(q− 1), random_clause(q− 2)])
6: right← choice([random_clause(q− 1), random_clause(q− 2)])
7: return random_join[left, right]
8: end if
9: end function

5.2 PROOF OF THEORETICAL RESULTS

We begin with stating a preliminary result where tokens are one-hot encoded.

Lemma 5.1. Let s ∈ [t]n be a sequence of tokens. Under uniform attention Q = 0 and one-hot token
embeddings where token i is embedded as δi we use It = [δT1 , · · · , δTt]T as the token embedding
matrix. Consider the positional embedding R = [R1, · · · ,Rn]

T, where

{
R1 = −δs1 + γδs2
Ri = −(1 + γ)δsi + γδsi+1

for i ≥ 2 .
(6)

and V = vIt with vγ > n log(nt). Then for r < n and the 1 model with these parameters, any
prefix s:r of s is completed into s, i.e. we get ŝ = s, with probability at least 1− nt exp(−vγ/n).

Proof of Lemma 5.1. With uniform attention, the r-th row of att is r−11T
r . We know that, by

construction,

(
1T
rR:r,:

)T
=

r∑
i=1

Ri =− δs1 + γδs2

− δs2 − γδs2 + γδs3
− δs3 − γδs3 + γδs3

...

=−
(
1T
r δs:r,:

)T
+ γδsr+1

,

so 1T
r (δs +R) = γδTsr+1

and logits is proportional to the (r + 1)-th token’s one-hot:

logitsr,: =
v

r
1T
r (δs +R:r) I

T
t =

vγ

r
δTsr+1

.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

The next token is generated as in 1, from a multinomial drawn from softmax(logits). It follows
that next token is sr+1 with probability [1 + (t − 1) exp(−vγ/r)]−1 ≥ 1 − (t − 1) exp[−vγ/n] .
We assumed that vγ > n log(nt). This means (n− 1)(t− 1) exp[−vγ/n] < nt exp[−vγ/n] < 1,
and therefore union bound allows to conclude.

With this result in hand, we can turn on to our main statement.

Proof of Theorem 3.1. We invoke the Johnson-Lindenstrauss Dasgupta and Gupta (2003) Lemma
on one-hot embeddings {δsi}ni=1 of Lemma 5.1 to construct E ∈ Rt×d in polynomial time. We use
δTsiE = Esi and write for i ̸= j ∈ [n],

(1− ε)∥δsi − δsj∥22 ≤ ∥Esi −Esj∥22 ≤ (1 + ε)∥δsi − δsj∥22 . (7)

We use V = vId and superscript E to denote logitsE calculated with E. We build positional
embeddings using a multiplication of R by the same matrix E as B = RE ∈ Rn×d. We have

logitsEr,: =
v

r
1T
r (Es +B)ET =

v

r
1T
r (δs +R)EET

=
vγ

r
δTsr+1

EET (8)

We use the Lipschitz property of the linear map E within the span of {δsi}ni=1 and use its singular
value decomposition to establish that Ξ = EET is a positive semi-definite matrix with restricted
eigenvalues in the span of {δsi}ni=1 lay within 1− ε to 1 + ε. It therefore satisfies, within the span of
{δsi}, ∥x Ξ− x∥2 ≤ ε . As a consequence, within the span of {δsi}, we also get, for a row vector
x ∈ R1×t ∥x Ξ− x∥∞ ≤ ε. This implies that

softmax(logitsEr,:)sr+1 ≥
exp(vγr − ε)

exp(vγr − ε) + (t− 1) exp(ε)

≥ 1− t exp{−vγ/n+ 2ε} .

