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ABSTRACT

Autoregressive video diffusion models are capable of long rollouts that are stable
and consistent with history, but they are unable to guide the current generation
with conditioning from the future. In camera-guided video generation with a pre-
defined camera trajectory, this limitation leads to collisions with the generated
scene, after which autoregression quickly collapses. To address this, we propose
Generative View Stitching (GVS), which samples the entire sequence in parallel
such that the generated scene is faithful to every part of the predefined camera
trajectory. Our main contribution is a sampling algorithm that extends prior work
on diffusion stitching for robot planning to video generation. While such stitching
methods usually require a specially trained model, GVS is compatible with any
off-the-shelf video model trained with Diffusion Forcing, a prevalent sequence
diffusion framework that we show already provides the affordances necessary for
stitching. We then introduce Omni Guidance, a technique that enhances the tempo-
ral consistency in stitching by conditioning on both the past and future, and that
enables our proposed loop-closing mechanism for delivering long-range coherence.
Overall, GVS achieves camera-guided video generation that is stable, collision-free,
frame-to-frame consistent, and closes loops for a variety of predefined camera
paths, including Oscar Reutersvärd’s Impossible Staircase. Results are best viewed
as videos at https://generative-view-stitching.github.io/.

1 INTRODUCTION

Recent developments in diffusion models have significantly advanced video synthesis. However,
current video diffusion models generate videos with limited context: most models (Kong et al., 2024;
Luma AI Team, 2024; Google DeepMind, 2025; Wan et al., 2025; Runway, 2025) generate videos
between 5 and 10 seconds. This is often less than what users want to generate. However, training
models with longer context is costly, making methods that can extrapolate pretrained models to
generate videos longer than the training context length an attractive prospect. Existing approaches
typically involve “rolling out” a short-horizon model autoregressively; they demonstrate temporal
coherence and stability over the course of hundreds of frames (Chen et al., 2024; Song et al., 2025)
and enable real-time streaming (Yin et al., 2025; Huang et al., 2025). Autoregressive (AR) sampling
can also be extended with retrieval-based techniques to enable consistency with respect to the distant
past (Zhou et al., 2025; Xiao et al., 2025; Yu et al., 2025; Cai et al., 2025), paving the way for neural
game engines and interactive world models (Valevski et al., 2025; Ball et al., 2025).

However, AR sampling does not enable consistency with respect to the future, i.e., beyond the current
context window: it is not possible to guide the generation to synthesize a future goal frame or for
current generations to be consistent with future conditioning variables. This arises in applications
such as one-shot cinematography (Failes, 2020; Yates, 2023) and synthetic scenario generation
for autonomous driving (Hu et al., 2023; Russell et al., 2025), which entail camera-guided video
generation with a predefined camera trajectory. In this task setting, AR sampling may generate a wall
that it is later forced to “step through” due to its inability to plan ahead. This often results in video
frames that are out-of-distribution to the model, after which generation quickly collapses (see Fig. 1).

To address this, we explore a non-autoregressive sampling approach to video length extrapolation,
which respects future conditioning signals when generating current frames. We are inspired by
previous work in diffusion stitching (Liu et al., 2022; Bar-Tal et al., 2023; Mishra et al., 2023; Kim
et al., 2024; Yeo et al., 2025; Goli et al., 2025; Luo et al., 2025), which are sampling methods
that generate the entire sequence in parallel, by dividing the sequence into overlapping segments
and intertwining their generation processes for consistent connections. Despite their potential for
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Generative View Stitching Autoregressive Sampling

loop closure late loop closurestaircase no staircasestable long rollout

Staircase Circuit

diverges

Figure 1: Generative View Stitching (GVS) enables stable camera-guided generation of long
videos. Given a pretrained DFoT video model (Song et al., 2025) with an 8-frame context window
and predefined camera trajectory, GVS can generate a 120-frame navigation video that is stable,
collision-free, faithful to the conditioning trajectory, consistent, and closes loops. On the other hand,
Autoregressive sampling diverges due to collisions with the generated scene, is not faithful to the
conditioning trajectory, and demonstrates poor loop closure even when augmented with RAG.

video length extrapolation, existing stitching methods are not suitable for video generation. For
example, StochSync (Yeo et al., 2025), originally designed for generating images such as 360-degree
panoramas and 3D mesh textures, lacks the temporal consistency necessary for video generation,
as we later show in Sec. 4.1; CompDiffuser (Luo et al., 2025) requires a sequence diffusion model
specially trained for stitching, but training such a custom model for video is costly.

Based on these observations, we propose Generative View Stitching (GVS), the first stitching method
for camera-guided video generation. GVS is a training-free stitching approach that is designed to be
compatible with any off-the-shelf video model trained with Diffusion Forcing (Chen et al., 2024), a
prevalent framework for training sequence diffusion models (Decart et al., 2024; Yin et al., 2025;
Song et al., 2025; Chen et al., 2025a; Sand.ai et al., 2025). We then introduce Omni Guidance, which
enhances the temporal consistency in stitching by strengthening the conditioning on the past and
future and, in turn, enables our proposed loop-closing mechanism for long-range consistency. Our
stitching method achieves long-horizon camera-guided video generation that is stable, collision-free,
and consistent across both short- and long-term time horizons for a variety of predefined camera
paths, including Oscar Reutersvärd’s Impossible Staircase (Penrose & Penrose, 1958) (see Fig. 7).

2 RELATED WORK AND PRELIMINARIES

Diffusion models. Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021b)
are generative models defined by a forward process that iteratively corrupts a data sample from
a target distribution into white noise through a series of noising steps xk =

√
αkx0 +

√
1− αkϵ,

where k ∈ {0, 1, . . . ,K − 1} are increasing noise levels, {αk}K−1
k=0 is a predefined schedule, and

ϵ ∼ N (0, I). The goal of diffusion modeling is to reverse the forward process by learning the score
function ϵθ(x

k, k), which enables iterative denoising of white noise into a sample from the target
distribution via:

xk−1 =
√
αk−1

(
xk −

√
1− αkϵθ(x

k, k)√
αk

)
+
√
1− αk−1 − (σk)2 · ϵθ(xk, k) + σkϵ (1)

(Song et al., 2021a), where σk controls the level of stochasticity i.e., the amount of random noise
ϵ ∼ N (0, I) injected into each denoising step, a concept that will become important later on.

Long Video Generation. Video diffusion models often fall short in terms of content resolution,
especially temporal resolution, resulting in videos only 5 to 10 seconds long (Kong et al., 2024; Luma
AI Team, 2024; Google DeepMind, 2025; Wan et al., 2025; Runway, 2025). This is because the typical
diffusion model architecture (Peebles & Xie, 2023) uses attention layers that scale quadratically with
the number of tokens. One way to avoid this is to retrieve and attend only to a select number of
tokens that are relevant for generating each frame (Xiao et al., 2025; Yu et al., 2025; Cai et al., 2025).
Alternatively, history can be compressed into a hidden state (Dalal et al., 2025; Zhang et al., 2025).
Training models with a large context is an exciting direction, and test-time stitching methods like
GVS can piggy-back and extrapolate to even longer sequences by using such backbone models. This
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highlights an important property of GVS, which modifies only the sampling method and does not
require specialized model architectures or training paradigms.

Diffusion Forcing and Autoregressive Extension. Diffusion Forcing (DF) (Chen et al., 2024) is a
prevalent framework for training sequence diffusion models (Decart et al., 2024; Yin et al., 2025;
Song et al., 2025; Chen et al., 2025a; Sand.ai et al., 2025). DF trains sequence diffusion models with
independent noise levels per token. During sampling, DF models can then selectively mask portions
of their context window with noise, enabling conditioning on a variable number of context tokens,
also referred to as history. DF also gives rise to history guidance (Song et al., 2025), which enables
ultra-long camera-guided autoregressive video generation that is stable and consistent. However, the
long rollouts presented in these works are only possible because of real-time, user-controlled camera
trajectories that prevent collisions with generated scene elements. Autoregressive sampling according
to a predefined camera trajectory leads to collisions of the camera with the generated scene as the
model generates content unaware of the future camera trajectory (see Fig. 1 and Fig. 6). We present a
stitching-based alternative that (1) is compatible with any DF model and (2) generates videos that are
faithful to the full camera trajectory and are thus collision-free and stable.

