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Abstract— In this paper, we study the problem of one-
shot skeleton-based action recognition, which poses unique
challenges in learning transferable representation from base
classes to novel classes, particularly for fine-grained actions.
Existing meta-learning frameworks typically rely on the body-
level representations in spatial dimension, which limits the
generalisation to capture subtle visual differences in the fine-
grained label space. To overcome the above limitation, we
propose a part-aware prototypical representation for one-
shot skeleton-based action recognition. Our method captures
skeleton motion patterns at two distinctive spatial levels, one
for global contexts among all body joints, referred to as body
level, and the other attends to local spatial regions of body parts,
referred to as the part level. We also devise a class-agnostic at-
tention mechanism to highlight important parts for each action
class. Specifically, we develop a part-aware prototypical graph
network consisting of three modules: a cascaded embedding
module for our dual-level modelling, an attention-based part
fusion module to fuse parts and generate part-aware prototypes,
and a matching module to perform classification with the part-
aware representations. We demonstrate the effectiveness of
our method on two public skeleton-based action recognition
datasets: NTU RGB+D 120 and NW-UCLA.

I. INTRODUCTION

Skeleton-based action recognition, due to its advantage
of preserving subject privacy and robustness, has attracted
increasing attention during the past few years [1], [2], [3],
[27], [20], [18], [13]. Existing skeleton-based action recog-
nition methods typically focus on the problem of many-shot
classification [3], [19], [13], where each class has substantial
amount of samples during training. Nevertheless, the acquisi-
tion of well-annotated skeletal sequences is labour-intensive
and time-consuming. As such, in the low-data regime, few-
shot learning approaches [23], [21] provide a promising
strategy and yet they are rarely investigated in the skeleton-
based action recognition.

In this paper, we study the problem of one-shot skeleton-
based action recognition, which poses unique challenges in
learning novel action classes given knowledge from known
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Fig. 1. Existing methods(left) typically rely on holistic representa-
tion of actions. In contrast, ours(right) adopts a part-aware model to
learn from multiple part graphs for one-shot skeleton-based action
recognition.

base classes*. Several recent attempts [14], [25] on the one-
shot skeleton-based action recognition utilise metric learning
[16] or meta-learning framework [21] and mainly focus on
learning a holistic representation of actions based on graph
neural networks, or a spatio-temporal representation for tem-
poral alignment [25]. However, it is particularly challenging
to capture the fine-grained action space commonly-seen in
practice with such global representations. For instance, in
order to distinguish the ’staple book’ from ’open a box’ in the
NTU RGB+D 120 [10] dataset, it is crucial to model the local
region around hands due to the subtle differences between
those two classes. The holistic representations, unfortunately,
are often unable to focus on such local spatial features given
the small support set in the few-shot setting, resulting in poor

* We follow the commonly-adopted one-shot learning setting here. The action
categories are divided into two sets: base classes and novel classes. We
assume that the base classes have sufficient examples per class for training
while we only have one support sample per novel class. Given a query
sample from the novel classes, we aim to find which class it belongs to.
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generalisation for fine-grained action classification. Recently,
many fully-supervised skeleton-based works [26], [22] utilise
the partial body analysis for local region representation
modelling. However, these works mainly focus on learning a
representation from body-level and part-level simultaneously
where complex part-and-body-level graph architecture and a
large amount of data are required during training stage. In
this one-shot recognition task, directly adopting such learn-
ing strategy cannot perform well in learning discriminative
features for novel actions.

To address the aforementioned limitations, we propose a
novel part-aware prototypical representation learning frame-
work for the one-shot skeleton-based action recognition, as
illustrated in Figure 1. Specifically, the part-aware proto-
types are learned via the meta-learning framework [21] and
our method first captures the skeleton motion patterns at
body level and then attends to part level for part-aware
prototypes learning. Different from previous methods where
both body-level and part-level representations are learned
simultaneously for recognition, we devise a novel class-
agnostic attention fusion mechanism which selects part-level
representations to generate a part-aware prototype for each
class. Our attention mechanism can highlight the importance
of parts for each action class based on an contrastive learning
manner.

