

000 001 002 003 004 005 EXPLORING MODE CONNECTIVITY IN KRYLOV 006 SUBSPACE FOR DOMAIN GENERALIZATION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031

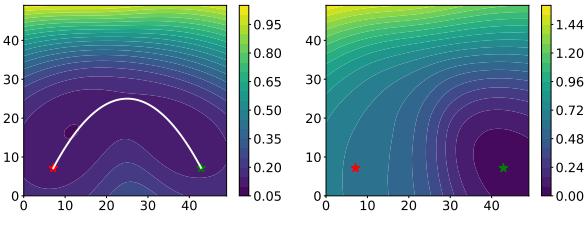
ABSTRACT

032 This paper explores the geometric characteristics of loss landscapes to enhance
033 domain generalization (DG) in deep neural networks. Existing methods mainly
034 leverage the local flatness around minima for improved generalization. However,
035 recent theoretical studies indicate that flatness does not universally guarantee better
036 generalization. Instead, this paper investigates a global geometrical property
037 for domain generalization, i.e., *mode connectivity*, the phenomenon where distinct
038 local minima are connected by continuous low-loss pathways. Different from flat-
039 ness, mode connectivity enables transitions from poor to superior generalization
040 models without leaving low-loss regions. To navigate these connected pathways
041 effectively, this paper proposes a novel Billiard Optimization Algorithm (BOA),
042 which discovers superior models by mimicking billiard dynamics. During this pro-
043 cess, BOA operates within a low-dimensional Krylov subspace, aiming to alleviate
044 the curse of dimensionality caused by the high-dimensional parameter space
045 of deep models. Furthermore, this paper reveals that oracle test gradients strongly
046 align with the Krylov subspace constructed from training gradients across diverse
047 datasets and architectures. This alignment offers a powerful tool to bridge training
048 and test domains, enabling the efficient discovery of superior models with lim-
049 ited training domains. Experiments on DomainBed demonstrate that BOA con-
050 sistently outperforms existing sharpness-aware and DG methods across diverse
051 datasets and architectures. Impressively, BOA even surpasses the sharpness-aware
052 minimization by 3.6% on VLCS when using a ViT-B/16 backbone.
053

1 INTRODUCTION

032 Understanding the geometry of loss
033 landscapes (Li et al., 2018a; Xu et al.,
034 2024) in deep neural networks has
035 emerged as a powerful and insightful
036 approach for interpreting the generalization
037 behavior of these models (Wu et al., 2017;
038 Rangamani et al., 2020). Recent empirical and theoreti-
039 cal studies (Keskar et al., 2016; Dziu-
040 gaite & Roy, 2017; Jiang et al., 2019)
041 have demonstrated a strong connec-
042 tion between generalization perfor-
043 mance and the geometric properties
044 of the loss surface, particularly its
045 sharpness. It has been observed that flat minima sought by sharpness-aware minimization (SAM)
046 tend to generalize better than sharp ones (Foret et al., 2020; Kwon et al., 2021; Kim et al., 2022).
047 This underscores the potential of leveraging insights from loss geometry.
048

049 Although numerous flatness-seeking methods have been developed to learn generalizable mod-
050 els (Kwon et al., 2021; Kim et al., 2022; Zhang et al., 2024), emerging research (Zhang et al., 2021;
051 Wen et al., 2023) indicates that flatness does not universally guarantee improved generalization.
052 This reveals limitations in over-relying on local sharpness measures, particularly within challenging
053 Domain Generalization (DG) settings. In the DG task, our goal is to learn a model from multiple



054 (a) **Training Loss Landscape** (b) **Test Loss Landscape**
055 Figure 1: **Ideal and non-ideal models in the training and**
056 **test loss landscapes.** (a) In the training loss landscape, the
057 ideal (★) and non-ideal (★) models are connected via a low
058 loss path. (b) The ideal model (★) is located in the basin of
059 the test loss landscape, while the non-ideal model (★) is not.

054
 055 **Table 1: Comparisons with other optimization algorithms in update subspaces and rules.** The
 056 update direction of SGD/SGLD lies in a random subspace \mathcal{R} ; SAM lies in a two-dimensional Krylov
 057 subspace \mathcal{K}_2 ; and our BOA lies in a K -dimensional Krylov subspace \mathcal{K}_K .

Methods	Involving Subspaces	Update Rules
SGD/SGLD (Welling & Teh, 2011)	$\mathcal{R} = \{g, z\}, z \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$.	$\Delta\theta = -\epsilon g + \sqrt{2\epsilon\tau}z$
SAM (Foret et al., 2020)	$\mathcal{K}_2 = \{g, \mathbf{H}g\}, \mathbf{H}g \approx \frac{\nabla\ell(\theta+\epsilon g) - \nabla\ell(\theta)}{\epsilon}$.	$\Delta\theta = -\eta \nabla\ell(\theta + \epsilon g)$
BOA (Ours)	$\mathcal{K}_K = \{g, \mathbf{H}g, \dots, \mathbf{H}^{K-1}g\}$.	$\begin{cases} p_0 = -\sum_{k=0}^{K-1} \mathbf{H}^k g, \\ p_i = \left(\mathbf{I} - 2 \frac{(\text{proj}_{\mathcal{K}_K} g)(\text{proj}_{\mathcal{K}_K} g)^\top}{\ \text{proj}_{\mathcal{K}_K} g\ ^2} \right) p_{i-1} \end{cases}$

063 source domains and generalize it to unseen target domains with different data distributions (Wang
 064 et al., 2022; Zhou et al., 2021; Shen et al., 2021). In such scenarios, the connection between flatness
 065 and generalization becomes significantly more complex and context-dependent. Crucially, the
 066 relationship between flatness in parameter space and the geometry of the representation space suggests
 067 that low sharpness may not adequately capture a model’s vulnerability to domain shifts in feature
 068 space (Andriushchenko et al., 2023). Thus, although pursuing flat minima can be beneficial, it should
 069 not be considered a unique solution for DG. It is essential to investigate other geometric properties
 070 of the loss landscape beyond flatness to achieve better generalization.

071 In contrast to local flatness, this paper focuses on a global geometric property termed *mode connec-*
 072 *tivity* (Freeman & Bruna, 2016; Garipov et al., 2018; Draxler et al., 2018). That is, distinct local min-
 073 ima, discovered via independent training from different initializations, are connected by continuous
 074 pathways of low loss. This paper empirically investigates this phenomenon in the context of domain
 075 generalization (DG) and observes a similar connectivity: As visually illustrated in Figure 1, basins
 076 corresponding to models with significantly different out-of-domain performance (e.g., a non-ideal
 077 model with poor DG accuracy and an ideal model with nearly 100% DG accuracy) are connected via
 078 low-loss pathways. It suggests that the loss landscape is not composed of isolated basins but exhibits
 079 a connected structure among separate solutions. This connectivity implies a promising possibility:
 080 transitioning from a solution with poor generalization properties to one with strong out-of-domain
 081 performance without escaping the low-loss region. Despite its theoretical promise, effectively nav-
 082 igating these pathways in high-dimensional parameter spaces remains challenging due to the curse
 083 of dimensionality. Conventional optimization methods, such as SGD and its Langevin dynamics ex-
 084 tensions (Bussi & Parrinello, 2007; Welling & Teh, 2011), are often ineffective in this context, as
 085 they tend to become trapped in local regions (Deng et al., 2020; Zheng et al., 2024), preventing the
 086 discovery of superior solutions. This problem motivates the need for a more deliberate algorithm
 087 capable of actively navigating these low-loss tunnels.

