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Abstract

Attention-based language models usually rely001
on the softmax function to convert attention002
logits into probability vectors. However, this003
process can lead to attention entropy collapse,004
where the attention concentrates on a single to-005
ken, causing training instability. In this work,006
we identify high variance-entropy sensitivity of007
softmax as a root cause of this phenomenon008
and reproduce it with large language mod-009
els (LLMs) and a simple Transformer model,010
demonstrating that Lipschitz-kernel-based at-011
tention is robust against attention entropy col-012
lapse. We demonstrate through controlled and013
real training settings that Lipschitz-kernel-014
based and softmax-based attention exhibit dif-015
ferences in sensitivity to attention logits vari-016
ance. We reveal that the high sensitivity of017
softmax-based attention to the variance con-018
tributes to attention entropy collapse. Moreover,019
we argue that attention entropy collapse leads020
to training instability because, as attention prob-021
abilities become more concentrated, the norm022
of the attention probability matrix increases,023
ultimately causing a gradient explosion.024

1 Introduction025

Attention-based language models convert the atten-026

tion logits (the query-key dot product) into proba-027

bility vectors using the softmax function, reflecting028

each token’s relative importance. However, this pro-029

cess can result in excessive focus on a single token,030

leading to attention entropy collapse (also known031

as attention sink) (Zhai et al., 2023; He et al., 2024;032

Xiao et al., 2024; Guo et al., 2024a,b; Yu et al.,033

2024). Previous studies suggest that multiple fac-034

tors contribute to this collapse, including large at-035

tention logits (Xiao et al., 2024; Wortsman et al.,036

2024; Dehghani et al., 2023; He et al., 2024), ex-037

ploding norms of hidden states or activations (Sun038

et al., 2024), and specific model components such039

as layer normalization, residual connections, and040

MLP layers (Gu et al., 2025; Cancedda, 2024).041

The core issue of attention entropy collapse in 042

softmax-based attention lies in the exponential na- 043

ture of the softmax function. The softmax function 044

amplifies differences in attention logits, leading to 045

an increasingly disproportionate focus on a single 046

token as the gap between attention logits grows. 047

This property leads to attention entropy collapse, 048

forcing the attention probabilities to collapse into 049

one-hot-like vectors and resulting in training in- 050

stability (Zhai et al., 2023; Wortsman et al., 2024; 051

He et al., 2024). While several studies have investi- 052

gated the role of this collapse in training instability, 053

the exact mechanisms through which these insta- 054

bilities emerge remain unclear. 055

In this work, we focus on the sensitivity of 056

the softmax function, which amplifies differences 057

among attention logits, causing larger attention 058

logits to dominate the attention probabilities dis- 059

proportionately. We demonstrate that approximat- 060

ing softmax-based attention with Lipschitz-kernel 061

prevents attention entropy collapse and enables 062

more stable training. Specifically, in Figure 1 (Top), 063

based on experiments with open-source LLM, we 064

show that with softmax-based attention, the average 065

attention entropy tends to progressively decrease 066

(the third panel). This collapse leads to an increase 067

in the norm of the attention probability matrix (the 068

fourth panel), ultimately resulting in unstable gra- 069

dients (the second panel). 070

Additionally, although prior studies have identi- 071

fied multiple causes of attention entropy collapse, 072

the complexity of LLMs makes it challenging to 073

isolate individual contributing factors. To focus 074

on the attention re-weighting function, we employ 075

a simple and small-scale architecture composed 076

solely of attention layers. As shown in Figure 1 077

(Bottom), even in this small-scale model, we ob- 078

serve consistent results with those in large-scale 079

experiments. Furthermore, softmax-based attention 080

induces the attention entropy collapse, eventually 081

reducing it to zero, leading to loss divergence. 082
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Figure 1: The training behaviors of Llama1-1B (Top, N = 768) and a small-scale Transformer model (Bottom,
N = 20). From left to right, each column shows the training loss (Loss), gradient norm (Gradient Norm), the first
layer’s average attention entropy with ± standard deviation of attention entropy (Attn. Entropy), and the average
Frobenius norm of the attention probability matrix across all layers (∥P∥F ). For the average attention entropy
of other layers, see Appendix B. In the third column, as the attention probability becomes uniform, the average
attention entropy reaches its maximum (logN , dotted line). In the fourth column, ∥P∥F reaches its maximum (

√
N ,

dashed-dotted line) when attention entropy collapse (▼) occurs and its minimum (dotted line) under a uniform
attention distribution, following Proposition 5.2.

To better understand the distinct behaviors of the083

two re-weighting functions (softmax and Lipschitz-084

kernel) in self-attention, we analyze their handling085

of input bound and variance. Softmax-based at-086

tention, with scaling to increase the input bound,087

amplifies larger attention logits and increases their088

relative dominance, leading to attention entropy col-089

lapse. In contrast, Lipschitz-kernel-based attention090

applies scaling in a way that affects both the numer-091

ator and denominator proportionally, preventing092

one attention logit from disproportionately dom-093

inating the others. Thus, the key factor determin-094

ing the attention entropy collapse is the level of095

sensitivity to attention logits variance. To empir-096

ically analyze the sensitivity of the two attention097

mechanisms, we conduct experiments in both con-098

trolled and real training settings, increasing vari-099

ance causes softmax-based attention to exhibit a100

sharp drop in entropy, whereas Lipschitz-kernel-101

based attention remains relatively high entropy102

even with similar variance.103

Moreover, as shown in Figure 1 (the second col-104

umn), the gradient norm explodes around the step105

where the average attention entropy decreases or106

approaches zero during training, leading to training107

instability. This suggests that attention entropy col-108

lapse plays a crucial role in training instability, ne- 109

cessitating further analysis. As attention probabil- 110

ities become increasingly concentrated (attention 111

entropy collapse), the attention probability matrix 112

norm grows rapidly, exploding gradients during 113

backpropagation and causing training instability. 114

Our experiments confirm that softmax-based atten- 115

tion makes this instability more pronounced and 116

more likely to occur, while Lipschitz-kernel-based 117

attention effectively mitigates it by preventing at- 118

tention entropy collapse. 119

2 Related Works 120

Several studies have analyzed the causes and con- 121

sequences of self-attention excessively focusing 122

on single tokens, a phenomenon called attention 123

entropy collapse or attention sink. One identified 124

issue is that when the query and key weights 125

have large norms, the lower bound of attention en- 126

tropy becomes tighter, leading to training instability 127

(Zhai et al., 2023). Additionally, as the magnitude 128

of attention logits increases, attention probabilities 129

tend to collapse into one-hot-like vectors, further 130

contributing to training instability (Kedia et al., 131

2024). This issue can be mitigated through normal- 132

ization techniques, such as directly normalizing 133
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the attention logits or individually normalizing the134

