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ABSTRACT

This paper explores the geometric characteristics of loss landscapes to enhance
domain generalization (DG) in deep neural networks. Existing methods mainly
leverage the local flatness around minima for improved generalization. However,
recent theoretical studies indicate that flatness does not universally guarantee bet-
ter generalization. Instead, this paper investigates a global geometrical property
for domain generalization, i.e., mode connectivity, the phenomenon where distinct
local minima are connected by continuous low-loss pathways. Different from flat-
ness, mode connectivity enables transitions from poor to superior generalization
models without leaving low-loss regions. To navigate these connected pathways
effectively, this paper proposes a novel Billiard Optimization Algorithm (BOA),
which discovers superior models by mimicking billiard dynamics. During this pro-
cess, BOA operates within a low-dimensional Krylov subspace, aiming to allevi-
ate the curse of dimensionality caused by the high-dimensional parameter space
of deep models. Furthermore, this paper reveals that oracle test gradients strongly
align with the Krylov subspace constructed from training gradients across diverse
datasets and architectures. This alignment offers a powerful tool to bridge training
and test domains, enabling the efficient discovery of superior models with lim-
ited training domains. Experiments on DomainBed demonstrate that BOA con-
sistently outperforms existing sharpness-aware and DG methods across diverse
datasets and architectures. Impressively, BOA even surpasses the sharpness-aware
minimization by 3.6% on VLCS when using a ViT-B/16 backbone.

1 INTRODUCTION
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Figure 1: Ideal and non-ideal models in the training and
test loss landscapes. (a) In the training loss landscape, the
ideal (★) and non-ideal (★) models are connected via a low
loss path. (b) The ideal model (★) is located in the basin of
the test loss landscape, while the non-ideal model (★) is not.

Understanding the geometry of loss
landscapes (Li et al., 2018a; Xu et al.,
2024) in deep neural networks has
emerged as a powerful and insight-
ful approach for interpreting the gen-
eralization behavior of these mod-
els (Wu et al., 2017; Rangamani et al.,
2020). Recent empirical and theoreti-
cal studies (Keskar et al., 2016; Dziu-
gaite & Roy, 2017; Jiang et al., 2019)
have demonstrated a strong connec-
tion between generalization perfor-
mance and the geometric properties
of the loss surface, particularly its
sharpness. It has been observed that flat minima sought by sharpness-aware minimization (SAM)
tend to generalize better than sharp ones (Foret et al., 2020; Kwon et al., 2021; Kim et al., 2022).
This underscores the potential of leveraging insights from loss geometry.

Although numerous flatness-seeking methods have been developed to learn generalizable mod-
els (Kwon et al., 2021; Kim et al., 2022; Zhang et al., 2024), emerging research (Zhang et al., 2021;
Wen et al., 2023) indicates that flatness does not universally guarantee improved generalization.
This reveals limitations in over-relying on local sharpness measures, particularly within challenging
Domain Generalization (DG) settings. In the DG task, our goal is to learn a model from multiple
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Table 1: Comparisons with other optimization algorithms in update subspaces and rules. The
update direction of SGD/SGLD lies in a random subspace R; SAM lies in a two-dimensional Krylov
subspace K2; and our BOA lies in a K-dimensional Krylov subspace KK .

Methods Involving Subspaces Update Rules

SGD/SGLD (Welling & Teh, 2011) R = {g,z}, z ∼ N (0, I). ∆θ = −ϵg +
√
2ϵτz

SAM (Foret et al., 2020) K2 = {g,Hg}, Hg ≈ ∇ℓ(θ+ϵg)−∇ℓ(θ)
ϵ . ∆θ = −η∇ℓ(θ + ϵg)

BOA (Ours) KK = {g,Hg, . . . ,HK−1g}.

 p0 = −∑K−1
k=0 Hkg,

pi =

(
I− 2

(projKK
g)(projKK

g)⊤

∥ projKK
g∥2

)
pi−1

source domains and generalize it to unseen target domains with different data distributions (Wang
et al., 2022; Zhou et al., 2021; Shen et al., 2021). In such scenarios, the connection between flatness
and generalization becomes significantly more complex and context-dependent. Crucially, the rela-
tionship between flatness in parameter space and the geometry of the representation space suggests
that low sharpness may not adequately capture a model’s vulnerability to domain shifts in feature
space (Andriushchenko et al., 2023). Thus, although pursuing flat minima can be beneficial, it should
not be considered a unique solution for DG. It is essential to investigate other geometric properties
of the loss landscape beyond flatness to achieve better generalization.