088 Inspired by the dynamics of billiard motion (Bunimovich, 2007; Gutkin, 2003), this paper proposes
 089 a novel and efficient traversal algorithm, Billiard Optimization Algorithm (BOA), which explicitly
 090 encourages movement along these connected pathways for improved domain generalization. Specif-
 091 ically, BOA operates through two core operations: (1) *line search* to locate loss contour boundaries
 092 (analogous to a billiard ball approaching a cushion), and (2) *reflection* to redirect the optimization
 093 trajectory upon boundary contact (mimicking momentum-preserving bounces). During this process
 094 of high-dimensional optimization, the curse of dimensionality profoundly impacts BOA’s perfor-
 095 mance in two key ways. First, high-dimensional theory (Vershynin, 2018) suggests that random
 096 vectors become nearly orthogonal to the optimal initial directions (such as directions of oracle test
 097 gradients), making naive random direction search highly inefficient in locating useful paths. Sec-
 098 ond, trajectory sparsity emerges in high-dimensional landscapes, meaning that numerous optimiza-
 099 tion steps are required to achieve sufficient domain generalization. These issues are compounded
 100 in deep models, where the parameter space can be overwhelmingly large. Fortunately, a key ge-
 101 ometric regularity identified in our empirical studies offers a solution: the test gradient exhibits
 102 strong alignment with the Krylov subspace (Liesen & Strakos, 2013) derived from training gradi-
 103 ents across different datasets and architectures. The alignment effectively bridges the gap between
 104 training and test domains, and provides near-optimal initial directions for BOA without requiring
 105 access to test data. Furthermore, by leveraging this alignment, BOA can constrain its traversal tra-
 106 jectory to a reduced subspace of merely 5-20 dimensions, drastically reducing the vast search space
 107 and enabling efficient discovery of models with superior domain generalization capabilities. Empiri-
 108 cal validation conducted on the challenging DomainBed (Gulrajani & Lopez-Paz, 2020) benchmark
 109 with various vision transformer architectures demonstrates that BOA consistently outperforms pop-
 110 ular sharpness-aware methods and other prevalent DG techniques across five diverse datasets. These

108 results underscore the effectiveness of BOA in navigating high-dimensional loss landscapes and its
 109 practical utility for real-world domain generalization tasks.
 110

111 Our key contributions can be summarized as follows:

- 112 • Mode connectivity is identified in the DG context. It describes a phenomenon whereby continuous
 113 low-loss trajectories in the parameter space connect models exhibiting substantially divergent
 114 out-of-domain performance.
- 115 • A novel and efficient Billiards Optimization Algorithm (BOA) is introduced to advance domain
 116 generalization. It promotes navigation along low-loss paths connecting distinct local optima,
 117 facilitating the identification of models with enhanced generalization capabilities.
- 118 • Our study reveals the notable geometric regularity that test gradients demonstrate significant
 119 alignment with the Krylov subspace derived from training gradients, thereby establishing an
 120 effective bridge between training and unseen test domains.
- 121 • Experiments across diverse architectures confirm that BOA consistently surpasses popular
 122 sharpness-aware methods and other DG techniques on five datasets of DomainBed.
 123

124 2 RELATED WORK

125 Although deep learning has achieved success in many application areas, the loss landscapes of deep
 126 neural networks remain inadequately understood. This area constitutes an actively evolving field of
 127 research, primarily divided into two distinct categories.

128 **Local structure.** The first category explores the local structure of minima found by SGD and its
 129 variants. Researchers have observed that smaller mini-batch sizes often lead to sharp minima, while
 130 larger mini-batch sizes tend to yield flat minima (Keskar et al., 2016). In recent years, numerous
 131 studies have established a connection between flatness near minimizers and model generalization
 132 (Keskar et al., 2016; Dziugaite & Roy, 2017; Jiang et al., 2019): flat minima exhibit stronger
 133 generalization capabilities, whereas sharp minima perform poorly on test datasets. This conclusion
 134 has also been extended to out-of-distribution generalization scenarios (Zou et al., 2024), attracting
 135 widespread attention in the domain generalization research community and inspiring a series of do-
 136 main generalization methods that seek flat minima, such as SWAD (Cha et al., 2021), SAM (Foret
 137 et al., 2020) and its variants (Wang et al., 2023; Li et al., 2025). Unfortunately, however, flatness does
 138 not equate to generalization. It is because: (1) There exist sharp yet well-generalizing models. Dinh
 139 et al. (Dinh et al., 2017) and Kaiyue Wen et al. (Wen et al., 2023) have theoretically and empirically
 140 identified minimizers that generalize well despite being very sharp. (2) Although some theoretical
 141 studies have demonstrated, under simple linear model settings, that the flattest neural network
 142 minimizers generalize well, this is not necessarily true for standard neural networks—even for simple
 143 architectures like two-layer ReLU networks. Unlike previous domain generalization methods, this
 144 paper leverages the connectivity of minimizers and attempts to traverse from any given minimizer
 145 to one with strong generalization capability by simulating billiard dynamics.
 146

147 **Global structure.** The other major category of research focuses on the global structure of minima.
 148 Over the past few years, numerous studies have revealed connectivity between minima, known as
 149 mode connectivity. Freeman et al. (Freeman & Bruna, 2016) theoretically proved that local minima
 150 of a neural network with a single hidden layer and ReLU activation can be connected by a curve
 151 along which the loss value is bounded by a constant, which depends on the number of network pa-
 152 rameters and the “smoothness” of the data. Their theoretical results are not easily generalizable to
 153 multi-layer networks. In contrast, Garipov et al. (Garipov et al., 2018) proposed a simpler training
 154 procedure that finds polygonal chains with nearly constant accuracy even in various modern state-
 155 of-the-art architectures, with only one bend between optima. Draxler et al. (Draxler et al., 2018)
 156 simultaneously and independently discovered curves connecting local optima in DNN loss land-
 157 scapes. They adopted a different approach to finding these curves, inspired by the “Nudged Elastic
 158 Band” method from quantum chemistry. Currently, mode connectivity is used in algorithm design
 159 across multiple application areas, such as machine unlearning (Cheng & Amiri, 2025), model merg-
 160 ing (Li et al., 2024), and continual learning (Mirzadeh et al., 2020). Although mode connectivity
 161 offers the potential to find models with stronger generalization capabilities continuously, this prop-
 erty has not been effectively utilized in the design of out-of-distribution generalization algorithms