query and key (He et al., 2024). Representative135

methods include QK-LayerNorm (Dehghani et al.,136

2023), QKNorm (Henry et al., 2020), and Norm-137

Softmax (Jiang et al., 2023). This phenomenon is138

often characterized by excessive attention bias to-139

ward initial tokens, commonly referred to as an140

attention sink (Xiao et al., 2024). A few activation141

units with disproportionately large values concen-142

trate attention probabilities on their corresponding143

tokens (Sun et al., 2024). Empirical analysis reveals144

that factors such as QK angles, optimization strate-145

gies, data distribution, loss functions, and model146

architecture also influence this phenomenon (Gu147

et al., 2025). Moreover, as value norms decrease,148

residual-state peaks emerge, exacerbating the at-149

tention sink problem by causing value-state drains150

(Guo et al., 2024a).151

3 Background152

3.1 Softmax-based Attention153

Given an input X ∈ RN×D, where N denotes154

the sequence length and D the hidden dimension,155

we define the three components of a single-head156

attention mechanism—query Q ∈ RN×D, key157

K ∈ RN×D, value V ∈ RN×D—by multiplying158

X by each corresponding weight WQ,WK ,WV ∈159

RD×D. The ith row vector Ai ∈ R1×D of self-160

attention’s outputA ∈ RN×D and (i, j)th elements161

of the attention probability matrix P ∈ RN×N can162

be defined as follows:163

Ai =

N∑
j=1

Pi,jVj and Pi,j =
sim(Qi,Kj)∑N
k=1 sim(Qi,Kj)

,

(1)

164

where sim(·) is a real-valued function that mea-165

sures the similarity between query and key.166

Softmax-based attention uses the exponentiated167

query-key dot product for the similarity function168

sim(Qi,Kj) = exp(QiK
⊤
j )169

and the corresponding attention probability matrix170

is171

Pi,j =
exp(QiK

⊤
j )∑N

k=1 exp(QiK⊤
k )
.172

We refer to Z = QK⊤ ∈ RN×N as the attention173

logits.174

3.2 Linear Kernerlized Attention 175

To mitigate the quadratic complexity of traditional 176

attention mechanisms, several efficient approaches 177

have been proposed, such as sparse pattern (Beltagy 178

et al., 2020; Zaheer et al., 2020), low-rank approx- 179

imations (Wang et al., 2020; Hu et al., 2022) and 180

kernelized self-attention (Choromanski et al., 2021; 181

Cai et al., 2023). Among these approaches, kernel- 182

ized self-attention approximates the similarity func- 183

tion using a kernel function ϕ : R1×D → R1×D as 184

follows: 185

sim(Qi,Kj) ≈ ϕ(Qi)ϕ(Kj)
⊤. (2) 186

Instead of directly applying the softmax function, 187

kernelized self-attention reformulates the similarity 188

function with a kernel function ϕ for computational 189

efficiency. Leveraging the associative property of 190

matrix multiplication, it avoids explicit attention 191

probability matrix computation, reducing quadratic 192

to linear complexity as follows: 193

A′
i =

ϕ(Qi)
∑N

j=1 ϕ(Kj)
⊤Vj

ϕ(Qi)
∑N

k=1 ϕ(Kk)⊤
and

P ′
i,j =

ϕ(Qi)ϕ(Kj)
⊤∑N

k=1 ϕ(Qi)ϕ(Kk)⊤
.

(3) 194

Based on (3), to compute the output A, we can 195

calculate ϕ(K)⊤V ∈ RD×D instead of the query- 196

key dot product, QK⊤ ∈ RN×N , and reduce 197

the quadratic time complexity to O(ND2) ≈ 198

O(N) assuming that the hidden dimension is much 199

smaller than the sequence length. 200

While most research on kernelized self-attention 201

primarily focuses on selecting an appropriate ker- 202

nel function ϕ to better approximate the softmax- 203

based attention such as ReLU (with re-weighting) 204

(Qin et al., 2022; Cai et al., 2023; Han et al., 2023), 205

ELU+1 (Katharopoulos et al., 2020), and others 206

(Chen et al., 2021; Arora et al., 2024; Aksenov 207

et al., 2024; Zhang et al., 2024a), our work instead 208

examines kernel function from the perspective of 209

stability. 210

3.3 Lipschitz-Kernel Function 211

The softmax function in self-attention lacks Lip- 212

schitz continuity because it amplifies small input 213

differences exponentially, leading to unbounded 214

output changes (Dasoulas et al., 2021; Kim et al., 215

2021). For comparison with the softmax-based at- 216

tention, we experiment with kernelized attention 217
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with a Lipschitz kernel function, Lipschitz-kernel-218

