
Data-Informed Geometric Space Selection

Shuai Zhang
ETH Zurich

cheungshuai@outlook.com

Wenqi Jiang
ETH Zurich

wenqi.jiang@inf.ethz.ch

Abstract

Geometric representation learning (e.g., hyperbolic and spherical geometry) has
proven to be efficacious in solving many intricate machine learning tasks. The
fundamental challenge of geometric representation learning lies in aligning the
inherent geometric bias with the underlying structure of the data, which is a rarely
explored topic in the literature. Existing methods heavily rely on heuristic assump-
tions on the data structure to decide the type of geometry to be adopted, which
often leads to suboptimal performance. This work aims to automate the alignment
process via a data-informed strategy such that we optimize model performance
with minimal overhead. Specifically, a sparse gating mechanism is employed to
enable each input data point p to select K geometric spaces from a given candidate
geometric space pool with N (K < N) spaces of different geometry. The selected
K spaces are then tightly integrated to formulate a Cartesian product space, which
is leveraged to process this input data p. In doing so, each input data is processed
by the spaces it selected with maximum specialization. We empirically show that
this method can effectively align data and spaces without human interventions
and further boost performance on real-world tasks, demonstrating its potential in
eliciting the expressive power of geometric representations and practical usability.

1 Introduction

Representing data in low-dimensional geometric spaces (e.g., Euclidean, hyperbolic, and spherical)
has been an invaluable technique in a variety of machine learning tasks. Euclidean space has been the
most widely adopted and predominant geometric space across many tasks [8, 31]. Recent research
has shown that non-Euclidean geometry, such as hyperbolic and spherical geometry, can be more
effective in representing data with specific/intricate inherent structures. Typically, hyperbolic space,
a type of manifold with constant negative (sectional) curvature, provides a greater ability to model
tree-like structures and capture hierarchical patterns [32, 11, 21]. Conversely, spherical space, with
positive curvature, is well-suited for fitting data with cyclical structures [44, 30]. Different geometry
endows models with different inductive bias that prioritizes learning specific patterns in the data.

Geometric representation learning faces a significant challenge in effectively aligning underlying
data structures with appropriate geometric spaces. Earlier approaches tend to map all data to a single
geometric space, operating under the implicit assumption that the majority, if not all, of the data
conforms to the same geometric pattern. This assumption of a uniform geometric pattern across all
data points is unrealistic. As such, there has been growing interest in hybridizing different geometric
spaces [22, 37, 4] via Cartesian product to form a mixed curvature space. By leveraging the benefits
of multiple geometric spaces, this approach can offer improved performance compared to methods
that rely on a single geometric space.

Real-world data is usually characterized by intricate patterns that a single geometric space cannot
adequately capture. Thus, employing a one-space-fits-all approach is unlikely to produce optimal
solutions. In addition, the Cartesian product space representation learning technique does not
discriminate between input examples based on their underlying geometric structures. For example,

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

if a Cartesian product space is constructed by combining a spherical space with a hyperbolic space,
both spaces will be used to fit all input data examples, irrespective of whether a data point only aligns
with one of the geometry. Ideally, each space should calibrate its internal parameters using the input
examples that conform to the corresponding manifold to ensure that the modeling capacity of all
geometric spaces is maximized.

Accurately aligning input data with appropriate geometric spaces is a crucial challenge in geometric
representation learning. However, neither the single geometric space method nor the Cartesian
product approach fully address this issue. Our primary goal is to tackle this challenge by developing
an automated approach that seamlessly aligns each data point with its appropriate space. Instead of
relying on oversimplified heuristics or manual interventions, we aim to learn the data-space alignment
component together with the task-specific model using an end-to-end framework.

To this end, we propose a data-informed method for geometric space selection. Given N candidate
geometric spaces with different geometry, we let each data point p choose K(1 ≤ K < N) spaces
from the pool. The chosen K spaces are then tightly combined via Cartesian product to form a
Cartesian product space, which is used to process p. The selection process is parameterized by a
sparsely gated neural network that can adaptively activate a subset of the given spaces based on
the given input data. This module can be easily plugged into any geometric representation learning
task to enable end-to-end optimization. Theoretically, we can construct NCK = N !

(N−K)!K! possible
Cartesian product spaces in the end, which brings a greater degree of freedom and personalization for
representation learning. Moreover, the proposed method will only incur a negligible computational
overhead since only the K selected geometric spaces participate in the model inference no matter
how large the space pool is.

The contributions of this work are summarized as follows:

• We propose a data-informed approach for geometric space selection that offers the advantage
of automatically aligning each input data point with its preferred geometric space, thereby
increasing specificity while being computationally efficient.

• We empirically demonstrate the practical effectiveness of this method with real-world
datasets across two downstream tasks. We examine the proposed method’s inner workings
(e.g., distribution of the selected geometric spaces) via visualization, ablation, and case
studies, reaffirming the benefits of the proposed method.

2 Related Work

We briefly review two areas of active research that intersect with the present work.

