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Abstract

Attention-based language models usually rely
on the softmax function to convert attention
logits into probability vectors. However, this
process can lead to attention entropy collapse,
where the attention concentrates on a single to-
ken, causing training instability. In this work,
we identify high variance-entropy sensitivity of
softmax as a root cause of this phenomenon
and reproduce it with large language mod-
els (LLMs) and a simple Transformer model,
demonstrating that Lipschitz-kernel-based at-
tention is robust against attention entropy col-
lapse. We demonstrate through controlled and
real training settings that Lipschitz-kernel-
based and softmax-based attention exhibit dif-
ferences in sensitivity to attention logits vari-
ance. We reveal that the high sensitivity of
softmax-based attention to the variance con-
tributes to attention entropy collapse. Moreover,
we argue that attention entropy collapse leads
to training instability because, as attention prob-
abilities become more concentrated, the norm
of the attention probability matrix increases,
ultimately causing a gradient explosion.

1 Introduction

Attention-based language models convert the atten-
tion logits (the query-key dot product) into proba-
bility vectors using the softmax function, reflecting
each token’s relative importance. However, this pro-
cess can result in excessive focus on a single token,
leading to attention entropy collapse (also known
as attention sink) (Zhai et al., 2023; He et al., 2024,
Xiao et al., 2024; Guo et al., 2024a,b; Yu et al.,
2024). Previous studies suggest that multiple fac-
tors contribute to this collapse, including large at-
tention logits (Xiao et al., 2024; Wortsman et al.,
2024; Dehghani et al., 2023; He et al., 2024), ex-
ploding norms of hidden states or activations (Sun
et al., 2024), and specific model components such
as layer normalization, residual connections, and
MLP layers (Gu et al., 2025; Cancedda, 2024).

The core issue of attention entropy collapse in
softmax-based attention lies in the exponential na-
ture of the softmax function. The softmax function
amplifies differences in attention logits, leading to
an increasingly disproportionate focus on a single
token as the gap between attention logits grows.
This property leads to attention entropy collapse,
forcing the attention probabilities to collapse into
one-hot-like vectors and resulting in training in-
stability (Zhai et al., 2023; Wortsman et al., 2024;
He et al., 2024). While several studies have investi-
gated the role of this collapse in training instability,
the exact mechanisms through which these insta-
bilities emerge remain unclear.

In this work, we focus on the sensitivity of
the softmax function, which amplifies differences
among attention logits, causing larger attention
logits to dominate the attention probabilities dis-
proportionately. We demonstrate that approximat-
ing softmax-based attention with Lipschitz-kernel
prevents attention entropy collapse and enables
more stable training. Specifically, in Figure 1 (Top),
based on experiments with open-source LLM, we
show that with softmax-based attention, the average
attention entropy tends to progressively decrease
(the third panel). This collapse leads to an increase
in the norm of the attention probability matrix (the
fourth panel), ultimately resulting in unstable gra-
dients (the second panel).

Additionally, although prior studies have identi-
fied multiple causes of attention entropy collapse,
the complexity of LLMs makes it challenging to
isolate individual contributing factors. To focus
on the attention re-weighting function, we employ
a simple and small-scale architecture composed
solely of attention layers. As shown in Figure 1
(Bottom), even in this small-scale model, we ob-
serve consistent results with those in large-scale
experiments. Furthermore, softmax-based attention
induces the attention entropy collapse, eventually
reducing it to zero, leading to loss divergence.
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Figure 1: The training behaviors of Llamal-1B (Top, N = 768) and a small-scale Transformer model (Bottom,
N = 20). From left to right, each column shows the training loss (Loss), gradient norm (Gradient Norm), the first
layer’s average attention entropy with £ standard deviation of attention entropy (Attn. Entropy), and the average
Frobenius norm of the attention probability matrix across all layers (|| P||r). For the average attention entropy
of other layers, see Appendix B. In the third column, as the attention probability becomes uniform, the average
attention entropy reaches its maximum (log N, dotted line). In the fourth column, || P|| » reaches its maximum (v/N,
dashed-dotted line) when attention entropy collapse (V) occurs and its minimum (dotted line) under a uniform
attention distribution, following Proposition 5.2.