based attention (see Definition 3.1 below), which219

is expected to mitigate attention entropy collapse.220

Definition 3.1 (Lipschitz Kernel Attention). Ker-221

nelized attention in (3) is called Lipschitz kernel222

attention when the kernel function ϕ is Lipschitz,223

i.e., there is a constant α > 0 such that, for any224

x, x′,225

∥ϕ(x)− ϕ(x′)∥ ≤ α∥x− x′∥.226

Specifically, we use ReLU (Qin et al., 2022;227

Cai et al., 2023; Han et al., 2023) and ELU+1228

(Katharopoulos et al., 2020), both simple and229

widely used Lipschitz kernel functions, which en-230

sure non-negative values with the Lipschitz con-231

stant α = 1.232

3.4 Attention Entropy233

The entropy of each row Pi of the attention prob-234

ability matrix P , also called attention entropy, is235

defined as follows:236

H(Pi) = −
N∑
j=1

Pi,j logPi,j . (4)237

To compute the average attention entropy across all238

rows, we take the mean of H(Pi) over all N rows:239

H(P ) =
1

N

N∑
i=1

H(Pi). (5)240

When the attention probabilities in a given row241

Pi become overly concentrated on a single token,242

forming a near one-hot distribution, the attention243

entropy H(Pi) approaches zero. If this occurs for244

all rows, the average attention entropy also col-245

lapses to zero, a phenomenon known as attention246

entropy collapse. This collapse is illustrated in the247

attention heatmaps in Appendix I.248

4 Empirical Analysis of Attention249

Entropy Collapse and Training250

Instability251

In this section, we present empirical results compar-252

ing softmax-based attention and Lipschitz-kernel-253

based attention, focusing on attention entropy col-254

lapse and the resulting training instability. First,255

in Section 4.1, we report and analyze empirical256

findings on attention entropy collapse and training257

instability observed in open-source LLMs, Llama258

(Touvron et al., 2023) and GPT2 (Radford et al.,259

2019). Furthermore, in Section 4.2, we conduct 260

controlled experiments on a simple and small ar- 261

chitecture composed solely of self-attention layers 262

to isolate the effects of the re-weighting functions, 263

ensuring that the influence of other factors is mini- 264

mized. 265

4.1 Analysis on LLM Pre-training 266

Experimental Setup In this experiment, we pre- 267

train a Llama1-1B model on a subset of the Pile 268

dataset (Gao et al., 2020), consisting of up to 5B 269

tokens. The model is trained with a sequence length 270

of 768 and a batch size of 256. We use AdamW 271

(Loshchilov, 2017) with a learning rate of 1e−3, 272

following a cosine scheduling strategy. We train 273

for 10, 000 steps with a weight decay of 0.1 and 274

gradient clipping set to 1. Details on the GPT2- 275

large pre-training setup are provided in Appendix 276

C. 277

Experimental Result We observe that softmax- 278

based attention (red solid line, Softmax) experi- 279

ences a gradual decline in the average attention en- 280

tropy over time, whereas its Lipschitz-kernel-based 281

(blue dashed line, ReLU) approximation maintains 282

a more stable attention entropy, as shown in Figure 283

1 (Top). As training progresses, this entropy reduc- 284

tion in softmax-based attention is accompanied by 285

an increase in the Frobenius norm of the attention 286

probability matrix. This increasing norm, in turn, 287

leads to exploding gradient norms, further destabi- 288

lizing training. In contrast, Lipschitz-kernel-based 289

attention sustains relatively higher average atten- 290

tion entropy throughout training while maintaining 291

lower attention probability matrix norms and gra- 292

dient norms. Moreover, softmax-based attention 293

converges to a higher training loss than Lipschitz- 294

kernel-based attention, and the correspondingly 295

higher validation loss further confirms its inferior 296

generalization performance as detailed in Appendix 297

A. We further conduct experiments on GPT2-large, 298

whose results exhibit similar trends, as detailed in 299

Appendix C. 300

Causal masking is known to mitigate attention 301

entropy collapse by restricting attention to a lim- 302

ited context, thereby promoting more balanced at- 303

tention probabilities (Zhai et al., 2023). However, 304

our experimental results indicate that LLMs with 305

softmax-based attention still tend to allocate exces- 306

sive attention to specific tokens, ultimately leading 307

to entropy collapse and training instability. 308
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Figure 2: Comparison of the attention probability and attention entropy between softmax-based attention (Top) and
Lipschitz-kernel-based attention (Bottom) as the attention logits variance increases. The lines (Rightmost) represent
the rate of change (sensitivity) between softmax-based attention (red solid line; Softmax) and Lipschitz-kernel-based
attention (blue dashed line; ReLU) as the attention logits variance increases. Here, with N = 200, the maximum
achievable entropy is logN ≈ 5.3.

4.2 Analysis on Simple and Small309

Transformer310

To further clarify the relationship between the Lip-311

schitz continuity of re-weighting functions and at-312

tention entropy collapse, we conduct additional313

experiments in a simplified setting. This collapse314

is commonly attributed to factors such as model315

scale, hidden state dimensionality, layer stacking316

(Sun et al., 2024; He et al., 2024), and MLP lay-317

ers (Cancedda, 2024). However, to disentangle the318

role of the re-weighting function from these other319

influences, we employ a simple and small-scale320

Transformer model and controlled task settings.321

Notably, we observe that attention entropy collapse322

can emerge even solely within attention layers, in-323

dependent of the other factors, highlighting the324

fundamental role of the self-attention mechanism325

itself in driving this effect.326

Experimental Setup For this experiment, we327

employ a simple Transformer architecture com-328

posed solely of self-attention layers. The model329

consists of 5-layers and a 3-dimensional hidden330

state (L = 5, D = 3) and a sequence length331

of 20 (N = 20). Our approach is motivated332

by findings that Transformers adapt to new tasks333

from only a few examples without parameter up-334

dates, a phenomenon known as in-context learn-335

ing (Brown et al., 2020), spurring further research,336

(e.g., Garg et al. 2022; Zhang et al. 2024b; Ma-337

hankali et al. 2024; Von Oswald et al. 2023; Ahn338

et al. 2024). The simple Transformer is trained339

on an in-context linear regression task, predict- 340

ing w⊤xn+1 from {(xi, yi)}ni=1 and a query vec- 341

tor xn+1, where (xi, w) are sampled i.i.d. from 342

N (0, ID) and yi = w⊤xi. Additional implementa- 343

tion details are provided in Appendix D. 344

Experimental Result In Figure 1 (Bottom), we 345

compare softmax-based attention (solid lines; Soft- 346

max, QK-LayerNorm) with Lipschitz-kernel-based 347

attention (dashed lines; ReLU, ELU+1). The re- 348

sults are even more definitive than those observed 349

in the LLMs experiments, as discussed in Section 350

4.1. Softmax-based attention rapidly collapses to 351

the average attention entropy of zero early in train- 352

ing. At the same step, the gradient norm explodes, 353

causing the loss to spike. Similarly, applying Layer 354

Normalization to both the query and key before the 355

softmax function fails to prevent attention entropy 356

collapse, indicating that this normalization alone is 357

insufficient. In contrast, the Lipschitz-kernel-based 358

attention maintains higher average attention en- 359

tropy, resulting in more stable training. 360

5 Why Lipschitz Kernels are Robust to 361

Attention Entropy Collapse and 362

Training Instability 363

Experimental results indicate that Lipschitz-kernel- 364

based attention is more robust to attention entropy 365

collapse than softmax-based attention, leading to 366

more stable training. In this section, we analyze 367

how the re-weighting function influences attention 368

entropy and examine the causes of attention en- 369

5



tropy collapse along with its impact on training370

instability.371

5.1 Scale Sensitivity with Softmax and372

Lipschitz Kernel373

Based on the experiments, attention entropy col-374

lapse in self-attention heavily depends on the func-375

tion used to re-weight the query–key dot product.376

The main cause is that re-weighting functions ei-377

ther amplify or confine differences between in-378

puts as the input bound increases. To verify the379

causes and effects of these responses as the in-380

put bound increases, we scale the attention logits381

(query–key dot product). In softmax-based atten-382

tion, scaling by a constant factor k results in com-383

puting exp(k ·QiK
⊤
j ) in both the numerator and384

denominator, which disproportionately amplifies385

larger attention logits while suppressing smaller386

ones due to the exponential growth of the function.387

Consequently, k-scaling increases the attention log-388

its bound, causing probability mass to concentrate389

on a single dominant token. For Lipschitz-kernel-390

based attention, scaling the attention logits by k391

affects both the numerator and denominator pro-392

portionally, ensuring that attention logits remain393

within a bounded range, preventing attention en-394

tropy collapse.395

5.2 Entropy Collapse Induced by Variance396

Sensitivity of Re-weighting Functions397

In the previous section, we observe that scaling398

inputs with softmax-based attention amplifies dif-399

ferences, whereas Lipschitz-kernel-based attention400

confines these differences within a bounded range.401

Crucially, each re-weighting function exhibits a dif-402

ferent sensitivity to the variance among inputs, and403

it is this sensitivity that has a major impact on atten-404

tion entropy collapse. In softmax-based attention,405

high sensitivity causes the attention probabilities to406

sharpen excessively as variance increases, resulting407

in nearly one-hot-like vectors and a higher risk of408

attention entropy collapse. In contrast, Lipschitz-409

kernel-based attention exhibits lower sensitivity to410

input variance, bounding the effects of changes in411

both the numerator and denominator, thereby pre-412

serving balanced attention probabilities even as the413

attention logits variance (defined below) increases.414

Definition 5.1 (Attention Logits Variance). The415

attention logits variance for each row Zi of the416
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Figure 3: Changes in Varj [Zi,j ] (attention logits vari-
ance, as defined in Definition 5.1) during training, com-
paring softmax-based attention (solid lines; Softmax,
QK-LayerNorm) and Lipschitz-kernel-based attention
(dashed lines; ReLU, ELU+1). Attention entropy col-
lapse (▼) occurs as Varj [Zi,j ] exponentially increases
in softmax-based attention. This result is from an inter-
mediate layer, with results from other layers provided
in Appendix H.