Camera-Guided Video Diffusion. Camera control is a highly desired feature of video diffusion
models due to its far-reaching applications in cinematography, game development, and world simula-
tion. Recent approaches to camera control typically involve adding camera conditioning to pretrained
T2I or T2V diffusion models (Wang et al., 2023; Guo et al., 2024; Wang et al., 2024; He et al., 2025a;
Bahmani et al., 2025b;a; Bai et al., 2025; He et al., 2025b; Zhou et al., 2025) and finetuning them on
pose-annotated videos. Some prior works train pose-conditioned video models from scratch (Song
et al., 2025; Weber et al., 2026). To generate videos longer than the context window of these backbone
models, many works use autoregressive (AR) extension as a sampling-time solution (Song et al.,
2025; Zhou et al., 2025; Schneider et al., 2025; Xiao et al., 2025). However, AR sampling can lead
to collisions with the generated scene, due to its inability to look at future camera poses. Some
works circumvent this issue either by having the user control the camera trajectory in real-time (Song
et al., 2025) or using a 3D-prior-based online planner for collision avoidance (Schneider et al.,
2025), but such online methods are not suitable for video generation with respect to a predefined
camera trajectory, an offline problem setting that arises in one-shot cinematography and synthetic
data generation for autonomous driving. Our method is a stitching-based sampling algorithm that
generates videos faithful to every part of the predefined camera trajectory that is thus collision-free.

3 GENERATIVE VIEW STITCHING

We motivate and describe the key components of Generative View Stitching (GVS), a diffusion
stitching method for camera-guided video generation that overcomes the shortcomings of autore-
gressive sampling. First, we review recent stitching method CompDiffuser (Luo et al., 2025) and
its requirement of a custom-trained model (Sec. 3.1). We then make the key observation that any
video model trained with Diffusion Forcing (DF) already has the necessary affordances to support
stitching, and introduce a corresponding training-free stitching method (Sec. 3.2). We overcome
issues with temporal consistency by combining maximum stochasticity (Yeo et al., 2025), which
itself is insufficient (Sec. 3.3), with our novel Omni Guidance, which enhances temporal consistency
by strengthening the conditioning on the past and future (Sec. 3.4). Omni Guidance further enables
our loop closing mechanism for delivering long-range coherence (Sec. 3.5).

3.1 CHALLENGES IN EXTENDING DIFFUSION STITCHING TO VIDEO GENERATION

Diffusion stitching methods (Liu et al., 2022; Bar-Tal et al., 2023; Mishra et al., 2023; Kim et al., 2024;
Yeo et al., 2025; Goli et al., 2025; Luo et al., 2025) are sampling methods that enable compositional
generalization beyond the context window of the backbone diffusion model. These methods typically
involve dividing the target sequence x into T overlapping chunks {xt}T−1

t=0 and intertwining their
denoising processes by synchronizing their intermediate outputs. In particular, CompDiffuser (Luo
et al., 2025), a stitching method designed for goal-conditioned planning, models each target chunk xt

to be dependent only on its temporal neighbors xt−1, xt+1, resulting in the following compositional
trajectory distribution:

pθ(x|xstart,xgoal) ∝ p0(x0|xstart,x1)pT−1(xT−1|xT−2,xgoal)

T−2∏
t=1

pt(xt|xt−1,xt+1), (2)

3
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Figure 2: Generative View Stitching (GVS) is a training-free diffusion stitching method that is
compatible with any off-the-shelf video model trained with Diffusion Forcing (DF). We first partition
the target video into non-overlapping chunks shorter than the model’s context window, then denoise
every target chunk jointly with its neighboring chunks to condition on both the past and future. We
use the denoised target chunk of every context window to update the noisy stitched sequence while
discarding the denoised past and future conditioning chunks. We further enable Omni Guidance
(Sec. 3.4), which enhances temporal consistency, by replacing the original score function ϵθ with the
guided score function ϵ̃θ in Eq. 8.

where xstart and xgoal denote the predefined start and goal states, respectively. However, to realize
this, CompDiffuser must train a customized denoising network ϵθ(x

k
t , k|xk

t−1,x
k
t+1) that generates a

target chunk conditioned on its co-evolving, noisy neighboring chunks. These conditioning chunks
are treated as separate conditioning inputs, which are embedded via a special encoder and then
injected to the backbone model via Adaptive LayerNorm. This need for a custom model prevents the
application of CompDiffuser to off-the-shelf models, and hence makes it infeasible to use for video
where training a custom model would incur an unacceptable cost.

3.2 GENERAL-PURPOSE VIDEO MODELS ALREADY ENABLE STITCHING

We seek to design a training-free stitching method that is compatible with off-the-shelf video models.
We find that remarkably, a widely used training framework, Diffusion Forcing (DF), already provides
all the necessary features for stitching. Like CompDiffuser, we represent the distribution of camera-
guided videos x compositionally:

pθ(x|p) ∝
T−1∏
t=0

pt(xt|xt−1,xt+1,pt−1,pt,pt+1), (3)

where p is the predefined camera trajectory, p−1 ≜ p0 and pT ≜ pT−1, and x−1 and xT are
pure-noise frames for padding. Unless otherwise stated, we omit the camera trajectory for the sake of
brevity. CompDiffuser requires a custom backbone model for stitching as it processes neighboring
chunks via a specialized conditioning path. We instead propose to condition the target chunk xk

t on
its temporal neighbors xk

t−1, xk
t+1 by jointly denoising them as part of the same input sequence to the

model [xk
t−1,x

k
t ,x

k
t+1], as shown in Fig. 2. We partition the target video x into T non-overlapping

chunks {xt}T−1
t=0 that are shorter than the context window, thereby freeing up space to jointly denoise

the conditioning chunks. In practice, only a portion of the neighboring chunks fit into the context
window. In the model output, the denoised target chunk xk−1

t is used to update the noisy estimate
of the stitched sequence while the denoised conditioning chunks xk−1

t−1 , xk−1
t+1 are discarded. This

stitching procedure, which we refer to as vanilla GVS, is compatible with any DF video model, which
is designed for such joint denoising of conditioning and target signals (Song et al., 2025).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Straight Line Stairs

N
o 

O
m

ni
G

ui
de

O
m

ni
G

ui
de

 
N

o 
O

m
ni

G
ui

de
(v

an
ill

a 
G

V
S)

(f
ul

l G
V

S)

Time Time

Figure 3: Effect of Omni Guidance and Stochasticity. Without Omni Guidance and zero stochastic-
ity (η = 0), the generations lack temporal consistency and instead exhibit hazy transitions between
different scenes. Increasing stochasticity to its maximum (η = 1.0) enhances consistency but leads
to oversmoothing. Our full method with Omni Guidance and partial stochasticity (η = 0.9) enables
consistent generation without oversmoothing.

Although vanilla GVS is simple to implement, it achieves poor temporal consistency, as shown in
the top row of Fig. 3. We hypothesize that this is because vanilla GVS denoises the target chunk xk

t
using the score function of the joint distribution p(xt−1,xt,xt+1) rather than that of the originally
intended conditional distribution p(xt|xt−1,xt+1) in Eq. 3. While in autoregressive sampling, target
frames are generally conditioned on past context that is significantly less noisy, vanilla GVS requires
that the target chunk xk

t is equally noisy as its conditioning neighbors xk
t−1, xk

t+1, leading to a weak
conditioning signal.

3.3 STOCHASTICITY IS NECESSARY BUT INSUFFICIENT FOR CONSISTENCY

Prior stitching work StochSync (Yeo et al., 2025) proposes stochasticity as a mechanism for enhancing
consistency. It introduces maximum stochasticity σk =

√
1− αk−1, which acts as an error correction

mechanism by eliminating the predicted noise term and maximizing the random noise term in the
denoising equation in Eq. 1. We find that maximum stochasticity also benefits vanilla GVS in terms
of temporal consistency (see Table 2) but often results in oversmoothed generations, as shown in
Fig. 3, aligning with observations made in prior works (Karras et al., 2022; Yeo et al., 2025). In this
case, maximum stochasticity simplifies the task of consistency by oversmoothing the generations.

3.4 OMNI GUIDANCE ENHANCES CONSISTENCY

To address the shortcomings of stochasticity, we propose a more direct way of enhancing consistency:
Omni Guidance, which aims to steer the score function of the original joint distribution towards that
of the desired conditional distribution by strengthening the conditioning on the past and future.

