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Abstract001

Embodied decision-making is fundamental for002
AI agents operating in real-world environ-003
ments. While Visual Language Models (VLMs)004
have advanced this capability, they still strug-005
gle with complex decisions, particularly in006
human-centered situations that require deep007
reasoning about human needs and values. In008
this study, we systematically evaluate open-009
sourced VLMs on multimodal human-centered010
decision-making tasks. We find that LLMs re-011
ceiving only textual descriptions unexpectedly012
outperform their VLM counterparts of similar013
scale that process actual images, suggesting014
that visual alignment may hinder VLM abil-015
ities. To address this challenge, we propose016
a novel text-only training approach with syn-017
thesized textual data. This method strengthens018
VLMs’ language components and transfers the019
learned abilities to multimodal inference, elimi-020
nating the need for expensive image-text paired021
data. Furthermore, we show that VLMs can022
achieve substantial performance gains through023
self-improvement, using training data gener-024
ated by their LLM counterparts rather than025
relying on larger teacher models like GPT-4.026
Our findings establish a more efficient and scal-027
able approach to enhancing VLMs’ human-028
centered decision-making capabilities, open-029
ing new avenues for optimizing VLMs through030
self-improvement mechanisms.031

1 Introduction032

Embodied decision-making is crucial for AI agents033

in real-world environments, requiring them to make034

informed decisions based on the context and dy-035

namics of surroundings (Ma et al., 2024; Liu et al.,036

2024c). While recent advances in large visual lan-037

guage models (VLMs) have substantially enhanced038

these agents’ capabilities (Zhang et al., 2024a;039

Achiam et al., 2023), VLMs still struggle with com-040

plex decision-making scenarios. This limitation is041

particularly evident in human-centered situations,042

Situation Question

Multimodal
Input

Answer
Prediction

Situation Question

Answer

Answer

Text-Only
Input

Answer
Prediction

Text-Only
Training for VLM
Enhancement

Multimodal
Inference

VLM
Transfer to

Figure 1: Our text-only training using model synthesized tex-
tual data enhances VLM decision-making abilities, which are
then applied to multimodal inputs in inference. This enables
model improvement without image-text paired training data.
Complete data samples are shown in §B.5.

where understanding human values and needs is 043

essential for reliable decisions to address human 044

needs (Hu and Shu, 2023; Sorensen et al., 2024). 045

Successfully handling these scenarios requires so- 046

phisticated reasoning to comprehend situations and 047

make appropriate actions (Hu et al., 2024b), a ca- 048

pability that remains challenging for VLMs. 049

In this study, we first examine open-sourced 050

large models on human-centered decision-making 051

using VIVA benchmark (Hu et al., 2024b) (§ 2). 052

Specifically, given an input image depicting a real- 053

world scenario along with five potential courses of 054

action, the goal is to select the most appropriate ac- 055

tion (example in Figure 3, lower panel). Our investi- 056

gation shows an unexpected finding: large language 057

models (LLMs) that receive only image captions 058

consistently outperform their VLM counterparts 1 059

that process the actual images. This counterintu- 060

itive result suggests that VLMs’ visual alignment 061

process may impair their language components’ 062

decision-making abilities. While VLMs excel at 063

integrating multimodal inputs, the complex task 064

of aligning visual information with human-related 065

reasoning appears to constrain the effectiveness. 066

To address these limitations, we explore methods 067

to enhance VLMs’ decision making through novel 068

1We use the term "counterpart" to refer to LLMs and VLMs
of the same scale, e.g., 8B.
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training approaches (§ 3). A significant challenge069