attention logits Z ∈ RN×N is defined as follows: 417

Varj [Zi,j ] =
1

N

N∑
j=1

Zi,j −
1

N

N∑
j′=1

Zi,j′

2

.

(6)

418

Entropy Collapse in Controlled Experiment 419

Due to Variance Sensitivity To examine how 420

softmax-based and Lipschitz-kernel-based atten- 421

tion respond to attention logits variance, we control 422

this variance with the unit-norm query and keys 423

sampled from N (0, σ2I) at σ = 1, 2, 4, 8, so that 424

the logit Zi,j = QiK
⊤
j ∼ N (0, σ2) has a variance 425

of σ2. Figure 2 presents histograms of the resulting 426

attention weights for a single query (i.e., Pi forQi), 427

illustrating how the distribution changes as σ in- 428

creases. With softmax-based attention, as variance 429

increases, the attention distribution becomes in- 430

creasingly extreme, concentrating probability mass 431

on a few key vectors and resulting in lower atten- 432

tion entropy. In contrast, Lipschitz-kernel-based 433

attention (ReLU) maintains an attention entropy of 434

around 5.0 as attention logits variance increases, 435

preserving a more evenly distributed attention prob- 436

ability and avoiding entropy collapse. This trend is 437

evident in the rightmost column, which confirms 438

that softmax-based attention is highly sensitive to 439

attention logits variance, exhibiting a steep rate of 440

entropy change as variance increases. Conversely, 441
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Lipschitz-kernel-based attention is much less sen-442

sitive to attention logits variance, exhibiting an al-443

most flat rate of entropy change. A detailed analysis444

of the correlation between variance and entropy for445

a normal distribution is provided in Appendix E.446

Entropy Collapse in Training Due to Variance-447

Entropy Sensitivity Through controlled experi-448

ments, we observe that as variance increases, soft-449

max exhibits significantly higher sensitivity than450

the Lipschitz-kernel, leading to attention entropy451

collapse. Motivated by this finding, we investi-452

gate how attention logits variance changes during453

training, comparing softmax-based attention with454

Lipschitz-kernel-based attention. As illustrated in455

Figure 3, the attention logits variance in softmax-456

based attention layers grows sharply during train-457

ing. This spike coincides with the emergence of458

attention entropy collapse, leading to unstable train-459

ing.460

Building on these observations, we analyze the461

sensitivity of softmax-based and Lipschitz-kernel-462

based attention to attention logits variance in rela-463

tion to attention entropy. Before quantifying this464

sensitivity, we first define the normalized attention465

entropy as:466

H̃(Pi) = ψ(H(Pi)) =
H(Pi)

Hmax −H(Pi)
, (7)467

where Hmax denotes the maximum attention en-468

tropy, which equals logN , and ψ is an increasing469

function of H . To quantify variance-entropy sensi- 470

tivity, we assume the following power-law relation- 471

ship: 472

H̃(Pi) ∝ Varj [Zi,j ]
β. (8) 473

Here, β represents the sensitivity at which normal- 474

ized attention entropy changes in response to atten- 475

tion logits variance. 476

Figure 4 shows the relationship between normal- 477

ized attention entropy (H̃(Pi)) and attention logits 478

variance (Varj [Zi,j ]), along with the correspond- 479

ing power-law exponents (β). For softmax-based 480

attention, β takes on large negative values, meaning 481

that even at the same variance, it results in lower 482

entropy with a steep power-law, indicating high 483

variance-entropy sensitivity. In contrast, Lipschitz- 484

kernel-based attention has β close to zero, resulting 485

in a much flatter power-law and lower variance- 486

entropy sensitivity to attention logits variance. 487

5.3 Why Attention Entropy Collapse Leads to 488

Training Instability 489

Attention entropy collapse is associated with un- 490

stable gradients, leading to loss spikes and severe 491

training instability. In open-source LLMs training 492

with softmax-based attention, we show that the 493

average attention entropy progressively decreases, 494

while the gradient norm steadily increases (see Fig- 495

ure 1 Top). In contrast, Lipschitz-kernel-based at- 496

tention maintains higher entropy and stable gradi- 497

ents, preventing training instability. As shown in 498

Figure 1 (Bottom, the second panel), despite be- 499

ing trained with shallow layers composed only of 500

self-attention, the model still experiences gradient 501

explosion, which can even make training entirely 502

infeasible, suggesting a strong correlation between 503

attention entropy collapse and gradient instability. 504

Entropy-Collapsed Attention Probabilities Ex- 505

plode Gradient The explosion of gradients, 506

along with attention entropy collapse, is closely 507

tied to the Lipschitz constant of self-attention. 508

Specifically, the softmax function is the primary 509

cause, as increases in the input bound or variance 510

result in disproportionately large output changes, 511

leading to an unbounded rate of change and a 512

sharply elevated Lipschitz constant. Previous re- 513

search has proposed alternative formulations that 514

replace the softmax function in attention mech- 515

anisms to address these issues, such as L2 self- 516

attention (Kim et al., 2021) and sigmoid self- 517

attention (Ramapuram et al., 2025), which aim to 518

7



enforce a tighter upper bound on the Lipschitz con-519

stant.520

According to (Dasoulas et al., 2021), the norm521

of the derivative of the self-attention layers with522

respect to the input X is upper bounded as follows:523

∥DAX∥F,F ≤ ∥P∥F524

+
√
2∥X∥(2,∞) ∥DZX∥F,(2,∞) , (9)525

where ∥X∥(2,∞) = maxj(
∑

iX
2
i,j)

1/2 and526

∥f∥a,b = max∥x∥b=1 ∥f(x)∥a. The attention prob-527

ability matrix norm ∥P∥F controls the upper bound528

in (9) and depends on whether the average attention529

entropy of P is low (one hot) or high (uniform).530

Proposition 5.2. The norm ∥P∥F of the atten-531

tion probability matrix P lies within the interval532

[1,
√
N ], attaining the extreme values as follows:533

∥P∥F =

{
1 if each row Pi is uniform√
N if each row Pi is one-hot

.

