

GENERATIVE VIEW STITCHING

Anonymous authors

Paper under double-blind review

ABSTRACT

Autoregressive video diffusion models are capable of long rollouts that are stable and consistent with history, but they are unable to guide the current generation with conditioning from the *future*. In camera-guided video generation with a *pre-defined* camera trajectory, this limitation leads to collisions with the generated scene, after which autoregression quickly collapses. To address this, we propose *Generative View Stitching* (GVS), which samples the entire sequence in *parallel* such that the generated scene is faithful to every part of the predefined camera trajectory. Our main contribution is a sampling algorithm that extends prior work on diffusion stitching for robot planning to video generation. While such stitching methods usually require a specially trained model, GVS is compatible with any off-the-shelf video model trained with Diffusion Forcing, a prevalent sequence diffusion framework that we show already provides the affordances necessary for stitching. We then introduce *Omni Guidance*, a technique that enhances the temporal consistency in stitching by conditioning on both the past *and future*, and that enables our proposed loop-closing mechanism for delivering long-range coherence. Overall, GVS achieves camera-guided video generation that is stable, collision-free, frame-to-frame consistent, and closes loops for a variety of predefined camera paths, including Oscar Reutersv  rd's *Impossible Staircase*. Results are best viewed as videos at <https://generative-view-stitching.github.io/>.

1 INTRODUCTION

Recent developments in diffusion models have significantly advanced video synthesis. However, current video diffusion models generate videos with limited context: most models (Kong et al., 2024; Luma AI Team, 2024; Google DeepMind, 2025; Wan et al., 2025; Runway, 2025) generate videos between 5 and 10 seconds. This is often less than what users want to generate. However, training models with longer context is costly, making methods that can extrapolate pretrained models to generate videos *longer than the training context length* an attractive prospect. Existing approaches typically involve “rolling out” a short-horizon model autoregressively; they demonstrate temporal coherence and stability over the course of hundreds of frames (Chen et al., 2024; Song et al., 2025) and enable real-time streaming (Yin et al., 2025; Huang et al., 2025). Autoregressive (AR) sampling can also be extended with retrieval-based techniques to enable consistency with respect to the distant past (Zhou et al., 2025; Xiao et al., 2025; Yu et al., 2025; Cai et al., 2025), paving the way for neural game engines and interactive world models (Valevski et al., 2025; Ball et al., 2025).

However, AR sampling does not enable consistency with respect to the *future*, *i.e.*, beyond the current context window: it is not possible to guide the generation to synthesize a future goal frame or for current generations to be consistent with future conditioning variables. This arises in applications such as one-shot cinematography (Failes, 2020; Yates, 2023) and synthetic scenario generation for autonomous driving (Hu et al., 2023; Russell et al., 2025), which entail camera-guided video generation with a *predefined* camera trajectory. In this task setting, AR sampling may generate a wall that it is later forced to “step through” due to its inability to plan ahead. This often results in video frames that are out-of-distribution to the model, after which generation quickly collapses (see Fig. 1).

To address this, we explore a *non-autoregressive* sampling approach to video length extrapolation, which respects future conditioning signals when generating current frames. We are inspired by previous work in diffusion stitching (Liu et al., 2022; Bar-Tal et al., 2023; Mishra et al., 2023; Kim et al., 2024; Yeo et al., 2025; Goli et al., 2025; Luo et al., 2025), which are sampling methods that generate the entire sequence in *parallel*, by dividing the sequence into overlapping segments and intertwining their generation processes for consistent connections. Despite their potential for