In contrast to local flatness, this paper focuses on a global geometric property termed mode connec-
tivity (Freeman & Bruna, 2016; Garipov et al., 2018; Draxler et al., 2018). That is, distinct local min-
ima, discovered via independent training from different initializations, are connected by continuous
pathways of low loss. This paper empirically investigates this phenomenon in the context of domain
generalization (DG) and observes a similar connectivity: As visually illustrated in Figure 1, basins
corresponding to models with significantly different out-of-domain performance (e.g., a non-ideal
model with poor DG accuracy and an ideal model with nearly 100% DG accuracy) are connected via
low-loss pathways. It suggests that the loss landscape is not composed of isolated basins but exhibits
a connected structure among separate solutions. This connectivity implies a promising possibility:
transitioning from a solution with poor generalization properties to one with strong out-of-domain
performance without escaping the low-loss region. Despite its theoretical promise, effectively nav-
igating these pathways in high-dimensional parameter spaces remains challenging due to the curse
of dimensionality. Conventional optimization methods, such as SGD and its Langevin dynamics ex-
tensions (Bussi & Parrinello, 2007; Welling & Teh, 2011), are often ineffective in this context, as
they tend to become trapped in local regions (Deng et al., 2020; Zheng et al., 2024), preventing the
discovery of superior solutions. This problem motivates the need for a more deliberate algorithm
capable of actively navigating these low-loss tunnels.

Inspired by the dynamics of billiard motion (Bunimovich, 2007; Gutkin, 2003), this paper proposes
a novel and efficient traversal algorithm, Billiard Optimization Algorithm (BOA), which explicitly
encourages movement along these connected pathways for improved domain generalization. Specif-
ically, BOA operates through two core operations: (1) line search to locate loss contour boundaries
(analogous to a billiard ball approaching a cushion), and (2) reflection to redirect the optimization
trajectory upon boundary contact (mimicking momentum-preserving bounces). During this process
of high-dimensional optimization, the curse of dimensionality profoundly impacts BOA’s perfor-
mance in two key ways. First, high-dimensional theory (Vershynin, 2018) suggests that random
vectors become nearly orthogonal to the optimal initial directions (such as directions of oracle test
gradients), making naive random direction search highly inefficient in locating useful paths. Sec-
ond, trajectory sparsity emerges in high-dimensional landscapes, meaning that numerous optimiza-
tion steps are required to achieve sufficient domain generalization. These issues are compounded
in deep models, where the parameter space can be overwhelmingly large. Fortunately, a key ge-
ometric regularity identified in our empirical studies offers a solution: the test gradient exhibits
strong alignment with the Krylov subspace (Liesen & Strakos, 2013) derived from training gradi-
ents across different datasets and architectures. The alignment effectively bridges the gap between
training and test domains, and provides near-optimal initial directions for BOA without requiring
access to test data. Furthermore, by leveraging this alignment, BOA can constrain its traversal tra-
jectory to a reduced subspace of merely 5-20 dimensions, drastically reducing the vast search space
and enabling efficient discovery of models with superior domain generalization capabilities. Empiri-
cal validation conducted on the challenging DomainBed (Gulrajani & Lopez-Paz, 2020) benchmark
with various vision transformer architectures demonstrates that BOA consistently outperforms pop-
ular sharpness-aware methods and other prevalent DG techniques across five diverse datasets. These
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results underscore the effectiveness of BOA in navigating high-dimensional loss landscapes and its
practical utility for real-world domain generalization tasks.

Our key contributions can be summarized as follows:

• Mode connectivity is identified in the DG context. It describes a phenomenon whereby continu-
ous low-loss trajectories in the parameter space connect models exhibiting substantially divergent
out-of-domain performance.

• A novel and efficient Billiards Optimization Algorithm (BOA) is introduced to advance domain
generalization. It promotes navigation along low-loss paths connecting distinct local optima,
facilitating the identification of models with enhanced generalization capabilities.

• Our study reveals the notable geometric regularity that test gradients demonstrate significant
alignment with the Krylov subspace derived from training gradients, thereby establishing an
effective bridge between training and unseen test domains.

• Experiments across diverse architectures confirm that BOA consistently surpasses popular
sharpness-aware methods and other DG techniques on five datasets of DomainBed.

2 RELATED WORK

Although deep learning has achieved success in many application areas, the loss landscapes of deep
neural networks remain inadequately understood. This area constitutes an actively evolving field of
research, primarily divided into two distinct categories.