(10)

534

On the contrary, the average attention entropy535

H(P ) lies within [0, log(N)], attaining the extreme536

values:537

H(P ) =

{
log(N) if each row Pi is uniform
0 if each row Pi is one-hot

.

(11)

538

Figure 1 (Rightmost) illustrates how the atten-539

tion probability matrix norms evolve for softmax-540

based and Lipschitz-kernel-based attention. At the541

beginning of training, both models have not yet542

learned the relevance between tokens in the input543

sequence. As a result, each row of P is nearly544

uniform, with a high attention entropy H(P ) ≈545

log(N) from (11). This uniformity results in sta-546

ble training dynamics, as indicated by a small547

Frobenius norm ∥P∥F ≈ 1 from (10) in Propo-548

sition 5.2 and bounded gradients from (9). As train-549

ing progresses with softmax-based attention, at-550

tention probabilities increasingly concentrate on551

a single token, forming nearly one-hot rows with552

near-zero attention entropy as described in (11).553

Consequently, ∥P∥F increases toward
√
N , follow-554

ing (10), leading to larger gradients and increased555

training instability as indicated in (9). In contrast,556

Lipschitz-kernel-based attention maintains a sig-557

nificantly lower norm. Furthermore, the positive558

correlation between the gradient norm and ∥P∥F ,559

as indicated by the bound in (9) is empirically vali-560

dated in Appendix G.561

6 Conclusion 562

In this paper, we identify the critical factor of at- 563

tention entropy collapse (also known as the at- 564

tention sink) that occurs during the training of 565

attention-based models. Specifically, through both 566

controlled experiments and real training settings, 567

we demonstrate that softmax-based attention ex- 568

hibits extremely high sensitivity to variance in at- 569

tention logits, which serves as a primary factor in 570

attention entropy collapse. In contrast, Lipschitz- 571

kernel-based attention maintains low sensitivity, 572

mitigating this issue. Furthermore, we connect at- 573

tention entropy collapse to training instability by 574

showing that the increasing norm of the attention 575

probability matrix contributes to the growth of the 576

gradient norm. As a result, these findings suggest 577

that Lipschitz-kernel-based attention is advanta- 578

geous for designing LLMs, enabling stable training 579

and faster convergence with higher learning rates. 580

Limitations 581

Our analysis of attention entropy dynamics does 582

not fully explore their impact on downstream task 583

performance. Comparisons across model families 584

and self-attention variants remain limited, leav- 585

ing gaps in understanding their differences. The 586

role of optimization choices, including schedules, 587

warm-up strategies, weight decay, and gradient 588

clipping, is not systematically examined. These 589

factors likely influence model behavior and gen- 590

eralization, requiring deeper investigation. Future 591

research should address these limitations to pro- 592

vide a more comprehensive perspective on entropy 593

dynamics in attention-based models. 594

References 595

Kwangjun Ahn, Xiang Cheng, Minhak Song, Chulhee 596
Yun, Ali Jadbabaie, and Suvrit Sra. 2024. Linear at- 597
tention is (maybe) all you need (to understand trans- 598
former optimization). In The Twelfth International 599
Conference on Learning Representations, ICLR 2024, 600
Vienna, Austria, May 7-11, 2024. OpenReview.net. 601

Yaroslav Aksenov, Nikita Balagansky, Sofia Lo Ci- 602
cero Vaina, Boris Shaposhnikov, Alexey Gorbatovski, 603
and Daniil Gavrilov. 2024. Linear transformers with 604
learnable kernel functions are better in-context mod- 605
els. In Proceedings of the 62nd Annual Meeting of 606
the Association for Computational Linguistics (Vol- 607
ume 1: Long Papers), pages 9584–9597, Bangkok, 608
Thailand. Association for Computational Linguistics. 609

Simran Arora, Sabri Eyuboglu, Michael Zhang, Aman 610
Timalsina, Silas Alberti, James Zou, Atri Rudra, and 611

8

https://openreview.net/forum?id=0uI5415ry7
https://openreview.net/forum?id=0uI5415ry7
https://openreview.net/forum?id=0uI5415ry7
https://openreview.net/forum?id=0uI5415ry7
https://openreview.net/forum?id=0uI5415ry7
https://doi.org/10.18653/v1/2024.acl-long.518
https://doi.org/10.18653/v1/2024.acl-long.518
https://doi.org/10.18653/v1/2024.acl-long.518
https://doi.org/10.18653/v1/2024.acl-long.518
https://doi.org/10.18653/v1/2024.acl-long.518


Christopher Ré. 2024. Simple linear attention lan-612
guage models balance the recall-throughput tradeoff.613
In Proceedings of the 41st International Conference614
on Machine Learning, ICML’24. JMLR.org.615

Iz Beltagy, Matthew E Peters, and Arman Cohan. 2020.616
Longformer: The long-document transformer. arXiv617
preprint arXiv:2004.05150.618

Tom Brown, Benjamin Mann, Nick Ryder, Melanie619
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind620
Neelakantan, Pranav Shyam, Girish Sastry, Amanda621
Askell, et al. 2020. Language models are few-shot622
learners. Advances in neural information processing623
systems, 33:1877–1901.624

Han Cai, Junyan Li, Muyan Hu, Chuang Gan, and Song625
Han. 2023. Efficientvit: Lightweight multi-scale at-626
tention for high-resolution dense prediction. In Pro-627
ceedings of the IEEE/CVF International Conference628
on Computer Vision, pages 17302–17313.629

Nicola Cancedda. 2024. Spectral filters, dark signals,630
and attention sinks. In Proceedings of the 62nd An-631
nual Meeting of the Association for Computational632
Linguistics (Volume 1: Long Papers), pages 4792–633
4808, Bangkok, Thailand. Association for Computa-634
tional Linguistics.635

Yifan Chen, Qi Zeng, Heng Ji, and Yun Yang. 2021.636
Skyformer: Remodel self-attention with gaussian ker-637
nel and nyström method. Advances in Neural Infor-638
mation Processing Systems, 34:2122–2135.639

Krzysztof Marcin Choromanski, Valerii Likhosherstov,640
David Dohan, Xingyou Song, Andreea Gane, Tamás641
Sarlós, Peter Hawkins, Jared Quincy Davis, Afroz642
Mohiuddin, Lukasz Kaiser, David Benjamin Be-643
langer, Lucy J. Colwell, and Adrian Weller. 2021.644
Rethinking attention with performers. In 9th Inter-645
national Conference on Learning Representations,646
ICLR 2021, Virtual Event, Austria, May 3-7, 2021.647
OpenReview.net.648

George Dasoulas, Kevin Scaman, and Aladin Virmaux.649
2021. Lipschitz normalization for self-attention lay-650
ers with application to graph neural networks. In In-651
ternational Conference on Machine Learning, pages652
2456–2466. PMLR.653