To better understand the distinct behaviors of the  lapse plays a crucial role in training instability, ne-
two re-weighting functions (softmax and Lipschitz-  cessitating further analysis. As attention probabil-
kernel) in self-attention, we analyze their handling  ities become increasingly concentrated (attention
of input bound and variance. Softmax-based at- entropy collapse), the attention probability matrix
tention, with scaling to increase the input bound, norm grows rapidly, exploding gradients during
amplifies larger attention logits and increases their ~ backpropagation and causing training instability.
relative dominance, leading to attention entropy col- ~ Our experiments confirm that softmax-based atten-
lapse. In contrast, Lipschitz-kernel-based attention  tion makes this instability more pronounced and
applies scaling in a way that affects both the numer-  more likely to occur, while Lipschitz-kernel-based
ator and denominator proportionally, preventing  attention effectively mitigates it by preventing at-
one attention logit from disproportionately dom-  tention entropy collapse.
inating the others. Thus, the key factor determin-
ing the attention entropy collapse is the level of 2 Related Works
sensitivity to attention logits variance. To empir-
ically analyze the sensitivity of the two attention
mechanisms, we conduct experiments in both con-
trolled and real training settings, increasing vari-
ance causes softmax-based attention to exhibit a
sharp drop in entropy, whereas Lipschitz-kernel-
based attention remains relatively high entropy
even with similar variance.

Several studies have analyzed the causes and con-
sequences of self-attention excessively focusing
on single tokens, a phenomenon called attention
entropy collapse or attention sink. One identified
issue is that when the query and key weights
have large norms, the lower bound of attention en-
tropy becomes tighter, leading to training instability
(Zhai et al., 2023). Additionally, as the magnitude

Moreover, as shown in Figure 1 (the second col-  of attention logits increases, attention probabilities
umn), the gradient norm explodes around the step  tend to collapse into one-hot-like vectors, further
where the average attention entropy decreases or  contributing to training instability (Kedia et al.,
approaches zero during training, leading to training ~ 2024). This issue can be mitigated through normal-
instability. This suggests that attention entropy col-  ization techniques, such as directly normalizing



the attention logits or individually normalizing the
query and key (He et al., 2024). Representative
methods include QK-LayerNorm (Dehghani et al.,
2023), QKNorm (Henry et al., 2020), and Norm-
Softmax (Jiang et al., 2023). This phenomenon is
often characterized by excessive attention bias to-
ward initial tokens, commonly referred to as an
attention sink (Xiao et al., 2024). A few activation
units with disproportionately large values concen-
trate attention probabilities on their corresponding
tokens (Sun et al., 2024). Empirical analysis reveals
that factors such as QK angles, optimization strate-
gies, data distribution, loss functions, and model
architecture also influence this phenomenon (Gu
et al., 2025). Moreover, as value norms decrease,
residual-state peaks emerge, exacerbating the at-
tention sink problem by causing value-state drains
(Guo et al., 2024a).

3 Background

3.1 Softmax-based Attention

Given an input X € RN*P where N denotes
the sequence length and D the hidden dimension,
we define the three components of a single-head
attention mechanism—query Q € RV*P| key
K € RVXP value V € RV*P_by multiplying
X by each corresponding weight Wq, Wi, Wy €
RP*D The ith row vector 4; € RY*D of self-
attention’s output A € RV*P and (i, j)th elements
of the attention probability matrix P € RV*¥ can
be defined as follows:

N .
15 K;
Ai=) PijVjand Py = J\Sflm(.Q D
= > k=1 Sim(Qs, Kjj)

ey

where sim(-) is a real-valued function that mea-

sures the similarity between query and key.
Softmax-based attention uses the exponentiated

query-key dot product for the similarity function

sim(Q;, K;) = exp(Q;K )

and the corresponding attention probability matrix
is

exp(QiK})
Zszl eXP(Qz‘KII) '

We refer to Z = QKT € RVXY as the attention
logits.

Pij =

3.2 Linear Kernerlized Attention

To mitigate the quadratic complexity of traditional
attention mechanisms, several efficient approaches
have been proposed, such as sparse pattern (Beltagy
et al., 2020; Zaheer et al., 2020), low-rank approx-
imations (Wang et al., 2020; Hu et al., 2022) and
kernelized self-attention (Choromanski et al., 2021;
Cai et al., 2023). Among these approaches, kernel-
ized self-attention approximates the similarity func-
tion using a kernel function ¢ : R — R1*P a5
follows:

sim(Qi, K;) ~ ¢(Q:)(K;) . )

Instead of directly applying the softmax function,
kernelized self-attention reformulates the similarity
function with a kernel function ¢ for computational
efficiency. Leveraging the associative property of
matrix multiplication, it avoids explicit attention
probability matrix computation, reducing quadratic
to linear complexity as follows:

e P(Qs) Zj'vﬂ O(K;5) "V q
L= ~ an
b HQUIK)

M TN h(Q)b(KR)T

Based on (3), to compute the output A, we can
calculate ¢(K) "V € RP>*P instead of the query-
key dot product, QKT € RM*N and reduce
the quadratic time complexity to O(ND?) =~
O(N) assuming that the hidden dimension is much
smaller than the sequence length.