One difficulty is that stitching breaks a core assumption of standard classifier-free guidance (Ho &
Salimans, 2022), which is that the conditioning signal is independent of the model weights. In GVS,
the guidance signal for target chunk xk

t comes from the backbone model’s own co-evolving, noisy
estimate of its temporal neighbors xk

t−1, xk
t+1, making the guidance signal dependent on the model

weights. To address this, we draw inspiration from Inner Guidance (Chefer et al., 2025) and directly
modify the original sampling distribution pθ(x

k
t−1:t+1|pt−1:t+1) for target chunk xt to be consistent

with its temporal neighbors (and the predefined camera trajectory):
p̃θ(x

k
t−1:t+1|pt−1:t+1) (4)

∝ pθ(x
k
t−1:t+1|pt−1:t+1)pθ(pt−1:t+1|xk

t−1:t+1)
γ1pθ(x

k
t−1,x

k
t+1|xk

t ,pt−1:t+1)
γ2 (5)

∝ pθ(x
k
t−1:t+1|pt−1:t+1)

[
pθ(x

k
t−1:t+1|pt−1:t+1)

pθ(xk
t−1:t+1)

]γ1
[
pθ(x

k
t−1:t+1|pt−1:t+1)

pθ(xk
t |pt−1:t+1)

]γ2

(6)
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Panorama 2-loopPanorama 1-loop

Loop closing 
disabled

Loop closing 
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Time Time

Figure 4: GVS Requires Explicit Loop Closing. Despite its global theoretical receptive field, our
stitching method requires an explicit loop closing mechanism to “visually return to the same place”.
Note that the camera centers are offset from the panorama’s rotation center purely for visual clarity.

Panorama

1-loop

Panorama

2-loop

DF model

Temporal Window Spatial Window Temporal Window Spatial Window

pad

Figure 5: Loop Closing via Cyclic Conditioning. GVS closes loops via cyclic conditioning,
whereby target chunks are denoised by two alternating sets of context windows: temporal windows,
which condition target chunks on their temporally neighboring chunks, and spatial windows, which
condition target chunks on temporally distant but spatially close neighboring chunks. As a result,
target chunks are conditioned on all relevant neighbors across the entire stitching process. See Fig. 8
for the full set of spatial windows.

This corresponds to modifying the original score function ϵθ(x
k
t−1:t+1|pt−1:t+1) as follows:

ϵ̃θ = (1 + γ1 + γ2)ϵθ(x
k
t−1:t+1|pt−1:t+1)− γ1ϵθ(x

k
t−1:t+1|∅, ∅, ∅)− γ2ϵθ(∅,xk

t , ∅|pt−1:t+1), (7)
where ∅ denotes the null condition and guidance scales γ1 and γ2 modulate the adherence to the prede-
fined camera trajectory and consistency of the target chunk with its temporal neighbors, respectively.
In practice, we merge the guidance terms to be modulated by a single γ to obtain:

ϵ̃θ = (1 + γ)ϵθ(x
k
t−1:t+1|pt−1:t+1)− γϵθ(∅,xk

t , ∅|∅, ∅, ∅). (8)
The guidance term ϵθ(∅,xk

t , ∅|∅, ∅, ∅) is computed by replacing the noisy neighboring chunks with
pure Gaussian noise and setting their noise levels to be maximum, enabled by relying on the Diffusion
Forcing backbone (Chen et al., 2024). This can be seen as a generalization of Fractional History
Guidance (Song et al., 2025), with the key difference that the noise levels of the conditioning
neighboring chunks, change throughout the stitching process while they remain fixed in history-
guided autoregressive sampling.

As we show in Sec. 4.2, Omni Guidance enhances temporal consistency across a wide range of
stochasticity levels and thus provides extra affordance for reducing oversmoothing. Specifically,
Omni Guidance enables partial stochasticity σk = η

√
1− αk−1, where η ∈ (0, 1), the two of which

in tandem reduce oversmoothing while maintaining similar levels of consistency.

3.5 LONG-RANGE CONSISTENCY VIA CYCLIC CONDITIONING

In theory, our stitching method described in Sec. 3.2 through 3.4 has global context as the theoretical
receptive field of each segment grows with every denoising step, somewhat analogous to the growing
receptive field along the depth of a CNN (Luo et al., 2017). Therefore, one could reasonably expect
GVS to enable zero-shot loop closure, a form of global consistency. In practice, we observe that while
GVS significantly improves temporal consistency, it does not enforce it globally. Fig. 4 demonstrates
that very long generations do not visually “return to the same place”, suggesting that information
does not propagate as widely across the stitched video as necessary.

To enable loop closures, we propose adding more factors to the compositional distribution in Eq. 3 by
denoising additional diffusion windows that contain temporally distant but spatially close chunks

6
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Figure 6: Qualitative Comparison with Baselines. Autoregressive sampling collides with the
generated scene, fails to dream up the desired staircase, and does last-minute loop closure, resulting
in discontinuities in scene appearance. StochSync performs better at these tasks, but it generates
shape-shifting scenes that lack temporal consistency. GVS, on the other hand, avoids collisions,
generates the desired staircase, and closes loops, all the while maintaining temporal consistency.

– jointly with the original set of diffusion windows. For example, as shown in Fig. 5, the chunk
containing the frame at the end of the Panorama 1-loop trajectory is denoised by two diffusion
windows: one that conditions the target chunk on its temporal neighbors (temporal window) and one
on its spatial neighbors (spatial window). We propose to alternate between these two sets of context
windows at every denoising step, a procedure we call cyclic conditioning. As a result, the generation
of the target chunk is conditioned on both of its spatial and temporal neighbors over the course of
the entire denoising process, resulting in successful loop closure. We visualize the full set of spatial
windows for each trajectory in Fig. 8. Note that some target chunks do not have spatial neighbors and
are denoised only by temporal windows.

4 EXPERIMENTS

We empirically evaluate GVS as a stitching method for camera-guided video generation and as an
alternative to autoregressive sampling for video length extrapolation. Further experimental details
and results can be found in Appendix A and B and video results on our project page.

Benchmarks. To evaluate long-horizon, camera-guided video generation against a predefined camera
trajectory, we create a dataset of challenging conditioning trajectories, which are listed in Table 1.
These camera trajectories are designed to test various video model capabilities, including video length
extrapolation, loop closures, and collision avoidance.

Baselines. 1) History-Guided Autoregressive (AR) Sampling (Song et al., 2025): an autoregressive
extension method for ultra-long video generation. 2) StochSync (Yeo et al., 2025): a diffusion
stitching method for panorama generation and 3D mesh texturing. All sampling methods, including
ours, are evaluated using the same camera-conditioned video model open-sourced by Song et al.
(2025), a Diffusion-Forcing Transformer model trained on the RealEstate10K dataset (Zhou et al.,
2018) with an 8-frame-long context window. For conditioning trajectories that require loop closing,
we augment Autoregressive Sampling with a memory mechanism built on field-of-view-based retrieval
(Zhou et al., 2025; Xiao et al., 2025) and StochSync with our proposed loop-closing mechanism.

Metrics. To evaluate the frame-to-frame consistency (F2FC) of camera-guided video generation, we
use MEt3R cosine (Asim et al., 2025) averaged over every pair of consecutive frames. We measure
long-range consistency (LRC) also with MEt3R cosine (Asim et al., 2025), now averaged over pairs
of frames that are temporally distant but deemed to be spatially close based on the field-of-view
overlap of their conditioning cameras. We use the collision detection mechanism in (Schneider et al.,
2025) to evaluate collision avoidance (CA), whereby a collision is claimed if the inferred metric
video depth for any frame (Chen et al., 2025b) falls below a threshold. Finally, we evaluate video
frame quality using the imaging quality (IQ) and aesthetic quality (AQ) metric proposed in VBench
(Huang et al., 2024) and we use the inception score (IS) for certain ablations (Salimans et al., 2016).