2.1 Non-Euclidean Geometric Representation Learning

Two popular non-Euclidean geometric spaces with non-zero curvature, including hyperbolic and
spherical spaces, have gained increasing attention and can be found in a broad spectrum of repre-
sentation learning applications. Hyperbolic space has negative curvature and is reminiscent of a
continuous version of trees, which makes it excel in capturing hierarchical structures. A bunch of
work has demonstrated its effectiveness in tasks such as graph modeling and knowledge representa-
tion [32, 42, 39, 5, 12, 35, 28, 10, 15, 20, 9, 26, 40]. On the other hand, spherical space with positive
curvature is more suitable for directional similarity modeling and cyclical-structured data. We can
find applications of spherical spaces in text embeddings [30], texture mapping [44], time-warping
functions embedding [44]. In these papers, the choice of geometric space is primarily based on expert
heuristics about the data characteristics.

To combine the best of different worlds, Gu et al. [22, 37, 4] proposed a method to construct a
mixed curvature space via Cartesian product of different spaces. The component spaces in Cartesian
product spaces are selected from Euclidean, hyperbolic, and spherical spaces. Each component of
Cartesian product space has constant curvature, while the resulting mixed space has a non-constant
curvature, which enables it to capture a wide range of patterns with a single model. Empirically,
Cartesian product spaces demonstrate its efficacy in graph reconstruction, word embedding with low
dimensions [22], node classification in graphs [4], and image reconstruction [37]. Product space is
designed to handle data with mixed patterns, but the alignment process between data and geometric

2

space is still oversimplified and not customized for each data point. Consequently, the challenge of
aligning appropriate spaces with input data points persists, and a solution to this problem remains
elusive.

2.2 Sparsely-gated Mixture of Experts

Another related research area is sparsely-gated neural networks, which are a type of mixture-of-
experts (MOE) architecture [24, 25]. Over the past few decades, many MOE architectures have
been proposed, such as hierarchical structures [47], sequential experts [2], deep MOE [18], and
sparsely-gated MOE [36]. MOE is based on the divide-and-conquer principle, which divides the
problem into homogeneous regions and assigns an expert to each region. The final prediction is made
by combining the predictions of all experts via a gating network. The gating network controls the
contribution of each expert using a probabilistic gating function. If the gating function is sparse, i.e.,
restricted to assigning non-zero weights to only a subset of the experts, unused experts need not be
computed. MOE has been widely studied in various tasks, such as multi-task learning [29], large
language models [36, 19], and scaling up vision transformers [34].

We draw inspiration from sparsely gated MOE to automate the alignment between data and its
appropriate geometric space. Our approach allows each input data point to control the gating function
and select suitable geometric spaces from a candidate geometric space pool, thus enabling customized
assignment of data to its suitable spaces. It brings higher specialization, a greater degree of freedom,
and superior expressiveness.

3 Preliminaries

3.1 Riemannian Geometric Space

Figure 1: Left: Hyperbolic space H ; Center:
Euclidean plane E ; Right: Spherical space S .

Stereographic Projection model. In general,
there are three types of constant curvature spaces
with respect to the sign of the curvature (Fig. 1).
Common realizations are Euclidean space E (flat),
hypersphere S (positively curved) and hyperboloid
H (negatively curved). For the latter two, we pre-
fer their stereographic projection model: projected
sphere D and Poincare ball P. These models are
easier to optimize and avoid the problem of non-
convergence of norm of points with a curvature
close to 0, and the projection is conformal, i.e.,
does not affect the angles between points [32, 37].

An alternative to vector space in non-Euclidean geometry is gyrovector space [41], which defines
operations such as vector addition and multiplication.

Definition 1 For D and P (jointly denoted asMc, where c denotes curvature), the addition between
two points x,y ∈Mc, also known as Möbius addition ⊕c (for both signs of c), is defined as:

x⊕c y =
(1− 2c⟨x,y⟩ − c∥y∥22)x+ (1 + c∥x∥22)y

1− 2c⟨x,y⟩+ c2∥x∥22∥y∥22
, (1)

Where ⟨, ⟩ is Euclidean inner product. The distance between points in the gyrovector space is defined
as:

dMc
(x,y) =

2√
|c|

tan−1
c (

√
|c|∥ − x⊕c y∥2), (2)

where tanc stands for tan if c > 0 and tanh if c < 0. In both spaces, we have Euclidean geometry
when c→ 0. It is easy to prove that:

dMc(x,y)
c→0−−−→ 2∥x− y∥2, (3)

which means the gyrospace distance converges to Euclidean distance when limiting c to zero.

3

Definition 2 Let TxMc be the tangent space to the point x ∈ Mc. Mapping between (Euclidean)
tangent space and hyperbolic/spherical space is performed with exponential map: TxMc →Mc

and logarithmic map:Mc → TxMc, which are defined as:

logcx(y) =
2√
|c|λcx

tan−1
c (

√
|c|∥ − x⊕c y∥2)

−x⊕c y

∥ − x⊕c y∥2
,

expcx(v) = x⊕c (tanc(
√
|c|λ

c
x∥v∥2
2

)
v√
|c|∥v∥2

),

(4)

where λcx is a conformal factor, defined as λcx = 2/(1 + c∥x∥22), which is used to transform the
metric tensors between (Euclidean) tangent space and non-Euclidean space.