While most research on kernelized self-attention
primarily focuses on selecting an appropriate ker-
nel function ¢ to better approximate the softmax-
based attention such as ReLU (with re-weighting)
(Qin et al., 2022; Cai et al., 2023; Han et al., 2023),
ELU+1 (Katharopoulos et al., 2020), and others
(Chen et al., 2021; Arora et al., 2024; Aksenov
et al., 2024; Zhang et al., 2024a), our work instead
examines kernel function from the perspective of
stability.

3.3 Lipschitz-Kernel Function

The softmax function in self-attention lacks Lip-
schitz continuity because it amplifies small input
differences exponentially, leading to unbounded
output changes (Dasoulas et al., 2021; Kim et al.,
2021). For comparison with the softmax-based at-
tention, we experiment with kernelized attention



with a Lipschitz kernel function, Lipschitz-kernel-
based attention (see Definition 3.1 below), which
is expected to mitigate attention entropy collapse.

Definition 3.1 (Lipschitz Kernel Attention). Ker-
nelized attention in (3) is called Lipschitz kernel
attention when the kernel function ¢ is Lipschitz,
i.e., there is a constant o > 0 such that, for any
x,x,

lé(z) = o) < el —27]].

Specifically, we use ReLU (Qin et al., 2022;
Cai et al., 2023; Han et al., 2023) and ELU+1
(Katharopoulos et al., 2020), both simple and
widely used Lipschitz kernel functions, which en-
sure non-negative values with the Lipschitz con-
stant o = 1.

3.4 Attention Entropy

The entropy of each row P; of the attention prob-
ability matrix P, also called attention entropy, is
defined as follows:

N

H(P) = — Z P jlog P; ;. “4)
=1

To compute the average attention entropy across all
rows, we take the mean of H(F;) over all N rows:

1 N
H(P)= > H(P). )
=1

When the attention probabilities in a given row
P; become overly concentrated on a single token,
forming a near one-hot distribution, the attention
entropy H (P;) approaches zero. If this occurs for
all rows, the average attention entropy also col-
lapses to zero, a phenomenon known as attention
entropy collapse. This collapse is illustrated in the
attention heatmaps in Appendix I.

4 Empirical Analysis of Attention
Entropy Collapse and Training
Instability

In this section, we present empirical results compar-
ing softmax-based attention and Lipschitz-kernel-
based attention, focusing on attention entropy col-
lapse and the resulting training instability. First,
in Section 4.1, we report and analyze empirical
findings on attention entropy collapse and training
instability observed in open-source LLMs, Llama
(Touvron et al., 2023) and GPT2 (Radford et al.,

2019). Furthermore, in Section 4.2, we conduct
controlled experiments on a simple and small ar-
chitecture composed solely of self-attention layers
to isolate the effects of the re-weighting functions,
ensuring that the influence of other factors is mini-
mized.

4.1 Analysis on LLM Pre-training

Experimental Setup In this experiment, we pre-
train a Llamal-1B model on a subset of the Pile
dataset (Gao et al., 2020), consisting of up to 5B
tokens. The model is trained with a sequence length
of 768 and a batch size of 256. We use AdamW
(Loshchilov, 2017) with a learning rate of le—3,
following a cosine scheduling strategy. We train
for 10, 000 steps with a weight decay of 0.1 and
gradient clipping set to 1. Details on the GPT2-
large pre-training setup are provided in Appendix
C.

Experimental Result We observe that softmax-
based attention (red solid line, Softmax) experi-
ences a gradual decline in the average attention en-
tropy over time, whereas its Lipschitz-kernel-based
(blue dashed line, ReLU) approximation maintains
a more stable attention entropy, as shown in Figure
1 (Top). As training progresses, this entropy reduc-
tion in softmax-based attention is accompanied by
an increase in the Frobenius norm of the attention
probability matrix. This increasing norm, in turn,
leads to exploding gradient norms, further destabi-
lizing training. In contrast, Lipschitz-kernel-based
attention sustains relatively higher average atten-
tion entropy throughout training while maintaining
lower attention probability matrix norms and gra-
dient norms. Moreover, softmax-based attention
converges to a higher training loss than Lipschitz-
kernel-based attention, and the correspondingly
higher validation loss further confirms its inferior
generalization performance as detailed in Appendix
A. We further conduct experiments on GPT2-large,
whose results exhibit similar trends, as detailed in
Appendix C.