7
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Trajectory
Autoregressive StochSync Ours (GVS)

F2FC(↓) LRC(↓) IQ(↑) AQ(↑) CA(↓) F2FC(↓) LRC(↓) IQ(↑) AQ(↑) CA(↓) F2FC(↓) LRC(↓) IQ(↑) AQ(↑) CA(↓)

Panorama 1-loop 0.168 0.339 0.458 0.409 N/A 0.183 0.164 0.515 0.489 N/A 0.138 0.141 0.537 0.461 N/A

Panorama 2-loop 0.169 0.171 0.460 0.422 N/A 0.259 0.279 0.500 0.470 N/A 0.155 0.116 0.483 0.376 N/A

Circle 1-loop 0.220 0.411 0.432 0.377 0.625 0.204 0.258 0.546 0.459 0 0.160 0.244 0.546 0.432 0

Circle 2-loop 0.207 0.280 0.459 0.387 0.775 0.252 0.305 0.488 0.419 0 0.182 0.206 0.465 0.358 0

Straight line 0.138 N/A 0.456 0.365 0.325 0.124 N/A 0.544 0.409 0 0.080 N/A 0.615 0.423 0

Stairs 0.166 N/A 0.513 0.345 0.075 0.204 N/A 0.571 0.417 0 0.137 N/A 0.621 0.401 0

Staircase circuit 0.132 0.449 0.397 0.329 0.625 0.179 0.221 0.563 0.438 0 0.129 0.176 0.607 0.419 0

Table 1: Comparison with Baselines on Camera-guided Video Generation. Our method outper-
forms both baselines in terms of temporal consistency (F2FC), long-range consistency (LRC), and
collision avoidance (CA), while demonstrating comparable video quality (IQ, AQ). Note that while
StochSync has zero collisions on paper, it achieves this by shape-shifting the scene, as reflected in its
poor temporal consistency. We display results averaged over 40 generations.

η
Straight line Stairs

F2FC(↓) IQ(↑) AQ(↑) IS(↑) F2FC(↓) IQ(↑) AQ(↑) IS(↑)

0 0.153 0.537 0.420 2.17 0.201 0.550 0.392 1.81

0.5 0.124 0.499 0.407 1.76 0.177 0.540 0.397 1.48

0.9 0.084 0.458 0.400 1.40 0.146 0.539 0.381 1.51

1.0 0.061 0.422 0.407 1.54 0.135 0.500 0.396 1.40

(a) without Omni Guidance

η
Straight line Stairs

F2FC(↓) IQ(↑) AQ(↑) IS(↑) F2FC(↓) IQ(↑) AQ(↑) IS(↑)

0 0.138 0.553 0.455 2.43 0.177 0.566 0.409 2.10

0.5 0.110 0.556 0.463 2.06 0.160 0.578 0.419 1.72

0.9 0.080 0.615 0.423 1.65 0.137 0.621 0.401 1.66

1.0 0.071 0.610 0.431 1.53 0.130 0.600 0.404 1.67

(b) with Omni Guidance

Table 2: Ablation on Omni Guidance and Stochasticity. Without Omni Guidance (a), increasing
stochasticity consistently improves temporal consistency (F2FC) but often results in oversmoothing,
which is reflected in the general decline of video quality metrics (IQ, AQ, IS). Omni Guidance (b)
complements stochasticity by enhancing consistency across a wide range of stochasticity levels,
providing our method extra affordance to reduce oversmoothing.

4.1 COMPARISON WITH BASELINES

As shown in Table 1, our method outperforms both baselines in terms of temporal (frame-to-frame)
consistency, long-range (loop) consistency, and collision avoidance, while demonstrating comparable
video generation quality. These quantitative results are corroborated in Fig. 6, which demonstrates
AR sampling’s inability to plan and take future conditioning into account: on the Straight Line
benchmark, AR sampling collides with the generated scene, after which generations quickly collapse
(see frames in green). More notably, on Stairs, AR sampling often fails to dream up the desired
staircase and instead collides with the ceiling. On Panorama 2-loop, AR sampling demonstrates
loop closing abilities (compare frames in purple) but often loop-closes at the “last-minute”, stitching
together visually inconsistent scenes to return to the same place (compare frames in red). StochSync
avoids collisions and generates the desired staircase on Straight Line and Stairs, but it does
so by shape-shifting the scene and compromising on temporal consistency. On Panorama 2-loop,
StochSync also demonstrates loop closing, but often fails to reconcile high-frequency details, which
is reflected in Table 1. GVS, on the other hand, generates samples that are stable, faithful to the
conditioning camera trajectory (i.e., avoids collisions and generates the desired staircase), temporally
consistent, and visually close loops. Please find more baseline comparisons in Fig. 18, 19, and 20.

4.2 ABLATIONS

Omni Guidance and Stochasticity. In Table 2 and Fig. 3, we demonstrate the effectiveness of
Omni Guidance and how it complements stochasticity. Table 2 (a) shows that increasing stochasticity
consistently improves temporal consistency. However, this comes at the cost of oversmoothed
generations, as shown by the second row of Fig. 3 and the general decline in video quality metrics in
Table 2 (a).
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Loop
Closing

Omni
Guidance

Panorama 1-loop Panorama 2-loop

F2FC(↓) LRC(↓) IQ(↑) AQ(↑) F2FC(↓) LRC(↓) IQ(↑) AQ(↑)

✗ ✗ 0.137 0.950 0.442 0.423 0.137 0.917 0.442 0.414

✗ ✓ 0.141 0.962 0.554 0.463 0.140 0.917 0.546 0.461

✓ ✗ 0.138 0.201 0.430 0.407 0.166 0.133 0.402 0.355

✓ ✓ 0.138 0.141 0.537 0.461 0.155 0.116 0.483 0.376

Table 3: Ablation on Loop Closing and Omni Guidance. Without an explicit loop closing
mechanism, our method fails to display long-range consistency (LRC), even with the help of Omni
Guidance. Activating our loop closing mechanism significantly improves long-range consistency,
which can be further bolstered by Omni Guidance.

visual loop closure staircase stable long rollout

Si
de
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w
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p 
V
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Figure 7: GVS can visually navigate through the Impossible Staircase. GVS can generate a
120-frame navigation video through our variant of Oscar Reutersvärd’s Impossible Staircase, which
is shown on the left. The video forms a visually continuous loop between the end points of the
conditioning camera trajectory despite their height difference.

In Table 2 (b), Omni Guidance enhances temporal consistency across a wide range of stochasticity
levels, providing GVS additional flexibility to reduce oversmoothing; going from maximum stochas-
ticity (η = 1) to partial stochasticity (0 < η < 1) reduces oversmoothing but worsens consistency,
which can be compensated for by adding Omni Guidance (compare rows 2 and 3 in Fig. 3 and
compare row 4 of Table 2 (a) and row 3 of Table 2 (b), respectively).

Note that for Straight Line adding Omni Guidance at maximum stochasticity η = 1 actually
hurts temporal consistency, on paper. This is because oversmoothing is so severe that adding Omni
Guidance, which generally increases scene complexity, makes the task of consistency a harder one.

Loop Closure and Omni Guidance. In Table 3 and Fig. 4, we highlight the need for an explicit
loop closing mechanism in stitching and illustrate how Omni Guidance bolsters loop closing. As
shown in Fig. 4, without our proposed loop closing mechanism our method fails to visually return to
the same place, which suggests that the effective receptive field of GVS is not global. This finding
is corroborated in Table 3, which shows that even Omni Guidance cannot make up for the absence
of explicit loop closing. When our loop closing mechanism is activated, however, adding Omni
Guidance significantly improves long-range consistency, demonstrating that both components of our
method are crucial for effective loop closure.

It should be noted that activating our loop closing mechanism results in oversmoothed generations
on Panorama 2-loop for the default stochasticity level η = 0.9 (see Fig. 4 and 6). However, we
show in Appendix B.3 that stochasticity can be further reduced to alleviate oversmoothing without
compromising consistency, which is made possible by Omni Guidance.

4.3 NEW APPLICATION: THE IMPOSSIBLE STAIRCASE

In Fig. 7, we showcase a novel application that leverages all of this paper’s contributions: we generate a
video that navigates through a variant of Oscar Reutersvärd’s impossible staircase (Penrose & Penrose,
1958). The two end points of the conditioning trajectory differ in height, yet we form a visually
continuous loop by using our proposed loop-closing mechanism. Please find the implementation
details in Appendix A.2.
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5 DISCUSSION

Limitations. GVS achieves collision-free camera-guided video generation by breaking causality,
the downside of which is that it cannot be applied to online problem settings where future camera
poses are not available, such as interactive video generation and streaming. Furthermore, we find
that conditioning on external images is difficult as GVS struggles to propagate the context frames to
the rest of the target video. GVS does not require retraining of the backbone, which also means that
GVS’ performance is dependent on its backbone. For example, GVS fails to loop-close wide-baseline
viewpoints, which aren’t in its backbone’s training data, and often struggles to distinguish the start
of an upward staircase from the end of a downward staircase due to the backbone’s limited context
window (see Fig. 1). Finally, the spatial windows in our cyclic conditioning strategy are manually
defined and hence is not currently scalable. We elaborate on these shortcomings and suggest future
work in Appendix C.