3.2 Cartesian Product of Spaces

Definition 3 Product space is defined as the Cartesian product of multiple spaces with varying
dimensionality and curvature. Let P denote a product space composed by N independent component
spacesM(1),M(2),...,M(N). The mixed space P has the form (operator × can be omitted):

P =
N×
i=1

M(i) =M(1) ×M(2) × ...×M(N). (5)

Definition 4 The product space P also has distance functions. The squared distance between points
x,y ∈ P is defined as:

d2P(x,y) =

N∑
i=1

d2M(i)(xM(i) ,yM(i)), (6)

where xM(i) and yM(i) denote the corresponding vectors on the component spaceM(i).

Other operations such as exponential map and logarithmic map are element-wise, meaning that we
can decompose the points into component spaces, apply operations on each component space, and
then compose them back (e.g., concatenation) to the product space. A product space’s signature
(i.e., parametrization) refers to the types of space, the number of spaces, the dimensionality, and
the curvature of each space. For instance, (P100)3(D50)2 denotes a Cartesian product space of three
hyperbolic spaces of hidden dimension 100 and two spherical spaces of hidden dimension 50.

4 Data-Informed Space Selection

4.1 Geometric Space Pool

Figure 2: Data-informed geometric space selection. P
and E are selected to form P× E for input data p.

Suppose we have a space pool with N ge-
ometric spaces, M(i)

c ∈ {E,D,P}, i =
{1, ..., N}. For simplicity, we assume all
spaces have the same dimensionality b. The
goal is to select K(1 ≤ K < N) spaces
from the given N spaces for each data
point p. If K > 1, the selected K spaces
will form a product space. Theoretically,
there will be NCK = N !

(N−K)!K! possible
space combinations. Figure 2 illustrates
the proposed data-informed space selection
pipeline. Here, P and E are selected by
data p and the Cartesian product P× E is
used to handle p.

4.2 Embeddings

For each geometric spaceM(i)
c , we define an embedding dictionary e(i). In the ith space, data point

p is represented by a vector e(i)p ∈ Rb, where b is the hidden dimension of this embedding dictionary.

4

We initialize all the embedding vectors in the tangent space, and the exponential map will be applied
to recover them into hyperbolic or spherical space when necessary. In doing so, standard Euclidean
optimization algorithms can be directly applied to enable an end-to-end learning framework to avoid
the cumbersome Riemannian optimization [7].

4.3 Geometric Space Selector via Sparsely-gated MOE

We use a sparsely-gate MOE network to select a suitable space subset from the space pool. The
selector is a differentiable network that takes as input the embedding vectors e(i)p and outputs the
probability of each space to be selected. Formally, the input is defined as:

xp = [e(1)p , e(2)p , ..., e(N)
p]⊤, (7)

where xp is a two-dimensional matrix of shape N × b. We use a convolutional neural network to
transform this matrix into a vector of dimension N . Other types of neural networks are also viable,
we adopt CNN because it does not introduce a lot of additional parameters. Then, the last hidden
layer of the gating network has the following form:

f(xp) = f1(xp) + randn() · ln(1 + exp(f2(xp))), (8)

where f1 and f2 represent CNN layers and f∗(xp) ∈ RN ; function "randn()" is used to product
Gaussian noise in the training stage to improve loading balancing, i.e., balance the number of samples
accepted by each space.

To impose sparsity, we employ a TopK function to obtain the largest K elements from f(xp):

f(xp)← TopK(f(xp)), (9)

where TopK returns the original value if the element is in the top K list; otherwise, it returns −∞.
Afterward, N softmax gating functions g1, g2, .., gN are leveraged to control which K space(s) to be
selected. For −∞, it will output a zero.

gi(xp) =
exp(f(xp)i)∑N
j=1 exp(f(xp)j)

, i = {1, ..., N}. (10)

Later, spaces with nonzero gating values will be activated while others remain idle. The selected K
space will form a Cartesian product space.

4.4 Task Specific Prediction Function

The prediction function is specific to the type of task. For instance, in each component spaceM(i)
c ,

we can adopt squared distance to produce the model prediction. Given two points p and q, the
prediction function can be defined as sM(i)

c
(e

(i)
p , e

(i)
q). If space i is not selected, sM(i)

c
is set to 0.

More details will be provided in the experiment section for each task. If K > 1, the final prediction
score is computed as:

s(p, q) = log(

N∑
i=1

gi(xp) exp(sM(i)(e(i)p , e(i)q))). (11)

Here, a log-sum-exp technique is leveraged to improve the numerical stability to avoid problems such
as underflow and overflow. Multiplying the prediction by the gating probability is optional in the
framework.

If sM(i) is calculated with squared distance andK = N , we can recover the squared distance function
defined for product space by removing gi(x) and the log-sum-exp technique. Our prediction function
cannot be viewed as a standard distance metric as it does not satisfy the triangle inequality property.
Also, it is flexible to use other prediction functions to replace squared distances.

4.5 Load Balancing Regularization

We use a load balancing regularization term to improve numerical stability and avoid some spaces
from being over-selected. In specific, two additional regularization terms are used following [36].

5

For a batch of X inputs,
ℓ1 = ψ(

∑
p∈X

g(xp))
2, (12)

where ψ(v) = variance(v)
mean(v) is the coefficient of variation.