Causal masking is known to mitigate attention
entropy collapse by restricting attention to a lim-
ited context, thereby promoting more balanced at-
tention probabilities (Zhai et al., 2023). However,
our experimental results indicate that LLMs with
softmax-based attention still tend to allocate exces-
sive attention to specific tokens, ultimately leading
to entropy collapse and training instability.
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Figure 2: Comparison of the attention probability and attention entropy between softmax-based attention (Top) and
Lipschitz-kernel-based attention (Bottom) as the attention logits variance increases. The lines (Rightmost) represent
the rate of change (sensitivity) between softmax-based attention (red solid line; Softmax) and Lipschitz-kernel-based
attention (blue dashed line; ReLLU) as the attention logits variance increases. Here, with N = 200, the maximum

achievable entropy is log N ~ 5.3.

4.2 Analysis on Simple and Small
Transformer

To further clarify the relationship between the Lip-
schitz continuity of re-weighting functions and at-
tention entropy collapse, we conduct additional
experiments in a simplified setting. This collapse
is commonly attributed to factors such as model
scale, hidden state dimensionality, layer stacking
(Sun et al., 2024; He et al., 2024), and MLP lay-
ers (Cancedda, 2024). However, to disentangle the
role of the re-weighting function from these other
influences, we employ a simple and small-scale
Transformer model and controlled task settings.
Notably, we observe that attention entropy collapse
can emerge even solely within attention layers, in-
dependent of the other factors, highlighting the
fundamental role of the self-attention mechanism
itself in driving this effect.

Experimental Setup For this experiment, we
employ a simple Transformer architecture com-
posed solely of self-attention layers. The model
consists of 5-layers and a 3-dimensional hidden
state (L = 5,D = 3) and a sequence length
of 20 (N 20). Our approach is motivated
by findings that Transformers adapt to new tasks
from only a few examples without parameter up-
dates, a phenomenon known as in-context learn-
ing (Brown et al., 2020), spurring further research,
(e.g., Garg et al. 2022; Zhang et al. 2024b; Ma-
hankali et al. 2024; Von Oswald et al. 2023; Ahn
et al. 2024). The simple Transformer is trained

on an in-context linear regression task, predict-
ing w' 41 from {(x;,v;)}", and a query vec-
tor x,+1, where (z;,w) are sampled i.i.d. from
N(0,Ip) and y; = w' x;. Additional implementa-
tion details are provided in Appendix D.

Experimental Result In Figure 1 (Bottom), we
compare softmax-based attention (solid lines; Soft-
max, QK-LayerNorm) with Lipschitz-kernel-based
attention (dashed lines; ReLU, ELU+1). The re-
sults are even more definitive than those observed
in the LLMs experiments, as discussed in Section
4.1. Softmax-based attention rapidly collapses to
the average attention entropy of zero early in train-
ing. At the same step, the gradient norm explodes,
causing the loss to spike. Similarly, applying Layer
Normalization to both the query and key before the
softmax function fails to prevent attention entropy
collapse, indicating that this normalization alone is
insufficient. In contrast, the Lipschitz-kernel-based
attention maintains higher average attention en-
tropy, resulting in more stable training.

5 Why Lipschitz Kernels are Robust to
Attention Entropy Collapse and
Training Instability

Experimental results indicate that Lipschitz-kernel-
based attention is more robust to attention entropy
collapse than softmax-based attention, leading to
more stable training. In this section, we analyze
how the re-weighting function influences attention
entropy and examine the causes of attention en-



tropy collapse along with its impact on training
instability.

5.1 Scale Sensitivity with Softmax and
Lipschitz Kernel

Based on the experiments, attention entropy col-
lapse in self-attention heavily depends on the func-
tion used to re-weight the query—key dot product.
The main cause is that re-weighting functions ei-
ther amplify or confine differences between in-
puts as the input bound increases. To verify the
causes and effects of these responses as the in-
put bound increases, we scale the attention logits
(query—key dot product). In softmax-based atten-
tion, scaling by a constant factor k results in com-
puting exp(k - QZKJT) in both the numerator and
denominator, which disproportionately amplifies
larger attention logits while suppressing smaller
ones due to the exponential growth of the function.
Consequently, k-scaling increases the attention log-
its bound, causing probability mass to concentrate
on a single dominant token. For Lipschitz-kernel-
based attention, scaling the attention logits by &
affects both the numerator and denominator pro-
portionally, ensuring that attention logits remain
within a bounded range, preventing attention en-
tropy collapse.