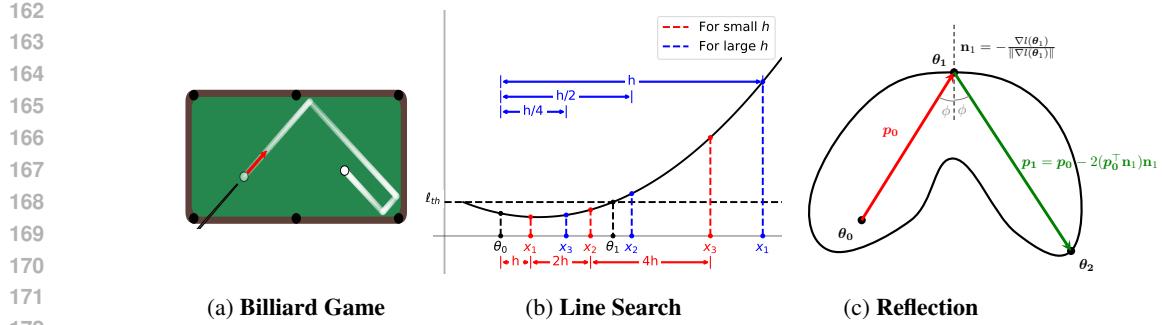


Figure 2: **Overview of the proposed Billiard Optimization Algorithm (BOA).** (a) A schematic diagram of a billiards game on a two-dimensional table; (b) The first operation of BOA (Line Search): Like a ball approaching a cushion, this operation identifies loss contour boundaries through line search along directional vectors. (c) The second operation of BOA (Reflection): Upon boundary contact, the trajectory redirects via physics-based rules, mimicking a ball’s reflection off a cushion.

due to the curse of dimensionality. To the best of our knowledge, this paper is the first work to seek models with better out-of-domain generalization via mode connectivity.

3 METHODOLOGY

Our *Billiard Optimization Algorithm* (BOA) aims to effectively navigate connected pathways within loss landscapes and discover models with superior out-of-domain generalization. Its design draws inspiration from the physical dynamics of billiards, as illustrated in Fig. 2a. Specifically, it iteratively performs two core operations: (1) *line search* to locate the loss contour boundary, analogous to a billiard ball moving toward a cushion (Fig. 2b), and (2) *reflection* to redirect the optimization trajectory upon reaching the boundary, mimicking a ball’s reflection off a cushion (Fig. 2c). Due to the space limit, a formalized sketch describing the complete procedure of the Billiard Optimization Algorithm (BOA) is provided in Appendix A.

3.1 DEFINITION

In the Billiard Optimization Algorithm (BOA), the conceptual “billiard table” is mathematically defined as the sublevel set of the training loss landscape bounded by a specified contour threshold. Formally, this table corresponds to the parameter domain:

$$\mathcal{T} := \{\boldsymbol{\theta} \in \mathbb{R}^d \mid \ell_{\text{train}}(\boldsymbol{\theta}) \leq \ell_{\text{th}}\}, \quad (1)$$

where the contour threshold ℓ_{th} is deliberately constructed as: $\ell_{\text{th}} := \ell_{\text{train}}(\boldsymbol{\theta}_0) + \Delta_\ell$. Here, $\boldsymbol{\theta}_0$ represents the parameter vector of a pre-trained model, and $\Delta_\ell > 0$ denotes a strictly positive loss increment. This construction guarantees that the pre-trained model resides strictly within the interior of the billiard table, satisfying the containment condition: $\ell(\boldsymbol{\theta}_0) < \ell_{\text{th}}$. This foundational definition establishes the optimization landscape as a bounded playfield where subsequent billiard-inspired operations—contour-seeking line searches and momentum-preserving reflections—are performed. The bounded nature of the playfield effectively constrains variations in training loss, ensuring that performance on the training set remains nearly constant while the algorithm searches for model parameters that deliver superior DG performance.

3.2 LINE SEARCH

During the line search phase of the Billiard Optimization Algorithm (BOA), we emulate the linear trajectory of a billiard ball approaching a cushion by systematically locating the target loss contour boundary $\ell_{\text{th}} = \ell(\boldsymbol{\theta}_0) + \Delta_\ell$. Unless specified otherwise, we use ℓ to represent ℓ_{train} below.

This procedure mathematically corresponds to solving the nonlinear equation with respect to α :

$$\ell(\boldsymbol{\theta}_{i-1} + \alpha \mathbf{p}_{i-1}) = \ell_{\text{th}}, \quad (2)$$

216 **Table 2: Out-of-domain accuracies of ViT-B/16 on the DomainBed benchmark.** The star symbol
 217 (*) marks experiments involving full fine-tuning of the image encoder, with its absence signifying
 218 the application of visual prompt tuning instead.

Algorithms	VLCS	PACS	OfficeHome	TerraIncognita	DomainNet	Avg.
ERM* (Vapnik, 1998)	81.6	93.2	80.0	54.5	57.7	73.4
MIRO* (Cha et al., 2022)	83.6	95.8	82.3	58.8	57.2	75.5
ERM (Jia et al., 2022)	81.9	95.9	84.1	56.1	59.5	75.5
IRM (Arjovsky et al., 2019)	82.9	96.1	83.2	56.7	59.1	75.6
DANN (Ganin et al., 2016)	81.8	96.3	83.0	56.0	58.4	75.1
CDANN (Li et al., 2018c)	82.4	96.5	82.9	55.6	58.4	75.2
MMD (Li et al., 2018b)	82.3	95.8	83.6	57.4	59.9	75.8
CORAL (Sun & Saenko, 2016)	82.6	96.4	83.8	57.5	59.8	76.0
IIB (Li et al., 2022b)	82.3	96.5	84.2	58.2	58.6	76.0
CSVPT (Li et al., 2022a)	82.9	96.6	85.6	58.6	59.1	76.5
SAM (Foret et al., 2020)	82.9	96.6	85.4	56.2	59.8	76.2
GSAM (Zhuang et al., 2022)	82.9	96.6	85.6	55.4	59.8	76.1
GAM (Zhang et al., 2023)	83.6	96.4	85.5	55.3	59.5	76.1
SAGM (Wang et al., 2023)	82.8	96.8	85.2	58.0	59.1	76.4
DISAM (Zhang et al., 2024)	82.7	97.1	85.4	57.3	59.8	76.5
BOA (Ours)	86.5	97.4	86.0	60.3	60.2	78.1

237 where θ_{i-1} represents the initial parameter vector (analogous to the billiard ball’s starting position)
 238 and \mathbf{p}_{i-1} denotes the search direction. Candidate points are generated along the ray $\mathbf{x}_k = \theta_{i-1} +$
 239 $h_k \mathbf{p}_{i-1}$ ($h_k > 0$), with BOA employing an adaptive bracketing strategy to efficiently isolate the
 240 solution interval $[h_L, h_R]$: when $\ell(\mathbf{x}_k) < \ell_{\text{th}}$, step sizes expand exponentially via $h_{k+1} = (2^k - 1)h$
 241 (where h represents the initial step) until exceeding ℓ_{th} ; conversely, when $\ell(\mathbf{x}_k) > \ell_{\text{th}}$, step sizes
 242 contract geometrically through $h_k = h_{k-1}/2$ until falling below ℓ_{th} . Following interval isolation,
 243 BOA employs the golden-section search method for precise refinement:

$$h_k^{(1)} = h_R - \frac{h_R - h_L}{\psi}, \quad h_k^{(2)} = h_L + \frac{h_R - h_L}{\psi}, \quad (3)$$

244 where $\psi = (1 + \sqrt{5})/2$ represents the golden ratio. The interval boundaries $[h_L, h_R]$ are then
 245 updated based on function evaluations at points $h_k^{(1,2)}$. Finally, the approximate optimal solution α^*
 246 of equation (2), found via the golden-section search, is used to update the parameters:

$$\theta_i = \theta_{i-1} + \alpha^* \mathbf{p}_{i-1}, \quad (4)$$

252 precisely positioning the model parameter on the loss contour.