We use the union bound to establish that the d-dimensional self-attention model generates ŝ = s with
probability at least 1− nt exp{−vγ/n+ 2ε}. In order to upper bound the loss function, note that
each of the n terms in the loss function is independently derived from the probability upper bound we
just established:

L =
∑
r∈[n]

ℓ(softmax{logits(s)r,:}, δsr+1)

=

n−1∑
r=0

ℓ(P[sr+1|s:r], δsr+1)

= −
n−1∑
r=0

logP[sr+1|s:r]

≤ −
n−1∑
r=0

log (1− nt exp{−vγ/n+ 2ε}) (probability upper bound)

≤ 2n2t exp{−vγ/n+ 2ε} (using − log(1− x) ≤ 2x for large enough γ) .

5.3 GENERATION OF A BOUNDED DYCK LANGUAGE

5.3.1 PROOF OF THEORETICAL RESULTS

Let us start with a useful observation:

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Lemma 5.2. For a two-word token embedding E = [1, −1]T, the logits simplify to logits =
[X,−X]. Consequently, if X > 0, the next character generated is an open parenthesis ‘(’ with
probability at least 1− exp(−2X), if X < 0, a closed parenthesis ‘)’ is generated with probability
at least 1− exp(2X) .

Proof of Lemma 5.2. We know that logits = XET = [X,−X], which means that probabilities are
given by

[P next character is ‘(’ ,P next character is ‘)’] = softmax([X,−X])

=

[
eX

eX + e−X
,

e−X

e−X + eX

]
,

and if X > 0, the inequality 1/(1 + e−2X) ≥ 1− e−2X proves the result.

Using this, we can turn on to the proof of the main result.

Proof of Theorem 4.1. Consider the vocabulary ‘(’,‘)’ tokenized as ‘(’→ 0, ‘)’→ 1, i.e. E =

[
1
−1

]
and uniform attention, i.e. Q = 0. With this choice the r-th row of att Es is equal to the size of the
stack at entry r, ∆r defined as

∆r(s) = | i ≤ r , si = ‘(’ | − | i ≤ r , si = ‘)’ | = 1T
rEs:r . (9)

It is the size of the stack among the first r ≥ 1 characters, that is the number of open parenthesis ‘(’
minus number of closed parentheses ‘)’ among the first r characters. We will use B defined as Eq.
(4) with γ = −1/2 and v < −2N2. We want to prove two results. Memorization: a prefix of s is
completed into s and generalization: any other prefix is completed with valid D2N tokens.

Memorization. We use Eq. 8 to write logitsr: = (vγ/r)δTsr+1
EET and use E’s expression to

write:

logitsr,: =
vγ

r
δTsr+1

EET =

{ vγ
r ET if sr+1 = ‘(’
− vγ

r ET if sr+1 = ‘)’
.

This is because we get δTsr+1
E = 1 if sr+1 = ‘(’ and −1 otherwise. Using the result of

Lemma 5.2 we have proven that with our choice of γv > N2, with probability at least
1− exp(−γv/r) ≥ 1− exp(−N), the next character of the generated sequence is sr+1, and using
union bound, we conclude that with probability at least 1 − 2N exp(−N), each prefix of s is
completed into s. This completes our proof of the memorization result.

Generalization. We need to prove that any other sequence z is completed with a valid parenthesis
sequence. Recall that logitsr = (v/r)1T

r (Ez +B(s)) = [X,−X] and

1T
r (Ez +B(s)) =

r∑
i=1

Ezi +Bi(s)

= ∆r(z)−∆r(s) + γEsr+1

Remark that if γ = −1/2 and −v > 2N2, then the model is elastic: generated next tokens of z
attract the stack size or cumulative sum of z to that of the training data point s. To prove this,
note that if at position r, the stack in z is larger than the stack in s, then because v < 0, then
X = v{∆r(z)−∆r(s) + γEsr+1} ≤ v{1− (1/2)Esr+1} which implies that X < 0 consequently
the next character generated for z is ‘)′ which reduces the stack of z one step closer to s. Conversely,
if the stack of z is below that of s, then the sign of X flips and we get an open parenthesis as the next
character.