Our part-aware prototypical graph network consisting of
three modules: a cascaded embedding module for computing
part-based representations, an attention-based part fusion
module for generating the part-aware prototypical represen-
tation, and a matching module to produce the final classi-
fication. For the embedding module, we adopt a modified
GCN design [27], [19] with two stages. The first stage
takes the input skeleton sequence and use a spatio-temporal
graph network to compute initial context-aware features for
all the joints. The second stage is composed of multiple
part-level graph networks, each of which is defined on a
local part region generated according to a set of rules such
as semantic partitions. The initial joint features are then
fed into those part-level graph networks to produce part-
aware representations. Subsequently, our part fusion module
combines all the part-aware features weighted by a part-level
attention and generate a part-aware prototype for the input
skeleton sequence. Finally, the matching module outputs the
class label of the query based on the cosine distance between
the part-aware prototype of the query and support examples.

We evaluate our proposed model on two public skeleton-
based action recognition datasets: NTU RGB+D 120 [10]
and NW-UCLA [24]. We also implement the ProtoNet [21]
with multiple many-shot state-of-the-art methods, such as
MV-IGNet [26], MS-G3D [13] and CTR-GCN [3], as our
baselines. The results show that our method outperforms the
baseline methods, and prior one-shot approaches under all
setups on all datasets, demonstrating the effectiveness of our
proposed part-aware prototypical graph network.

To summarise, the contribution of this paper is three-folds:
• We propose a novel one-shot learning strategy for

skeleton-based action recognition based on part-aware

prototypical representation learning.
• We develop a part-aware prototypical graph network to

capture the skeleton motion patterns at two distinctive
spatial levels and a class-agnostic attention mechanism
to highlight the important parts for each action class.

• We achieve the new state-of-the-art on two public
datasets under one-shot learning setting.

II. RELATED WORK

A. Skeleton-based Action Recognition

During the past decade, deep learning methods have
achieved significant progresses in skeleton-based action
recognition. Early approaches exploited RNNs [6], [17], [11],
[9], [29] for sequential modelling and CNNs [8], [7], [12]
for pseudo-image analysis. A milestone of the GCN-based
method is ST-GCN [27], which defines a sparse connected
spatial-temporal graph that both considers natural human
body structure and temporal motion dependencies in space-
time domain. Since then, a large variants of most recent
works adopt the GCNs for skeleton-based action recognition
[20], [19], [31], [22], [5], [13], [28], [4], [2], [3]. However,
most of existing skeleton-based action recognition methods
are developed for strong settings with many shots during
training. Therefore, they cannot be easily adopted in our one-
shot setting which focuses on meta-level knowledge learning.
Partial body analysis. There have been some works focus-
ing on modeling the body parts to enhance local contexts. For
example, MV-IGNet [26] develops a graph learning frame-
work to enhance the spatial context modelling capability,
where the multi-level spatial topologies are constructed for
feature extraction. In PA-ResGCN [22], a part-wise attention
module is adopted for feature enhancement. However, we
address the problem under one-shot setting, which focuses
on learning meta-knowledge of composing action prototypes
from shared parts. To this end, we generate part-aware pro-
totypes using a hypothesis-and-select strategy. We propose
to construct a rich set of part graphs using a set of rules
and then utilise a class-agnostic attention fusion module to
select informative parts for part-aware prototype generation.
By contrast, prior works mainly focus on learning a represen-
tation where both body-level and part-level representations
are learned simultaneously for recognition, which require
abundant data in training and typically perform poorly in
the data-scarce setting.
B. One-shot Skeleton-based Action Recognition