Conclusion. In this paper, we introduced Generative View Stitching (GVS), a training-free diffusion
stitching method for camera-guided video generation. GVS is designed to be compatible with any
Diffusion-Forcing video model, which enables Omni Guidance, a robust technique that enhances the
temporal consistency in stitching, and by extension, enables loop closing. Given its ability to generate
camera-guided videos that are consistent, faithful to the conditioning trajectory, and stable, GVS
not only establishes itself as a competitive video stitching framework, but also presents a promising
alternative to autoregressive extension for long video generation.
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A EXPERIMENTAL DETAILS

Algorithm 1: Camera-guided Video Generation with GVS

Inputs: cameras p; context windows {wn}N−1
n=0 each specified by T target chunk + T overlap

timesteps
Outputs: z: video sample of length T aligned with p
Function GVS(p, {wn}N−1

n=0 ):
z ∼ N (0, I) ▷ Initialize video sample with pure-noise sequence
W ← {}
for t = 0, . . . , T − 1 do

for n = 0, . . . , N − 1 do
if w̄n is equal to tth target chunk then
W[t].insert(wn) ▷ Compile context windows containing tth target chunk

end
end

end
for k = K − 1, . . . , 1 do

ϵk ∼ N (0, I) ▷ Sample pure-noise sequence for stochasticity term
for t = 0, . . . , T − 1 do

wk
t ←W[t][k mod |W[t]|] ▷ Cycle through context windows

xk
t ← fwk

t
(z),pk

t ← fwk
t
(p), ϵkt ← fwk

t
(ϵk) ▷ Project to context window

ϵ̃θ ← (1 + γ)ϵθ(x
k
t |pk

t )− γϵθ(∅, x̄k
t , ∅|∅, ∅, ∅) ▷ Predict guided noise

x
0|k
t ← xk

t −
√
1− αk ϵ̃θ√
αk

▷ Predict clean sample

σk ← η
√
1− αk−1 ▷ Compute stochasticity

xk−1
t ←

√
αk−1x

0|k
t +

√
1− αk−1 − (σk)2 · ϵ̃θ + σkϵkt ▷ Run DDIM denoising step

end
z← argminz

∑T−1
t=0 ||fw̄k

t
(z)− x̄k−1

t ||2 ▷ Update video sample with target chunks
end

A.1 IMPLEMENTATION DETAILS

Backbone Diffusion Models. In this paper, we evaluate all sampling methods on three different
backbone diffusion models: one Diffusion-Forcing (DF) backbone (see Table 1) and two DF-free
backbones (see Tables 7 and 8). All three backbones support camera-conditioned video generation,
are trained on the RealEstate10K dataset (Zhou et al., 2018), and are opensourced by Song et al.
(2025). The two DF-free backbones are each trained with frame-level binary-dropout (BD) diffusion,
which is fully compatible with every component of GVS, and full-sequence (FS) diffusion (uniform
noise levels across all frames), which is compatible with GVS, except for Omni Guidance. The full
implementation details of these backbones can be found in Song et al. (2025), but we repeat the most
relevant points for completeness’ sake:

All three backbones share the same U-ViT architecture (Hoogeboom et al., 2023) (with 459M
parameters) that accepts 8× 256× 256 video inputs. All conditioning signals i.e., per-frame noise
levels and camera poses, are injected into the model via Adaptive LayerNorm. Importantly, camera
conditioning is injected by first computing relative poses with respect to the first frame and then
transforming them into high-dimensional ray encodings.

Sampling. For history-guided autoregressive sampling (Song et al., 2025), we use the default
hyperparameters from its open-sourced implementation: a deterministic DDIM sampler, which
corresponds to setting σk = 0 in Eq. 1, with a linear denoising step schedule over 50 sampling
steps (the number of training denoising steps is 1000), a history guidance scale of 4, which controls
the joint guidance on history and camera conditioning, 4 history frames per context window, and a
stabilization level of 0.02.

We repurpose the StochSync baseline (Yeo et al., 2025), originally designed for arbitrary images such
as 360-degree panoramas and 3D mesh textures, for camera-guided video generation; we treat the
video output from our backbone model as a wide image generated by an image diffusion backbone.
We use the default hyperparameters from StochSync’s implementation for 360-degree panorama
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Panorama 1-loop

Panorama 2-loop

Spatial Window 1 Spatial Window 1 Spatial Window 1Spatial Window 2

Spatial Window 1 Spatial Window 2 Spatial Window 3 Spatial Window 4 Spatial Window 11 Spatial Window 12 

Spatial Window 2 Spatial Window 2

Circle 1-loop Staircase Circuit

Spatial Window 1 Spatial Window 2 Spatial Window 3 Spatial Window 4 Spatial Window 11 Spatial Window 12 

Circle 2-loop

DF model

Figure 8: Spatial Context Windows that Define Our Method’s Cyclic Conditioning Strategy. Note
that for Panorama 1-loop and Panorama 2-loop, we intentionally offset the camera centers
from the panorama’s rotation center to better distinguish between different parts of conditioning
trajectory. We visualize Circle 1-loop and Circle 2-loop as spirals also for better clarity.

generation: a maximum stochasticity DDIM sampler (σk =
√
1− αk−1), a linear denoising step

schedule over 25 sampling steps from K = 900 to Kstop = 270, multi-step computation of clean
samples, which is initially run for 50 steps and linearly decreased as the outer-loop denoising
progresses, and two alternating sets of non-overlapping context windows, which are offset from
each other by 4 frames. While the default guidance scale is 7.5, we find that this leads to unrealistic
generations for the given backbone and task and therefore we lower the guidance scale to 4. Note
that this guidance scale only controls camera conditioning as StochSync does not guide with history.

Our method (GVS) is outlined in Algorithm 1, where t ∈ {0, 1, . . . , T − 1} indexes the tth target

chunk, which is comprised of timesteps {τ}t(T
target chunk+1)−1

τ=tT target chunk , and T target chunk, T overlap, T denote
the size of each target chunk, overlap length between context windows, and target video length
respectively; w̄ denotes the target chunk of context window w, and fw(z) denotes the selection of
frames from video estimate z that lie within w.

Our method uses a partial stochasticity DDIM sampler (σk = η
√
1− αk−1) with stochasticity level

η = 0.9 and a guidance scale of γ = 1. Note that our guidance scale convention represents no
guidance with γ = 0, whereas the baseline methods represent no guidance with γ = 1. Our method
employs overlapping context windows with T overlap = 2 and T target chunk = 4. In other words, each
8-frame-long context window is comprised of 2 frames from the past chunk, the target chunk, and 2
frames from the future chunk. We visualize this in Fig. 2 but with half the context window size.

Loop-Closing Mechanism. For conditioning camera trajectories that require loop-closing
i.e., Panorama 1-loop, Panorama 2-loop, Circle 1-loop, Circle 2-loop, and
Staircase circuit, we equip all sampling methods with a loop-closing mechanism.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Indefinite Staircase

Figure 9: GVS Stably Scales to Longer Videos Given More Test-Time Compute.

Inspired by Xiao et al. (2025); Zhou et al. (2025), we augment history-guided autoregressive sampling
with a memory mechanism that retrieves previously generated frames whose field-of-view overlap
with the current generation exceeds a threshold. At every autoregressive step, we generate 1 frame
conditioned on a maximum of 3 retrieved history frames, which are placed at the right end of the
context window, and the 4 latest history frames, which are placed at the left end; if there are less than
3 retrieved frames, we pad with pure-noise frames.

We augment StochSync with our cyclic conditioning mechanism, which we tailor to its non-
overlapping window sampling strategy. For trajectories that form a single loop i.e., Panorama
1-loop, Circle 1-loop, and Staircase circuit, we use StochSync’s original strategy
of alternating between two sets of context windows, which is a form of cyclic conditioning; the second
set includes a context window that “wraps around” the loop and thus enforces consistency between
the start and end of the camera trajectory. For Panorama 2-loop and Circle 2-loop, we
add a third set of non-overlapping context windows that enforces consistency between corresponding
frames in the first and second loops, similar to “Spatial windows 1 ∼ 12” in Fig. 8.