ℓ2 = ψ(κ(X))2, (13)

κ(X)i =
∑
p∈X

Φ(
f1(xp)− ξ(f(xp), k, i)

ln(1 + exp(f2(xp))
)), (14)

where ξ(v, k, i) is the kth highest component of v excluding component i. Φ is the cumulative
distribution function of standard normal distribution.

The two regularization terms are added to the task-specific loss for model optimization:

ℓ = ℓtask + µ1ℓ1 + µ2ℓ2, (15)

where µ1 and µ2 are scaling factors (set to 0.01 by default).

4.6 Limitation

Compared with Cartesian product space [22], the proposed method introduces one additional hy-
perparameter, K. As we will show later, a relatively small K (e.g., K <= 5) can introduce a
significant performance boost. Just like determining the signature of Cartesian product space, we
need to determine what geometric spaces to be included in the space pool. This overhead is inherited
from Cartesian product space and can be potentially mitigated via hyper-parameters optimization
algorithms [23].

5 Experiments

In this section, we evaluate the proposed method on real-world datasets to demonstrate its capability
in dealing with practical tasks, including personalized ranking and link prediction for relational
graphs.

5.1 Personalized Ranking

The task of personalized ranking is to provide a user with a tailored, ranked list of recommended
items [33]. Given a partially-observed interaction matrix between users and items, where each entry
of the matrix represents the rating/preference a user u gives to an item v if u has interacted with
the iterm (e.g., watched the movie) and is otherwise missing. We conduct experiments on two
well-known datasets, MovieLens 100K and MovieLens 1M. The first dataset consists of 100K ratings
between 943 users and 1,682 movies, and the second dataset consists of one million ratings between
6,040 users and 3,706 movies. Over 90% of the entries of these interaction matrices are missing.
Completing this matrix enables us to recommend to customers what to watch next.

The personalized ranking model takes a user vector u(i)
u ∈ Rb and an item vector v(i)

v ∈ Rb as input,
and approximate the rating with squared distance [42]. That is, the rating of user u gives to movie v
is estimated by:

sM(i)(u, v) = −d2M(i)(exp
c
0(u

(i)
u), expc0(v

(i)
v)). (16)

Alternatively, we can use the dot product, u(i)
u · u(i)

v , to approximate each entry of the matrix [33].

The input of the gating network is the concatenation of the user and item embeddings. Specifically, a
vector of size R2Nb is used as the input, and a linear layer is used as the sparsely-gated network. Let
s(u, v) denote the final prediction. We treat the task as a learning-to-rank problem and optimize it by
minimizing the following contrastive loss:

ℓtask =
∑

(u,v1,v2)∈Ω

max(0, s(u, v1) +m− s(u, v2)), (17)

6

Dot Product 100 100 100

(
20)2 (

20)2
20

 product s
pace

(
20)2 (

20)2
20

 Ours(K
=4)

0.00

0.05

0.10

0.15

0.20

0.25

Pe
rf

or
m

an
ce

 o
n

M
ov

ie
Le

ns
 1

M

Mean Average Precision
Precision@10
Recall@10

Dot Product 100 100 100

(
20)2 (

20)2
20

 product s
pace

(
20)2 (

20)2
20

 Ours(K
=4) (

20)5

 Ours(K
=4)

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

Pe
rf

or
m

an
ce

 o
n

M
ov

ie
Le

ns
 1

00
K

Mean Average Precision
Precision@10
Recall@10

Figure 3: Personalized ranking performance on MovieLens 1M and MovieLens 100K.

where Ω is the collection of training samples, v1 is the movie that u watched, and v2 represents an
unobserved movie for the user; m is a hyper-parameter.

We hold 70% entries in each user’s interactions as the training set, 10% entries as the validation
set for model tuning, and the remaining 20% for model testing. All interactions (e.g., ratings) are
binarized following the implicit feedback setting [33]. For all methods, the total dimension

∑N
i=1 bi

is set to 100 for a fair comparison to ensure the same model size. The curvatures for spherical and
hyperbolic models are set to 1 and −1, respectively. N is set to 5. K is tuned among {1, 2, 3, 4}.
Regularization rate is chosen from {0.1, 0.01, 0.001}. m is fixed to 0.5. Adam is adopted as the
optimizer. We measure the performance based on the widely adopted metrics in personalized ranking:
mean average precision (MAP), precision, and recall at the top-ranked ten items (Precision@10 and
Recall@10). For all experiments, we report the average over five runs.

Main Results. Figure 3 summarizes the performances. The proposed method achieves the best
scores on all three metrics, outperforming the product space counterpart with the same signature
and other single space models. Also, dot-product based approach remains competitive in this task.
We estimate the global average curvature with the algorithm described in [22] and obtain a value
of 0.695 for MovieLens 1M and 0.19 for MovieLens 100K, which suggests that they lean towards
cyclical structures. However, from the performance comparison among E100, D100, and P100, we
find that the model built in Euclidean space offers the best performance, outperforming spherical
and hyperbolic counterparts. This observation indicates that the global average curvature estimation
algorithms proposed by Gu et al. [22] may give misleading information, which also ascertains the
difficulty of data-space alignment.

5.2 Link Prediction for Relational Graphs

Relational graphs have emerged as an effective way to integrate disparate data sources and model
underlying relationships. Encoding the nodes and relations of relational graphs into low-dimensional
vector spaces is vital to downstream applications such as missing facts completion, question answering,
information extraction, and logical reasoning [3].