254 3.3 REFLECTION

255 Upon reaching the contour boundary, BOA initiates its second operation: *reflection* that mimics
 256 momentum-preserving billiard collisions.

257 At the contour point θ_i , the reflection direction is computed by leveraging the geometry of the local
 258 loss landscape, analogous to the physical reflection process illustrated in Fig. 2c. In this phase, the
 259 unit normal vector is expressed as: $\mathbf{n}_i = -\frac{\nabla \ell(\theta_i)}{\|\nabla \ell(\theta_i)\|_2}$, which corresponds to the steepest descent
 260 direction, plays a role equivalent to the surface normal of the cushion in billiard dynamics. As
 261 depicted in Fig. 2c, both the incident direction \mathbf{p}_{i-1} and the normal vector \mathbf{n}_i define the reflection
 262 plane. The specular reflection direction is subsequently updated as follows:

$$\mathbf{p}_i = \mathbf{p}_{i-1} - 2(\mathbf{p}_{i-1}^\top \mathbf{n}_i) \mathbf{n}_i = (\mathbf{I} - 2\mathbf{n}_i \mathbf{n}_i^\top) \mathbf{p}_{i-1}. \quad (5)$$

263 Geometrically, this transformation subtracts twice the orthogonal projection of \mathbf{p}_{i-1} onto \mathbf{n}_i . This
 264 operation preserves the magnitude of momentum, i.e., $\|\mathbf{p}_i\|_2 = \|\mathbf{p}_{i-1}\|_2$, and adheres to the re-
 265 flection law $\phi_{\text{incident}} = \phi_{\text{reflected}}$, which implies $(\mathbf{p}_{i-1}, \mathbf{n}_i) = (\mathbf{p}_i, \mathbf{n}_i)$. The reflection operator
 266 $R[\mathbf{n}_i] = \mathbf{I} - 2\mathbf{n}_i \mathbf{n}_i^\top$ represents an improper rotation (with $\det R = -1$) that incorporates curva-
 267 ture information via $\mathbf{n}_i \propto \nabla \ell(\theta_i)$. This allows efficient exploration along the loss contour without

270 the need for Hessian recomputation, thereby maintaining a computational complexity of $\mathcal{O}(d)$ per
 271 iteration for d -dimensional parameters.

272 After multiple iterations of alternating line search and reflection operations, we generate a trajectory
 273 of model parameters and select an optimal model from this trajectory via a validation set for testing.

274
 275 **3.4 OVERCOMING THE “CURSE OF DIMENSIONALITY”**

276 The curse of dimensionality fundamentally impacts optimization in high-dimensional parameter
 277 spaces through two primary mechanisms: (1) In billiard dynamics, the initial incident direction \mathbf{p}_0
 278 determines the trajectory’s ability to find model parameters with better DG performance. Unlike
 279 intuitive 2D billiard, the high-dimensional setting induces a geometric constraint: random vectors
 280 become nearly orthogonal to the oracle optimal directions (Vershynin, 2018), suggesting that naive
 281 random search becomes extremely inefficient in high dimensions. (2) Trajectory sparsity emerges in
 282 high-dimensional landscapes, necessitating numerous optimization steps to achieve sufficient out-
 283 of-domain generalization.

284 To overcome the challenges of high-dimensional optimization, we leverage the geometric structure
 285 of the Krylov subspace, which is generated from training derivatives:

$$286 \quad 287 \quad 288 \quad 289 \quad \mathcal{K}_K(\mathbf{H}_{\text{train}}, \mathbf{g}_{\text{train}}) = \text{span} \{ \mathbf{g}_0, \mathbf{H}\mathbf{g}_0, \dots, \mathbf{H}^{K-1}\mathbf{g}_0 \}, \quad (6)$$

290 where $\mathbf{g}_0 = \nabla \ell_{\text{train}}(\boldsymbol{\theta}_0)$ and $\mathbf{H} = \nabla^2 \ell_{\text{train}}(\boldsymbol{\theta}_0)$. Krylov subspace (Liesen & Strakos, 2013) is famous
 291 as an efficient, low-dimensional framework to find approximate solutions to high-dimensional lin-
 292 ear algebra problems. Here, we use the Krylov subspace concerning the Hessian matrix to capture
 293 the dominant curvature information. It provides two critical advantages: First, it enables principled
 294 selection of the initial search direction through efficient approximation of test gradients. Second, it
 295 constrains the trajectory to a subspace with limited dimensions that already includes model param-
 296 eters with better generalization.

297 **Determine the initial incident direction.** Intuitively, in the DG scenario, the test gradient $\nabla \ell_{\text{test}}(\boldsymbol{\theta}_0)$
 298 might serve as a good choice for the initial incident direction. Fortunately, empirical analysis re-
 299 veals a remarkable geometric regularity: the test gradient $\nabla \ell_{\text{test}}(\boldsymbol{\theta}_0)$ exhibits strong alignment with
 300 the Krylov subspace $\mathcal{K}_K(\mathbf{H}_{\text{train}}, \mathbf{g}_{\text{train}})$. This alignment enables efficient approximation via setting
 301 proper values for β_k :

$$302 \quad 303 \quad 304 \quad \mathbf{p}_0 = \sum_{k=0}^{K-1} \beta_k \mathbf{H}^k \mathbf{g}_0 \approx \nabla \ell_{\text{test}}(\boldsymbol{\theta}_0). \quad (7)$$

305 Interestingly, experimental evidence demonstrates that setting $\beta_k = -1$ yields a particularly effec-
 306 tive direction. This configuration achieves a small angle between \mathbf{p}_0 and $\nabla \ell_{\text{test}}(\boldsymbol{\theta}_0)$ across bench-
 307 mark datasets, effectively overcoming dimensional barriers. To avoid explicit Hessian matrix calcu-
 308 lation, we employ the finite difference to approximate Hessian-vector products:

$$310 \quad 311 \quad 312 \quad \mathbf{H}\mathbf{g}_0 \approx \frac{\nabla \ell(\boldsymbol{\theta}_0 + \epsilon \mathbf{g}_0) - \nabla \ell(\boldsymbol{\theta}_0)}{\epsilon}, \quad (8)$$

313 maintaining $\mathcal{O}(d)$ complexity while circumventing second-order derivative calculations.

314 **Constrains the trajectory to limited dimensions.** The Krylov alignment mentioned above also
 315 means the existence of better OOD solutions within the Krylov subspaces. To limit the reflection
 316 operation within the Krylov subspace, the reflection direction \mathbf{p}_i can be updated as follows:

$$317 \quad 318 \quad 319 \quad \mathbf{p}_i = (\mathbf{I} - 2\tilde{\mathbf{n}}_i \tilde{\mathbf{n}}_i^\top) \mathbf{p}_{i-1}, \quad (9)$$

320 where $\tilde{\mathbf{n}}_i = \text{proj}_{\mathcal{K}_K} \mathbf{n}_i$ denotes the projection of \mathbf{n}_i within the Krylov subspace \mathcal{K}_K .