Local structure. The first category explores the local structure of minima found by SGD and its
variants. Researchers have observed that smaller mini-batch sizes often lead to sharp minima, while
larger mini-batch sizes tend to yield flat minima (Keskar et al., 2016). In recent years, numer-
ous studies have established a connection between flatness near minimizers and model general-
ization (Keskar et al., 2016; Dziugaite & Roy, 2017; Jiang et al., 2019): flat minima exhibit stronger
generalization capabilities, whereas sharp minima perform poorly on test datasets. This conclusion
has also been extended to out-of-distribution generalization scenarios (Zou et al., 2024), attracting
widespread attention in the domain generalization research community and inspiring a series of do-
main generalization methods that seek flat minima, such as SWAD (Cha et al., 2021), SAM (Foret
et al., 2020) and its variants (Wang et al., 2023; Li et al., 2025). Unfortunately, however, flatness does
not equate to generalization. It is because: (1) There exist sharp yet well-generalizing models. Dinh
et al. (Dinh et al., 2017) and Kaiyue Wen et al. (Wen et al., 2023) have theoretically and empirically
identified minimizers that generalize well despite being very sharp. (2) Although some theoretical
studies have demonstrated, under simple linear model settings, that the flattest neural network min-
imizers generalize well, this is not necessarily true for standard neural networks—even for simple
architectures like two-layer ReLU networks. Unlike previous domain generalization methods, this
paper leverages the connectivity of minimizers and attempts to traverse from any given minimizer
to one with strong generalization capability by simulating billiard dynamics.

Global structure. The other major category of research focuses on the global structure of minima.
Over the past few years, numerous studies have revealed connectivity between minima, known as
mode connectivity. Freeman et al. (Freeman & Bruna, 2016) theoretically proved that local minima
of a neural network with a single hidden layer and ReLU activation can be connected by a curve
along which the loss value is bounded by a constant, which depends on the number of network pa-
rameters and the “smoothness” of the data. Their theoretical results are not easily generalizable to
multi-layer networks. In contrast, Garipov et al. (Garipov et al., 2018) proposed a simpler training
procedure that finds polygonal chains with nearly constant accuracy even in various modern state-
of-the-art architectures, with only one bend between optima. Draxler et al. (Draxler et al., 2018)
simultaneously and independently discovered curves connecting local optima in DNN loss land-
scapes. They adopted a different approach to finding these curves, inspired by the “Nudged Elastic
Band” method from quantum chemistry. Currently, mode connectivity is used in algorithm design
across multiple application areas, such as machine unlearning (Cheng & Amiri, 2025), model merg-
ing (Li et al., 2024), and continual learning (Mirzadeh et al., 2020). Although mode connectivity
offers the potential to find models with stronger generalization capabilities continuously, this prop-
erty has not been effectively utilized in the design of out-of-distribution generalization algorithms
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Figure 2: Overview of the proposed Billiard Optimization Algorithm (BOA). (a) A schematic di-
agram of a billiards game on a two-dimensional table; (b) The first operation of BOA (Line Search):
Like a ball approaching a cushion, this operation identifies loss contour boundaries through line
search along directional vectors. (c) The second operation of BOA (Reflection): Upon boundary
contact, the trajectory redirects via physics-based rules, mimicking a ball’s reflection off a cushion.

due to the curse of dimensionality. To the best of our knowledge, this paper is the first work to seek
models with better out-of-domain generalization via mode connectivity.

3 METHODOLOGY

Our Billiard Optimization Algorithm (BOA) aims to effectively navigate connected pathways within
loss landscapes and discover models with superior out-of-domain generalization. Its design draws
inspiration from the physical dynamics of billiards, as illustrated in Fig. 2a. Specifically, it iteratively
performs two core operations: (1) line search to locate the loss contour boundary, analogous to
a billiard ball moving toward a cushion (Fig. 2b), and (2) reflection to redirect the optimization
trajectory upon reaching the boundary, mimicking a ball’s reflection off a cushion (Fig. 2c). Due to
the space limit, a formalized sketch describing the complete procedure of the Billiard Optimization
Algorithm (BOA) is provided in Appendix A.

3.1 DEFINITION

In the Billiard Optimization Algorithm (BOA), the conceptual “billiard table” is mathematically
defined as the sublevel set of the training loss landscape bounded by a specified contour threshold.
Formally, this table corresponds to the parameter domain:

T :=
{
θ ∈ Rd | ℓtrain(θ) ≤ ℓth

}
, (1)

where the contour threshold ℓth is deliberately constructed as: ℓth := ℓtrain(θ0) + ∆ℓ. Here, θ0
represents the parameter vector of a pre-trained model, and ∆ℓ > 0 denotes a strictly positive loss
increment. This construction guarantees that the pre-trained model resides strictly within the interior
of the billiard table, satisfying the containment condition: ℓ(θ0) < ℓth. This foundational definition
establishes the optimization landscape as a bounded playfield where subsequent billiard-inspired
operations—contour-seeking line searches and momentum-preserving reflections—are performed.
The bounded nature of the playfield effectively constrains variations in training loss, ensuring that
performance on the training set remains nearly constant while the algorithm searches for model
parameters that deliver superior DG performance.