One-shot skeleton based action recognition is a relatively
new task in the community and only few works tackle
this problem. Action-Part Semantic Relevance-aware (APSR)
framework [10] adopts the semantic relevance between each
body part and each action class at the distributed word em-
bedding space. Single Level Deep Metric Learning [15] and
Skeleton-DML [14] convert the original skeletons into im-
ages, extract features using CNNs and apply multi-similarity
miner losses. The most recent work JEANIE [25] encodes
the 3D body joints into temporal blocks with GNNs and then
simultaneously perform temporal and view-point alignment



Fig. 2. Overview of our framework. Cascaded embedding module extracts part-based representations with a two-stage graph network.
In the first stage, a body GCN computes an initial context-aware features for all joints. The second stage is about part-level modelling,
where we first generate multiple part graphs according to a set of rules, and then feed the representations sampled by the part graphs
into a series of part GNNs to compute part representations. The attentional part fusion module highlights important parts based on a
class-agnostic attention mechanism, and generates part-aware prototypes. The matching module outputs the class label of the query based
on the cosine distance between the part-aware prototype of the query and support examples.

of query-support in the meta-learning regime. However, none
of above works adopt the part-aware prototypes for the few-
shot skeleton-based action recognition.

III. METHOD

A. Problem Definition

We consider the problem of one-shot skeleton-based action
recognition, which aims to classify skeleton sequences from
only one labelled sample per class. To this end, we adopt a
meta-learning strategy [21] that builds a meta learner M to
resolve a family of classification tasks(also called episodes)
T = {T} sampled from an underlying task distribution PT .

Formally, each meta classification task T , consists of a
support set S with labeled skeleton samples and a set of
query skeleton sequences Q. In the C-way one-shot setup,
the support set S = {(xs

c,c)|c ∈ CT}, where xs
c indicates the

skeleton sequence, c indicates the action label, CT is the
subset of class sets for the task T and |CT |=C. The query
set Q = {(xq

j ,c
q
j)}, where xq

j is the query skeleton sequence,
and cq

j ∈CT is the corresponding label which is known during
training but unknown during testing.

We introduce a meta training set Ttrain = {(Sn,Qn)}|Ttrain|
n=1

over the training class(also called base class) set Ctrain. The
meta learner M is therefore trained episodically on the tasks
Ttrain and is able to encode the knowledge on how to perform
action recognition on different action categories across tasks.
Finally, to evaluate our meta learner, we construct a test set

of tasks Ttest = {(Sm,Qm)}|Ttest |
m=1 , where the test class(also

called novel class) set C test is non-overlapped with C train.

B. Metric Learning for Skeleton Data

The meta classification task T is tackled by learning the
distance between two skeleton sequences. Concretely, given
a query sample xq and a support sample xs, the goal is to
learn a model D that can measure the distance between xq

and xs. Formally,

Distance = D(xq,xs). (1)

To achieve this, we decompose the goal into three steps.
Firstly, a cascaded graph embedding network Fembed is
employed to transform the raw inputs into multiple part-
based representations.

{Γ1,Γ2, ...,ΓK}= Fembed(x), (2)

where Γk ∈ Rd , d is the dimension of the feature. Then
we adopt a part fusion module F f use to fuse the part-
based representations and generate part-aware prototypical
embeddings:

ε = F f use(Γ1,Γ2, ...,ΓK). (3)

We separately generate embeddings for support sample
and query sample. Finally, we exploit a distance function
d(., .) on the query embedding and support embedding to



calculate their distances. Below we will introduce our model
architecture design for the embedding and fusion module.

C. Network Architecture

An overview of our framework is shown in Figure 2. We
implement Fembed , F f use and distance calculation process
with three modules: cascaded embedding module, attentional
part fusion module and matching module. Concretely, given
a skeleton sequence x ∈ RD×T×V , where D ∈ {2,3} denotes
the 2D or 3D coordinates of joints, T indicates the sequence
length, and V represents the number of semantic joints.
The goal of the cascaded embedding module Fembed is
to transform a raw sequence x into multiple part-based
representations. The attentional part fusion module highlights
important parts and generate part-aware prototypical repre-
sentations. And the matching module aims to exploit the
prototypical representations to perform classification. Below,
we introduce the details of our network design.