321 The Krylov alignment constitutes a “free lunch” in high-dimensional optimization, providing near-
 322 optimal initial directions without the availability of test data and reducing the search space substan-
 323 tially. This geometric regularity bridges the gap between training and test distributions, enabling
 effective exploration of loss landscapes for improved domain generalization.

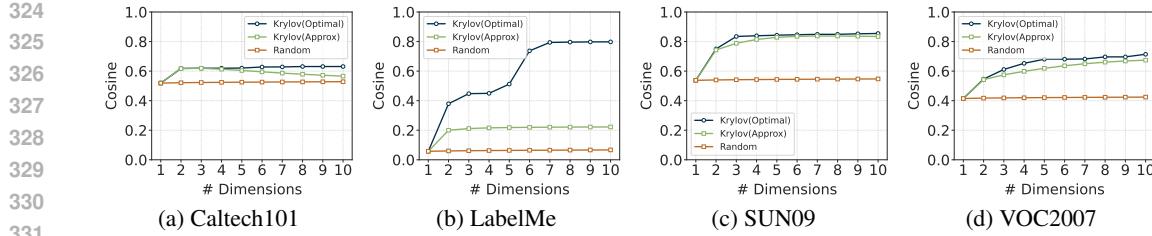


Figure 3: **Cosine similarity between test gradients and their approximations derived from either random or Krylov subspaces.** Krylov(Optimal): This curve corresponds to the projection of the test gradients onto the Krylov subspace, representing the best possible approximation achievable under the given basis; Krylov(Approx): This curve corresponds to an approximation obtained via the heuristic choice of $\beta_k = -1$ in equation (7); Random: This curve depicts the theoretical expectation value of the projection length of the unit test gradients onto random subspaces (see Appendix B).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Datasets and Protocol. Our evaluation is conducted on five widely-used, challenging domain generalization datasets: PACS (Li et al., 2017) (9,991 images, 4 domains and 7 classes), VLCS (Fang et al., 2013) (10,729 images, 4 domains and 5 classes), OfficeHome (Venkateswara et al., 2017) (15,588 images, 4 domains and 65 classes), TerraIncognita (Beery et al., 2018) (24,788 images, 4 domains and 10 classes), and DomainNet (Peng et al., 2019) (586,575 images, 6 domains and 345 classes). Following the standardized DomainBed benchmark (Gulrajani & Lopez-Paz, 2020), we implement a rigorous leave-one-domain-out evaluation protocol: each experiment designates one domain as the test set (i.e., test or target domain) while aggregating all remaining domains for training (i.e., training or source domain). To ensure robust model selection and hyperparameter tuning, previous research typically reserves 20% of the data from each source domain to create a validation set. However, in our experiments, models with similar validation accuracy can exhibit over 10% difference in DG performance. Thus, relying on this set amounts to random guessing, leading to the use of a test-domain validation set as a necessary compromise. For a fair comparison with prior DG methods, we re-evaluate all baselines using the same test-domain validation set.

Implementation Details. Given the demonstrated parameter efficiency and effectiveness of Visual Prompt Tuning (VPT) in domain generalization benchmarks like DomainBed (Jia et al., 2022; Li et al., 2022a; Zheng et al., 2022), our study primarily focuses on VPT-based optimization. To validate the broad applicability of our approach, we conduct comprehensive experiments across three backbones: ViT-B/32, ViT-B/16, and ViT-L/14. Our framework builds upon SAM-trained pretrained models, with specific configurations: we use batch sizes of 16 for ViT-B/32 and ViT-B/16, and 8 for ViT-L/14 to accommodate GPU memory constraints, while maintaining a fixed learning rate of 5e-4 across all architectures. All experiments employ the Adam optimizer for consistent optimization. During the billiard optimization, we fix the step h at 10, and set the reflection time to 20 iterations. Other hyperparameters, including the Krylov subspace dimension K and loss variation Δ_ℓ , are determined through grid search, with model selection using the validation set.

4.2 KRYLOV SUBSPACE ANALYSIS

Prior to the formal evaluation of our BOA algorithm, we present a comprehensive analysis of the Krylov subspace introduced to overcome the curse of dimensionality in high-dimensional optimization.

Firstly, to validate the feasibility of the billiard dynamics, we conduct experiments with oracle test domain: when using the ideal test gradient $\nabla \ell_{\text{test}}(\theta_0)$ as the incident direction, BOA achieves significant performance gains across five datasets (Table 4). The ERM+BOA and SAM+BOA configurations demonstrate consistent improvements averaging +4.9% and +5.0%, respectively, over baseline methods, confirming the feasibility of the billiard dynamics and the ideality of the test gradient as the initial incident direction.

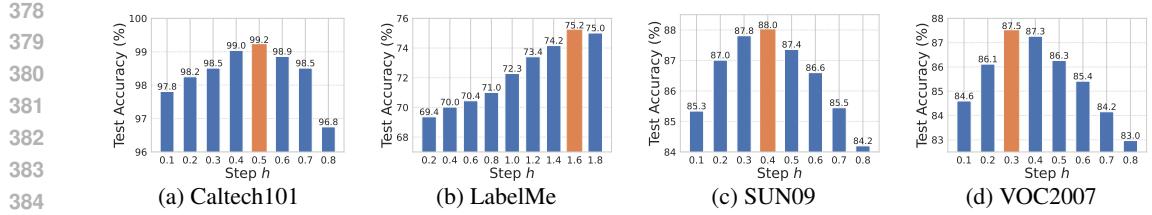


Figure 4: OOD accuracies along approximate initial incident directions on four VLCS domains.

Table 3: Out-of-domain test accuracies with different ViT backbones.

Algorithms	VLCS	PACS	OH	TI	DN	Avg.
Backbone: ViT-B/32						
ERM	82.4	94.5	79.6	36.6	54.3	69.5
SAM	81.9	95.1	80.6	42.1	54.6	70.9
BOA (Ours)	84.9	96.3	80.9	49.7	54.9	73.3
Backbone: ViT-B/16						
ERM	81.9	95.9	84.1	56.1	59.5	75.5
SAM	82.9	96.6	85.4	56.2	59.8	76.2
BOA (Ours)	86.5	97.4	86.0	60.3	60.2	78.1
Backbone: ViT-L/14						
ERM	82.7	98.6	90.2	61.3	64.6	79.5
SAM	82.5	98.2	90.9	64.1	64.8	80.1
BOA (Ours)	86.4	98.7	91.2	65.7	65.4	81.5