Given a relational graph G with a set of entities E and a set of relationsR. Each triple, abbreviated
as (h, r, t), in G is composed by two entities (i.e., head entity h ∈ E and tail entity t ∈ E), and
the relationship r ∈ R between them. In the ith space, entities h, t are represented by vectors
e
(i)
h , e

(i)
t ∈ Rb and relation r is represented by two translation vectors α(i)

r ,β
(i)
r ∈ Rb and a rotation

vector γ(i)
r ∈ Rb. Also, each head (tail) entity is associated with a bias term bh(bt) ∈ R.

Inspired by the method (RotE and RotH) proposed in [11], we propose a generic model, RotX, that
subsumes the two methods and can be extended to spherical space. In RotX, the head entity is
translated twice via Möbius addition and rotated once. Formally, the head entity is processed as
follows:

Q(i)(h, r) = ROTATE(expc0(e
(i)
h)⊕c exp

c
0(α

(i)
r),γ(i)

r)⊕c exp
c
0(β

(i)
r), (18)

where expc0 is the exponential map over origin. ROTATE is a rotation function, and γ
(i)
r is the rotation

matrix. The transformed head entity is then compared with the tail entities using squared distance.

7

Tra
ns

E-A
T
Box

E

Dist
Mult

Co
nv

E

Tu
ck

ER

Rot
at

E

Co
mplE

x
Qua

tE
Rot

E
MuR

S
Mur

P
Rot

H

M
2 GNN

Hitt
ER

CSP
ro

m-K
G
Our

s

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

Re
su

lt
s

on
 W

N
18

RR

 MRR
 HR@1
 HR@3
 HR@10

Tra
ns

E-A
T
Box

E

Dist
Mult

Co
nv

E

Tu
ck

ER

Rot
at

E

Co
mplE

x
Qua

tE
Rot

E
MuR

S
Mur

P
Rot

H

M
2 GNN

Hitt
ER

CSP
ro

m-K
G
Our

s
0.05

0.00

0.05

0.10

0.15

0.20

0.25

Re
su

lt
s

on
 F

B1
5K

-2
37

 MRR
 HR@1
 HR@3
 HR@10

Figure 4: Performance on relational graphs link prediction. We use the performance of TransE-
AT [46] as the baseline (e.g., ∆MRR = MRR(Model) - MRR(TransE-AT)) for the lollipop charts. In
our method, for WN18RR, the geometric space pool consists of 4× D100 and one E100, K = 4; for
FB15K-237, the geometric space pool consists of 3× P100 and 2× D100, K = 4.

The final scoring function is as follows:

sM(i)(h, r, t) = −d2M(i)(Q
(i)(h, r), expc0(e

(i)
t)) + b

(i)
h + b

(i)
t . (19)

We make the curvature relation specific and trainable. Each relation has a curvature parameter and is
trained simultaneously with the model. We adopt the following cross-entropy loss as the objective
function:

ℓtask =
∑

(h,r,t)∈Ω

log(1 + exp(−Y(h,r,t)s(h, r, t))), (20)

where Y(h,r,t) ∈ {1,−1} is a binary label indicating whether a triple is factual (1) or not (-1). Ω
represents the training collection, including positive and negative triples.

We use two datasets including WN18RR [8, 16] and FB15K-237 [8, 16] for model evaluation.
WN18RR is taken from WordNet, a lexical database of semantic relations between words. It has
40, 943 entities, 11 relations, and 86, 835/3, 034/3, 134 training/validation/test triples. FB15K-237
is a subset of the Freebase knowledge graph, a global resource of common and general information.
It has 14, 541 entities, 237 relations, and 272, 115/17, 535/20, 466 training/validation/test triples.
The performance is evaluated using two standard metrics, including mean reciprocal rank (MRR) and
hit rate (HR) with a given cut-off value {1, 3, 10}.
The total dimension is fixed to 500 for a fair comparison. Learning rate is tuned amongst
{0.01, 0.005, 0.001}. For all experiments, we report the average over 5 runs. We set the kernel
size to 5 and stride to 3 for convolution operation in the gating network. N is set to 5 and K is tuned
among {1, 2, 3, 4}. The number of negative samples (uniformly sampled) per factual triple is set to
50. Optimizer Adam is used for model learning. We perform early stopping if the validation MRR
stops increasing after 10 epochs.

We compare our method with several baselines, including Euclidean methods TransE [8], Dist-
Mult [45], ConvE [16], TuckER [6], RotE [11], BoxE [1]; complex number based methods ComplEx-
N3, [27] and RotatE [38]; quaternion model QuatE [48]; spherical models MuRS [43]; hyper-
bolic methods MurP [5], RotH [11]; Cartesian product space model M2GNN [43], and Trans-
former/pretrained model based models HittER [14] and CSProm-KG [13]1. CSProm-KG uses the
pretrained large language model (LLM), BERT [17], as the backbone.