In order to ensure that such a sequence is a valid parenthesis sequence, first look at r such that
∆r(z) = 0 , i.e. a well-balanced prefix z:r. The generator would violate the parentheses balances if

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

the next character were to be a closed parenthesis ‘)’. We are interested in the value of the logits at
row r. With our choice of γ = −1/2,

1T
r (Ez +B(s)) =

r∑
i=1

Ezi
+Bi(s)

= ∆r(z)−∆r(s) + γEsr+1
= −∆r(s) + γEsr+1

≤ −1

2
< 0 .

Using Lemma 5.2, with probability at least 1−exp(v/r) ≥ 1−exp(−N) the next character generated
is an open parenthesis: this ensures that the parentheses stack size is positive and the generator is
not violating the constraint. The other violation case is where z has reached the maximum value
of ∆r(z): r > N and ∆r(z) = 2N − r. In this case, for any sequence s, ∆r(z) −∆r(s) ≥ 0. If
∆r(z) = ∆r(s), then sr+1 = ‘)’ and this proves that 1T

r (Ez +B(s)) = 1/2. If ∆r(z) > ∆r(s),
then ∆r(z) − ∆r(s) + γEsr+1 ≥ 1/2. In either scenario, with probability at least 1 − exp(−N)
next character is ‘)’. This concludes the proof.

For completeness, and for presenting a model with the fewest parameters, we also construct a model as
in Eq. (1) with no positional embedding, capable of completing a D2N prefix into a valid D2N word.
This model is not able to generate different words, it is limited to generating repetitive sequences. It
is analogous to those discussed in Theorem 4.1 with s = ‘()()()() · · · ’.

Claim 5.3. A embedding E =

[
1− 1/(2N + 1)

−1

]
with no positional embedding can form a 1 model

that completes any prefix into a word of D2N with probability at least 1− 2N exp(−N).

Proof of Claim 5.3. With a uniform attention Q = 0, if the partial stack is empty, ∆r = 0, then∑r
i=1 Esi < −1/(2N + 1) and therefore, thanks to Lemma 5.2 for v < −2N2(2N + 1), with

probability at least 1− exp(v/[r{2N +1}]) ≤ 1− exp(−N), next token is a valid open parenthesis.
If the partial stack is non-empty, ∆r > 0, then

∑r
i=1 Esi > 1/(2N +1) and with probability at least

1− exp(−N) the next token is a closed parenthesis. Union bound allows to conclude.

5.3.2 COMPLETIONS OF A DEEP CONTEXT

q Training samples Completion of ‘((((((((((((((((’ Frequency (out of 100) Is balanced?
8 107 (((((((((((((((()))))))))))))))) 52 Yes
8 107 (((((((((((((((())))))))())))))) 15 No
8 107 (((((((((((((((()))))))))()))))) 12 No
8 107 (((((((((((((((()))))))()))))))) 8 No
8 107 (((((((((((((((()))))))))))))()) 5 No
8 107 (((((((((((((((())))))))))())))) 3 No
8 107 (((((((((((((((()))))()))))))))) 2 No
8 107 (((((((((((((((()))))))))))()))) 2 No
8 107 (((((((((((((((())))))())))))))) 1 No
4 1 (((((((((((((((()))))(()))(()()) 34 No
4 1 (((((((((((((((()))())()))(()()) 24 No
4 1 (((((((((((((((()))()(()))(()()) 18 No
4 1 (((((((((((((((())))))()))(()()) 11 No
4 1 (((((((((((((((()))()())))(()()) 8 No
4 1 (((((((((((((((()))))(()))())()) 2 No
4 1 (((((((((((((((()))()(()))())()) 1 No
4 1 (((((((((((((((()))))(())))()()) 1 No
4 1 (((((((((((((((()))))())))(()()) 1 No

Table 1: Completion of the deepest sequence ‘((((((((((((((((’ of D32 by two models over 100
independent trials.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