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Pi-654
otr Padlewski, Jonathan Heek, Justin Gilmer, An-655
dreas Peter Steiner, Mathilde Caron, Robert Geirhos,656
Ibrahim Alabdulmohsin, et al. 2023. Scaling vision657
transformers to 22 billion parameters. In Interna-658
tional Conference on Machine Learning, pages 7480–659
7512. PMLR.660

Leo Gao, Stella Biderman, Sid Black, Laurence Golding,661
Travis Hoppe, Charles Foster, Jason Phang, Horace662
He, Anish Thite, Noa Nabeshima, et al. 2020. The663
pile: An 800gb dataset of diverse text for language664
modeling. arXiv preprint arXiv:2101.00027.665

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gre-666
gory Valiant. 2022. What can transformers learn667

in-context? a case study of simple function classes. 668
Advances in Neural Information Processing Systems, 669
35:30583–30598. 670

Xiangming Gu, Tianyu Pang, Chao Du, Qian Liu, 671
Fengzhuo Zhang, Cunxiao Du, Ye Wang, and Min 672
Lin. 2025. When attention sink emerges in language 673
models: An empirical view. In The Thirteenth Inter- 674
national Conference on Learning Representations. 675

Tianyu Guo, Druv Pai, Yu Bai, Jiantao Jiao, Michael I 676
Jordan, and Song Mei. 2024a. Active-dormant atten- 677
tion heads: Mechanistically demystifying extreme- 678
token phenomena in llms. arXiv preprint 679
arXiv:2410.13835. 680

Zhiyu Guo, Hidetaka Kamigaito, and Taro Watanabe. 681
2024b. Attention score is not all you need for token 682
importance indicator in KV cache reduction: Value 683
also matters. In Proceedings of the 2024 Conference 684
on Empirical Methods in Natural Language Process- 685
ing, pages 21158–21166, Miami, Florida, USA. As- 686
sociation for Computational Linguistics. 687

Dongchen Han, Xuran Pan, Yizeng Han, Shiji Song, 688
and Gao Huang. 2023. Flatten transformer: Vision 689
transformer using focused linear attention. In Pro- 690
ceedings of the IEEE/CVF international conference 691
on computer vision, pages 5961–5971. 692

Bobby He, Lorenzo Noci, Daniele Paliotta, Imanol 693
Schlag, and Thomas Hofmann. 2024. Understand- 694
ing and minimising outlier features in transformer 695
training. In The Thirty-eighth Annual Conference on 696
Neural Information Processing Systems. 697

Alex Henry, Prudhvi Raj Dachapally, Shubham Shan- 698
taram Pawar, and Yuxuan Chen. 2020. Query-key 699
normalization for transformers. In Findings of the 700
Association for Computational Linguistics: EMNLP 701
2020, pages 4246–4253, Online. Association for 702
Computational Linguistics. 703

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan 704
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and 705
Weizhu Chen. 2022. Lora: Low-rank adaptation of 706
large language models. In The Tenth International 707
Conference on Learning Representations, ICLR 2022, 708
Virtual Event, April 25-29, 2022. OpenReview.net. 709

Zixuan Jiang, Jiaqi Gu, and David Z Pan. 2023. Norm- 710
softmax: Normalizing the input of softmax to accel- 711
erate and stabilize training. In 2023 IEEE Interna- 712
tional Conference on Omni-layer Intelligent Systems 713
(COINS), pages 1–6. IEEE. 714

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pap- 715
pas, and François Fleuret. 2020. Transformers are 716
rnns: Fast autoregressive transformers with linear 717
attention. In International conference on machine 718
learning, pages 5156–5165. PMLR. 719

Akhil Kedia, Mohd Abbas Zaidi, Sushil Khyalia, 720
JungHo Jung, Harshith Goka, and Haejun Lee. 2024. 721
Transformers get stable: an end-to-end signal propa- 722
gation theory for language models. In Proceedings of 723

9

https://doi.org/10.18653/v1/2024.acl-long.263
https://doi.org/10.18653/v1/2024.acl-long.263
https://doi.org/10.18653/v1/2024.acl-long.263
https://openreview.net/forum?id=Ua6zuk0WRH
https://openreview.net/forum?id=78Nn4QJTEN
https://openreview.net/forum?id=78Nn4QJTEN
https://openreview.net/forum?id=78Nn4QJTEN
https://doi.org/10.18653/v1/2024.emnlp-main.1178
https://doi.org/10.18653/v1/2024.emnlp-main.1178
https://doi.org/10.18653/v1/2024.emnlp-main.1178
https://doi.org/10.18653/v1/2024.emnlp-main.1178
https://doi.org/10.18653/v1/2024.emnlp-main.1178
https://openreview.net/forum?id=npJQ6qS4bg
https://openreview.net/forum?id=npJQ6qS4bg
https://openreview.net/forum?id=npJQ6qS4bg
https://openreview.net/forum?id=npJQ6qS4bg
https://openreview.net/forum?id=npJQ6qS4bg
https://doi.org/10.18653/v1/2020.findings-emnlp.379
https://doi.org/10.18653/v1/2020.findings-emnlp.379
https://doi.org/10.18653/v1/2020.findings-emnlp.379
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9


the 41st International Conference on Machine Learn-724
ing, ICML’24. JMLR.org.725

Hyunjik Kim, George Papamakarios, and Andriy Mnih.726
2021. The lipschitz constant of self-attention. In In-727
ternational Conference on Machine Learning, pages728
5562–5571. PMLR.729

I Loshchilov. 2017. Decoupled weight decay regulariza-730
tion. arXiv preprint arXiv:1711.05101.731

Arvind V. Mahankali, Tatsunori Hashimoto, and Tengyu732
Ma. 2024. One step of gradient descent is provably733
the optimal in-context learner with one layer of linear734
self-attention. In The Twelfth International Confer-735
ence on Learning Representations, ICLR 2024, Vi-736
enna, Austria, May 7-11, 2024. OpenReview.net.737

Zhen Qin, Weixuan Sun, Hui Deng, Dongxu Li, Yun-738
shen Wei, Baohong Lv, Junjie Yan, Lingpeng Kong,739
and Yiran Zhong. 2022. cosformer: Rethinking soft-740
max in attention. In The Tenth International Con-741
ference on Learning Representations, ICLR 2022,742
Virtual Event, April 25-29, 2022. OpenReview.net.743

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,744
Dario Amodei, Ilya Sutskever, et al. 2019. Language745
models are unsupervised multitask learners. OpenAI746
blog, 1(8):9.747

Jason Ramapuram, Federico Danieli, Eeshan Gunesh748
Dhekane, Floris Weers, Dan Busbridge, Pierre Ablin,749
Tatiana Likhomanenko, Jagrit Digani, Zijin Gu, Ami-750
tis Shidani, and Russell Webb. 2025. Theory, analy-751
sis, and best practices for sigmoid self-attention. In752
The Thirteenth International Conference on Learning753
Representations.754

Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang755
Liu. 2024. Massive activations in large language756
models. In First Conference on Language Modeling.757