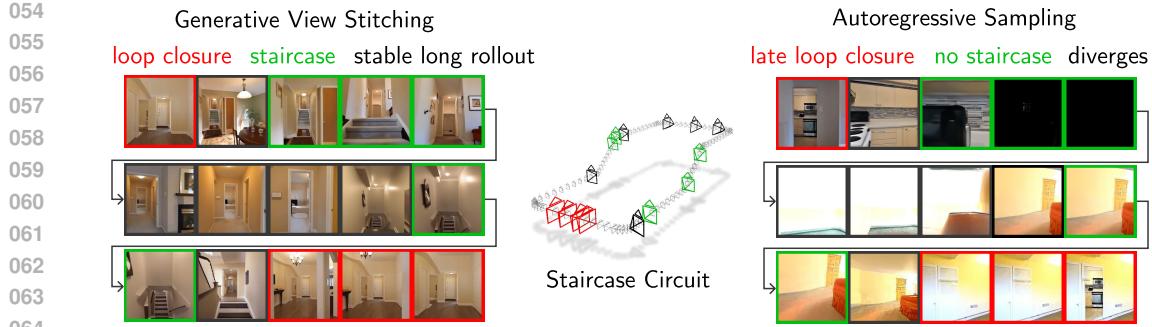


Figure 1: **Generative View Stitching (GVS) enables stable camera-guided generation of long videos.** Given a pretrained DFoT video model (Song et al., 2025) with an 8-frame context window and *predefined* camera trajectory, GVS can generate a 120-frame navigation video that is stable, collision-free, *faithful to the conditioning trajectory*, consistent, and *closes loops*. On the other hand, Autoregressive sampling diverges due to collisions with the generated scene, is not faithful to the conditioning trajectory, and demonstrates poor loop closure even when augmented with RAG.

video length extrapolation, existing stitching methods are not suitable for video generation. For example, StochSync (Yeo et al., 2025), originally designed for generating images such as 360-degree panoramas and 3D mesh textures, lacks the temporal consistency necessary for video generation, as we later show in Sec. 4.1; CompDiffuser (Luo et al., 2025) requires a sequence diffusion model *specially trained for stitching*, but training such a custom model for video is costly.

Based on these observations, we propose *Generative View Stitching* (GVS), the first stitching method for camera-guided video generation. GVS is a training-free stitching approach that is designed to be compatible with any off-the-shelf video model trained with *Diffusion Forcing* (Chen et al., 2024), a prevalent framework for training sequence diffusion models (Decart et al., 2024; Yin et al., 2025; Song et al., 2025; Chen et al., 2025a; Sand.ai et al., 2025). We then introduce *Omni Guidance*, which enhances the temporal consistency in stitching by strengthening the conditioning on the past and future and, in turn, enables our proposed loop-closing mechanism for *long-range* consistency. Our stitching method achieves long-horizon camera-guided video generation that is stable, collision-free, and consistent across both short- and long-term time horizons for a variety of predefined camera paths, including Oscar Reutersv  rd's *Impossible Staircase* (Penrose & Penrose, 1958) (see Fig. 7).

2 RELATED WORK AND PRELIMINARIES

Diffusion models. Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021b) are generative models defined by a forward process that iteratively corrupts a data sample from a target distribution into white noise through a series of noising steps $\mathbf{x}^k = \sqrt{\alpha^k} \mathbf{x}^0 + \sqrt{1 - \alpha^k} \epsilon$, where $k \in \{0, 1, \dots, K-1\}$ are increasing noise levels, $\{\alpha^k\}_{k=0}^{K-1}$ is a predefined schedule, and $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$. The goal of diffusion modeling is to reverse the forward process by learning the score function $\epsilon_\theta(\mathbf{x}^k, k)$, which enables iterative *denoising* of white noise into a sample from the target distribution via:

$$\mathbf{x}^{k-1} = \sqrt{\alpha^{k-1}} \left(\frac{\mathbf{x}^k - \sqrt{1 - \alpha^k} \epsilon_\theta(\mathbf{x}^k, k)}{\sqrt{\alpha^k}} \right) + \sqrt{1 - \alpha^{k-1} - (\sigma^k)^2} \cdot \epsilon_\theta(\mathbf{x}^k, k) + \sigma^k \epsilon \quad (1)$$

(Song et al., 2021a), where σ^k controls the level of stochasticity *i.e.*, the amount of random noise $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ injected into each denoising step, a concept that will become important later on.

Long Video Generation. Video diffusion models often fall short in terms of content resolution, especially temporal resolution, resulting in videos only 5 to 10 seconds long (Kong et al., 2024; Luma AI Team, 2024; Google DeepMind, 2025; Wan et al., 2025; Runway, 2025). This is because the typical diffusion model architecture (Peebles & Xie, 2023) uses attention layers that scale quadratically with the number of tokens. One way to avoid this is to retrieve and attend only to a select number of tokens that are relevant for generating each frame (Xiao et al., 2025; Yu et al., 2025; Cai et al., 2025). Alternatively, history can be compressed into a hidden state (Dalal et al., 2025; Zhang et al., 2025). Training models with a large context is an exciting direction, and test-time stitching methods like GVS can piggy-back and extrapolate to even longer sequences by using such backbone models. This