Fortunately, we discovered the test gradient exhibits strong alignment with the training-derived Krylov subspace, enabling effective approximation in the absence of test data. Specifically, two facts can be observed in Figure 5: (1) Rapid improvement in directional alignment (quantified by $\cos \gamma_K$) as subspace dimension K increases can be observed, where $\cos \gamma_K$ is defined by the cosine similarity between test gradient and its optimal approximation with the Krylov subspace \mathcal{K}_K :

$$\cos \gamma_K = \max_{\mathbf{p} \in \mathcal{K}_K} \cos \langle \nabla \ell_{\text{test}}(\boldsymbol{\theta}_0), \mathbf{p} \rangle = \cos \langle \nabla \ell_{\text{test}}(\boldsymbol{\theta}_0), \text{proj}_{\mathcal{K}_K} \nabla \ell_{\text{test}}(\boldsymbol{\theta}_0) \rangle, \quad (10)$$

where $\langle \cdot, \cdot \rangle$ denotes the angle between two vectors. Remarkably, $\cos \gamma_K$ exceeds 0.8 for $K = 7 \sim 10$ on ‘‘LabelMe’’—an eightfold improvement over the $K = 1$ case ($\cos \gamma_1 < 0.1$). This sharply contrasts with random subspaces, where alignment increases marginally at best. More detailed analysis about Krylov and random subspace can be found in Appendix B. (2) The approximate initial incident direction defined in equation (7) has a similar increasing trend with K , achieving near-optimal alignment on ‘‘SUN09’’ and ‘‘VOC2007’’. Note that the approximate initial incident direction is obtained without using test data, different from the optimal approximation that utilizes $\text{proj}_{\mathcal{K}_K} \nabla \ell_{\text{test}}(\boldsymbol{\theta}_0)$. Additionally, we even find a significant increase in test accuracies along the approximate initial incident direction (+1.4% on ‘‘Caltech101’’, +6.5% on ‘‘LabelMe’’, +2.7% on ‘‘SUN09’’ and +2.9% on ‘‘VOC2007’’, see Figure 4). However, this performance gain occurs concurrently with training loss degradation, necessitating BOA’s reflection mechanism to maintain the training loss as much as possible while navigating toward generalizable solutions.

4.3 MAIN RESULTS

Comparisons with SOTA domain generalization methods. Table 2 provides a decisive performance comparison of domain generalization methods on the DomainBed benchmark, clearly establishing our BOA method as the new state-of-the-art. With an average accuracy of 78.1% across all five datasets, BOA outperforms the previous best methods (DISAM at 76.5%) by a significant 1.6% margin. This performance delta represents the largest inter-method improvement observed in the benchmark, demonstrating BOA’s exceptional cross-domain generalization capabilities. The dataset-specific analysis reveals particularly striking results; On VLCS, BOA achieves a remarkable 86.5% accuracy—surpassing SAM’s 82.9% by a dramatic 3.6% margin. Notably, BOA achieves these record results using only visual prompt tuning rather than full encoder fine-tuning, making its efficiency particularly impressive. The consistent leadership across all datasets—from relatively

easy domains like PACS to exceptionally difficult ones like TerraIncognita—demonstrates BOA’s ability to navigate varied domain shifts.

Experiments with different Vision Transformers. Based on the comprehensive experimental results presented in Table 3, the proposed BOA method demonstrates consistent and superior effectiveness across all evaluated Vision Transformer backbones—namely ViT-B/32, ViT-B/16, and ViT-L/14—achieving the highest average accuracy on the multi-domain benchmarks compared to both ERM and SAM. Under the ViT-B/32 backbone, BOA attains an average of 73.3%, outperforming SAM (70.9%) and ERM (69.5%) by margins of 2.4% and 3.8%, respectively, with particularly notable gains on challenging domains such as TI (49.7% vs SAM’s 42.1%). This advantage is maintained with larger backbones: using ViT-B/16, BOA reaches 78.1% on average, surpassing SAM by 1.9% and ERM by 3.6%, and with ViT-L/14, it achieves 81.5%, exceeding SAM by 1.4% and ERM by 2.0%. The performance improvement is consistent not only in the aggregate metric but across all five individual datasets, underscoring BOA’s robustness and its capability to enhance generalization irrespective of the model capacity or architectural variant of the backbone network.

Broad applicability to CNN architectures. While much of our analysis has focused on Vision Transformer architectures, we now demonstrate that the core findings can extend effectively to standard CNN backbones. To this end, we conduct additional experiments using a ResNet50 backbone to validate the persistence of Krylov alignment in CNN architectures. As summarized in Table 6, the superiority of Krylov subspaces over random subspaces remains consistent across multiple datasets, similar to the trends observed in ViT architectures (as illustrated in Figure 3). Notably, on the SUN09 dataset, Krylov alignment (quantified by $\cos \gamma_K$) exceeds 0.75 for $K = 10$, marking an improvement of approximately +0.5 over the $K = 1$ case. This suggests that Krylov subspaces capture geometrically meaningful directions in the loss landscape, even in CNNs.

Table 6: Cosine similarity between test gradients and their approximations derived from either random or Krylov subspaces (using a ResNet50 backbone).

Domain	Subspace Type	Subspace Dimension (K)				
		2	4	6	8	10
Caltech101	Random	0.3121	0.3122	0.3124	0.3125	0.3125
	Krylov	0.3317	0.3339	0.3360	0.3381	0.3381
LabelMe	Random	0.4063	0.4064	0.4065	0.4066	0.4067
	Krylov	0.4937	0.5235	0.5724	0.5825	0.5855
SUN09	Random	0.2653	0.2654	0.2655	0.2657	0.2657
	Krylov	0.4199	0.7547	0.7603	0.7610	0.7617
VOC2007	Random	0.1395	0.1396	0.1397	0.1399	0.1399
	Krylov	0.1406	0.2991	0.3260	0.3414	0.3707

We also evaluate the DG performance of our BOA method using a ResNet50 backbone. As illustrated in Table 5, BOA achieves the highest accuracy across all four domains, with an average accuracy of 81.8%, outperforming both ERM (79.0%) and SAM (80.2%). The consistency in performance gains reinforces BOA’s utility as an architecture-agnostic optimization framework. Notably, in our ResNet experiments, we observed that most hyperparameters could be directly transferred from ViT-B/16 setups. However, due to differences in loss landscape geometry (e.g., CNNs may exhibit sharper minima), we found that maintaining the step size $h = 10$ requires excessive line search iterations to identify solution intervals. To ensure efficient optimization, we adjusted the step size to $h = 1$ for ResNet50.

4.4 ABLATION STUDY

Figure 5 presents a decisive ablation study on one VLCS domain (“LabelMe”), evaluating the contribution of Krylov subspace components to the Billiard Optimization Algorithm (BOA) across three loss variation thresholds ($\Delta_\ell = 0.05, 0.1, 0.3$). In Figure 5, Krylov-inspired p_0 outperforms random initialization by 0.5-1.6% across all Δ_ℓ values, confirming the effectiveness of Krylov subspace on the determination of p_0 . Across all three Δ_ℓ values, the complete BOA within Krylov subspace method consistently outperforms intermediate implementations. At $\Delta_\ell = 0.3$, it achieves a remarkable 75.7% accuracy—6.5% higher than random initialization (69.2%) and 4.9% superior to Krylov-

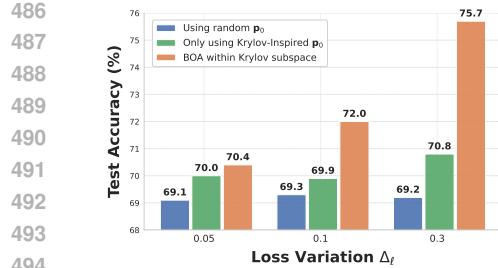


Figure 5: Ablation study on the effect of Krylov subspace using one VLCS domain (“LabelMe”) for test.