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier758
Martinet, Marie-Anne Lachaux, Timothée Lacroix,759
Baptiste Rozière, Naman Goyal, Eric Hambro,760
Faisal Azhar, et al. 2023. Llama: Open and effi-761
cient foundation language models. arXiv preprint762
arXiv:2302.13971.763

Johannes Von Oswald, Eyvind Niklasson, Ettore Ran-764
dazzo, João Sacramento, Alexander Mordvintsev, An-765
drey Zhmoginov, and Max Vladymyrov. 2023. Trans-766
formers learn in-context by gradient descent. In In-767
ternational Conference on Machine Learning, pages768
35151–35174. PMLR.769

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang,770
and Hao Ma. 2020. Linformer: Self-attention with771
linear complexity. arXiv preprint arXiv:2006.04768.772

Mitchell Wortsman, Peter J. Liu, Lechao Xiao, Katie E.773
Everett, Alexander A. Alemi, Ben Adlam, John D.774
Co-Reyes, Izzeddin Gur, Abhishek Kumar, Roman775
Novak, Jeffrey Pennington, Jascha Sohl-Dickstein,776
Kelvin Xu, Jaehoon Lee, Justin Gilmer, and Simon777
Kornblith. 2024. Small-scale proxies for large-scale778

transformer training instabilities. In The Twelfth In- 779
ternational Conference on Learning Representations, 780
ICLR 2024, Vienna, Austria, May 7-11, 2024. Open- 781
Review.net. 782

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song 783
Han, and Mike Lewis. 2024. Efficient streaming lan- 784
guage models with attention sinks. In The Twelfth 785
International Conference on Learning Representa- 786
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024. 787
OpenReview.net. 788

Zhongzhi Yu, Zheng Wang, Yonggan Fu, Huihong Shi, 789
Khalid Shaikh, and Yingyan (Celine) Lin. 2024. Un- 790
veiling and harnessing hidden attention sinks: enhanc- 791
ing large language models without training through 792
attention calibration. In Proceedings of the 41st Inter- 793
national Conference on Machine Learning, ICML’24. 794
JMLR.org. 795

Manzil Zaheer, Guru Guruganesh, Kumar Avinava 796
Dubey, Joshua Ainslie, Chris Alberti, Santiago On- 797
tanon, Philip Pham, Anirudh Ravula, Qifan Wang, 798
Li Yang, et al. 2020. Big bird: Transformers for 799
longer sequences. Advances in neural information 800
processing systems, 33:17283–17297. 801

Shuangfei Zhai, Tatiana Likhomanenko, Etai Littwin, 802
Dan Busbridge, Jason Ramapuram, Yizhe Zhang, Ji- 803
atao Gu, and Joshua M Susskind. 2023. Stabilizing 804
transformer training by preventing attention entropy 805
collapse. In International Conference on Machine 806
Learning, pages 40770–40803. PMLR. 807

Michael Zhang, Kush Bhatia, Hermann Kumbong, and 808
Christopher Ré. 2024a. The hedgehog & the por- 809
cupine: Expressive linear attentions with softmax 810
mimicry. In The Twelfth International Conference 811
on Learning Representations, ICLR 2024, Vienna, 812
Austria, May 7-11, 2024. OpenReview.net. 813

Ruiqi Zhang, Spencer Frei, and Peter L. Bartlett. 2024b. 814
Trained transformers learn linear models in-context. 815
Journal of Machine Learning Research, 25(49):1–55. 816

10

https://openreview.net/forum?id=8p3fu56lKc
https://openreview.net/forum?id=8p3fu56lKc
https://openreview.net/forum?id=8p3fu56lKc
https://openreview.net/forum?id=8p3fu56lKc
https://openreview.net/forum?id=8p3fu56lKc
https://openreview.net/forum?id=Bl8CQrx2Up4
https://openreview.net/forum?id=Bl8CQrx2Up4
https://openreview.net/forum?id=Bl8CQrx2Up4
https://openreview.net/forum?id=Zhdhg6n2OG
https://openreview.net/forum?id=Zhdhg6n2OG
https://openreview.net/forum?id=Zhdhg6n2OG
https://openreview.net/forum?id=F7aAhfitX6
https://openreview.net/forum?id=F7aAhfitX6
https://openreview.net/forum?id=F7aAhfitX6
https://openreview.net/forum?id=d8w0pmvXbZ
https://openreview.net/forum?id=d8w0pmvXbZ
https://openreview.net/forum?id=d8w0pmvXbZ
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=4g02l2N2Nx
https://openreview.net/forum?id=4g02l2N2Nx
https://openreview.net/forum?id=4g02l2N2Nx
https://openreview.net/forum?id=4g02l2N2Nx
https://openreview.net/forum?id=4g02l2N2Nx
http://jmlr.org/papers/v25/23-1042.html


A Llama Pre-training Validation Loss817
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Figure 5: Comparison of validation loss between
softmax-based attention (solid line) and Lipschitz-
kernel-based attention (dashed line) during Llama1-1B
pre-training. Validation loss is evaluated every 100 train-
ing steps, showing that Lipschitz-kernel-based attention
consistently outperforms softmax-based attention.

B Layer-wise Attention Entropy818
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Figure 6: Average attention entropy behavior across
layers in softmax-based (solid lines; Softmax, QK-
LayerNorm) and Lipschitz-kernel-based attention.
Softmax-based attention exhibits the average attention
entropy collapse (▼) across all layers, while Lipschitz-
kernel-based attention (dashed lines; ReLU, ELU+1)
maintains high average attention entropy.

In Figure 1, we show that as the average attention819

entropy of the first self-attention layer gradually820

decreases, training instability increases. This result821

illustrates the dynamics of the average attention822

entropy across different layers. 823

C GPT2 Pre-training 824

We extend our experiments to GPT2-large in addi- 825

tion to the previously conducted Llama1-1B exper- 826

iments. Figure 7 illustrates that, in softmax-based 827

attention, average attention entropy gradually de- 828

creases in the early training steps, eventually ap- 829

proaching zero (the third panel). Almost simulta- 830

neously, ∥P∥F increases (the fourth panel), and a 831

sharp increase in gradient magnitude occurs (the 832

second panel), reinforcing the direct relationship 833

between entropy and training stability observed in 834

previous experiments. In contrast, Lipschitz-kernel- 835

based attention preserves higher entropy through- 836

out training, exhibits smaller ∥P∥F , and stabilizes 837

gradients. 838

D Implementation Details 839

Here are the hyper-parameters we used, and we 840

apply the same ones across all experiments. 841

Table 1: Hyper-parameters of a Simple Transformer

Hyper-parameter Value
Optimizer SGD
Momentum 0.8
Learning rate 0.7
Hidden dimension 3
Sequence length 20
Attention heads 1
Attention layers 5
Training Step 10000