1) Cascaded embedding Module: In the meta-learning
framework, the graph network is employed to enable the
meta knowledge learned from base actions is transferable to
novel actions. Prior many-shot graph networks [3], [13], [27]
rely heavily on holistic body-level representations. However,
these holistic representation-based approaches are unreliable
to be generated to novel classes because they cannot effec-
tively capture subtle discrepancies of different classes which
is the key to distinguishing the fine-grained action sequences.
To this end, the proposed model is designed based on novel
prototypes to enhance part-level patterns by modelling graphs
in multiple spatial regions.

The proposed network attempts to extract useful patterns
in a two-stage manner. In the first stage, we employ a
basic graph embedding network to generate a context-aware
feature of V joints and is referred as body-level modelling.
In the second stage, we construct different part-level graphs
based on the output of first stage, and exploit different local
graph networks for part-level modelling. Then a cascaded
two-stage graph network is formed by successively extracting
both body-level and part-level features. Details are described
below.

a) Body-level modelling: The body-level modelling
takes the initial sequences x ∈RD×T×V as inputs and gener-
ates the body representations Γ ∈Rd0×T0×V , where d0 is the
dimension of the features and T0 is the number of temporal
frames. Note that T0 is not equal to T because the down
sampling operation is adopted in the temporal dimension
for the body-level module. Specifically, the ST-GCN [27] is
adopted for the backbone of the body-level module in order
to extract discriminative joints features. Since each layer of
ST-GCN consistently takes the human body structure as the
default connection of the graph, the message passing through
different joints is not easily over-smoothed compared to the
global self-attention based structures [20], [3]. We adopt a
shallower ST-GCN as the original version which contains
Lbody layers.

b) Part-level modelling: Unlike body-level modelling,
our part-level module focuses on enhancing regional patterns

-

Fig. 3. We generate part graphs based on a set of rules: (a) semantic
partition; (b) symmetry partition and (c) mixture of semantic and
symmetry partition.

of the body-level representations. Concretely, we construct K
part graphs {Gi} using several heuristic rules derived from
human body structural characteristics, and then we sample
the joint representation of each part graph Gi from the body
representation Γ. The representation of each part is then fed
into a part graph network to enhance the local correlation
between the part joints. The global pooling is performed
on the output of each part graph network to produce part
representations {γi ∈ Rd}. The details are illustrated below.

c) Part Graph Generation: We generate part graphs
based on the natural characteristics of human skeleton struc-
ture which is illustrated in Fig.3. The rules defined for the
part generation is described as follows:
• Semantic partition. Since the skeleton joints are seman-

tically aligned over different samples, an intuitive idea
is to divide the body joints into groups according to
their semantic meanings. A semantic partition strategy
is proposed to produce the sub-graphs and is shown in
Fig.3(a).

• Symmetry partition. Since the actions are usually corre-
lated with specific joints such as wrists and knees, the
generation of such sub-graphs is defined based on the
symmetry as shown in Fig.3(b).

• Mixture partition. Since some actions are performed by
a combination of semantic parts, such mixture partition
enhance the flexibility and is shown in Fig.3(c).