5.3.3 SPECTRAL ANALYSIS OF TOP VALUE MATRICES OF TRAINED MODELS FOR
PARENTHESES COMPLETION

0 200 400 600 800 1000
Index i

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Si
ng

ul
ar

 v
al

ue

i
Transformer trained on 32 top value (times projection transpose)

trained on 1 sample
trained on 107 samples

0.10 0.05 0.00 0.05 0.10
Rotation cosine ui, vi

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Si
ng

ul
ar

 v
al

ue

i

 Singular Value Decomposition

0.15 0.10 0.05 0.00 0.05 0.10 0.15
Real

0.15

0.10

0.05

0.00

0.05

0.10

0.15

Im
ag

in
ar

y

Eigenvalues of top Value matrix V
trained on 1 sample
trained on 107 samples

Figure 5: Top value (times projection transpose) matrix for Transformer models trained on 1 and 107

samples. We observe that the model which generalizes exhibits a low-rank structure (top left). Its
singular vectors form a negative cosine (top right). The top complex eigenvalue of the model trained
on 107 samples pops out with a dominant real negative eigenvalue (bottom).

5.3.4 ABLATION STUDY: POSITIONAL EMBEDDINGS AND UNIFORM ATTENTION

Data. The set D32 words is here randomly split into a 10% test (3.5 · 106) and 90% training set
(≈ 3.2 · 107). We trained models on sub-samples of 4k for k = 1, · · · , 12 (412 ≈ 1.7 · 107) distinct
words from the training set and compare their performance. We report accuracy of single pass models.

Models. We trained 5 models on the same data and compare their performance reported in Figure 6.

1. The largest model d = 1024, L = h = 4 of Section 4.2. All parameters of the model are
initialized at random and trained using AdamW on the training data (same hyperparameters
as in Section 4.2). This model is represented in red in Figure 6.

2. In order to isolate the contribution of positional embeddings, we also train a model with no
positional embedding but otherwise identical (represented in black).

3. We fix parameters Q = 0 (uniform attention) and E =

[
1 · · · 1
−1 · · · −1

]
. These models,

represented in blue, have att and E parameters closer to the theoretical study in Section 4.
They exhibit strong performance with small training sets, highlighting the benefit of this
inductive bias.

4. In order to disentangle the contribution of B from V and subsequent linear transformation
in the projection and MLP, we train a model where we also freeze V = Id and do not use
the MLP. These models are represented with green curves, and mostly under-perform others.
We are interested in comparing positional embeddings they learn with a model where V is
also learned (see below).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

5. We train a single head model with uniform attention and E. The model uses residuals and
layer normalization for efficiency. This model is the closest to our theoretical analysis. We
trained it for visualizing learned positional embeddings in Figure 7.

Observations. We observe that the fully trained model (1), in red, requires the largest training
data, where it is eventually superior to all other models. Haviv et al. (2022) questioned whether
a causal transformer trained with no positional embedding can be competitive with a model with
positional embeddings. Our controlled dataset study indicates that positional embeddings are pivotal
for completion correctness. As shown in Figure 6, comparing red and black full curves suggests that
positional embeddings are crucial for achieving higher completion accuracy and lower loss. Model
(5) outperforms the highly constrained multi-layer model (4) which has fixed uniform attention at
each layer and head. Overall, model performance aligns with the number of learned parameters. An
interesting observation is the high performance of model (2) which has fixed uniform attention and
±1 tokens (in blue). With high embedding dimension, in this two token problem, the value matrix
drives performance.