in VLM training is their dependence on large-scale070

image-text paired data (Liu et al., 2023b; Xu et al.,071

2024b), which is often impractical to obtain in real-072

world applications. Recent research has shown that073

VLMs primarily rely on their LLM components for074

understanding and reasoning tasks (Berrios et al.,075

2023; Gupta and Kembhavi, 2023), a finding partic-076

ularly relevant for human-centered scenarios where077

holistic comprehension of situations and human val-078

ues is essential for decision-making. Building on079

these insights, we propose an novel text-only train-080

ing approach for VLM enhancement. As illustrated081

in Figure 1, we leverage GPT-4 to synthesize com-082

prehensive text-based training data that strengthens083

VLMs’ language components. Experiment results084

demonstrate that our training method effectively085

enables VLMs to learn decision-making abilities086

from textual scenarios, while during multimodal087

inference, they apply these learned capabilities to088

visual situations. This strategy enables effective089

model improvement without requiring additional090

image-text paired data.091

Furthermore, drawing inspiration from recent092

advances in data-centric training (Liu et al., 2024b;093

Pan et al., 2024; Zhou et al., 2024), we investigate094

the influence of textual data on model performance095

(§ 4). Rather than relying on powerful teacher096

models like GPT-4 for training data generation,097

we explore whether smaller language models can098

serve as effective teachers. Our analysis shows that099

VLMs can achieve significant performance gains100

through carefully curated text-only training, even101

when using data generated by their LLM coun-102

terparts like the Llama 8B model (Dubey et al.,103

2024). This finding is particularly significant as it104

demonstrates that VLMs can enhance their reason-105

ing and decision-making capabilities through their106

LM modules (e.g., Mllama adopts Llama as its base107

LLM), without requiring access to larger teacher108

models or expensive image-text paired data. While109

data generated by GPT-4 yields marginally better110

results, the ability to achieve substantial improve-111

ments using smaller LLMs points to a promising112

direction for self-improvement in VLMs.113

Our study provides important insights into114

human-centered decision-making capabilities in AI115

systems. We show that enhancing VLMs through116

text-only training provides a promising alternative117

to traditional multimodal approaches, and highlight118

the potential for self-improvement within VLM119

learning frameworks. These findings indicate a120

promising direction for developing robust, human- 121

aligned models and open new avenues for optimiz- 122

ing VLMs through self-improvement mechanisms. 123

Our key contributions are threefold: 124

• We present a pilot study showing that VLMs 125

currently underperform their LLM counterparts in 126

human-centered decision-making tasks; 127

• We enhance VLMs’ reasoning abilities 128

through text-only training, achieving significant 129

performance improvements; 130

• We demonstrate that VLMs can achieve self- 131

improvement through their LLM counterparts, of- 132

fering a more efficient and scalable path to en- 133

hanced decision-making capabilities. 134

2 Background and Preliminary Analysis 135

2.1 Task and Dataset 136

To investigate the human-centered decision making 137

abilities, we utilize the VIVA benchmark (Hu et al., 138

2024b). To the best of our knowledge, VIVA is the 139

only multimodal benchmark specifically designed 140

for human-centered decision-making. It contains 141

1,240 images depicting diverse real-world scenar- 142

ios across categories such as Assistance of People 143

in Distress, Child Safety, and Emergent Situation. 144

We focus on the action selection task, where mod- 145

els must choose the most appropriate action from 146

multiple candidates given an image depicting a spe- 147

cific situation. Following the original work, we use 148

accuracy as our evaluation metric. Figure 3 shows 149

an example from VIVA. For more details, we refer 150

readers to the original paper. 151

2.2 Models and Settings 152

We evaluate both VLMs and LLMs for the task. 153

We include three VLMs: Mllama (Llama Vi- 154

sion Model), Qwen2-VL (Wang et al., 2024) and 155

LLaVA-OneVision (Li et al., 2024); and two LLMs: 156

Llama-3.1 (Dubey et al., 2024) and Qwen2 (qwe, 157

2024). Notably, we focus on models with LLM 158

(modules) under 8B parameters, considering both 159

computational efficiency and the practical require- 160

ments of embodied agents, which often demand 161

compact models for real-time decision-making. 162

For VLMs, we follow the original paper by utiliz- 163

ing their standard prompting templates. For LLMs, 164

which cannot directly process visual input, we im- 165

plement a two-stage approach: first converting 166

images to captions using LLaVA-OneVision (se- 167

lected for its robust captioning capabilities), then 168

using these captions as situation descriptions for 169
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Model # LM Params Accuracy

Llama-3.1 8B 79.11
Qwen2 7B 81.45
Mllama 8B 75.65
Qwen2-VL 7B 80.32
LLaVA-OneVision 7B 78.31

Table 1: Model results on VIVA action selection task.