For each part graph Gi, we sample the corresponding joint
representations from the output of body-level module Γ ∈
Rd0×T0×V to obtain the part representations Γ0

i ∈ Rd0×T0×Vi ,
where Vi is the joint number of Gi. Sampling operations are
performed only in the spatial dimension to ensure that all
temporal information can be preserved for the following part
modelling.

d) Part Graph Neural Network: Since the design of
part generation does not have a constraint that the joints must
be connected to each other, the GCN [27] style architecture
may not be the optimal choice for being the network structure
in this situation. To cope with this problem, a densely



Fig. 4. Our attention part fusion module highlights important parts
and generate part-aware prototype.

connected graph network is exploited to completely establish
correlations. Specifically, the part graph network is similar to
AGCN [20] but but only preserves the non-local style mes-
sages passed between joints in the spatial dimension. In this
way, the temporal convolutions can be alternately operated
after the spatial message passing to capture extensive motion
patterns. Additionally, partial graph networks are allowed to
share their weights to minimise parameter burden.

2) Attentional Part Fusion Module: The structure of our
attentional part fusion module F f use is shown in Figure 4. It
aims to highlight important parts and generate the part-aware
prototypical representation by parts fusion. Specifically, we
denote the output of the part graph network as Γi ∈Rd1×T1×Vi .
We then perform an average pooling over the spatial and
temporal dimensions to receive the part representations:
γi = AvgPool(Γi) ∈ Rd1 . The part representations {γi|i =
1,2, ...,K} are concatenated to form a unified representation,
followed by a semantic attention module A ∈ RK , where
each element in A indicates the importance of an individual
part. The attention score A is computed using a simple
multi-layer perception(MLP) and a sigmoid(·) function to
convert the resulting values to [0,1]:

A = MLP(γ1⊕ γ2⊕ ...⊕ γK), (4)

where ⊕ denotes the concatenate operation. The semantic
attention is used to weight the part representations as follows:

γ
′
i = αi� γi, (5)

where αi ∈ [0,1] is the i-th value of A , � indicates the
element-wise multiplication.

Finally, we fuse the part representations to generate the
graph embedding ε ∈ Rd by the MLP layer on the concate-
nated features:

ε = MLP(γ ′1⊕ γ
′
2⊕ ...⊕ γ

′
K). (6)

3) Matching module: Our matching module aims to
perform classification by utilising the generated part-aware
prototypes and graph embeddings. A query sample is clas-
sified by assigning the class of the nearest support sample
using a distance function d(., .). In this work, we focus on

mining the part-level patterns in the skeleton data, which is
encoded in the cascaded embedding module Fembed . Hence
we simply adopt the dot product to the normalised graph to
compute their cosine similarities:

d(εq,εs) =−( εq

||εq||
)T · εs

||εs||
. (7)

During training, the query skeleton is classified through
the softmax(·) of the distances to the support skeletons.

IV. EXPERIMENTS

In this section, extensive experiments are presented and
results are analysed in depth. Firstly, it will depict informa-
tion about the experimental datasets, followed by implemen-
tation details. Then, the proposed model will be compared
with the state-of-the-art methods on three publicly available
benchmark datasets. Finally, it will comprehensively evaluate
the effectiveness of each component of the proposed model
by showing the results of ablation studies.

A. Datasets

NTU RGB+D 120. NTU RGB+D 120 [10] dataset is
currently the largest 3D skeleton-based action recognition
dataset captured under various environmental conditions. It
contains 114,480 skeletal sequences which are annotated into
120 action classes. Each skeleton sequence contains the 3D
spatial coordinates of 25 joints detected by Microsoft Kinect
v2 cameras. Samples were performed by 106 subjects and
captured by three camera views. There are 32 setups for
specific locations and backgrounds.
NW-UCLA. NW-UCLA dataset [24] is captured by three
Kinect cameras simultaneously with multiple viewpoints. It
contains 1,494 video clips covering 10 action categories, they
are pick up with one hand, pick up with two hands, drop
trash, walk around, sit down, stand up, donning, doffing,
throw, carry, and each action was performed by 10 different
actors.