Main Results. We report the performance comparison in Figure 4 where we use TransE-AT [46]
as baseline2 and report the differences. We make the following observations. Firstly, our method
outperforms all compared baselines without pretrained large language model as external sources.
Specifically, it outperforms Euclidean, hyperbolic, spherical, complex-valued, and Cartesian product
spaces methods and obtains a clear performance gain over the second-best model. Secondly, the

1A concurrent work.
2TransE-AT on WN18RR: MRR=0.479, HR@1=0.434, HR@3=0.495, HR@10=0.571; on FB15k-237:

MRR=0.351, HR@1=0.257, HR@3=0.386, HR@10=0.538.

8

1 1 3 4 2 3 4 1 3 1 2 4 1 4 2 1 1 3 1 2
Product of Spaces

0
100
200
300
400
500
600
700

of

 In
st

an
ce

s
1 2 3 1 1 3 1 2 2 3 1 2 1 2 1 2 1 2 3 2

Product of Spaces
0

2000
4000
6000
8000

10000

of

 In
st

an
ce

s

1 2 3 1 1 2 3 2 1 2 1 2 2 3 1 2 1 3 1 2
0

40

80

120

%
 o

f i
ns

ta
nc

es

people/person/profession
/people/person/gender
/film/actor/film./film/performance/film
/location/location/time_zones

Figure 5: Left: distribution of the selected geometric space on WN18RR; Center: distribution of the
selected geometric space on FB15K-237; Right: geometric space distribution of four relations from
FB15K-237.

1 2 3 1
1 2 3 2
1 2 1 2
2 3 1 2
1 3 1 2

1 2 3 1
1 2 3 2
1 2 1 2
2 3 1 2
1 3 1 2

Figure 6: Distribution of the selected spaces shown in a sub-graph of the FB15K-237.

improvement over the second-best model on FB15K-237 is larger than that on WN18RR. One
possible explanation is that FB15K-237 has a more diverse set of relations and a higher structure
heterogeneity [5], so a better geometric space alignment could bring more value. It is worth noting
that WN18RR is sampled from the WordNet lexical database and BERT is trained on a large corpus
of lexical data, it is unsurprising that CSProm-KG can obtain very high score on WN18RR. However,
its relatively modest scores on FB15K-237 suggest limited practicality for non-lexical knowledge
graphs. As such, it is not fair to compare an LLM based approach with our approach as using LLM
may lead to data leakage.

Distribution of the selected Geometric Space. Figure 5 (left and center) presents the distribution
of the selected spaces. We observe that certain product spaces are preferred depending on the
dataset. For example, the product space D2D3 is the most selected space on WN18RR. While on
FB15K-237, the product space P1P2P3D1 is more preferable. To show more fine-grained examples,
we randomly select four relations from FB15K-237 and visualize the distribution in Figure 5 (Right).
We find that each relation has their own desirable product spaces. For example, relation “/location/
location/time_zones" prefers space P1P2P3D1 but relation “people/person/profession" prefers space
P1P3D1D2. This reconfirms the specification capability of our method.

M Signature WN18RR FB15K-237

MRR HR@3 MRR HR@3

Single D500 0.492 0.514 0.293 0.322

Product

(P100)3(D100)2 0.484 0.498 0.311 0.344
(D100)4E100 0.479 0.497 0.312 0.344
(P100)4D100 0.468 0.488 0.321 0.356
(P100)2(D100)2E100 0.479 0.496 0.308 0.342

Ours

3 × P100, 2 × D100 0.500 0.521 0.530 0.545
4 × D100, E100 0.526 0.549 0.525 0.531
4 × P100,D100 0.504 0.526 0.515 0.527
2 × P100, 2 × D100, E100 0.522 0.546 0.526 0.535

Table 1: Comparison with Cartesian product space mod-
els [22] (a few signatures are reported due to length con-
straints). K = 2 for WN18RR and K = 4 for FB15K-237.

To show how the space distribu-
tion coincides with data structures,
we randomly extract three connected
graph components from the test set
of FB15K-237 and visualize them in
Figure 6. Each triple can be repre-
sented with an edge and its two end
nodes. We render edges with different
colors based on the type of product
spaces used to model the correspond-
ing triples. From the left two graphs,
we see some clear clusters with a dom-
inant color, which suggests that neigh-
borhood triples are more likely to be
processed with the same selected prod-
uct space. From the right-most graph,
we find that different relations usually
prefer different spaces, which indicates that the type of relations plays a critical role in the space
selection process.

Comparison with Cartesian Product Space with Varying Signatures. Compared with M2GNN
(its signature is P200D200E200) (in Figure 4). Our model achieves the best performance even with

9

fewer trainable parameters. Then, we compare our method with Cartesian product space models with
varying signatures in Table 1. We observe that our method constantly outperforms pure product spaces
with the same prior signatures. It is worth noting that our method requires merely two/four active
spaces to outperform product space models with five active spaces. These observations reconfirm the
effectiveness of the data-informed space alignment method.

Impact of N and K.

4 6 8 10 12
N

0

1

2

3

In
fe

re
nc

e
Ti

m
e

(s
)

0.450

0.475

0.500

0.525

0.550

M
RR

1 2 3 4 5
K

0.0

0.5

1.0

1.5

2.0

2.5

In
fe

re
nc

e
Ti

m
e

(s
)

0.450

0.475

0.500

0.525

0.550

M
RR

Figure 7: Effect of N (left) and K (right) on WN18RR.