3.2 LINE SEARCH

During the line search phase of the Billiard Optimization Algorithm (BOA), we emulate the linear
trajectory of a billiard ball approaching a cushion by systematically locating the target loss contour
boundary ℓth = ℓ(θ0) + ∆ℓ. Unless specified otherwise, we use ℓ to represent ℓtrain below.

This procedure mathematically corresponds to solving the nonlinear equation with respect to α:

ℓ(θi−1 + αpi−1) = ℓth, (2)
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Table 2: Out-of-domain accuracies of ViT-B/16 on the DomainBed benchmark. The star symbol
(⋆) marks experiments involving full fine-tuning of the image encoder, with its absence signifying
the application of visual prompt tuning instead.

Algorithms VLCS PACS OfficeHome TerraIncognita DomainNet Avg.

ERM⋆ (Vapnik, 1998) 81.6 93.2 80.0 54.5 57.7 73.4
MIRO⋆ (Cha et al., 2022) 83.6 95.8 82.3 58.8 57.2 75.5

ERM (Jia et al., 2022) 81.9 95.9 84.1 56.1 59.5 75.5
IRM (Arjovsky et al., 2019) 82.9 96.1 83.2 56.7 59.1 75.6
DANN (Ganin et al., 2016) 81.8 96.3 83.0 56.0 58.4 75.1
CDANN (Li et al., 2018c) 82.4 96.5 82.9 55.6 58.4 75.2
MMD (Li et al., 2018b) 82.3 95.8 83.6 57.4 59.9 75.8
CORAL (Sun & Saenko, 2016) 82.6 96.4 83.8 57.5 59.8 76.0
IIB (Li et al., 2022b) 82.3 96.5 84.2 58.2 58.6 76.0
CSVPT (Li et al., 2022a) 82.9 96.6 85.6 58.6 59.1 76.5
SAM (Foret et al., 2020) 82.9 96.6 85.4 56.2 59.8 76.2
GSAM (Zhuang et al., 2022) 82.9 96.6 85.6 55.4 59.8 76.1
GAM (Zhang et al., 2023) 83.6 96.4 85.5 55.3 59.5 76.1
SAGM (Wang et al., 2023) 82.8 96.8 85.2 58.0 59.1 76.4
DISAM (Zhang et al., 2024) 82.7 97.1 85.4 57.3 59.8 76.5

BOA (Ours) 86.5 97.4 86.0 60.3 60.2 78.1

where θi−1 represents the initial parameter vector (analogous to the billiard ball’s starting position)
and pi−1 denotes the search direction. Candidate points are generated along the ray xk = θi−1 +
hkpi−1 (hk > 0), with BOA employing an adaptive bracketing strategy to efficiently isolate the
solution interval [hL, hR]: when ℓ(xk) < ℓth, step sizes expand exponentially via hk+1 = (2k −1)h
(where h represents the initial step) until exceeding ℓth; conversely, when ℓ(xk) > ℓth, step sizes
contract geometrically through hk = hk−1/2 until falling below ℓth. Following interval isolation,
BOA employs the golden-section search method for precise refinement:

h
(1)
k = hR − hR − hL

ψ
, h

(2)
k = hL +

hR − hL
ψ

, (3)

where ψ = (1 +
√
5)/2 represents the golden ratio. The interval boundaries [hL, hR] are then

updated based on function evaluations at points h(1,2)k . Finally, the approximate optimal solution α⋆

of equation (2), found via the golden-section search, is used to update the parameters:

θi = θi−1 + α⋆pi−1, (4)

precisely positioning the model parameter on the loss contour.

3.3 REFLECTION

Upon reaching the contour boundary, BOA initiates its second operation: reflection that mimics
momentum-preserving billiard collisions.

At the contour point θi, the reflection direction is computed by leveraging the geometry of the local
loss landscape, analogous to the physical reflection process illustrated in Fig. 2c. In this phase, the
unit normal vector is expressed as: ni = − ∇ℓ(θi)

∥∇ℓ(θi)∥2
, which corresponds to the steepest descent

direction, plays a role equivalent to the surface normal of the cushion in billiard dynamics. As
depicted in Fig. 2c, both the incident direction pi−1 and the normal vector ni define the reflection
plane. The specular reflection direction is subsequently updated as follows:

pi = pi−1 − 2(p⊤
i−1ni)ni = (I− 2nin

⊤
i )pi−1. (5)

Geometrically, this transformation subtracts twice the orthogonal projection of pi−1 onto ni. This
operation preserves the magnitude of momentum, i.e., ∥pi∥2 = ∥pi−1∥2, and adheres to the re-
flection law ϕincident = ϕreflected, which implies (pi−1,ni) = (pi,ni). The reflection operator
R[ni] = I − 2nin

⊤
i represents an improper rotation (with detR = −1) that incorporates curva-

ture information via ni ∝ ∇ℓ(θi). This allows efficient exploration along the loss contour without
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the need for Hessian recomputation, thereby maintaining a computational complexity of O(d) per
iteration for d-dimensional parameters.