108 highlights an important property of GVS, which modifies only the sampling method and does not
 109 require specialized model architectures or training paradigms.
 110

111 **Diffusion Forcing and Autoregressive Extension.** Diffusion Forcing (DF) (Chen et al., 2024) is a
 112 prevalent framework for training sequence diffusion models (Decart et al., 2024; Yin et al., 2025;
 113 Song et al., 2025; Chen et al., 2025a; Sand.ai et al., 2025). DF trains sequence diffusion models with
 114 *independent* noise levels per token. During sampling, DF models can then selectively mask portions
 115 of their context window with noise, enabling conditioning on a variable number of context tokens,
 116 also referred to as history. DF also gives rise to *history guidance* (Song et al., 2025), which enables
 117 ultra-long camera-guided autoregressive video generation that is stable and consistent. However, the
 118 long rollouts presented in these works are only possible because of *real-time, user-controlled* camera
 119 trajectories that prevent collisions with generated scene elements. Autoregressive sampling according
 120 to a *predefined* camera trajectory leads to collisions of the camera with the generated scene as the
 121 model generates content unaware of the future camera trajectory (see Fig. 1 and Fig. 6). We present a
 122 stitching-based alternative that (1) is compatible with any DF model and (2) generates videos that are
 123 faithful to the *full* camera trajectory and are thus collision-free and stable.

124 **Camera-Guided Video Diffusion.** Camera control is a highly desired feature of video diffusion
 125 models due to its far-reaching applications in cinematography, game development, and world simula-
 126 tion. Recent approaches to camera control typically involve adding camera conditioning to pretrained
 127 T2I or T2V diffusion models (Wang et al., 2023; Guo et al., 2024; Wang et al., 2024; He et al., 2025a;
 128 Bahmani et al., 2025b;a; Bai et al., 2025; He et al., 2025b; Zhou et al., 2025) and finetuning them on
 129 pose-annotated videos. Some prior works train pose-conditioned video models from scratch (Song
 130 et al., 2025; Weber et al., 2026). To generate videos longer than the context window of these backbone
 131 models, many works use autoregressive (AR) extension as a sampling-time solution (Song et al.,
 132 2025; Zhou et al., 2025; Schneider et al., 2025; Xiao et al., 2025). However, AR sampling can lead
 133 to collisions with the generated scene, due to its inability to look at future camera poses. Some
 134 works circumvent this issue either by having the user control the camera trajectory in real-time (Song
 135 et al., 2025) or using a 3D-prior-based online planner for collision avoidance (Schneider et al.,
 136 2025), but such online methods are not suitable for video generation with respect to a *predefined*
 137 camera trajectory, an *offline* problem setting that arises in one-shot cinematography and synthetic
 138 data generation for autonomous driving. Our method is a stitching-based sampling algorithm that
 139 generates videos faithful to every part of the predefined camera trajectory that is thus collision-free.

3 GENERATIVE VIEW STITCHING

140 We motivate and describe the key components of *Generative View Stitching* (GVS), a diffusion
 141 stitching method for camera-guided video generation that overcomes the shortcomings of autore-
 142 gressive sampling. First, we review recent stitching method CompDiffuser (Luo et al., 2025) and
 143 its requirement of a custom-trained model (Sec. 3.1). We then make the key observation that any
 144 video model trained with Diffusion Forcing (DF) already has the necessary affordances to support
 145 stitching, and introduce a corresponding *training-free* stitching method (Sec. 3.2). We overcome
 146 issues with temporal consistency by combining maximum stochasticity (Yeo et al., 2025), which
 147 itself is insufficient (Sec. 3.3), with our novel *Omni Guidance*, which enhances temporal consistency
 148 by strengthening the conditioning on the past and future (Sec. 3.4). Omni Guidance further enables
 149 our loop closing mechanism for delivering long-range coherence (Sec. 3.5).