Our method loop closes via cyclic conditioning, whereby target chunk t is denoised by two
alternating sets of context windows: 1) temporal context windows, which contain timesteps
{τ}t(T

target chunk+1)+T overlap−1

τ=tT target chunk−T overlap , and 2) spatial context windows, which we summarize in Fig. 8.

A.2 DETAILS ON THE IMPOSSIBLE STAIRCASE (SEC. 4.3)

To loop close the two end points of the Impossible Staircase trajectory, we use a cyclic
conditioning technique similar to that of Staircase Circuit, which is shown in Fig. 8. The key
difference is that we modify the conditioning camera segments for the two spatial windows, which
condition the first frame on the last frame and vice versa; we replace the original camera segments,
which are disconnected due to the height difference between the end points of the trajectory, with a
continuous straight line to encourage visual continuity.

A.3 COMPUTE RESOURCES

We run every experiment on a single NVIDIA H200 GPU and report the resulting metrics. We also
provide a scalable implementation of GVS that can be run on a lower-VRAM GPU, such as the
NVIDIA RTX A6000. At every denoising step, the scalable implementation denoises every context
window one-by-one, whereas the default implementation denoises all context windows in parallel.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 10: Inference Costs as a Function of Target Sequence Length.

Time
Complexity

Space
Complexity

T = 24 T = 48 T = 72 T = 96 T = 120
wall
time

malloc
wall
time

malloc
wall
time

malloc
wall
time

malloc
wall
time

malloc

AR O(BTKs) O(BT )
36.19 12.37 86.51 14.63 134.84 16.62 181.48 19.87 212.52 22.46

AR+
22.60 32.74 45.94 53.40 72.15 76.50 96.36 100.22 119.66 124.45

StochSync O(BTK2
s ) O(BT ) 116.29 27.29 212.60 44.54 311.68 58.58 404.29 74.78 504.80 90.98

GVS (Ours) O(BTKs) O(BT ) 24.20 32.62 47.69 52.66 71.46 74.87 95.33 97.07 118.10 119.27

Table 4: Theoretical Complexity and Empirical Performance. B denotes batch size, Ks denotes
the number of sampling timesteps, and T denotes the number of diffusion windows to be processed,
which is directly proportional to the target sequence length T for a fixed context window. All methods
use a batch size B = 1, except for AR+, which has a batch size B = T to match the memory costs
of GVS. “wall time” denotes the average wallclock time taken generate a single video (units: seconds
/ video) and “malloc” denotes the GPU memory allocated (units: Gb), respectively.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 APPLICATION: THE INDEFINITE STAIRCASE

In Fig. 9, we further highlight the long-horizon stability of GVS by generating a 1080-frame video that
climbs an 18-story staircase (here there is no loop closure between the end points of the conditioning
trajectory). The entire video is collision-free and stable, demonstrating GVS’ scaling properties and
its potential as an alternative to autoregressive extension for long video generation.

B.2 INFERENCE COST

In Fig. 10 and Table 4, we compare the theoretical complexity and empirical inference costs of GVS
and the baselines. To measure the empirical performance, we consider a video generation task on the
Straight Line trajectory of varying lengths T ∈ [24, 48, 72, 96, 120] with batchsize B = 1 and
measure 1) “wall time”, the wallclock time to generate a single video averaged over 40 samples and
2) “malloc”, the GPU memory allocated.

Autoregressive (AR) sampling incurs linear time complexity in T , the number of diffusion windows
to be processed, as it processes diffusion windows sequentially, one-by-one. This implies linear time
complexity in the target sequence length T , which is directly proportional to the number of diffusion
windows to be processed T for a fixed context window. AR sampling incurs linear space complexity
in T and in T , as it has to store the outputs of each diffusion window. GVS, which also has linear
time and space complexity in T , enables parallelization along the temporal dimension: unlike AR
sampling, GVS can stack all T diffusion windows along the batch dimension and simultaneously
process them in a single forward pass through the backbone diffusion model. In other words, for
the same batch size B, GVS enables shorter runtimes than AR sampling at the cost of increased
memory usage. This is useful in minibatch or single-sequence generation settings that prioritize
low batch-level latency, such as interactive one-shot cinematography where users iteratively refine a
single target video i.e. no batching opportunity.
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Panorama 2-loop

Sample 1 Sample 2

Figure 11: Lowering Stochasticity Levels Reduces Oversmoothing. Note that we intentionally
offset the camera centers from the panorama’s rotation center to better distinguish between different
parts of the conditioning trajectory.

Omni
Guide η

Panorama 2-loop

F2FC(↓) LRC(↓) IQ(↑) AQ(↑) IS(↑)

✗ 0.9 0.166 0.133 0.402 0.355 1.59

✗ 0.8 0.175 0.147 0.380 0.359 1.56

✓ 0.9 0.155 0.116 0.483 0.376 2.03

✓ 0.8 0.151 0.113 0.483 0.389 2.41

Table 5: Omni Guidance Provides Additional Affordance to Reduce Oversmoothing.

Note that AR sampling can also be parallelized for better GPU utilization by generating multiple
videos in batches, which reduces the average runtime per video at the expense of increased memory
usage. In fact, when we set batchsize of AR sampling as B = T (we denote this method AR+), the
average runtime and memory usage is virtually the same as that of GVS. However, AR+ achieves
worse batch-level latency than GVS, especially for longer target sequences, not to mention that
for our problem setting AR+ also results in collisions with the generated scene, which is a crucial
shortcoming.

StochSync is also parallelizable across the temporal dimension, but it is even slower than AR sampling
due to its quadratic complexity in Ks, the number of sampling timesteps.

B.3 ABLATION ON OMNI GUIDANCE AND STOCHASTICITY

In Fig. 11 and Table 5, we further demonstrate how Omni Guidance provides additional affordance
to reduce oversmoothing without sacrificing consistency. Fig. 11 demonstrates that for Panorama
2-loop, the default stochasticity level η = 0.9 results in oversmoothed generations, which can be
alleviated by reducing the stochasticity level to η = 0.8. Table 5 shows that stochasticity can be
reduced without sacrificing consistency due to the graceful tradeoff properties afforded by Omni
Guidance (compare rows 3 and 4); without Omni Guidance, reducing stochasticity hampers both
temporal and long-range consistency (F2FC, LRC).

B.4 ABLATION ON BACKBONE DIFFUSION MODELS

To investigate the generalizability of GVS to other backbone diffusion models, we perform additional
experiments on two Diffusion-Forcing-free backbones that share the same architecture and training
data as the DF backbone used the main paper. The details of these DF-free backbones (BD backbone
and FS backbone) can be found in section A.1.
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Trajectory
Full Sequence Diffusion Binary Dropout Diffusion Diffusion Forcing

F2FC(↓) LRC(↓) IQ(↑) AQ(↑) CA(↓) F2FC(↓) LRC(↓) IQ(↑) AQ(↑) CA(↓) F2FC(↓) LRC(↓) IQ(↑) AQ(↑) CA(↓)

Panorama 1-loop 0.138 0.228 0.391 0.429 N/A 0.139 0.136 0.557 0.466 N/A 0.138 0.141 0.537 0.461 N/A

Panorama 2-loop 0.166 0.139 0.332 0.384 N/A 0.137 0.100 0.443 0.391 N/A 0.155 0.116 0.483 0.376 N/A

Circle 1-loop 0.169 0.349 0.460 0.409 0 0.165 0.233 0.538 0.455 0.025 0.160 0.244 0.546 0.432 0

Circle 2-loop 0.201 0.245 0.386 0.379 0.025 0.170 0.187 0.470 0.378 0.025 0.182 0.206 0.465 0.358 0

Straight line 0.095 N/A 0.443 0.405 0 0.076 N/A 0.625 0.432 0 0.080 N/A 0.615 0.423 0

Stairs 0.154 N/A 0.587 0.380 0 0.132 N/A 0.604 0.420 0 0.137 N/A 0.621 0.401 0

Staircase circuit 0.143 0.354 0.520 0.411 0 0.133 0.171 0.603 0.448 0 0.129 0.176 0.607 0.419 0

Table 6: Ablation on Backbone Models.