After multiple iterations of alternating line search and reflection operations, we generate a trajectory
of model parameters and select an optimal model from this trajectory via a validation set for testing.

3.4 OVERCOMING THE “CURSE OF DIMENSIONALITY”

The curse of dimensionality fundamentally impacts optimization in high-dimensional parameter
spaces through two primary mechanisms: (1) In billiard dynamics, the initial incident direction p0

determines the trajectory’s ability to find model parameters with better DG performance. Unlike
intuitive 2D billiard, the high-dimensional setting induces a geometric constraint: random vectors
become nearly orthogonal to the oracle optimal directions (Vershynin, 2018), suggesting that naive
random search becomes extremely inefficient in high dimensions. (2) Trajectory sparsity emerges in
high-dimensional landscapes, necessitating numerous optimization steps to achieve sufficient out-
of-domain generalization.

To overcome the challenges of high-dimensional optimization, we leverage the geometric structure
of the Krylov subspace, which is generated from training derivatives:

KK(Htrain, gtrain) = span
{
g0, Hg0, . . . , H

K−1g0
}
, (6)

where g0 = ∇ℓtrain(θ0) and H = ∇2ℓtrain(θ0). Krylov subspace (Liesen & Strakos, 2013) is famous
as an efficient, low-dimensional framework to find approximate solutions to high-dimensional lin-
ear algebra problems. Here, we use the Krylov subspace concerning the Hessian matrix to capture
the dominant curvature information. It provides two critical advantages: First, it enables principled
selection of the initial search direction through efficient approximation of test gradients. Second, it
constrains the trajectory to a subspace with limited dimensions that already includes model param-
eters with better generalization.

Determine the initial incident direction. Intuitively, in the DG scenario, the test gradient ∇ℓtest(θ0)
might serve as a good choice for the initial incident direction. Fortunately, empirical analysis re-
veals a remarkable geometric regularity: the test gradient ∇ℓtest(θ0) exhibits strong alignment with
the Krylov subspace KK(Htrain, gtrain). This alignment enables efficient approximation via setting
proper values for βk:

p0 =

K−1∑
k=0

βkH
kg0 ≈ ∇ℓtest(θ0). (7)

Interestingly, experimental evidence demonstrates that setting βk = −1 yields a particularly effec-
tive direction. This configuration achieves a small angle between p0 and ∇ℓtest(θ0) across bench-
mark datasets, effectively overcoming dimensional barriers. To avoid explicit Hessian matrix calcu-
lation, we employ the finite difference to approximate Hessian-vector products:

Hg0 ≈ ∇ℓ(θ0 + ϵg0)−∇ℓ(θ0)
ϵ

, (8)

maintaining O(d) complexity while circumventing second-order derivative calculations.

Constrains the trajectory to limited dimensions. The Krylov alignment mentioned above also
means the existence of better OOD solutions within the Krylov subspaces. To limit the reflection
operation within the Krylov subspace, the reflection direction pi can be updated as follows:

pi = (I− 2ñiñ
⊤
i )pi−1, (9)

where ñi = projKK
ni denotes the projection of ni within the Krylov subspace KK .

The Krylov alignment constitutes a “free lunch” in high-dimensional optimization, providing near-
optimal initial directions without the availability of test data and reducing the search space substan-
tially. This geometric regularity bridges the gap between training and test distributions, enabling
effective exploration of loss landscapes for improved domain generalization.
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Figure 3: Cosine similarity between test gradients and their approximations derived from ei-
ther random or Krylov subspaces. Krylov(Optimal): This curve corresponds to the projection of
the test gradients onto the Krylov subspace, representing the best possible approximation achievable
under the given basis; Krylov(Approx): This curve corresponds to an approximation obtained via the
heuristic choice of βk = −1 in equation (7); Random: This curve depicts the theoretical expectation
value of the projection length of the unit test gradients onto random subspaces (see Appendix B).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Datasets and Protocol. Our evaluation is conducted on five widely-used, challenging domain gen-
eralization datasets: PACS (Li et al., 2017) (9,991 images, 4 domains and 7 classes), VLCS (Fang
et al., 2013) (10,729 images, 4 domains and 5 classes), OfficeHome (Venkateswara et al., 2017)
(15,588 images, 4 domains and 65 classes), TerraIncognita (Beery et al., 2018) (24,788 images, 4
domains and 10 classes), and DomainNet (Peng et al., 2019) (586,575 images, 6 domains and 345
classes). Following the standardized DomainBed benchmark (Gulrajani & Lopez-Paz, 2020), we
implement a rigorous leave-one-domain-out evaluation protocol: each experiment designates one
domain as the test set (i.e., test or target domain) while aggregating all remaining domains for train-
ing (i.e., training or source domain). To ensure robust model selection and hyperparameter tuning,
previous research typically reserves 20% of the data from each source domain to create a validation
set. However, in our experiments, models with similar validation accuracy can exhibit over 10%
difference in DG performance. Thus, relying on this set amounts to random guessing, leading to the
use of a test-domain validation set as a necessary compromise. For a fair comparison with prior DG
methods, we re-evaluate all baselines using the same test-domain validation set.