answer prediction. More details are provided in170

Appendix B.171

2.3 Results and Analysis172

Table 1 presents the experimental results, revealing173

an unexpected pattern: LLMs consistently outper-174

form their VLM counterparts in decision-making175

tasks. This result challenges the intuitive assump-176

tion that VLMs, with their ability to integrate visual177

and textual inputs, were expected to perform better178

as images can provide more comprehensive situ-179

ational information compared to textual captions.180

One possible explanation is that the integration of181

visual input, while expanding the information avail-182

able to VLMs, may paradoxically complicate their183

decision-making process. The challenge of effec-184

tively aligning visual and textual information ap-185

pears to introduce additional complexity that could186

constrain the models’ reasoning capabilities. This187

limitation becomes particularly evident in human-188

centered contexts, where nuanced understanding189

and reasoning of various factors such as values and190

human needs are essential for appropriate action191

selection.192

3 Enhancing VLM Decision-Making via193

Text-Only Training.194

Based on our findings in § 2, we investigate meth-195

ods to improve VLMs’ reasoning and decision-196

making capabilities. However, constructing high-197

quality in-domain image-text paired data for VLM198

training is resource-intensive and costly. Given199

that VLMs underperform their LLM counterparts200

in our experiments (Table 1), we hypothesize that201

it is possible to improve VLMs by enhancing their202

LLM modules through text-only training. This ap-203

proach offers practical advantages as text-only data204

is more readily available and easier to acquire in205

real-world scenarios.206

3.1 Text-Only Data Creation207

Leveraging recent advances in LLM-based data208

synthesis (Wang et al., 2022; Liu et al., 2023b),209

we employ GPT-4o (Hurst et al., 2024) to generate210

text-only training data. Our process begins with211
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Figure 2: VLM results after text-only training.

10 manually crafted seed questions serving as in- 212

context examples. To maximize data diversity, we 213

implement a batch generation approach where GPT- 214

4o produces 5 samples per time, followed by a 215

deduplication step. This strategy proves effective in 216

generating varied scenarios and questions, resulting 217

in a final dataset of 30k training samples and 1k 218

validation samples, with example data shown in 219

Figure 3. Importantly, we ensure no information 220

leakage from the VIVA benchmark by excluding its 221

samples from our data generation process. Detailed 222

prompts and generation procedures are provided in 223

Appendix B.3. 224

3.2 Model Results 225

We employ LoRA (Hu et al., 2021) for parameter- 226

efficient fine-tuning of the VLMs. Complete fine- 227

tuning specifications are detailed in Appendix B.4. 228

Figure 2 presents model performance before and 229

after text-only fine-tuning. The results show sub- 230

stantial improvements across all models: Mllama’s 231

accuracy increases significantly from 75.65% to 232

79.60%. Meanwhile, Qwen2-VL improves from 233

80.32% to 83.15%, and LLaVA-OneVision ad- 234

vances from 78.31% to 80.81%. 235

These results demonstrate that text-only fine- 236

tuning effectively enhances VLMs’ decision- 237

making capabilities by strengthening their underly- 238

ing language reasoning. By optimizing their lan- 239

guage components, VLMs achieve stronger reason- 240

ing abilities that transfer effectively to multimodal 241

inputs during inference, eliminating the need for ad- 242

ditional visual training data. This approach offers a 243

practical solution to the challenge of limited image- 244

text paired data availability, providing an efficient 245

pathway for improving VLM performance. 246

Our findings also align with previous work that 247

VLMs primarily utilize their LLM modules for un- 248

derstanding and reasoning (Berrios et al., 2023). 249

By focusing on enhancing these fundamental capa- 250

bilities through text-only training, we establish a 251

more efficient and scalable approach to improving 252

VLM performance. This method effectively disen- 253

tangles the model’s reasoning and decision-making 254
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Train Size

Model Data Source 10k 20k 30k

Mllama
GPT-4o 77.26 79.11 79.60

Llama (8B) 77.18 78.95 79.03

Qwen2-VL
GPT-4o 82.90 82.98 83.15

Llama (8B) 82.10 82.66 83.15

LLaVA-OV
GPT-4o 79.52 79.60 80.81

Llama (8B) 78.79 79.19 79.60

Table 2: Accuracy of VLMs finetuned with different training
data on VIVA benchmark. Data Source denotes the model
used for training data creation, and Train Size represents the
number of training samples used for finetuning.