Trajectory
Autoregressive StochSync Ours (GVS)

F2FC(↓) LRC(↓) IQ(↑) AQ(↑) CA(↓) F2FC(↓) LRC(↓) IQ(↑) AQ(↑) CA(↓) F2FC(↓) LRC(↓) IQ(↑) AQ(↑) CA(↓)

Panorama 1-loop 0.157 0.338 0.524 0.446 N/A 0.199 0.222 0.500 0.496 N/A 0.139 0.136 0.557 0.466 N/A

Panorama 2-loop 0.167 0.224 0.562 0.442 N/A 0.280 0.449 0.456 0.464 N/A 0.137 0.100 0.443 0.391 N/A

Circle 1-loop 0.180 0.489 0.517 0.414 0.350 0.205 0.258 0.511 0.464 0.0 0.165 0.233 0.538 0.455 0.025

Circle 2-loop 0.184 0.300 0.547 0.432 0.475 0.294 0.494 0.478 0.438 0.0 0.170 0.187 0.470 0.378 0.025

Straight line 0.123 N/A 0.469 0.372 0.650 0.138 N/A 0.536 0.403 0.0 0.076 N/A 0.625 0.432 0.0

Stairs 0.184 N/A 0.545 0.366 0.400 0.214 N/A 0.563 0.432 0.0 0.132 N/A 0.604 0.420 0.0

Staircase circuit 0.392 0.429 0.456 0.317 0.900 0.207 0.248 0.567 0.444 0.025 0.133 0.171 0.603 0.448 0.0

Table 7: Comparison with Baselines on Backbone Trained with Binary-Dropout (BD) Diffusion.

Table 6 and Fig. 15 demonstrates that GVS can also be applied to DF-free backbones; GVS generates
long-horizon rollouts that are stable, collision-free, and reasonably consistent. It should be noted that
since the FS backbone does not support Omni Guidance, GVS displays slightly worse consistency on
the FS backbone than on the DF backbone or BD backbone, which do support Omni Guidance.

Furthermore, the experimental takeaways for the DF backbone from sections 4.1 and 4.2 also hold
for its DF-free counterparts: Tables 7 and 8 and Figures 16 and 17 show that GVS outperforms
AR sampling in terms of collision avoidance and consistency and StochSync in terms of temporal
consistency. In particular, for the FS backbone, AR sampling collapses beyond the first context
window since it does not support conditioning on context frames (as also demonstrated by Song
et al. (2025)), whereas GVS generates reasonably consistent videos that are stable and collision-free.
Not only that, Table 9 demonstrates that for the BD backbone, which is fully compatible with
every component of GVS, Omni Guidance enhances temporal consistency across a wide range of
stochasticity levels, providing additional flexibility to reduce oversmoothing.

These results suggest that GVS can potentially be applied to a wide range of off-the-shelf video
diffusion models, regardless of their training framework.

B.5 ABLATION ON SAMPLING TIMESTEPS

In Tables 10 and 11, we examine the effect of varying the number of sampling timesteps
Ks ∈ [25, 50, 100, 200]. Since the theoretical receptive field of each target chunk grows with
every denoising step, one could reasonably expect consistency to constantly improve as Ks increases.

Surprisingly, while increasing Ks at low values generally improves frame-to-frame (F2FC) and
long-range consistency (LRC), at higher values consistency deteriorates. We attribute this trend to the
observation that increasing Ks also generally increases scene complexity (as reflected in the general
improvement of video quality metrics IQ, AQ, and IS), making the task of consistency a harder one.
Furthermore, we also find that increasing the number of sampling timesteps does not obviate the
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Trajectory
Autoregressive StochSync Ours (GVS)

F2FC(↓) LRC(↓) IQ(↑) AQ(↑) CA(↓) F2FC(↓) LRC(↓) IQ(↑) AQ(↑) CA(↓) F2FC(↓) LRC(↓) IQ(↑) AQ(↑) CA(↓)

Panorama 1-loop 0.528 0.846 0.370 0.334 N/A 0.196 0.191 0.484 0.485 N/A 0.138 0.228 0.391 0.429 N/A

Panorama 2-loop 0.515 0.720 0.335 0.289 0.800 0.288 0.449 0.474 0.444 N/A 0.166 0.139 0.332 0.384 N/A

Circle 1-loop 0.523 0.890 0.372 0.320 0.800 0.199 0.271 0.531 0.449 0.0 0.169 0.349 0.460 0.409 0.0

Circle 2-loop 0.494 0.716 0.328 0.285 0.950 0.275 0.441 0.502 0.427 0.0 0.201 0.245 0.386 0.379 0.025

Straight line 0.557 N/A 0.417 0.330 0.225 0.150 N/A 0.583 0.440 0.0 0.095 N/A 0.443 0.405 0.0

Stairs 0.526 N/A 0.463 0.337 0.300 0.198 N/A 0.626 0.415 0.0 0.154 N/A 0.587 0.380 0.0

Staircase circuit 0.644 0.869 0.331 0.273 0.950 0.197 0.222 0.583 0.442 0.025 0.143 0.354 0.520 0.411 0.0

Table 8: Comparison with Baselines on Backbone Trained with Full-Sequence (FS) Diffusion.

η
Straight line Stairs

F2FC(↓) IQ(↑) AQ(↑) IS(↑) F2FC(↓) IQ(↑) AQ(↑) IS(↑)

0 0.150 0.494 0.453 1.79 0.204 0.512 0.422 2.09

0.5 0.116 0.446 0.416 1.68 0.178 0.499 0.411 1.78

0.9 0.080 0.442 0.413 1.56 0.137 0.502 0.401 1.56

1.0 0.063 0.415 0.384 1.44 0.117 0.494 0.412 1.49

(a) without Omni Guidance

η
Straight line Stairs

F2FC(↓) IQ(↑) AQ(↑) IS(↑) F2FC(↓) IQ(↑) AQ(↑) IS(↑)

0 0.136 0.540 0.499 2.17 0.187 0.545 0.450 2.55

0.5 0.114 0.552 0.491 2.67 0.170 0.551 0.456 2.94

0.9 0.076 0.625 0.432 1.65 0.132 0.604 0.420 2.18

1.0 0.068 0.609 0.427 1.59 0.121 0.610 0.426 1.63

(b) with Omni Guidance

Table 9: Ablation on Omni Guidance and Stochasticity for the BD backbone.

Ks
Panorama 1-loop Panorama 2-loop

F2FC(↓) LRC(↓) IQ(↑) AQ(↑) F2FC(↓) LRC(↓) IQ(↑) AQ(↑)

25 0.140 0.917 0.516 0.451 0.141 0.918 0.518 0.455

50 0.141 0.962 0.554 0.463 0.140 0.917 0.546 0.461

100 0.150 0.948 0.560 0.464 0.148 0.926 0.567 0.473

200 0.155 0.988 0.569 0.472 0.158 0.916 0.573 0.480

(a) without Loop Closing

Ks
Panorama 1-loop Panorama 2-loop

F2FC(↓) LRC(↓) IQ(↑) AQ(↑) F2FC(↓) LRC(↓) IQ(↑) AQ(↑)

25 0.141 0.191 0.512 0.449 0.165 0.163 0.418 0.365

50 0.138 0.141 0.537 0.461 0.155 0.116 0.483 0.376

100 0.147 0.139 0.558 0.466 0.151 0.109 0.514 0.373

200 0.154 0.143 0.571 0.476 0.148 0.110 0.550 0.369

(b) with Loop Closing

Table 10: Ablation on Sampling Timesteps.

Ks
Straight line Stairs

F2FC(↓) IQ(↑) AQ(↑) IS(↑) F2FC(↓) IQ(↑) AQ(↑) IS(↑)

25 0.089 0.566 0.423 1.53 0.140 0.575 0.394 1.70

50 0.080 0.615 0.423 1.65 0.137 0.621 0.401 1.66

100 0.078 0.640 0.422 1.60 0.141 0.626 0.402 1.73

200 0.080 0.613 0.439 1.58 0.149 0.609 0.413 2.18

Table 11: [Continued] Ablation on Sampling Timesteps.

need for our explicit loop closing mechanism (see Table 10). We therefore use an intermediate value
Ks = 50 as the default, which balances consistency, scene complexity, and inference costs (for GVS,
time and space complexity is linear in Ks, as stated in Table 4).