Implementation Details. Given the demonstrated parameter efficiency and effectiveness of Visual
Prompt Tuning (VPT) in domain generalization benchmarks like DomainBed (Jia et al., 2022; Li
et al., 2022a; Zheng et al., 2022), our study primarily focuses on VPT-based optimization. To val-
idate the broad applicability of our approach, we conduct comprehensive experiments across three
backbones: ViT-B/32, ViT-B/16, and ViT-L/14. Our framework builds upon SAM-trained pretrained
models, with specific configurations: we use batch sizes of 16 for ViT-B/32 and ViT-B/16, and 8 for
ViT-L/14 to accommodate GPU memory constraints, while maintaining a fixed learning rate of 5e-4
across all architectures. All experiments employ the Adam optimizer for consistent optimization.
During the billiard optimization, we fix the step h at 10, and set the reflection time to 20 itera-
tions. Other hyperparameters, including the Krylov subspace dimension K and loss variation ∆ℓ,
are determined through grid search, with model selection using the validation set.

4.2 KRYLOV SUBSPACE ANALYSIS

Prior to the formal evaluation of our BOA algorithm, we present a comprehensive analysis of the
Krylov subspace introduced to overcome the curse of dimensionality in high-dimensional optimiza-
tion.

Firstly, to validate the feasibility of the billiard dynamics, we conduct experiments with oracle test
domain: when using the ideal test gradient ∇ℓtest(θ0) as the incident direction, BOA achieves signif-
icant performance gains across five datasets (Table 4). The ERM+BOA and SAM+BOA configura-
tions demonstrate consistent improvements averaging +4.9% and +5.0%, respectively, over baseline
methods, confirming the feasibility of the billiard dynamics and the ideality of the test gradient as
the initial incident direction.
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Figure 4: OOD accuracies along approximate initial incident directions on four VLCS domains.

Table 3: Out-of-domain test accuracies with
different ViT backbones.

Algorithms VLCS PACS OH TI DN Avg.

Backbone: ViT-B/32
ERM 82.4 94.5 79.6 36.6 54.3 69.5
SAM 81.9 95.1 80.6 42.1 54.6 70.9
BOA (Ours) 84.9 96.3 80.9 49.7 54.9 73.3

Backbone: ViT-B/16
ERM 81.9 95.9 84.1 56.1 59.5 75.5
SAM 82.9 96.6 85.4 56.2 59.8 76.2
BOA (Ours) 86.5 97.4 86.0 60.3 60.2 78.1

Backbone: ViT-L/14
ERM 82.7 98.6 90.2 61.3 64.6 79.5
SAM 82.5 98.2 90.9 64.1 64.8 80.1
BOA (Ours) 86.4 98.7 91.2 65.7 65.4 81.5

Table 4: Test accuracies when using the ora-
cle test gradients as the initial incident direc-
tions.

Algorithms VLCS PACS OH TI DN Avg.

ERM 81.9 95.9 84.1 56.1 59.5 75.5
ERM+BOA (Ours) 85.6 97.7 86.3 69.5 62.9 80.4
SAM 82.9 96.6 85.4 56.2 59.8 76.2
SAM+BOA (Ours) 87.0 97.9 87.6 69.6 62.9 81.2

Table 5: Comparisons of out-of-domain ac-
curacy when using a ResNet50 architecture.

Method Caltech101 LabelMe SUN09 VOC2007 Avg.