To approximate attention entropy collapse in 842

large models and reproduce it in smaller models, 843

we set a high learning rate of 0.7. As there is no 844

notable difference between the SGD and Adam op- 845

timizers, we opt for SGD. The model is configured 846

with a batch size of 4000. Given the small model 847

size, we set it to 5 layers, 1 attention head, a se- 848

quence length of 20, and a hidden dimension of 5. 849

To analyze gradient behavior without constraints, 850

gradient clipping is disabled, and training runs for 851

10, 000 steps. 852

E Proof of Correlation between Variance 853

and Entropy 854

If the distribution follows a normal distribution, we 855

can define the probability density function (PDF) 856

of the normal distribution X ∼ N(µ, σ2) for ob- 857

servation x: 858
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Figure 7: The training behaviors of GPT2-large (N = 200) with softmax-based attention (solid line; Softmax)
and Lipschitz-kernel-based attention (dashed line; ReLU). From left to right, each panel shows the training loss
(Loss), gradient norm (Gradient Norm), the first-layer average attention entropy with ± standard deviation (Attn.
Entropy), and the average Frobenius norm of the attention probability matrix (∥P∥F ). In the third panel, as the
attention probabilities of Lipschitz-kernel-based attention are nearly uniform, its average attention entropy reaches
the maximum value (dotted line; logN ), whereas softmax-based attention exhibits an average attention entropy
close to 0. In the fourth panel, while the softmax-based attention ∥P∥F reaches its maximum value (dashed-dotted
line;

√
N ), the Lipschitz-kernel-based attention remains close to its minimum (dotted line) under a uniform attention

distribution.

g(x) =
1√
2πσ2

exp

(
−(x− µ)2

2σ

)
(12)859

where µ is the mean and σ2 is the variance of860

distribution.861

Also, we can define the entropy of X as:862

H(X) = −
∫ ∞

−∞
g(x) log g(x)dx (13)863

To compute logarithm of g(x), we can use prop-864

erties of it:865

log g(x) = log

(
1

2πσ2

)
(14)866

+ log

(
exp

(
−(x− µ)2

2σ2

))
(15)867

= −1

2
log(2πσ2)− (x− µ)2

2σ2
. (16)868

Then, we can calculate H(X) with replacing869

log g(x) with (16):870

H(X) = −
∫ ∞

−∞
g(x)871 (

−1

2
log(2πσ2)− (x− µ)2

2σ2

)
)dx (17)872

We can separate two terms and the first term can873

be computed using −
∫∞
−∞ g(x)dx = 1:874

−
∫ ∞

−∞
g(x)

(
−1

2
log(2πσ2

)
=

1

2
log(2πσ2)

(18)875

In normal distribution, with −
∫∞
−∞ f(x)(x − 876

µ)2dx = σ2 we can simplify the second term as: 877

− 1

2σ2

∫ ∞

−∞
g(x)(x− µ)2dx 878

= − 1

2σ2
σ2 = −1

2
(19) 879

Therefore, we can define the entropy of normal 880

distribution as: 881

H(X) =
1

2
log(2πσ2) +

1

2
(20) 882
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Figure 8: (Left) Skewness of softmax-based attention
(solid line; Softmax) and Lipschitz-kernel-based atten-
tion (dashed line; ReLU) throughout training. (Right)
Distribution of attention probabilities in softmax-based
attention (Top) and Lipschitz-kernel-based attention
(Bottom) at the point of highest skewness for each
method.

After passing through the softmax function, val-884

ues range between 0 and 1. When the distribution885

collapses onto a single value, attention entropy col-886

lapse occurs. If we consider each row of the at-887

tention probabilities as a probability distribution,888

this represents a highly imbalanced form. Skew-889

ness quantifies the degree to which an activation890

function skews a distribution. If one row vector891

of the attention probabilities matrix is denoted by892

{p1, p2, p3, ...pN}, with the mean µ and standard893

deviation σ, the skewness is defined as follows:894

S =
1

N

N∑
i=1

(
ai − µ

σ

3
)
. (21)895

Based on Figure 8 (Left), we observe that the skew-896

ness of softmax-based attention rises sharply dur-897

ing training, approaching its maximum value. This898

indicates that the softmax function tends to learn899

highly imbalanced distributions, where most to-900

kens attend primarily to a single other token. In901

Figure 8 (Top-Right), we observe that most val-902

ues are concentrated around 0 and fall below the903

mean, demonstrating strong positive skewness. In904

contrast, Lipschitz-kernel-based attention exhibits905

relatively lower skewness values. Based on Fig-906

ure 8 (Bottom-Right), the attention probability dis-907

tribution is more evenly spread around the mean,908

indicating low positive skewness.909
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Figure 9: The correlation between the attention entropy
and ℓ2-norm of each row after sampling rows of at-
tention probabilities from a Dirichlet distribution. For
this setup, the concentration hyper-parameter α of the
Dirichlet distribution is configured as 0.1 and 0.001 dur-
ing sampling.

To show that as attention entropy decreases, the 912

norm of attention probability matrix increases, we 913

sample attention probability vectors from a Dirich- 914

let distribution, defined as follows: 915

Pi ∼ Dirichlet(α1) (22) 916

The concentration of the distribution can be con- 917

trolled using the hyper-parameter α1. When α1 918

is small, the distribution is concentrated on a sin- 919

gle value, resembling attention entropy collapse. In 920

contrast, when α1 is relatively large, the distribu- 921

tion becomes more uniform. Experimental results 922

indicate that when α1 = 0.001, attention entropy 923

is significantly lower than at α1 = 0.1. Further- 924

more, it is observed that the attention entropy of 925

Pi and its ℓ2-norm are inversely related. As atten- 926

tion entropy decreases, ∥P∥F increases, reaching 927

its maximum when attention entropy approaches 928

zero. 929

H Layer-wise Attention Logits Variance 930

Based on Figure 10, across all layers, including the 931

intermediate layers shown in Figure 3, we observe 932

that softmax-based attention exhibits a sharp in- 933

crease in attention logits variance at the step where 934

attention entropy collapse occurs. This variance 935

explosion becomes more pronounced in later lay- 936

ers. In contrast, Lipschitz-kernel-based attention 937

maintains a stable attention logits variance across 938

all layers, demonstrating its robustness to this col- 939

lapse. 940
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Figure 10: Attention logits variance across layers for softmax-based (solid lines; Softmax, QK-LayerNorm) and
Lipschitz-kernel-based attention (dashed lines; ReLU, ELU+1). Softmax-based attention exhibits a sharp increase
in variance at the step where attention entropy collapse occurs, with this effect becoming more pronounced in
later layers. Lipschitz-kernel-based attention maintains a relatively stable variance across all layers, demonstrating
robustness.

I Attention heatmaps941
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Figure 11: Heatmaps of attention probabilities for softmax-based attention (Top) and Lipschitz-kernel-based attention
(Bottom) during training. In softmax-based attention, each row progressively converges to a one-hot-like vector,
leading to attention entropy collapse. The attention matrices are from the first layer.
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