5.2 Entropy Collapse Induced by Variance
Sensitivity of Re-weighting Functions

In the previous section, we observe that scaling
inputs with softmax-based attention amplifies dif-
ferences, whereas Lipschitz-kernel-based attention
confines these differences within a bounded range.
Crucially, each re-weighting function exhibits a dif-
ferent sensitivity to the variance among inputs, and
it is this sensitivity that has a major impact on atten-
tion entropy collapse. In softmax-based attention,
high sensitivity causes the attention probabilities to
sharpen excessively as variance increases, resulting
in nearly one-hot-like vectors and a higher risk of
attention entropy collapse. In contrast, Lipschitz-
kernel-based attention exhibits lower sensitivity to
input variance, bounding the effects of changes in
both the numerator and denominator, thereby pre-
serving balanced attention probabilities even as the
attention logits variance (defined below) increases.

Definition 5.1 (Attention Logits Variance). The
attention logits variance for each row Z; of the
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Figure 3: Changes in Var;[Z; ;] (attention logits vari-
ance, as defined in Definition 5.1) during training, com-
paring softmax-based attention (solid lines; Softmax,
QK-LayerNorm) and Lipschitz-kernel-based attention
(dashed lines; ReLU, ELU+1). Attention entropy col-
lapse (V) occurs as Var;[Z; ;] exponentially increases
in softmax-based attention. This result is from an inter-
mediate layer, with results from other layers provided
in Appendix H.

attention logits Z € RV*¥ is defined as follows:
1 - 1 & 2
Varj|Zij) = Yo zi- N > Ziy
j=1 j'=1

(6)

Entropy Collapse in Controlled Experiment
Due to Variance Sensitivity To examine how
softmax-based and Lipschitz-kernel-based atten-
tion respond to attention logits variance, we control
this variance with the unit-norm query and keys
sampled from A (0,0%1) at ¢ = 1,2,4,8, so that
the logit Z; ; = QinT ~ N(0, o?) has a variance
of o2. Figure 2 presents histograms of the resulting
attention weights for a single query (i.e., F; for Q);),
illustrating how the distribution changes as ¢ in-
creases. With softmax-based attention, as variance
increases, the attention distribution becomes in-
creasingly extreme, concentrating probability mass
on a few key vectors and resulting in lower atten-
tion entropy. In contrast, Lipschitz-kernel-based
attention (ReLU) maintains an attention entropy of
around 5.0 as attention logits variance increases,
preserving a more evenly distributed attention prob-
ability and avoiding entropy collapse. This trend is
evident in the rightmost column, which confirms
that softmax-based attention is highly sensitive to
attention logits variance, exhibiting a steep rate of
entropy change as variance increases. Conversely,
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training. The lines represent the power-law relation-
ship in softmax-based attention (solid lines; Softmax,
QK-LayerNorm) and Lipschitz-kernel-based attention
(dashed lines; ReLLU, ELU+1), as defined in (8).

Lipschitz-kernel-based attention is much less sen-
sitive to attention logits variance, exhibiting an al-
most flat rate of entropy change. A detailed analysis
of the correlation between variance and entropy for
a normal distribution is provided in Appendix E.

Entropy Collapse in Training Due to Variance-
Entropy Sensitivity Through controlled experi-
ments, we observe that as variance increases, soft-
max exhibits significantly higher sensitivity than
the Lipschitz-kernel, leading to attention entropy
collapse. Motivated by this finding, we investi-
gate how attention logits variance changes during
training, comparing softmax-based attention with
Lipschitz-kernel-based attention. As illustrated in
Figure 3, the attention logits variance in softmax-
based attention layers grows sharply during train-
ing. This spike coincides with the emergence of
attention entropy collapse, leading to unstable train-
ing.

Building on these observations, we analyze the
sensitivity of softmax-based and Lipschitz-kernel-
based attention to attention logits variance in rela-
tion to attention entropy. Before quantifying this
sensitivity, we first define the normalized attention
entropy as:

7P, AN (€5)

N Hmax - H(Pz) ’ (7)

where Hp.x denotes the maximum attention en-
tropy, which equals log NV, and 1) is an increasing

function of H. To quantify variance-entropy sensi-
tivity, we assume the following power-law relation-
ship:

H(P;) o Var;[Z; 5]°. (8)

Here, 3 represents the sensitivity at which normal-
ized attention entropy changes in response to atten-
tion logits variance.