ERM 98.2 67.1 73.0 77.6 79.0
SAM 99.6 65.7 75.1 80.5 80.2
BOA 99.7 69.0 77.2 81.1 81.8

Fortunately, we discovered the test gradient exhibits strong alignment with the training-derived
Krylov subspace, enabling effective approximation in the absence of test data. Specifically, two
facts can be observed in Figure 5: (1) Rapid improvement in directional alignment (quantified by
cos γK) as subspace dimension K increases can be observed, where cos γK is defined by the cosine
similarity between test gradient and its optimal approximation with the Krylov subspace KK :

cos γK = max
p∈KK

cos⟨∇ℓtest(θ0),p⟩ = cos⟨∇ℓtest(θ0), projKK
∇ℓtest(θ0)⟩, (10)

where ⟨·, ·⟩ denotes the angle between two vectors. Remarkably, cos γK exceeds 0.8 forK = 7 ∼ 10
on “LabelMe”—an eightfold improvement over the K = 1 case (cos γ1 < 0.1). This sharply con-
trasts with random subspaces, where alignment increases marginally at best. More detailed analysis
about Krylov and random subspace can be found in Appendix B. (2) The approximate initial incident
direction defined in equation (7) has a similar increasing trend withK, achieving near-optimal align-
ment on “SUN09” and “VOC2007”. Note that the approximate initial incident direction is obtained
without using test data, different from the optimal approximation that utilizes projKK

∇ℓtest(θ0).
Additionally, we even find a significant increase in test accuracies along the approximate initial in-
cident direction (+1.4% on “Caltech101”, +6.5% on “LabelMe”, +2.7% on “SUN09” and +2.9%
on “VOC2007”, see Figure 4). However, this performance gain occurs concurrently with training
loss degradation, necessitating BOA’s reflection mechanism to maintain the training loss as much as
possible while navigating toward generalizable solutions.

4.3 MAIN RESULTS

Comparisons with SOTA domain generalization methods. Table 2 provides a decisive perfor-
mance comparison of domain generalization methods on the DomainBed benchmark, clearly es-
tablishing our BOA method as the new state-of-the-art. With an average accuracy of 78.1% across
all five datasets, BOA outperforms the previous best methods (DISAM at 76.5%) by a significant
1.6% margin. This performance delta represents the largest inter-method improvement observed
in the benchmark, demonstrating BOA’s exceptional cross-domain generalization capabilities. The
dataset-specific analysis reveals particularly striking results; On VLCS, BOA achieves a remarkable
86.5% accuracy—surpassing SAM’s 82.9% by a dramatic 3.6% margin. Notably, BOA achieves
these record results using only visual prompt tuning rather than full encoder fine-tuning, making
its efficiency particularly impressive. The consistent leadership across all datasets—from relatively
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easy domains like PACS to exceptionally difficult ones like TerraIncognita—demonstrates BOA’s
ability to navigate varied domain shifts.

Experiments with different Vision Transformers. Based on the comprehensive experimental re-
sults presented in Table 3, the proposed BOA method demonstrates consistent and superior effec-
tiveness across all evaluated Vision Transformer backbones—namely ViT-B/32, ViT-B/16, and ViT-
L/14—achieving the highest average accuracy on the multi-domain benchmarks compared to both
ERM and SAM. Under the ViT-B/32 backbone, BOA attains an average of 73.3%, outperform-
ing SAM (70.9%) and ERM (69.5%) by margins of 2.4% and 3.8%, respectively, with particularly
notable gains on challenging domains such as TI (49.7% vs SAM’s 42.1%). This advantage is main-
tained with larger backbones: using ViT-B/16, BOA reaches 78.1% on average, surpassing SAM by
1.9% and ERM by 3.6%, and with ViT-L/14, it achieves 81.5%, exceeding SAM by 1.4% and ERM
by 2.0%. The performance improvement is consistent not only in the aggregate metric but across all
five individual datasets, underscoring BOA’s robustness and its capability to enhance generalization
irrespective of the model capacity or architectural variant of the backbone network.

Broad applicability to CNN architectures. While much of our analysis has focused on Vision
Transformer architectures, we now demonstrate that the core findings can extend effectively to stan-
dard CNN backbones. To this end, we conduct additional experiments using a ResNet50 backbone
to validate the persistence of Krylov alignment in CNN architectures. As summarized in Table 6, the
superiority of Krylov subspaces over random subspaces remains consistent across multiple datasets,
similar to the trends observed in ViT architectures (as illustrated in Figure 3). Notably, on the SUN09
dataset, Krylov alignment (quantified by cos γK) exceeds 0.75 for K = 10, marking an improve-
ment of approximately +0.5 over the K = 1 case. This suggests that Krylov subspaces capture
geometrically meaningful directions in the loss landscape, even in CNNs.

Table 6: Cosine similarity between test gradients and their approximations derived from either
random or Krylov subspaces (using a ResNet50 backbone).