3.1 CHALLENGES IN EXTENDING DIFFUSION STITCHING TO VIDEO GENERATION

150 Diffusion stitching methods (Liu et al., 2022; Bar-Tal et al., 2023; Mishra et al., 2023; Kim et al., 2024;
 151 Yeo et al., 2025; Goli et al., 2025; Luo et al., 2025) are sampling methods that enable compositional
 152 generalization beyond the context window of the backbone diffusion model. These methods typically
 153 involve dividing the target sequence \mathbf{x} into T overlapping chunks $\{\mathbf{x}_t\}_{t=0}^{T-1}$ and intertwining their
 154 denoising processes by synchronizing their intermediate outputs. In particular, CompDiffuser (Luo
 155 et al., 2025), a stitching method designed for goal-conditioned planning, models each target chunk \mathbf{x}_t
 156 to be dependent only on its temporal neighbors $\mathbf{x}_{t-1}, \mathbf{x}_{t+1}$, resulting in the following compositional
 157 trajectory distribution:
 158

$$p_{\theta}(\mathbf{x} | \mathbf{x}_{\text{start}}, \mathbf{x}_{\text{goal}}) \propto p_0(\mathbf{x}_0 | \mathbf{x}_{\text{start}}, \mathbf{x}_1) p_{T-1}(\mathbf{x}_{T-1} | \mathbf{x}_{T-2}, \mathbf{x}_{\text{goal}}) \prod_{t=1}^{T-2} p_t(\mathbf{x}_t | \mathbf{x}_{t-1}, \mathbf{x}_{t+1}), \quad (2)$$

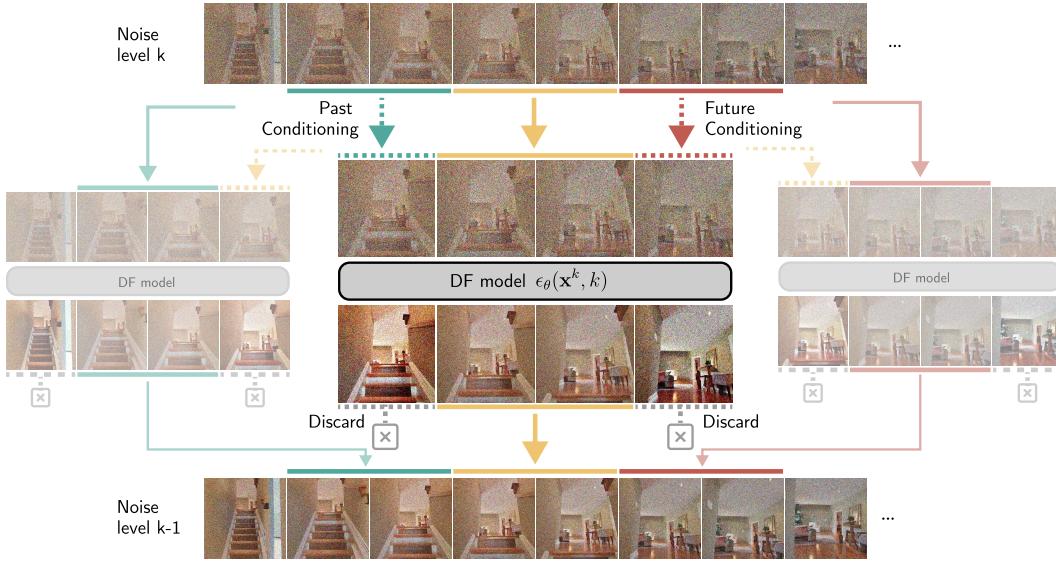


Figure 2: **Generative View Stitching (GVS)** is a training-free diffusion stitching method that is compatible with any off-the-shelf video model trained with Diffusion Forcing (DF). We first partition the target video into non-overlapping chunks shorter than the model’s context window, then denoise every *target chunk* *jointly* with its *neighboring chunks* to condition on both the *past* *and future*. We use the denoised target chunk of every context window to update the noisy stitched sequence while discarding the denoised past and future conditioning chunks. We further enable Omni Guidance (Sec. 3.4), which enhances temporal consistency, by replacing the original score function ϵ_θ with the guided score function $\tilde{\epsilon}_\theta$ in Eq. 8.

where $\mathbf{x}_{\text{start}}$ and \mathbf{x}_{goal} denote the predefined start and goal states, respectively. However, to realize this, CompDiffuser must train a customized denoising network $\epsilon_\theta(\mathbf{x}_t^k, k | \mathbf{x}_{t-1}^k, \mathbf{x}_{t+1}^k)$ that generates a target chunk conditioned on its co-evolving, noisy neighboring chunks. These conditioning chunks are treated as separate *conditioning* inputs, which are embedded via a special encoder and then injected to the backbone model via Adaptive LayerNorm. This need for a custom model prevents the application of CompDiffuser to off-the-shelf models, and hence makes it infeasible to use for video where training a custom model would incur an unacceptable cost.