abilities from its visual perception capabilities, al-255

lowing for targeted enhancement of cognitive func-256

tions through readily available textual data.257

4 How Do Textual Training Data258

Influence Model Performance?259

We conduct an in-depth analysis on the influence260

of text data in VLM training, with two pivotal ques-261

tions: (1) How do different text generation models262

affect VLM performance when creating training263

data? (2) What impact does training data size have?264

4.1 Method265

Addressing the first question is crucial because, al-266

though we have observed enhancements in VLM267

performance when using GPT-4o-generated train-268

ing data, these improvements largely stem from269

knowledge distillation leveraging larger, more pow-270

erful models (Xu et al., 2024a). However, access271

to powerful teacher models like GPT-4 is often272

limited or impractical. Given our earlier observa-273

tion that smaller LLMs typically outperform their274

VLM counterparts (§2), we investigate whether275

these smaller LLMs can effectively serve as teach-276

ers for improving their corresponding VLMs. To277

test this hypothesis, we employ Llama-3.1 8B as278

an alternative data generator, following the same279

prompting method used with GPT-4o. This process280

yields 31k samples, with 1k reserved for validation.281

More details are in Appendix B.282

To address the second question about the influ-283

ence of training sample size on the model’s results,284

we randomly select subsets of training samples285

varying in size: 10k, 20k, and 30k, for model train-286

ing. The experimental setup follows prior proce-287

dures (§3), utilizing LoRA for parameter-efficient288

model training.289

4.2 Results and Analysis290

The experiment results, presented in Table 2, reveal291

several important insights. First, training data gen-292

erated by Llama 8B prove surprisingly effective at 293

enhancing VLM performance. While the improve- 294

ments are generally smaller compared to GPT-4o- 295

generated data, they still represent significant gains 296

over the original VLM performance. This confirms 297

our hypothesis that LLMs can successfully serve 298

as teachers for their VLM counterparts through 299

text-only training, enabling better performance in 300

human-centered decision-making tasks. 301

Notably, these results demonstrate a crucial find- 302

ing: VLMs can achieve self-improvement through 303

their LLM modules or counterparts using text-only 304

training, without access to either larger teacher 305

models or costly image-text paired data. This ca- 306

pability has significant implications for practical 307

applications and deployment scenarios where re- 308

source constraints are common. The overall results 309

open new possibilities for developing more capa- 310

ble and efficient VLMs through self-improvement 311

mechanisms for model enhancement. 312

Regarding training data volume, we observe 313

a consistent pattern across all models and data 314

sources: larger training sets generally yield bet- 315

ter performance. However, the magnitude of im- 316

provement varies notably across models, suggest- 317

ing different levels of data efficiency. These vari- 318

ations highlight opportunities for future research 319

into model-specific data utilization patterns and ef- 320

ficiency optimization. Moreover, while increasing 321

training data generally improves performance, it 322

also incurs higher computational costs. Finding 323

the optimal balance between model performance 324

and computational efficiency remains an important 325

direction for efficient model training (Liu et al., 326

2024b), which we leave to future work. 327

5 Conclusion 328

This paper reveals important insights into enhanc- 329

ing visual language models’ capabilities in human- 330

centered decision-making tasks. Based on our find- 331

ings that LLMs often outperform the VLM coun- 332

terparts, we propose a novel text-only training ap- 333

proach that significantly enhances VLM decision- 334

making without requiring expensive image-text 335

paired data. We further demonstrate that VLMs can 336

achieve self-improvement using their LLM coun- 337

terparts for training data generation, eliminating 338

the need of larger teacher models for knowledge 339

distillation. These findings provide a practical and 340

scalable pathway of future directions for develop- 341

ing more capable VLMs in real-world applications. 342
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Limitations and Discussions343