Figure 4 shows the relationship between normal-
ized attention entropy (H (P;)) and attention logits
variance (Var;[Z; ;|), along with the correspond-
ing power-law exponents (). For softmax-based
attention, /3 takes on large negative values, meaning
that even at the same variance, it results in lower
entropy with a steep power-law, indicating high
variance-entropy sensitivity. In contrast, Lipschitz-
kernel-based attention has 3 close to zero, resulting
in a much flatter power-law and lower variance-
entropy sensitivity to attention logits variance.

5.3 Why Attention Entropy Collapse Leads to
Training Instability

Attention entropy collapse is associated with un-
stable gradients, leading to loss spikes and severe
training instability. In open-source LLMs training
with softmax-based attention, we show that the
average attention entropy progressively decreases,
while the gradient norm steadily increases (see Fig-
ure 1 Top). In contrast, Lipschitz-kernel-based at-
tention maintains higher entropy and stable gradi-
ents, preventing training instability. As shown in
Figure 1 (Bottom, the second panel), despite be-
ing trained with shallow layers composed only of
self-attention, the model still experiences gradient
explosion, which can even make training entirely
infeasible, suggesting a strong correlation between
attention entropy collapse and gradient instability.

Entropy-Collapsed Attention Probabilities Ex-
plode Gradient The explosion of gradients,
along with attention entropy collapse, is closely
tied to the Lipschitz constant of self-attention.
Specifically, the softmax function is the primary
cause, as increases in the input bound or variance
result in disproportionately large output changes,
leading to an unbounded rate of change and a
sharply elevated Lipschitz constant. Previous re-
search has proposed alternative formulations that
replace the softmax function in attention mech-
anisms to address these issues, such as L2 self-
attention (Kim et al., 2021) and sigmoid self-
attention (Ramapuram et al., 2025), which aim to



enforce a tighter upper bound on the Lipschitz con-
stant.

According to (Dasoulas et al., 2021), the norm
of the derivative of the self-attention layers with
respect to the input X is upper bounded as follows:

IDAx || p < [I1P[lF
+V2[[ X 2.00) IDZx | 2,00y s (9

where || X|l200) = max;(}; ng)lﬂ and
[ flla.p = maxg),—1 [|f(%)||o- The attention prob-
ability matrix norm || P|| p controls the upper bound
in (9) and depends on whether the average attention

entropy of P is low (one hot) or high (uniform).

Proposition 5.2. The norm ||P|r of the atten-
tion probability matrix P lies within the interval
[1,+V/ N], attaining the extreme values as follows:

1 if each row P; is uniform
I1Pllr = ) : -
VN ifeach row P; is one-hot
(10)

On the contrary, the average attention entropy
H(P) lies within [0,1og(N)), attaining the extreme
values:

log(N)
0 if each row P; is one-hot -

1D

Figure 1 (Rightmost) illustrates how the atten-
tion probability matrix norms evolve for softmax-
based and Lipschitz-kernel-based attention. At the
beginning of training, both models have not yet
learned the relevance between tokens in the input
sequence. As a result, each row of P is nearly
uniform, with a high attention entropy H(P) ~
log(NV) from (11). This uniformity results in sta-
ble training dynamics, as indicated by a small
Frobenius norm ||P||r ~ 1 from (10) in Propo-
sition 5.2 and bounded gradients from (9). As train-
ing progresses with softmax-based attention, at-
tention probabilities increasingly concentrate on
a single token, forming nearly one-hot rows with
near-zero attention entropy as described in (11).
Consequently, || P||r increases toward v/ N, follow-
ing (10), leading to larger gradients and increased
training instability as indicated in (9). In contrast,
Lipschitz-kernel-based attention maintains a sig-
nificantly lower norm. Furthermore, the positive
correlation between the gradient norm and || P|| r,
as indicated by the bound in (9) is empirically vali-
dated in Appendix G.

if each row P; is uniform

H(P) = {

6 Conclusion

In this paper, we identify the critical factor of at-
tention entropy collapse (also known as the at-
tention sink) that occurs during the training of
attention-based models. Specifically, through both
controlled experiments and real training settings,
we demonstrate that softmax-based attention ex-
hibits extremely high sensitivity to variance in at-
tention logits, which serves as a primary factor in
attention entropy collapse. In contrast, Lipschitz-
kernel-based attention maintains low sensitivity,
mitigating this issue. Furthermore, we connect at-
tention entropy collapse to training instability by
showing that the increasing norm of the attention
probability matrix contributes to the growth of the
gradient norm. As a result, these findings suggest
that Lipschitz-kernel-based attention is advanta-
geous for designing LL.Ms, enabling stable training
and faster convergence with higher learning rates.