3.2 GENERAL-PURPOSE VIDEO MODELS ALREADY ENABLE STITCHING

We seek to design a *training-free* stitching method that is compatible with off-the-shelf video models. We find that remarkably, a widely used training framework, Diffusion Forcing (DF), already provides all the necessary features for stitching. Like CompDiffuser, we represent the distribution of camera-guided videos \mathbf{x} compositionally:

$$p_\theta(\mathbf{x} | \mathbf{p}) \propto \prod_{t=0}^{T-1} p_t(\mathbf{x}_t | \mathbf{x}_{t-1}, \mathbf{x}_{t+1}, \mathbf{p}_{t-1}, \mathbf{p}_t, \mathbf{p}_{t+1}), \quad (3)$$

where \mathbf{p} is the predefined camera trajectory, $\mathbf{p}_{-1} \triangleq \mathbf{p}_0$ and $\mathbf{p}_T \triangleq \mathbf{p}_{T-1}$, and \mathbf{x}_{-1} and \mathbf{x}_T are pure-noise frames for padding. Unless otherwise stated, we omit the camera trajectory for the sake of brevity. CompDiffuser requires a custom backbone model for stitching as it processes neighboring chunks via a specialized conditioning path. We instead propose to condition the target chunk \mathbf{x}_t^k on its temporal neighbors $\mathbf{x}_{t-1}^k, \mathbf{x}_{t+1}^k$ by *jointly denoising* them as part of the *same* input sequence to the model $[\mathbf{x}_{t-1}^k, \mathbf{x}_t^k, \mathbf{x}_{t+1}^k]$, as shown in Fig. 2. We partition the target video \mathbf{x} into *T non-overlapping* chunks $\{\mathbf{x}_t\}_{t=0}^{T-1}$ that are *shorter* than the context window, thereby freeing up space to jointly denoise the conditioning chunks. In practice, only a portion of the neighboring chunks fit into the context window. In the model output, the denoised target chunk \mathbf{x}_t^{k-1} is used to update the noisy estimate of the stitched sequence while the denoised conditioning chunks $\mathbf{x}_{t-1}^{k-1}, \mathbf{x}_{t+1}^{k-1}$ are discarded. This stitching procedure, which we refer to as *vanilla GVS*, is compatible with any DF video model, which is designed for such joint denoising of conditioning and target signals (Song et al., 2025).

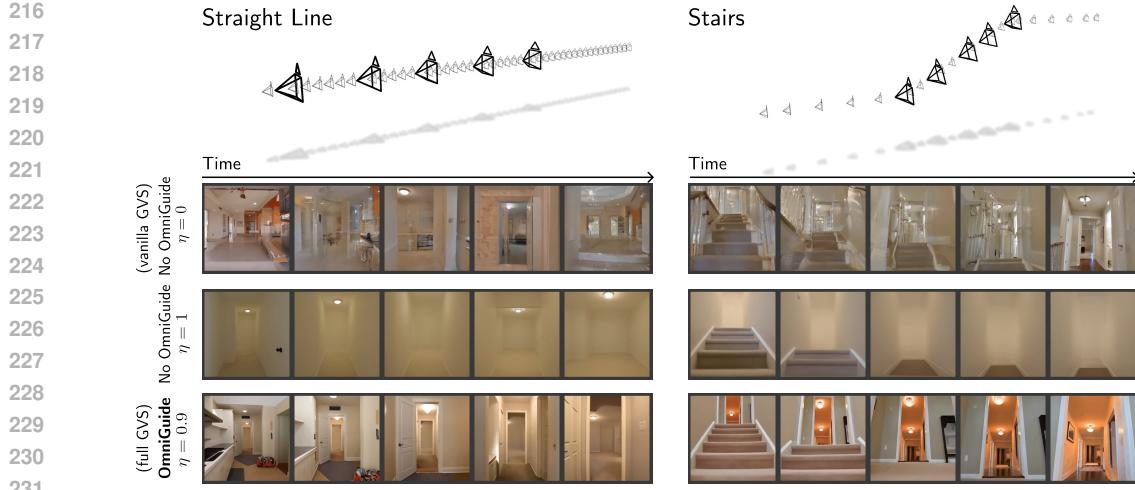


Figure 3: **Effect of Omni Guidance and Stochasticity.** Without Omni Guidance and zero stochasticity ($\eta = 0$), the generations lack temporal consistency and instead exhibit hazy transitions between different scenes. Increasing stochasticity to its maximum ($\eta = 1.0$) enhances consistency but leads to oversmoothing. Our full method with Omni Guidance and partial stochasticity ($\eta = 0.9$) enables consistent generation *without* oversmoothing.