Domain Subspace Type Subspace Dimension (K)
2 4 6 8 10

Caltech101 Random 0.3121 0.3122 0.3124 0.3125 0.3125
Krylov 0.3317 0.3339 0.3360 0.3381 0.3381

LabelMe Random 0.4063 0.4064 0.4065 0.4066 0.4067
Krylov 0.4937 0.5235 0.5724 0.5825 0.5855

SUN09 Random 0.2653 0.2654 0.2655 0.2657 0.2657
Krylov 0.4199 0.7547 0.7603 0.7610 0.7617

VOC2007 Random 0.1395 0.1396 0.1397 0.1399 0.1399
Krylov 0.1406 0.2991 0.3260 0.3414 0.3707

We also evaluate the DG performance of our BOA method using a ResNet50 backbone. As il-
lustrated in Table 5, BOA achieves the highest accuracy across all four domains, with an average
accuracy of 81.8%, outperforming both ERM (79.0%) and SAM (80.2%). The consistency in perfor-
mance gains reinforces BOA’s utility as an architecture-agnostic optimization framework. Notably,
in our ResNet experiments, we observed that most hyperparameters could be directly transferred
from ViT-B/16 setups. However, due to differences in loss landscape geometry (e.g., CNNs may ex-
hibit sharper minima), we found that maintaining the step size h = 10 requires excessive line search
iterations to identify solution intervals. To ensure efficient optimization, we adjusted the step size to
h = 1 for ResNet50.

4.4 ABLATION STUDY

Figure 5 presents a decisive ablation study on one VLCS domain (“LabelMe”), evaluating the con-
tribution of Krylov subspace components to the Billiard Optimization Algorithm (BOA) across three
loss variation thresholds (∆ℓ = 0.05, 0.1, 0.3). In Figure 5, Krylov-inspired p0 outperforms random
initialization by 0.5-1.6% across all ∆ℓ values, confirming the effectiveness of Krylov subspace on
the determination of p0. Across all three ∆ℓ values, the complete BOA within Krylov subspace
method consistently outperforms intermediate implementations. At ∆ℓ = 0.3, it achieves a remark-
able 75.7% accuracy—6.5% higher than random initialization (69.2%) and 4.9% superior to Krylov-
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Figure 5: Ablation study on the effect
of Krylov subspace using one VLCS
domain (“LabelMe”) for test.
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Figure 6: Trajectory Visualization of BOA. The same tra-
jectory, derived from the training loss landscape, is shown
in both the (a) training and (b) test loss landscapes.

inspired direction alone (70.8%). This substantial margin demonstrates that Krylov-enhanced reflec-
tion operations provide compounded benefits beyond initial direction selection.

4.5 LOSS LANDSCAPE VISUALIZATION

Our loss landscape visualization examines two key aspects: (1) connectivity between models with
different out-of-domain performance, and (2) optimization trajectory analysis of the Billiard Opti-
mization Algorithm (BOA).

Mode Connectivity Analysis. A baseline model was first trained on three OfficeHome domains
(“Clipart”, “Product”, and “Real World”), which may exhibit poor performance when generalized
to the unseen “Art” domain. In contrast, an ideal Oracle model was trained using all domains. Sub-
sequently, building upon the approach in (Garipov et al., 2018), we connect these two models using
a parameterized Bézier curve and optimize it to maintain uniformly low loss throughout the entire
pathway. Finally, as illustrated in Figure 1, a 2D visualization demonstrates a continuous low-loss
valley bridging the non-ideal (red marker) and ideal (green marker) models. Remarkably, this con-
nectivity pattern has been consistently observed across diverse datasets and architectures.

BOA Trajectory Visualization. To visually demonstrate the effectiveness of the BOA algorithm,
we employed constrained Krylov subspaces with a dimension of K = 2 to trace its optimization
path on the VLCS dataset. As illustrated in Figure 6, BOA successfully navigates the training loss
landscape and seeks out-of-domain solutions located within optimal regions on the test loss surface.
This visualization offers clear visual evidence of BOA’s capability in discovering better models.

5 CONCLUSION

This study demonstrates that leveraging mode connectivity in loss landscapes offers a novel and
effective approach for enhancing domain generalization. We empirically established that low-loss
pathways connect models with divergent generalization capabilities, revealing a geometric structure
that enables transitions to superior solutions without leaving low-loss regions. To navigate this struc-
ture, we proposed the Billiard Optimization Algorithm (BOA), which efficiently traverses these con-
nected modes using physics-inspired operations. A key insight enabling this efficiency was the strong
alignment between test gradients and the low-dimensional Krylov subspace derived from training
gradients, allowing BOA to operate effectively in a reduced subspace. Integrated with parameter-
efficient vision prompt tuning, BOA achieved superior performance across multiple DomainBed
benchmarks, consistently outperforming existing sharpness-aware and domain generalization tech-
niques. These results highlight the value of geometric connectivity properties for developing robust
models that generalize well to unseen domains. Future work could explore extending BOA to other
geometric properties of loss landscapes or adapting it for dynamic environments where domain shifts
occur continuously.
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