Our work has several key limitations that present344

opportunities for future research. First, while our345

findings demonstrate effectiveness on the task of346

human-centered decision-making, the generaliz-347

ability of our approach to other domains and tasks348

remains to be validated. Future work will ex-349

plore the applicability of text-only training and self-350

improvement mechanisms across a broader range351

of multimodal tasks and applications.352

Second, our current approach utilizes LLM-353

generated training data without sophisticated post-354

processing. Recent research in supervised fine-355

tuning (Zhou et al., 2024; Liu et al., 2024b) sug-356

gests that enhancing data diversity and complexity357

through careful post-processing can improve model358

performance while reducing the required training359

sample size. Further investigation into data cre-360

ation strategies and selection methods could lead361

to more efficient training protocols.362

Finally, our study focuses on VLMs under 8B pa-363

rameters, prioritizing computational efficiency and364

practical deployment considerations for real-time365

decision-making in embodied agents. While this366

scope aligns with immediate practical applications,367

the applicability of our findings to larger models368

(13B, 34B) warrants investigation. Understanding369

how model scale interacts with text-only training370

and self-improvement mechanisms could provide371

valuable insights for future model development.372

Ethics Statements373

This work studies methods for enhancing human-374

centered decision-making capabilities in large mod-375

els. As these systems become increasingly inte-376

grated into real-world applications, ensuring their377

reliability and alignment with human values is378

paramount. While our approach demonstrates im-379

provements in decision-making capabilities, we380

acknowledge that the fundamental limitations and381

biases of the underlying model architectures may382

persist.383

To promote transparency and reproducibility, we384

will open-source our training data, models, and385

implementation code. However, we emphasize386

the importance of responsible deployment. Users387

should thoroughly evaluate these systems in their388

specific application contexts, considering poten-389

tial risks including but not limited to: (1) Reli-390

ability of decision-making in critical scenarios;391

(2) Privacy implications when processing human-392

centered data; (3) Potential for adversarial misuse 393

or manipulation Biases inherited from training data 394

and base models. 395

We encourage practitioners to implement appro- 396

priate safeguards and monitoring systems when 397

deploying these models in real-world applications, 398

particularly in contexts where decisions may im- 399

pact human well-being. 400
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A Related Work 590

A.1 Embodied Decision-Making 591

Embodied decision-making aims to enable multi- 592

modal agents to make informed decisions in real- 593

world environments (Liu et al., 2024c). VLMs 594

have demonstrated promising results in various 595

real-world applications, particularly in robotics and 596

embodied AI systems (Team et al., 2023; Fu et al., 597

2024; Liu et al., 2024a). 598

However, while significant progress has been 599

made in enhancing physical capabilities, the inte- 600

gration of human values in human-centered, multi- 601

modal contexts remains understudied (Brohan et al., 602

2023). This gap is particularly crucial given the 603

increasing importance of aligning embodied agents 604

with human values and societal needs. Our work 605

addresses this limitation by investigating VLMs’ 606

performance in human-centered decision-making 607

using the VIVA benchmark (Hu et al., 2024b). 608

A.2 VLM Reasoning and Decision Making 609

Our research intersects with visual reasoning, 610

where models must employ sophisticated reason- 611

ing to understand situations and make appropriate 612

decisions. Recent studies have explored VLMs’ 613

visual reasoning capabilities across various tasks, 614

including visual question answering and common- 615

sense reasoning (Hu et al., 2024a; Wang and Zhao, 616

2023; Bitton-Guetta et al., 2023; Al-Tahan et al., 617

2024). Traditional approaches to improving VLM 618

capabilities rely on multimodal fine-tuning (Liu 619

et al., 2023a; Xu et al., 2023; Zhang et al., 2024b), 620

which requires extensive image-text paired data. 621

However, acquiring such paired data for specific 622

domains often presents significant challenges in 623

practical applications. Our work introduces a text- 624

only training approach to enhance VLM decision- 625

making capabilities. 626

While (Choi et al., 2024) similarly incorporates 627

textual data in VLM training, their method focuses 628

on auxiliary tasks using detailed visual descriptions 629

(e.g., color patterns, wing shapes) and biological 630

characteristics for language-driven understanding. 631

In contrast, our approach directly targets decision- 632

making and reasoning capabilities with text-only 633

training. Furthermore, we introduce a novel self- 634

enhancement mechanism that leverages LLM coun- 635

terparts for data generation, offering a more effi- 636

cient and scalable solution for improving VLM 637

performance. 638
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B Experimental Details639