B. Evaluation Protocols

NTU RGB+D 120. The protocol adopted for evaluating the
effectiveness of the proposed model follows the standard
one-shot protocol introduced in [10]. Concretely, the entire
dataset is divided into two folders, including the auxiliary
set a.k.a. training set and the one-shot evaluation set. The
Auxiliary Set contains all samples from 100 classes which
are used for both training and validation. The One-shot
Evaluation Set contains 20 novel classes, namely, A1, A7,
A13, A19, A25, A31, A37, A43, A49, A55, A61, A67, A73,
A79, A85, A91, A97, A103, A109, A115. For each novel
class, only one sample is selected as the exemplar, and
[10] is referred for more details †. All remaining samples
contained in the novel classes can be used for testing the
model performance.
NW-UCLA. The protocol for NW-UCLA [24] is ingeniously
designed in this paper since no previous one-shot protocols
are available. Specifically, the dataset is partitioned into

† https://github.com/shahroudy/NTURGB-D



the Auxiliary Set including A1, A3, A5, A7, A9, and the
Evaluation Set containing A2, A4, A6, A8, A10. The test
phase is analogous to the descriptions given for the NTU
RGB+D 120 dataset.

C. Implementation Details

For a c-way, 1-shot setting, we randomly sample c classes
with each class containing 1 example as the support set.
We construct the query set to have c examples, where each
unlabelled sample in the query set belongs to one of the
c classes. Thus each task has a total of 2c examples for
training. We report the accuracy by adopting the evaluation
protocols described above in the following experiments.
For NTU-RGB+D 120, we adopt the data-preprocessing
procedure as introduced in [30]. For NW-UCLA and , we
adopt the same data-preprocessing in [5]. During training
and testing, the maximum frame number is set to T = 64.

In our experiments, we adopt Lbody = 5 layers of ST-
GCN[27] as the backbone network for body-level repre-
sentation learning. Then, we generate K part graphs, each
with V ′ node representation and feed into Lpart = 5 layers
of non-local blocks for part-level representation modelling.
Finally, an attention-based mechanism is adopted to fuse part
representations.

We optimised our model with Stochastic gradient de-
scent(SGD), with a starting learning rate of 0.1 and decaying
at 100 and 200 epochs by 0.1. We report the performance
at 300 epochs. All experiments are conducted using PyTorch
deep learning framework with 4 Tesla V100 GPUs.

D. Quantitative Results

We evaluate our proposed method on three public bench-
marks under one-shot setting.

On NTU RGB+D 120 dataset, we perform experiments
on five different experimental class reduction ratios, from
20 to 100. For a fair comparison, an identical evaluation
protocol is adopted for all listed methods. The results are
shown in Table I. Specifically, the proposed model obtains
an accuracy of 65.6% with 100 training classes, significantly
outperforming state-of-the-art methods [10], [15], [14], [25]
based on the one-shot learning by 8.6% and exceeding the
APSR method [10] by a large margin of 10.3%. As the
number of training classes decreases, the gaps in the accuracy
of the listed methods compared to our method gradually
narrow but there is still a gap of at least about 5% (e.g.,
the JEANIE [25] method achieves 38.5% accuracy using 20
training classes, while our method reaches 43.0% accuracy).
Furthermore, it presents four variants based on the ProtoNet
[21] as the baseline methods, including ST-GCN [27], MV-
IGNet[26], MS-G3D [13] and CTR-GCN [3]. As shown in
Table I, the variant of ProtoNet [21]+ST-GCN [27] gives
better results than the other three variants in most cases. It
suggests that directly adopting advanced graph networks in
many-shot setting can not bring better generalisation in one-
shot setting, where the key is to learn novel action classes
given knowledge from known base classes. In contrast, our

TABLE I
EXPERIMENTAL RESULTS ON NTU RGB+D 120 UNDER

DIFFERENT NUMBER OF TRAINING CLASSES. NUMBERS ARE THE

ACCURACIES(%). ‘PROTONET + *’ INDICATES THE PROTONET

IS IMPLEMENTED WITH * AS THE EMBEDDING NETWORK.