B.6 ABLATION ON CHUNKING PROFILE

In Table 12, we investigate GVS’ sensitivity to the chunking profile by varying the target chunk size
T target chunk and the overlap length T overlap between neighboring windows. Each context window is
comprised of T target chunk frames in the target chunk, flanked by T overlap

2 past and future conditioning
frames on both sides. It can be seen that increasing T overlap, or equivalently reducing T target chunk,
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T target chunk T overlap Straight Line Stairs

F2FC(↓) IQ(↑) AQ(↑) IS(↑) F2FC(↓) IQ(↑) AQ(↑) IS(↑)

6 2 0.087 0.510 0.396 1.65 0.147 0.583 0.385 1.50

4 4 0.079 0.616 0.421 1.52 0.138 0.618 0.404 1.67

2 6 0.089 0.624 0.429 1.91 0.136 0.620 0.449 2.41

Table 12: Ablation on Chunking Profile.

generally enhances temporal consistency but also increases scene complexity as demonstrated by
the improvement in video quality metrics (IQ, AQ, and IS). For Stairs this does not affect the
trend of enhanced temporal consistency, but for Straight Line, increasing T overlap eventually
worsens consistency as increased scene complexity makes the task of consistent generation a harder
one. For all of our main experiments, we therefore choose intermediate values T target chunk = 4 and
T overlap = 4, which balances consistency, scene complexity, and inference costs (for a given target
sequence length T , reducing T target chunk increases the number of context windows to be processed T ,
resulting in higher inference costs, as shown in Table 4 and Fig. 10).

B.7 ADDITIONAL QUALITATIVE COMPARISONS WITH BASELINES

In Fig. 18, 19, and 20, we visualize additional qualitative comparisons with baselines, which corrobo-
rate our findings in Sec. 4.1: AR sampling collides with the generated scene, after which generation
collapses, and often fails to close loops. StochSync avoids collisions, but achieves this by shape-
shifting the scene. Our method, GVS, generates stable and temporally consistent samples that are
collision-free and closes loops.

C LIMITATIONS, CHALLENGES, AND FUTURE WORK

C.1 APPLICATION TO ONLINE SETTINGS

GVS achives collision-free camera-guided video generation by breaking causality, which precludes
GVS from being applied to online problem settings, such as interactive video generation and streaming,
where future camera poses are not available.

One interesting direction for future research is to extend GVS’ stitching approach to the online
problem setting and enable collision avoidance during interactive generation and streaming. Such
a method would be the generative analog of model predictive control (Camacho & Alba, 2013)
i.e., model predictive generation: at each autoregressive step, diffusion stitching would be used to
generate a sequence longer than the context window conditioned on history and “future” camera
poses, after which the future portion of the generated frames would be discarded. These “future”
camera poses could be defined, for example, with motion extrapolation methods that favor open space
and smoothness or a learned model that predicts user camera controls as a function of history.

C.2 EXTERNAL IMAGE CONDITIONING

We show that GVS does not effectively propagate externally provided context frames to the rest of
the target video. In Fig. 12, we apply GVS to a single-image-to-video task defined by a context
frame and corresponding camera trajectory sampled from the RE10K-Mini dataset (Song et al., 2025)
and visualize the clean-sample predictions at select denoising steps. After noise level k = 999,
frame τ = 2 commits to the scene depicted in the context frame τ = 0, while the remaining frames
are ambivalent. However, by noise level k = 759, future frames τ = 12 and beyond commit to a
different scene, as there is no direct information propagation from the context frame. By the end of
the stitching process, the context frame has only propagated to frame τ = 4, resulting in the awkward
transition between these two diverged scenes as shown in frames τ = 6 and τ = 8.

Note that GVS without external context frames avoids divergent scenes as neighboring frames can
affect each other throughout the stitching process; on the other hand, external context frames are
unaffected by the rest of the target video. Autoregressive sampling also precludes divergent scenes as
new generations are conditioned on fully denoised history.

Controlling information propagation in stitching by modulating the per-frame noise levels of the
Diffusion-Forcing backbone could potentially enable external image conditioning, which would not
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Figure 12: GVS Struggles to Propagate External Context Frames Throughout the Entire Video.

only improve video quality and user controllability, but also enable extending GVS to online problem
settings via model predictive generation (see section C.1). We leave this investigation for future work.

C.3 LOOP-CLOSING WIDE-BASELINE VIEWPOINTS

We find that GVS fails to loop-close wide-baseline viewpoints. To probe the root cause, we benchmark
GVS on the Forward-Orbit-Backward trajectory, which is comprised of collinear forward and
backward camera segments that are connected by a 180-degree orbit camera segment, as shown in
Fig. 13. This experiment suggests that this failure mode stems from the specific Diffusion-Forcing
backbone used by our method, which is trained on RE10K – a dataset comprised of camera trajectories
with small viewpoint shifts.

To elaborate, without our loop closing mechanism, GVS generates a video that correctly tracks the
camera motion i.e., depicts the generated scene from the correct viewpoint, but whose forward and
backward segments do not view the same scene; the brown countertop present in the right side of
frame 0 is absent in frame 13, which marks the end of the orbit, and the color of the floor in each
frame is different.

When our loop closing mechanism is activated, the forward and backward camera segments depict
the same scene, but incorrectly do so from the same viewpoint, as opposed to opposite viewpoints.
This is because the spatial context window we design for cyclic conditioning, shown in the top-right
of Fig. 13, contains wide-baseline cameras in the conditioning trajectory, which is out-of-distribution
to the backbone model. Fig. 14 shows that applying single-window diffusion on this conditioning
trajectory results in the same failure mode, where the generated video fails to track the camera motion.
This failure mode may be addressed by training a Diffusion-Forcing backbone on multi-view datasets
with wider baselines, such as DL3DV (Ling et al., 2024) and ScanNet++ (Yeshwanth et al., 2023),
which is another promising direction for future work.

C.4 SCALABLE CYCLIC CONDITIONING

The spatial neighbors in our proposed cyclic conditioning mechanism are manually defined per
trajectory (see Fig. 8). To scale cyclic conditioning to arbitrary trajectories, one could potentially
learn a separate model that selects spatial neighbors based on their noisy frames and/or the field-
of-view (FOV) overlap (Xiao et al., 2025) of their conditioning cameras. We leave this line of
investigation for future work.
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Forward-Orbit-Backward (24 frames)

w/o Loop Closing w/ Loop Closing

Spatial Window

for Cyclic Conditioning

DF model

Figure 13: GVS Fails to Loop-Close Wide-Baseline Viewpoints. Note that the camera centers of
the forward and backward segments, which are collinear in implementation, are visually offset for
better clarity.

Forward-Orbit-Backward: 

Subtrajectory (8 frames) Single-Window Diffusion

Time

Figure 14: Diffusion-Forcing Backbone Fails on Wide-Baseline Camera Trajectories. Note that
the camera centers, which are collinear in implementation, are visually offset for better clarity.

C.5 STRUCTURALLY SIMILAR CAMERA TRAJECTORY SEGMENTS

In some corner cases, GVS struggles to distinguish camera trajectory segments with similar structure.
This is due to the limited context of the Diffusion-Forcing backbone and its use of relative poses for
camera conditioning. Fig. 1 presents a notable example, where the start of the upward staircase is
identical to the end of the downward staircase up to a rigid transformation. Due to this ambiguity,
GVS often generates a small set of ascending steps at the bottom of the downward staircase (note
that, otherwise, the generated video faithfully tracks the descending camera motion). Extending GVS
to accept additional forms of conditioning, such as context images and text, could help resolve this
ambiguity.
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Figure 15: Ablation on Backbone Models. DF denotes the Diffusion-Forcing backbone, BD denotes
the Binary-Dropout-Diffusion backbone, and FS denotes the Full-Sequence-Diffusion backbone.
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Figure 16: Qualitative Comparison with Baselines on Backbone Trained with Binary-Dropout
(BD) Diffusion.

Straight Line Panorama

2-loop

St
oc

hS
yn

c
G

V
S

A
ut

or
eg

.

Stairs

Time Time Time

Figure 17: Qualitative Comparison with Baselines on Backbone Trained with Full-Sequence
(FS) Diffusion.
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Figure 18: Additional Qualitative Comparisons with Baselines. Note that we intentionally offset
the camera centers from the panorama’s rotation center to better distinguish between different parts
of the conditioning trajectory.
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Figure 19: [Continued] Additional Qualitative Comparisons with Baselines. Note that we
intentionally offset the camera centers from the panorama’s rotation center to better distinguish
between different parts of the conditioning trajectory. We visualize Circle 1-loop and Circle
2-loop as spirals also for better clarity.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Staircase Circuit (120 frames)

St
oc

hS
yn

c

Sample 1
Time

Time

Sample 2
Time

A
ut

or
eg

.
G

V
S

Time Time

Time

Figure 20: [Continued] Additional Qualitative Comparisons with Baselines.
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