We show in Figure 7 the learned positional embedding’s cumulative sums, for models trained
with constant uniform attention and interpretable ±1 token embeddings discussed in Section 4, in
dimension d = 1024. These positional embeddings were trained on the broadest training set with
412 distinct sequences. To enhance visibility, we also run k-means on the cumulative sum positional
embeddings with k = 8 and plot cluster centroids in different colors, and the number of curves
assigned to each centroid in the same color. We observe that in the model where V is learned (blue
curves in Figure 6), cumulative sums of positional embeddings do not all end near the origin (top
figure). Centroid curves display this distinctly. When V is fixed to identity, in the middle plot,
the transformer’s positional embeddings seem to remain closer to the origin, especially at the end
of their trajectory. This behavior is even more pronounced in the 1 model (bottom figure), which
is the model we studied in Section 4. As a reminder, our theoretical analysis constructed a set of
positional embeddings which (opposite curve) follow the token embeddings’ cumulative sum, with
a γ = −1/2 value, see Figure 2. Since the cumulative sum of token embeddings is constrained to
end at y = 0, then the cumulative sum of the constructed positional embeddings end within 1/2 of
the origin. This behavior of the trained model matches our theoretical finding. We posit that the
spread of positional embeddings above and below the x-axis can be related to layer normalization.
We observe that the fully trained models outperform models with fixed token embedding models
which outperform models with also fixed V. This suggests that not only positional embeddings is
crucial for performance, but the non-trivial interaction between V and B when both are learned under
no constraints contributes significantly to the model.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

1e1 1e2 1e3 1e4 1e5 1e6 1e7
0

20

40

60

80

100

pe
rc

en
ta

ge
 c

om
pl

et
io

n

D32, random split, d = 1024, L = 4, h = 4

fully trained (test)
no positional (test)
E & att fixed (test)
fully trained (train)
no positional (train)
E & att fixed (train)

1e1 1e2 1e3 1e4 1e5 1e6 1e7

10 3

10 2

cr
os

s e
nt

ro
py

 lo
ss

number unique words in training set

E & att fixed no V (test)
SA (test)
E & att fixed no V (train)
SA (train)

Figure 6: Performance of transformers with (red) or without (black) positional embedding, with
uniform attention (blue), and no V or MLP after attention (lime) and self-attention only as in Eq.
(1) in purple trained on D32 datasets with varying number of unique words. Full lines represent
out-of-sample performance and dashed line are in-sample.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

0 4 8 12 16 20 24 28 32

0.3

0.2

0.1

0.0

0.1

0.2

0.3

cu
m

ul
at

iv
e

su
m

139
116

89
186

162
148

125
59

position

Pos. embeddings: fixed att & E

0 4 8 12 16 20 24 28 32
0.2

0.1

0.0

0.1

0.2

cu
m

ul
at

iv
e

su
m 95

144

73

122

165
153

120

152

position

Pos. embeddings, fixed att & E, V, no MLP

0 4 8 12 16 20 24 28 32

0.3

0.2

0.1

0.0

0.1

0.2

0.3

cu
m

ul
at

iv
e

su
m

33
190

163
160

129

47

169
133

position

Pos. embeddings, SA fixed att & E

Figure 7: Learned positional embeddings and their k-means centroids for k = 8. Top: transformer
trained with fixed uniform attention and ±1 token embeddings. Middle: same as above, with V fixed
to identity and no MLP. Bottom: single layer self attention model.

20

	Introduction
	Transformers simplify nested Boolean expressions when they overfit. Do they also extrapolate?
	Data generation and stratification along depth
	Numerical findings on in-sample and out-of-sample deeper expressions

	Sequence fitting and generation in self-attention
	Notations and problem setting
	Added positional embeddings autoregress, high dimensions memorize

	Generation of a bounded Dyck language with a Transformer
	Closed-form self-attention models that complete parentheses prefixes
	Numerically learning a bounded Dyck language

	Discussion
	Boolean expression simplification
	LLM example
	Random Boolean expression generator

	Proof of theoretical results
	Generation of a bounded Dyck language
	Proof of theoretical results
	Completions of a deep context
	Spectral analysis of top value matrices of trained models for parentheses completion
	Ablation study: positional embeddings and uniform attention