The left figure of 7 shows the impact
of N by fixing K. We observe that (a)
the model performance does not ben-
efit much from increasing N on this
dataset; (b) the inference time remains
nearly constant when we increase N ,
confirming its efficiency. The effect of
K is shown in Figure 7 (right). We
find that K has a higher impact on the
model performance and inference time. Increasing K will generally degrade the performance on this
dataset and yield additional computational overhead.

6 Conclusion

In this paper, we propose a data-informed geometric space selection method. Our method enables an
automatic alignment between data and geometric spaces by allowing each data point to automatically
select its preferred geometric spaces via a sparsely-gated MOE network. It brings a greater extent
of specification for geometric representations while remaining efficient. We show that the proposed
approach can boost representation performance in real-world applications with a noticeable margin.

Broader Impact. This approach exhibits considerable potential in facilitating enhanced and versatile
geometric representation learning, thereby engendering broader and more comprehensive applications
across various domains.

References
[1] Ralph Abboud, Ismail Ceylan, Thomas Lukasiewicz, and Tommaso Salvatori. Boxe: A box

embedding model for knowledge base completion. Advances in Neural Information Processing
Systems, 33, 2020.

[2] Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars. Expert gate: Lifelong learning
with a network of experts. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3366–3375, 2017.

[3] Alfonso Amayuelas, Shuai Zhang, Xi Susie Rao, and Ce Zhang. Neural methods for logical
reasoning over knowledge graphs. In International Conference on Learning Representations,
2022.

[4] Gregor Bachmann, Gary Bécigneul, and Octavian Ganea. Constant curvature graph convolu-
tional networks. In International Conference on Machine Learning, pages 486–496. PMLR,
2020.

[5] Ivana Balazevic, Carl Allen, and Timothy Hospedales. Multi-relational poincaré graph embed-
dings. In Advances in Neural Information Processing Systems, pages 4463–4473, 2019.

[6] Ivana Balazevic, Carl Allen, and Timothy Hospedales. Tucker: Tensor factorization for
knowledge graph completion. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 5188–5197, 2019.

[7] Silvere Bonnabel. Stochastic gradient descent on riemannian manifolds. IEEE Transactions on
Automatic Control, 58(9):2217–2229, 2013.

10

[8] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. Advances in neural information
processing systems, 26:2787–2795, 2013.

[9] Joey Bose, Ariella Smofsky, Renjie Liao, Prakash Panangaden, and Will Hamilton. Latent
variable modelling with hyperbolic normalizing flows. In International Conference on Machine
Learning, pages 1045–1055. PMLR, 2020.

[10] Ines Chami, Albert Gu, Vaggos Chatziafratis, and Christopher Ré. From trees to continuous
embeddings and back: Hyperbolic hierarchical clustering. Advances in Neural Information
Processing Systems, 2020.

[11] Ines Chami, Adva Wolf, Da-Cheng Juan, Frederic Sala, Sujith Ravi, and Christopher Ré. Low-
dimensional hyperbolic knowledge graph embeddings. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pages 6901–6914, Online, July 2020.
Association for Computational Linguistics.

[12] Ines Chami, Zhitao Ying, Christopher Ré, and Jure Leskovec. Hyperbolic graph convolutional
neural networks. In Advances in neural information processing systems, pages 4868–4879,
2019.

[13] Chen Chen, Yufei Wang, Aixin Sun, Bing Li, and Kwok-Yan Lam. Dipping PLMs sauce:
Bridging structure and text for effective knowledge graph completion via conditional soft
prompting. In Findings of the Association for Computational Linguistics: ACL 2023, pages
11489–11503, Toronto, Canada, July 2023. Association for Computational Linguistics.

[14] Sanxing Chen, Xiaodong Liu, Jianfeng Gao, Jian Jiao, Ruofei Zhang, and Yangfeng Ji. HittER:
Hierarchical transformers for knowledge graph embeddings. In Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing, pages 10395–10407,
Online and Punta Cana, Dominican Republic, November 2021. Association for Computational
Linguistics.

[15] Calin Cruceru, Gary Becigneul, and Octavian-Eugen Ganea. Computationally tractable rieman-
nian manifolds for graph embeddings. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 7133–7141, 2021.

[16] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. Convolutional 2d
knowledge graph embeddings. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32, 2018.

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[18] David Eigen, Marc’Aurelio Ranzato, and Ilya Sutskever. Learning factored representations in a
deep mixture of experts. arXiv preprint arXiv:1312.4314, 2013.

[19] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity. arXiv preprint arXiv:2101.03961, 2021.

[20] Shanshan Feng, Lucas Vinh Tran, Gao Cong, Lisi Chen, Jing Li, and Fan Li. Hme: A
hyperbolic metric embedding approach for next-poi recommendation. In Proceedings of the
43rd International ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 1429–1438, 2020.

[21] Octavian-Eugen Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic neural networks.
arXiv preprint arXiv:1805.09112, 2018.

[22] Albert Gu, Frederic Sala, Beliz Gunel, and Christopher Ré. Learning mixed-curvature rep-
resentations in product spaces. In International Conference on Learning Representations,
2019.

[23] Xin He, Kaiyong Zhao, and Xiaowen Chu. Automl: A survey of the state-of-the-art. Knowledge-
Based Systems, 212:106622, 2021.