# Training Classes 20 40 60 80 100
APSR [10] 29.1 34.8 39.2 42.8 45.3
SL-DML [15] 36.7 42.4 49.0 46.4 50.9
Skeleton-DML [14] 28.6 37.5 48.6 48.0 54.2
JEANIE [25] 38.5 44.1 50.3 51.2 57.0
ProtoNet [21]+ST-GCN [27] 41.5 49.6 54.2 55.2 61.1
ProtoNet [21]+MV-IGNet [26] 41.6 49.2 53.1 54.5 60.1
ProtoNet [21]+MS-G3D [13] 41.1 48.7 54.4 52.7 59.5
ProtoNet [21]+CTR-GCN [3] 39.9 49.1 53.6 54.2 58.8
Ours 43.0 50.3 55.7 56.5 65.6

TABLE II
EXPERIMENTS ON NW-UCLA DATASET.‘†’ INDICATES THE

RESULTS ARE IMPLEMENTED BY OURSELVES, BASED ON THEIR

RELEASED CODES UNDER THE SAME EVALUATION PROTOCOL.

Method Accuracy(%)
SL-DML [15] † 65.6
Skeleton-DML [14] † 72.8
ProtoNet [21]+ST-GCN [27] 79.8
ProtoNet [21]+MV-IGNet [26] 80.9
ProtoNet [21]+MS-G3D [13] 81.2
ProtoNet [21]+CTR-GCN [3] 80.7
Ours 83.3

part-aware prototype modelling exploits part representations
for metric learning and is more effective.

We also evaluate the proposed part-aware architecture on
NW-UCLA [24] to verify its effectiveness and generalisation
for one-shot skeleton-based action recognition. Since there
is no previous work on one-shot learning based on this
dataset, we thus re-implement the open-sourced models, SL-
DML [15] and Skeleton-DML [14] and the comparisons are
mainly made between the proposed model and four baseline
models. Table II shows the results on NW-UCLA dataset.
Our method performs the best among all listed methods,
followed by the ProtoNet [21]+MS-G3D [13] with 2.1%
lower accuracy.

E. Ablation Studies

In this subsection, we perform ablation study to evaluate
the effectiveness of our proposed modules and attentional
fusion strategy. Except for the experiments in Incremental
ablation study, all the following experiments are performed
by modifying the target component based on the full model.
All the experiments are conducted on the NTU-RGB+D 120
dataset, with 100 classes for training, 20 classes for testing.

1) Incremental ablation study: In Table III, we evaluate
the effectiveness of our model components in an incremental
manner. We start from the baseline network, ST-GCN, which
only takes the human body structure as the default connection
of the graph for body-level representation learning. We then
add our proposed components one-by-one. Specifically, we
replace the last 5 layers of baseline network with our part-
level embedding network, the Table III shows our part-
level modeling improves the performance from 61.1 to 62.9,



Fig. 5. Visualisation of the attention prediction in our attentional part fusion module on novel actions, where total K = 10 part graphs
are generated. For each skeleton sample in NTU RGB+D 120, the top-3 important part graph partitions are visualised. In each column,
two samples from the same action class are visualised. We can observe that, for different actions, our attention block can select different
information parts, while for the same action, attention is similar.

Fig. 6. Performance comparison on 8 novel fine-grained action
classes on NTU RGB+D 120.

demonstrating the effectiveness of our proposed part-level
modelling structure. Note that our part GNNs are shared
across all constructed sub-graphs. As a result, the part-level
modelling does not introduce much parameters compared
with baseline network. We can also observe that, with the
help of attentional part fusion strategy, the performance

TABLE III
ABLATION STUDY OF DIFFERENT MODULES ON NTU RGB+D
120. ‘BODY-LEVEL’ INDICATES THE ORIGINAL BODY-LEVEL

REPRESENTATION MODELLING, ‘PART-LEVEL’ INDICATES THE

PROPOSED PART-LEVEL MODELLING. ‘ATTENTION’ INDICATES

THE ATTENTIONAL PART FUSION.