B.1 Models and Implementation Details640

We include open-sourced VLMs and LLMs with641

the variants after instruction tuning in our experi-642

ments. Specifically, for VLMs, we include Llama643

3.2-Vision 11B (Mllama) 2, Qwen2-VL (Wang644

et al., 2024) 3 and LLaVA-OneVision (Li et al.,645

2024) 4. For LLMs, we include Llama-3.1646

8B (Dubey et al., 2024) 5 and Qwen2 (qwe, 2024) 6.647

We implement all experiments using PyTorch and648

the HuggingFace/Transformers Library (Wolf et al.,649

2020). During generation, we apply greedy decod-650

ing to eliminate randomness. We apply the chat651

template of each model to convert the prompt into652

a conversational template. All experiments are con-653

ducted on NVIDIA RTX 4090 GPUs and A100654

GPUs.655

B.2 Prompts656

For VLMs, we directly adopt the prompt from the657

original VIVA paper (Hu et al., 2024b):658

Prompt for VLMs

Based on the image provided, select the most
appropriate course of initial action to take:

{action options}

Just output the choice:
659

For LLMs, as they cannot directly process im-660

ages, we first convert each image to a situation661

description using LLaVA-OneVision with the fol-662

lowing prompt:663

2https://huggingface.co/meta-llama/Llama-3.
2-11B-Vision-Instruct

3https://huggingface.co/Qwen/
Qwen2-VL-7B-Instruct

4llava-hf/llava-onevision-qwen2-7b-ov-hf
5https://huggingface.co/meta-llama/Llama-3.

1-8B-Instruct
6https://huggingface.co/Qwen/

Qwen2-7B-Instruct

Prompt for Caption Generation

The scene depicted in the image is your cur-
rent view, which may involve social situations,
such as individuals in need of assistance or
engaging in inappropriate behaviors.

Generate a description of the situation in one
sentence. You should focus on the situation
description:

664

Then we use the generated caption to replace the 665

image for LLM inference: 666

Prompt for VLMs

Given a human-centered situation, and a list
of potential actions as responses to handle the
situation, select the most appropriate course
of initial action to take:

#[Situation]: {generated_caption}

#[Action List]:{action options}

Just output the choice:
667

B.3 Text-Only Training Data Generation 668

For text-only data generation, we employ both GPT- 669

4o 7 and Llama-3.1-8B-Instruct 8 as the data gen- 670

erator. We prompt the data generator to create a 671

textual description of a situation and construct a 672

multiple-choice question for decision making. We 673

also ask the model to include a rationale of the 674

answer. The prompt used for data generation is 675

shown in Figure 4. 676

B.4 Model Training Details 677

For VLM training, we employ Lora for parameter- 678

efficient model training. The fine-tuning process 679

includes configuring LoRA with a rank of 32, al- 680

pha of 16, and a dropout rate of 0.05 applied to 681

the projection layers. The model undergoes fine- 682

tuning with over 3 epochs. We set learning rate as 683

2e-5 with the linear scheduler. The experiments 684

are conducted on 4 NVIDIA RTX 4090 and A100 685

GPUs. We enable BF16 and utilize DeepSpeed 686

ZeRO-2 (Rajbhandari et al., 2020) for parallel train- 687

7gpt-4o-2024-11-20
8https://huggingface.co/meta-llama/Llama-3.

1-8B-Instruct
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Given the situation depicted in the image, select the most 
appropriate course of initial action to take:

A. Dive into the water immediately to attempt a rescue due to the emergent 
situation. 

B. Encourage the person to swim.
C. Look for a throwable flotation device and throw it to the person to help 

them stay afloat. 
D. Tell the person to relax and float on their back. 
E. The person depicted in the image does not require any assistance; no 

action is necessary.

Situation Question

Situation Question

You are the principal of a high school where a fight broke 

out between two students, Maria and Jake, resulting in 

minor injuries. After investigating, you discover that 

Maria had been bullied by Jake for months, but no teacher 

had reported the issue. Maria claims she acted in self-

defense after Jake insulted her and shoved her first. Jake, 

however, denies initiating physical contact. Witness 

accounts are conflicting, and surveillance footage doesn’t 

clearly determine who started the fight. Both students’ 

parents demand action, with Jake’s parents threatening 

legal action if he is unfairly punished and Maria’s parents 

demanding stronger anti-bullying measures.

What should be your next step?