498 inspired direction alone (70.8%). This substantial margin demonstrates that Krylov-enhanced reflection
499 operations provide compounded benefits beyond initial direction selection.

501 4.5 LOSS LANDSCAPE VISUALIZATION

503 Our loss landscape visualization examines two key aspects: (1) connectivity between models with
504 different out-of-domain performance, and (2) optimization trajectory analysis of the Billiard Opti-
505 mization Algorithm (BOA).

506 **Mode Connectivity Analysis.** A baseline model was first trained on three OfficeHome domains
507 (“Clipart”, “Product”, and “Real World”), which may exhibit poor performance when generalized
508 to the unseen “Art” domain. In contrast, an ideal Oracle model was trained using all domains. Sub-
509 sequently, building upon the approach in (Garipov et al., 2018), we connect these two models using
510 a parameterized Bézier curve and optimize it to maintain uniformly low loss throughout the entire
511 pathway. Finally, as illustrated in Figure 1, a 2D visualization demonstrates a continuous low-loss
512 valley bridging the non-ideal (red marker) and ideal (green marker) models. Remarkably, this con-
513 nectivity pattern has been consistently observed across diverse datasets and architectures.

514 **BOA Trajectory Visualization.** To visually demonstrate the effectiveness of the BOA algorithm,
515 we employed constrained Krylov subspaces with a dimension of $K = 2$ to trace its optimization
516 path on the VLCS dataset. As illustrated in Figure 6, BOA successfully navigates the training loss
517 landscape and seeks out-of-domain solutions located within optimal regions on the test loss surface.
518 This visualization offers clear visual evidence of BOA’s capability in discovering better models.

519

520 5 CONCLUSION

522 This study demonstrates that leveraging mode connectivity in loss landscapes offers a novel and
523 effective approach for enhancing domain generalization. We empirically established that low-loss
524 pathways connect models with divergent generalization capabilities, revealing a geometric structure
525 that enables transitions to superior solutions without leaving low-loss regions. To navigate this struc-
526 ture, we proposed the Billiard Optimization Algorithm (BOA), which efficiently traverses these con-
527 nected modes using physics-inspired operations. A key insight enabling this efficiency was the strong
528 alignment between test gradients and the low-dimensional Krylov subspace derived from training
529 gradients, allowing BOA to operate effectively in a reduced subspace. Integrated with parameter-
530 efficient vision prompt tuning, BOA achieved superior performance across multiple DomainBed
531 benchmarks, consistently outperforming existing sharpness-aware and domain generalization tech-
532 niques. These results highlight the value of geometric connectivity properties for developing robust
533 models that generalize well to unseen domains. Future work could explore extending BOA to other
534 geometric properties of loss landscapes or adapting it for dynamic environments where domain shifts
535 occur continuously.

536

537 REFERENCES

538 Maksym Andriushchenko, Dara Bahri, Hossein Mobahi, and Nicolas Flammarion. Sharpness-aware
539 minimization leads to low-rank features. *Advances in Neural Information Processing Systems*, 36:
47032–47051, 2023.

- 540 Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
 541 *arXiv preprint arXiv:1907.02893*, 2019.
 542
- 543 Sara Beery, Grant Van Horn, and Pietro Perona. Recognition in terra incognita. In *Proceedings of*
 544 *the European conference on computer vision (ECCV)*, pp. 456–473, 2018.
- 545 Leonid Bunimovich. Dynamical billiards. *Scholarpedia*, 2(8):1813, 2007.
 546
- 547 Giovanni Bussi and Michele Parrinello. Accurate sampling using langevin dynamics. *Physical*
 548 *Review E—Statistical, Nonlinear, and Soft Matter Physics*, 75(5):056707, 2007.
- 549 Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yunsung Lee, and
 550 Sungrae Park. Swad: Domain generalization by seeking flat minima. *Advances in Neural Infor-*
 551 *mation Processing Systems*, 34:22405–22418, 2021.
- 552 Junbum Cha, Kyungjae Lee, Sungrae Park, and Sanghyuk Chun. Domain generalization by mutual-
 553 information regularization with pre-trained models. *arXiv preprint arXiv:2203.10789*, 2022.
- 554 Jiali Cheng and Hadi Amiri. Understanding machine unlearning through the lens of mode connec-
 555 tivity. *arXiv preprint arXiv:2504.06407*, 2025.
- 556 Wei Deng, Guang Lin, and Faming Liang. A contour stochastic gradient langevin dynamics algo-
 557 rithm for simulations of multi-modal distributions. *Advances in neural information processing*
 558 *systems*, 33:15725–15736, 2020.
- 559 Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize
 560 for deep nets. In *International Conference on Machine Learning*, pp. 1019–1028. PMLR, 2017.
- 561 Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred Hamprecht. Essentially no barriers
 562 in neural network energy landscape. In *International conference on machine learning*, pp. 1309–
 563 1318. PMLR, 2018.
- 564 Gintare Karolina Dziugaite and Daniel M Roy. Computing nonvacuous generalization bounds for
 565 deep (stochastic) neural networks with many more parameters than training data. *arXiv preprint*
 566 *arXiv:1703.11008*, 2017.
- 567 Chen Fang, Ye Xu, and Daniel N Rockmore. Unbiased metric learning: On the utilization of multiple
 568 datasets and web images for softening bias. In *Proceedings of the IEEE International Conference*
 569 *on Computer Vision*, pp. 1657–1664, 2013.
- 570 Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimiza-
 571 tion for efficiently improving generalization. *arXiv preprint arXiv:2010.01412*, 2020.
- 572 C Daniel Freeman and Joan Bruna. Topology and geometry of half-rectified network optimization.
 573 *arXiv preprint arXiv:1611.01540*, 2016.
- 574 Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Lavi-
 575 olette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural networks.
 576 *The journal of machine learning research*, 17(1):2096–2030, 2016.
- 577 Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wilson. Loss
 578 surfaces, mode connectivity, and fast ensembling of dnns. *Advances in neural information pro-*
 579 *cessing systems*, 31, 2018.
- 580 Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. *arXiv preprint*
 581 *arXiv:2007.01434*, 2020.
- 582 Eugene A Gutkin. Billiard dynamics: a survey with the emphasis on open problems on billiards.
 583 *Regular and chaotic dynamics*, 8(1):1–13, 2003.
- 584 Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
 585 Ser-Nam Lim. Visual prompt tuning. *arXiv preprint arXiv:2203.12119*, 2022.
- 586 Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantastic
 587 generalization measures and where to find them. *arXiv preprint arXiv:1912.02178*, 2019.