Limitations

Our analysis of attention entropy dynamics does
not fully explore their impact on downstream task
performance. Comparisons across model families
and self-attention variants remain limited, leav-
ing gaps in understanding their differences. The
role of optimization choices, including schedules,
warm-up strategies, weight decay, and gradient
clipping, is not systematically examined. These
factors likely influence model behavior and gen-
eralization, requiring deeper investigation. Future
research should address these limitations to pro-
vide a more comprehensive perspective on entropy
dynamics in attention-based models.
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A Llama Pre-training Validation Loss
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Figure 5: Comparison of validation loss between
softmax-based attention (solid line) and Lipschitz-
kernel-based attention (dashed line) during Llamal-1B
pre-training. Validation loss is evaluated every 100 train-
ing steps, showing that Lipschitz-kernel-based attention
consistently outperforms softmax-based attention.
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Figure 6: Average attention entropy behavior across
layers in softmax-based (solid lines; Softmax, QK-
LayerNorm) and Lipschitz-kernel-based attention.
Softmax-based attention exhibits the average attention
entropy collapse (V) across all layers, while Lipschitz-
kernel-based attention (dashed lines; ReLU, ELU-+1)
maintains high average attention entropy.

In Figure 1, we show that as the average attention
entropy of the first self-attention layer gradually
decreases, training instability increases. This result
illustrates the dynamics of the average attention
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entropy across different layers.

C GPT2 Pre-training

We extend our experiments to GPT2-large in addi-
tion to the previously conducted Llamal-1B exper-
iments. Figure 7 illustrates that, in softmax-based
attention, average attention entropy gradually de-
creases in the early training steps, eventually ap-
proaching zero (the third panel). Almost simulta-
neously, || P||r increases (the fourth panel), and a
sharp increase in gradient magnitude occurs (the
second panel), reinforcing the direct relationship
between entropy and training stability observed in
previous experiments. In contrast, Lipschitz-kernel-
based attention preserves higher entropy through-
out training, exhibits smaller || P||, and stabilizes
gradients.

D Implementation Details

Here are the hyper-parameters we used, and we
apply the same ones across all experiments.

Table 1: Hyper-parameters of a Simple Transformer

Hyper-parameter Value
Optimizer SGD
Momentum 0.8
Learning rate 0.7
Hidden dimension 3
Sequence length 20
Attention heads 1
Attention layers 5
Training Step 10000

To approximate attention entropy collapse in
large models and reproduce it in smaller models,
we set a high learning rate of 0.7. As there is no
notable difference between the SGD and Adam op-
timizers, we opt for SGD. The model is configured
with a batch size of 4000. Given the small model
size, we set it to 5 layers, 1 attention head, a se-
quence length of 20, and a hidden dimension of 5.
To analyze gradient behavior without constraints,
gradient clipping is disabled, and training runs for
10, 000 steps.

E Proof of Correlation between Variance
and Entropy

If the distribution follows a normal distribution, we
can define the probability density function (PDF)
of the normal distribution X ~ N(u,o?) for ob-
servation x:
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Figure 7: The training behaviors of GPT2-large (N = 200) with softmax-based attention (solid line; Softmax)
and Lipschitz-kernel-based attention (dashed line; ReLU). From left to right, each panel shows the training loss
(Loss), gradient norm (Gradient Norm), the first-layer average attention entropy with + standard deviation (Attn.
Entropy), and the average Frobenius norm of the attention probability matrix (|| P|| #). In the third panel, as the
attention probabilities of Lipschitz-kernel-based attention are nearly uniform, its average attention entropy reaches
the maximum value (dotted line; log V), whereas softmax-based attention exhibits an average attention entropy
close to 0. In the fourth panel, while the softmax-based attention || P|| p reaches its maximum value (dashed-dotted
line; VN ), the Lipschitz-kernel-based attention remains close to its minimum (dotted line) under a uniform attention

distribution.