A. Suspend both students equally, emphasizing the school’s zero-
tolerance policy for physical altercations regardless of circumstances.

B. Suspend Jake based on Maria’s claim of self-defense and prioritize anti-
bullying initiatives within the school.

C. Implement conflict resolution sessions involving both students and 
their parents to mediate and address underlying issues before deciding 
on disciplinary measures.

D. Take no immediate disciplinary action but conduct further 
investigations and interview witnesses to gather more conclusive 
evidence before deciding.

Text-Only Sample (training)

Multimodal Sample from VIVA (inference)

Figure 3: Comparison of training and inference samples in our experiments. The upper panel shows a text-only training sample
generated by GPT-4o, featuring a school conflict scenario that requires careful decision-making. The lower panel shows a
multimodal sample from the VIVA benchmark (Hu et al., 2024b), presenting a water emergency situation. The option with blue
shadow indicates the correct answer. During training, VLMs are trained to predict the answer given the text-only situations and
question. At inference time, these same models process real-world images along with questions to make appropriate situational
decisions.

ing. We implement the model training using Hug-688

gingFace Transformers and TRL 9 libraries.689

B.5 Data Samples690

Figure 3 illustrates samples from our text-only691

training and multimodal inference processes. The692

text-only training sample, generated by GPT-4o,693

presents a textual situation with multiple-choice694

options for model training. In contrast, the in-695

ference sample from the VIVA benchmark (Hu696

et al., 2024b) demonstrates a real-world applica-697

tion where models must process both visual in-698

put and corresponding questions. These samples699

highlight how our approach effectively substitutes700

costly image-text paired data with text-only train-701

ing samples, providing a practical solution to data702

collection challenges in real-world applications.703

C Further Discussions on VLM704

Self-Improvement for Decision-Making705

Our text-only training demonstrates the "self-706

improvement" of VLMs, where VLMs enhance707

their capabilities through text-only training using708

data generated by their LLM modules or coun-709

terparts. We define self-improvement as VLMs’710

9https://huggingface.co/docs/trl/en/index

ability to enhance their performance using smaller- 711

scale LLMs (either their LLM modules or counter- 712

parts of same scale) for training data generation, 713

rather than relying on more powerful teacher mod- 714

els like GPT-4. However, we acknowledge that 715

the relationship between VLMs and their LLMs 716

varies. For instance, Mllama is built upon the 717

Llama model, while Qwen2-VL uses Qwen2 as 718

its base LLM. In our experiments, we primarily 719

use Llama for data generation due to computa- 720

tional constraints, and found that this approach 721

improved performance across different VLMs, in- 722

cluding those not based on Llama. 723

While a stricter definition of self-improvement 724

might suggest using each VLM’s exact base LLM 725

for data generation (e.g., using Qwen2 for Qwen2- 726

VL), we argue that our findings still demonstrate a 727

form of self-improvement for several reasons: (1) 728

The LLMs used for data generation are of similar 729

scale to the VLMs’ language components; (2) The 730

improvements are achieved without requiring larger 731

teacher models ; (3) The approach demonstrates 732

that VLMs can enhance their capabilities using 733

similarly-sized language models, regardless of the 734

specific architecture. 735

This broader interpretation of self-improvement 736
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Prompt For Text-Only Training Data Generation :

Now your task is to create more complex decision-making questions in human-centered situations. Each
question contains a situation description, a multiple-choice question, and an answer. You can consider
the following approaches to enhance the complexity:

- Add more context to the problem, such as tools, background information, or character details, making
the constraints more specific;

- Make the options challenging;

- Consider different ways the question is asked, incorporating reverse reasoning, dialectical reasoning,
critical thinking, etc.

The question doesn’t necessarily have to ask which action is correct but could focus on other aspects
related to decision-making.

There are no specific format or wording requirements for the questions, but they should be in the form of
multiple-choice questions. You should make the situation diverse. You should also include a rationale to
explain the answer.

## Examples:

_example_

Now generate 5 candidate question with answer. Your output should be presented as a JSON list:

Figure 4: Prompts for training data generation.

highlights a key finding: VLMs can achieve signif-737

icant performance gains through text-only training738

using data from LLMs of the same scale, offering739

a more practical and efficient pathway for model740

enhancement.741
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