- 594 Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
 595 ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. *arXiv*
 596 *preprint arXiv:1609.04836*, 2016.
- 597
- 598 Minyoung Kim, Da Li, Shell X Hu, and Timothy Hospedales. Fisher sam: Information geometry
 599 and sharpness aware minimisation. In *International Conference on Machine Learning*, pp. 11148–
 600 11161. PMLR, 2022.
- 601 Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. Asam: Adaptive sharpness-
 602 aware minimization for scale-invariant learning of deep neural networks. In *International Con-
 603 ference on Machine Learning*, pp. 5905–5914. PMLR, 2021.
- 604 Aodi Li, Liansheng Zhuang, Shuo Fan, and Shafei Wang. Learning common and specific visual
 605 prompts for domain generalization. In *Proceedings of the Asian Conference on Computer Vision*,
 606 pp. 4260–4275, 2022a.
- 607 Aodi Li, Liansheng Zhuang, Xiao Long, Minghong Yao, and Shafei Wang. Seeking consistent
 608 flat minima for better domain generalization via refining loss landscapes. In *Proceedings of the*
 609 *Computer Vision and Pattern Recognition Conference (CVPR)*, pp. 15349–15359, June 2025.
- 610 Bo Li, Yifei Shen, Yezhen Wang, Wenzhen Zhu, Dongsheng Li, Kurt Keutzer, and Han Zhao. In-
 611 variant information bottleneck for domain generalization. In *Proceedings of the AAAI Conference*
 612 *on Artificial Intelligence*, pp. 7399–7407, 2022b.
- 613
- 614 Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and artier domain
 615 generalization. In *Proceedings of the IEEE international conference on computer vision*, pp.
 616 5542–5550, 2017.
- 617
- 618 Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss land-
 619 scape of neural nets. *Advances in neural information processing systems*, 31, 2018a.
- 620
- 621 Haoliang Li, Sinno Jialin Pan, Shiqi Wang, and Alex C Kot. Domain generalization with adver-
 622 sarial feature learning. In *Proceedings of the IEEE conference on computer vision and pattern*
 623 *recognition*, pp. 5400–5409, 2018b.
- 624
- 625 Wenyi Li, Huan-ang Gao, Mingju Gao, Beiwen Tian, Rong Zhi, and Hao Zhao. Training-free model
 626 merging for multi-target domain adaptation. In *European Conference on Computer Vision*, pp.
 627 419–438. Springer, 2024.
- 628
- 629 Ya Li, Mingming Gong, Xinmei Tian, Tongliang Liu, and Dacheng Tao. Domain generalization
 630 via conditional invariant representations. In *Proceedings of the AAAI conference on artificial*
 631 *intelligence*, 2018c.
- 632
- Jörg Liesen and Zdenek Strakos. *Krylov subspace methods: principles and analysis*. Numerical
 Mathematics and Scie, 2013.
- 633
- Seyed Iman Mirzadeh, Mehrdad Farajtabar, Dilan Gorur, Razvan Pascanu, and Hassan
 634 Ghasemzadeh. Linear mode connectivity in multitask and continual learning. *arXiv preprint*
 635 *arXiv:2010.04495*, 2020.
- 636
- Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching
 637 for multi-source domain adaptation. In *Proceedings of the IEEE/CVF international conference*
 638 *on computer vision*, pp. 1406–1415, 2019.
- 639
- Akshay Rangamani et al. *Loss landscapes and generalization in neural networks: Theory and ap-
 640 plications*. PhD thesis, Johns Hopkins University, 2020.
- 641
- Zheyuan Shen, Jiashuo Liu, Yue He, Xingxuan Zhang, Renzhe Xu, Han Yu, and Peng Cui. Towards
 642 out-of-distribution generalization: A survey. *arXiv preprint arXiv:2108.13624*, 2021.
- 643
- Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation. In
 644 *European conference on computer vision*, pp. 443–450. Springer, 2016.
- 645
- Vladimir Vapnik. Statistical learning theory. *(No Title)*, 1998.

- 648 Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep
 649 hashing network for unsupervised domain adaptation. In *Proceedings of the IEEE conference on*
 650 *computer vision and pattern recognition*, pp. 5018–5027, 2017.
- 651
- 652 Roman Vershynin. *High-dimensional probability: An introduction with applications in data science*,
 653 volume 47. Cambridge university press, 2018.
- 654 Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang, Tao Qin, Wang Lu, Yiqiang Chen, Wenjun
 655 Zeng, and Philip Yu. Generalizing to unseen domains: A survey on domain generalization. *IEEE*
 656 *Transactions on Knowledge and Data Engineering*, 2022.
- 657
- 658 Pengfei Wang, Zhaoxiang Zhang, Zhen Lei, and Lei Zhang. Sharpness-aware gradient matching
 659 for domain generalization. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 660 *Pattern Recognition*, pp. 3769–3778, 2023.
- 661 Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In
 662 *Proceedings of the 28th international conference on machine learning (ICML-11)*, pp. 681–688,
 663 2011.
- 664 Kaiyue Wen, Zhiyuan Li, and Tengyu Ma. Sharpness minimization algorithms do not only minimize
 665 sharpness to achieve better generalization. *Advances in Neural Information Processing Systems*,
 666 36:1024–1035, 2023.
- 667
- 668 Lei Wu, Zhanxing Zhu, et al. Towards understanding generalization of deep learning: Perspective
 669 of loss landscapes. *arXiv preprint arXiv:1706.10239*, 2017.
- 670 Yichu Xu, Xin-Chun Li, Lan Li, and De-Chuan Zhan. Visualizing, rethinking, and mining the loss
 671 landscape of deep neural networks. *arXiv preprint arXiv:2405.12493*, 2024.
- 672
- 673 Ruipeng Zhang, Ziqing Fan, Jiangchao Yao, Ya Zhang, and Yanfeng Wang. Domain-inspired
 674 sharpness-aware minimization under domain shifts. *arXiv preprint arXiv:2405.18861*, 2024.
- 675
- 676 Shuofeng Zhang, Isaac Reid, Guillermo Valle Pérez, and Ard Louis. Why flatness does and does not
 677 correlate with generalization for deep neural networks. *arXiv preprint arXiv:2103.06219*, 2021.
- 678
- 679 Xingxuan Zhang, Renzhe Xu, Han Yu, Hao Zou, and Peng Cui. Gradient norm aware minimization
 680 seeks first-order flatness and improves generalization. In *Proceedings of the IEEE/CVF Conference*
 681 *on Computer Vision and Pattern Recognition*, pp. 20247–20257, 2023.
- 682
- 683 Haoyang Zheng, Hengrong Du, Qi Feng, Wei Deng, and Guang Lin. Constrained exploration via re-
 684 reflected replica exchange stochastic gradient langevin dynamics. *arXiv preprint arXiv:2405.07839*,
 685 2024.
- 686
- 687 Zangwei Zheng, Xiangyu Yue, Kai Wang, and Yang You. Prompt vision transformer for domain
 688 generalization. *arXiv preprint arXiv:2208.08914*, 2022.
- 689
- 690 Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and Chen Change Loy. Domain generalization in
 691 vision: A survey. *arXiv preprint arXiv:2103.02503*, 2021.
- 692
- 693 Juntang Zhuang, Boqing Gong, Liangzhe Yuan, Yin Cui, Hartwig Adam, Nicha Dvornek, Sekhar
 694 Tatikonda, James Duncan, and Ting Liu. Surrogate gap minimization improves sharpness-aware
 695 training. *arXiv preprint arXiv:2203.08065*, 2022.
- 696
- 697
- 698 Yingtian Zou, Kenji Kawaguchi, Yingnan Liu, Jiashuo Liu, Mong-Li Lee, and Wynne Hsu. Towards
 699 robust out-of-distribution generalization bounds via sharpness. *arXiv preprint arXiv:2403.06392*,
 700 2024.
- 701