(z — p)?
20

g(z) =

1
s exp (— ) 12)

where 1 is the mean and o? is the variance of
distribution.
Also, we can define the entropy of X as:

[e.e]
/.
To compute logarithm of g(z), we can use prop-

erties of it:

H(X) = g(w)logg(x)dz  (13)

1
log g(x) = log (2%02> (14)
N2
+ log <exp (—W)) (15)
1 _ 2
= — log(2mo®) — (9”20_2“) (16)

Then, we can calculate H(X) with replacing
log g(z) with (16):

W))dx 17)

1 2
(—2log(27rcr ) — 552

We can separate two terms and the first term can
. o0 .
be computed using — [ g(z)dx = 1:

.

g(x) (—; log(27702> = %log(27r02)
(18)

In normal distribution, with — [*°_ f(z)(z —
w)?dz = o we can simplify the second term as:

1 o

57 | 9@ P

—0o0

19)

Therefore, we can define the entropy of normal
distribution as:

H(X) = %10g(27r02) + % (20)
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Figure 8: (Left) Skewness of softmax-based attention
(solid line; Softmax) and Lipschitz-kernel-based atten-
tion (dashed line; ReLLU) throughout training. (Right)
Distribution of attention probabilities in softmax-based
attention (Top) and Lipschitz-kernel-based attention
(Bottom) at the point of highest skewness for each
method.

After passing through the softmax function, val-
ues range between 0 and 1. When the distribution
collapses onto a single value, attention entropy col-
lapse occurs. If we consider each row of the at-
tention probabilities as a probability distribution,
this represents a highly imbalanced form. Skew-
ness quantifies the degree to which an activation
function skews a distribution. If one row vector
of the attention probabilities matrix is denoted by
{p1,p2, p3,...pn }, with the mean p and standard
deviation o, the skewness is defined as follows:
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1 Y a; — p3
S:Nz< - >

Based on Figure 8 (Left), we observe that the skew-
ness of softmax-based attention rises sharply dur-
ing training, approaching its maximum value. This
indicates that the softmax function tends to learn
highly imbalanced distributions, where most to-
kens attend primarily to a single other token. In
Figure 8 (Top-Right), we observe that most val-
ues are concentrated around O and fall below the
mean, demonstrating strong positive skewness. In
contrast, Lipschitz-kernel-based attention exhibits
relatively lower skewness values. Based on Fig-
ure 8 (Bottom-Right), the attention probability dis-
tribution is more evenly spread around the mean,
indicating low positive skewness.
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Figure 9: The correlation between the attention entropy
and ¢5-norm of each row after sampling rows of at-
tention probabilities from a Dirichlet distribution. For
this setup, the concentration hyper-parameter « of the
Dirichlet distribution is configured as 0.1 and 0.001 dur-
ing sampling.

To show that as attention entropy decreases, the
norm of attention probability matrix increases, we
sample attention probability vectors from a Dirich-
let distribution, defined as follows:

P; ~ Dirichlet(a1) 22)

The concentration of the distribution can be con-
trolled using the hyper-parameter 1. When al
18 small, the distribution is concentrated on a sin-
gle value, resembling attention entropy collapse. In
contrast, when a1 is relatively large, the distribu-
tion becomes more uniform. Experimental results
indicate that when o1 = 0.001, attention entropy
is significantly lower than at a1 = 0.1. Further-
more, it is observed that the attention entropy of
P; and its ¢»-norm are inversely related. As atten-
tion entropy decreases, || P||r increases, reaching
its maximum when attention entropy approaches
Zero.

H Layer-wise Attention Logits Variance

Based on Figure 10, across all layers, including the
intermediate layers shown in Figure 3, we observe
that softmax-based attention exhibits a sharp in-
crease in attention logits variance at the step where
attention entropy collapse occurs. This variance
explosion becomes more pronounced in later lay-
ers. In contrast, Lipschitz-kernel-based attention
maintains a stable attention logits variance across
all layers, demonstrating its robustness to this col-
lapse.
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Figure 10: Attention logits variance across layers for softmax-based (solid lines; Softmax, QK-LayerNorm) and
Lipschitz-kernel-based attention (dashed lines; ReLU, ELU+-1). Softmax-based attention exhibits a sharp increase
in variance at the step where attention entropy collapse occurs, with this effect becoming more pronounced in
later layers. Lipschitz-kernel-based attention maintains a relatively stable variance across all layers, demonstrating

robustness.

I Attention heatmaps
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Figure 11: Heatmaps of attention probabilities for softmax-based attention (Top) and Lipschitz-kernel-based attention
(Bottom) during training. In softmax-based attention, each row progressively converges to a one-hot-like vector,
leading to attention entropy collapse. The attention matrices are from the first layer.
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