11

[24] Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures
of local experts. Neural computation, 3(1):79–87, 1991.

[25] Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em algorithm.
Neural computation, 6(2):181–214, 1994.

[26] Max Kochurov, Rasul Karimov, and Serge Kozlukov. Geoopt: Riemannian optimization in
pytorch. arXiv preprint arXiv:2005.02819, 2020.

[27] Timothee Lacroix, Nicolas Usunier, and Guillaume Obozinski. Canonical tensor decomposition
for knowledge base completion. In International Conference on Machine Learning, pages
2863–2872, 2018.

[28] Qi Liu, Maximilian Nickel, and Douwe Kiela. Hyperbolic graph neural networks. In Advances
in Neural Information Processing Systems, pages 8230–8241, 2019.

[29] Jiaqi Ma, Zhe Zhao, Xinyang Yi, Jilin Chen, Lichan Hong, and Ed H Chi. Modeling task
relationships in multi-task learning with multi-gate mixture-of-experts. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages
1930–1939, 2018.

[30] Yu Meng, Jiaxin Huang, Guangyuan Wang, Chao Zhang, Honglei Zhuang, Lance Kaplan, and
Jiawei Han. Spherical text embedding. In Advances in Neural Information Processing Systems,
pages 8208–8217, 2019.

[31] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[32] Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical represen-
tations. In Advances in neural information processing systems, pages 6338–6347, 2017.

[33] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr:
Bayesian personalized ranking from implicit feedback. In Proceedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence, pages 452–461, 2009.

[34] Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, André
Susano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of experts.
Advances in Neural Information Processing Systems, 34:8583–8595, 2021.

[35] Ramit Sawhney, Shivam Agarwal, Megh Thakkar, Arnav Wadhwa, and Rajiv Ratn Shah.
Hyperbolic online time stream modeling. In Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 1682–1686, 2021.

[36] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts
layer. arXiv preprint arXiv:1701.06538, 2017.

[37] Ondrej Skopek, Octavian-Eugen Ganea, and Gary Bécigneul. Mixed-curvature variational
autoencoders. In International Conference on Learning Representations, 2020.

[38] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. Rotate: Knowledge graph em-
bedding by relational rotation in complex space. In International Conference on Learning
Representations, 2019.

[39] Yi Tay, Luu Anh Tuan, and Siu Cheung Hui. Hyperbolic representation learning for fast
and efficient neural question answering. In Proceedings of the Eleventh ACM International
Conference on Web Search and Data Mining, pages 583–591, 2018.

[40] Alexandru Tifrea, Gary Bécigneul, and Octavian-Eugen Ganea. Poincaré glove: Hyperbolic
word embeddings. In Proceedings of the International Conference on Learning Representations
(ICLR 2019). OpenReview, 2018.

[41] Abraham A Ungar. Thomas precession and its associated grouplike structure. American Journal
of Physics, 59(9):824–834, 1991.

12

[42] Lucas Vinh Tran, Yi Tay, Shuai Zhang, Gao Cong, and Xiaoli Li. Hyperml: A boosting metric
learning approach in hyperbolic space for recommender systems. In Proceedings of the 13th
International Conference on Web Search and Data Mining, pages 609–617, 2020.

[43] Shen Wang, Xiaokai Wei, Cícero Nogueira dos Santos, Zhiguo Wang, Ramesh Nallapati,
Andrew Arnold, Bing Xiang, S Yu Philip, and Isabel F Cruz. Mixed-curvature multi-relational
graph neural network for knowledge graph completion. In The Web Conference, 2021.

[44] Richard C Wilson, Edwin R Hancock, Elżbieta Pekalska, and Robert PW Duin. Spherical and
hyperbolic embeddings of data. IEEE transactions on pattern analysis and machine intelligence,
36(11):2255–2269, 2014.

[45] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embedding entities and
relations for learning and inference in knowledge bases. ICLR, 2015.

[46] Jinfa Yang, Yongjie Shi, Xin Tong, Robin Wang, Taiyan Chen, and Xianghua Ying. Improving
knowledge graph embedding using affine transformations of entities corresponding to each
relation. In Findings of the Association for Computational Linguistics: EMNLP 2021, pages
508–517, Punta Cana, Dominican Republic, November 2021. Association for Computational
Linguistics.

[47] Bangpeng Yao, Dirk Walther, Diane Beck, and Li Fei-Fei. Hierarchical mixture of classification
experts uncovers interactions between brain regions. Advances in Neural Information Processing
Systems, 22:2178–2186, 2009.

[48] Shuai Zhang, Yi Tay, Lina Yao, and Qi Liu. Quaternion knowledge graph embeddings. In
Advances in Neural Information Processing Systems, pages 2735–2745, 2019.

13

	Introduction
	Related Work
	Non-Euclidean Geometric Representation Learning
	Sparsely-gated Mixture of Experts

	Preliminaries
	Riemannian Geometric Space
	Cartesian Product of Spaces

	Data-Informed Space Selection
	Geometric Space Pool
	Embeddings
	Geometric Space Selector via Sparsely-gated MOE
	Task Specific Prediction Function
	Load Balancing Regularization
	Limitation

	Experiments
	Personalized Ranking
	Link Prediction for Relational Graphs

	Conclusion