Although vanilla GVS is simple to implement, it achieves poor temporal consistency, as shown in the top row of Fig. 3. We hypothesize that this is because vanilla GVS denoises the target chunk \mathbf{x}_t^k using the score function of the *joint* distribution $p(\mathbf{x}_{t-1}, \mathbf{x}_t, \mathbf{x}_{t+1})$ rather than that of the originally intended *conditional* distribution $p(\mathbf{x}_t | \mathbf{x}_{t-1}, \mathbf{x}_{t+1})$ in Eq. 3. While in autoregressive sampling, target frames are generally conditioned on past context that is significantly *less* noisy, vanilla GVS requires that the target chunk \mathbf{x}_t^k is equally noisy as its conditioning neighbors $\mathbf{x}_{t-1}^k, \mathbf{x}_{t+1}^k$, leading to a weak conditioning signal.

3.3 STOCHASTICITY IS NECESSARY BUT INSUFFICIENT FOR CONSISTENCY

Prior stitching work StochSync (Yeo et al., 2025) proposes stochasticity as a mechanism for enhancing consistency. It introduces *maximum stochasticity* $\sigma^k = \sqrt{1 - \alpha^{k-1}}$, which acts as an error correction mechanism by eliminating the predicted noise term and maximizing the *random* noise term in the denoising equation in Eq. 1. We find that maximum stochasticity also benefits vanilla GVS in terms of temporal consistency (see Table 2) but often results in oversmoothed generations, as shown in Fig. 3, aligning with observations made in prior works (Karras et al., 2022; Yeo et al., 2025). In this case, maximum stochasticity simplifies the task of consistency by *oversmoothing the generations*.

3.4 OMNI GUIDANCE ENHANCES CONSISTENCY

To address the shortcomings of stochasticity, we propose a more direct way of enhancing consistency: *Omni Guidance*, which aims to steer the score function of the original joint distribution towards that of the desired conditional distribution by strengthening the conditioning on the past and future.

One difficulty is that stitching breaks a core assumption of standard classifier-free guidance (Ho & Salimans, 2022), which is that the conditioning signal is independent of the model weights. In GVS, the guidance signal for target chunk \mathbf{x}_t^k comes from the backbone model’s own co-evolving, noisy estimate of its temporal neighbors $\mathbf{x}_{t-1}^k, \mathbf{x}_{t+1}^k$, making the guidance signal dependent on the model weights. To address this, we draw inspiration from Inner Guidance (Chefer et al., 2025) and directly modify the original sampling distribution $p_\theta(\mathbf{x}_{t-1:t+1}^k | \mathbf{p}_{t-1:t+1})$ for target chunk \mathbf{x}_t to be consistent with its temporal neighbors (and the predefined camera trajectory):

$$\tilde{p}_\theta(\mathbf{x}_{t-1:t+1}^k | \mathbf{p}_{t-1:t+1}) \quad (4)$$

$$\propto p_\theta(\mathbf{x}_{t-1:t+1}^k | \mathbf{p}_{t-1:t+1}) p_\theta(\mathbf{p}_{t-1:t+1} | \mathbf{x}_{t-1:t+1}^k)^{\gamma_1} p_\theta(\mathbf{x}_{t-1}^k, \mathbf{x}_{t+1}^k | \mathbf{x}_t^k, \mathbf{p}_{t-1:t+1})^{\gamma_2} \quad (5)$$

$$\propto p_\theta(\mathbf{x}_{t-1:t+1}^k | \mathbf{p}_{t-1:t+1}) \left[\frac{p_\theta(\mathbf{x}_{t-1:t+1}^k | \mathbf{p}_{t-1:t+1})}{p_\theta(\mathbf{x}_{t-1:t+1}^k)} \right]^{\gamma_1} \left[\frac{p_\theta(\mathbf{x}_{t-1:t+1}^k | \mathbf{p}_{t-1:t+1})}{p_\theta(\mathbf{x}_t^k | \mathbf{p}_{t-1:t+1})} \right]^{\gamma_2} \quad (6)$$