Method Params Body-Level Part-Level Attention Accuracy(%)
Baseline 1.5M - - 61.1

Ours 1.8M - 62.9
1.9M 65.6

TABLE IV
ABLATION STUDY ON THE NUMBER OF GENERATED PART

GRAPHS.

# Parts Params Accuracy(%)
K = 0 1.5M 61.1
K = 5 1.6M 62.2
K = 10 1.9M 65.6
K = 20 2.6M 63.0
K = 30 3.3M 58.5

can be further improved by 2.7.
2) Number of part graphs: We generate multiple part

graphs based on the natural characteristics of human skele-
ton structure according to the rules. We hence perform an
ablation study of the number of part graphs used for part
modelling, shown in Table IV. We can observe that, as the
graph number K grows, the accuracy gradually improves.
When K = 10, it reaches the best performance. When the
graph number is very large(K = 30), the performance drops



TABLE V
DIFFERENT NUMBER OF SELF-ATTENTION HEADS IN OUR

ADOPTED PART GNNS.

# Heads Params Accuracy(%)
1 1.9M 65.6
2 2.2M 61.3
4 2.8M 60.6
8 3.9M 59.6

TABLE VI
COMPARISON OF DIFFERENT FUSION STRATEGIES.

Method Accuracy(%)
w/o attention 62.9
Self-attention 61.2

MLP-attention (Ours) 65.6

to 58.5. This is because that too many part graphs contain re-
dundancy and our attentional fusion module can not generate
informative prototypes from the noisy part representations.

3) Number of self-attention heads in part GNNs: In our
part-level embedding network, we adopt a non-local style
message passing regime to capture spatial joints correlations.
In Table V, we exploit the effect of different self-attention
heads and report the performance. We found that 1-head
structure achieves the best performance, which is different
from state-of-the-art methods in many-shot setting, where
they typically adopt multi-head attention. Our part GNNs
model spatial patterns at a small region, which allows us
to decompose the global representation into multiple local
descriptors, hence each part GNNs can adopt a simpler
structure.

4) Different fusion strategies: In our method, we adopt
a simple MLP-based attentional fusion strategy to fuse dif-
ferent parts and generate part-aware prototypes. We replace
our MLP-attention with a single self-attention layer on the
part embeddings, and directly pool the resulting parts as
new prototypes, the result significantly drops from 65.6 to
61.2, as shown in Table VI. We guess that the self-attention
mechanism will make the parts over-smooth and the fused
prototypes are not as discriminative as before.

F. Visualisation

In Figure 5, we visualise the attention prediction of
attentional part fusion module. For each skeleton, we show
the top-3 important part graphs. We can observe that, for
different actions, our attention block can select different
information parts, while for the same action, attention is
similar. This demonstrates that our attention mechanism is
class-agnostic.

In Figure 6, we compare our model with baseline global
modelling method on 8 novel fine-grained actions which
highly rely on hands. We can observe that our method out-
performs the baseline ST-GCN on each class, demonstrating
the effectiveness of our local part-level modelling.

V. CONCLUSION

In this paper, we propose a novel part-aware prototypical
graph network for one-shot skeleton-based action recogni-
tion, aiming to learn a rich fine-grained representation for

action concepts via meta-learning framework. Our network
consists of three main modules: a cascaded embedding
module to extract part embeddings, where both body-level
and part-level modelling are cascaded performed to capture
skeleton motion patterns, an attentional part fusion module to
generate part-aware prototypical representation, and a match-
ing module to produce final classification. We evaluate our
method on two public benchmarks, namely NTU RGB+D
120 and NW-UCLA dataset under one-shot setting. The
results show that our method is able to achieve state-of-the-
art under all setups, demonstrating the effectiveness of our
proposed part-aware prototype one-shot learning strategy.
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