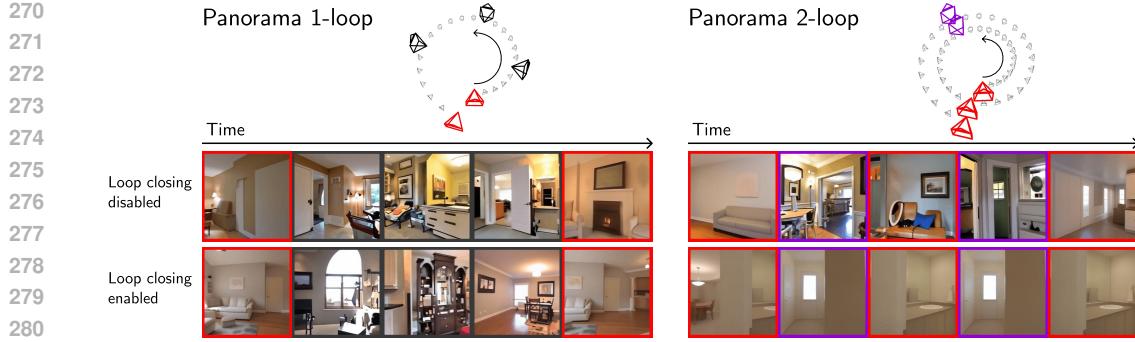


Figure 4: **GVS Requires Explicit Loop Closing.** Despite its global theoretical receptive field, our stitching method requires an explicit loop closing mechanism to “visually return to the same place”. Note that the camera centers are offset from the panorama’s rotation center purely for visual clarity.

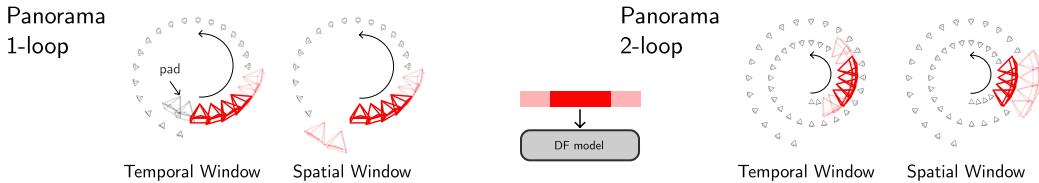


Figure 5: **Loop Closing via Cyclic Conditioning.** GVS closes loops via cyclic conditioning, whereby target chunks are denoised by two alternating sets of context windows: *temporal windows*, which condition target chunks on their temporally neighboring chunks, and *spatial windows*, which condition target chunks on *temporally distant but spatially close* neighboring chunks. As a result, target chunks are conditioned on all relevant neighbors across the entire stitching process. See Fig. 8 for the full set of spatial windows.

This corresponds to modifying the original score function $\epsilon_\theta(\mathbf{x}_{t-1:t+1}^k | \mathbf{p}_{t-1:t+1})$ as follows:

$\tilde{\epsilon}_\theta = (1 + \gamma_1 + \gamma_2) \epsilon_\theta(\mathbf{x}_{t-1:t+1}^k | \mathbf{p}_{t-1:t+1}) - \gamma_1 \epsilon_\theta(\mathbf{x}_{t-1:t+1}^k | \emptyset, \emptyset, \emptyset) - \gamma_2 \epsilon_\theta(\emptyset, \mathbf{x}_t^k, \emptyset | \mathbf{p}_{t-1:t+1}),$ (7)
where \emptyset denotes the null condition and guidance scales γ_1 and γ_2 modulate the adherence to the predefined camera trajectory and consistency of the target chunk with its temporal neighbors, respectively. In practice, we merge the guidance terms to be modulated by a single γ to obtain:

$$\tilde{\epsilon}_\theta = (1 + \gamma) \epsilon_\theta(\mathbf{x}_{t-1:t+1}^k | \mathbf{p}_{t-1:t+1}) - \gamma \epsilon_\theta(\emptyset, \mathbf{x}_t^k, \emptyset | \emptyset, \emptyset, \emptyset). \quad (8)$$

The guidance term $\epsilon_\theta(\emptyset, \mathbf{x}_t^k, \emptyset | \emptyset, \emptyset, \emptyset)$ is computed by replacing the noisy neighboring chunks with pure Gaussian noise and setting their noise levels to be maximum, enabled by relying on the Diffusion Forcing backbone (Chen et al., 2024). This can be seen as a generalization of Fractional History Guidance (Song et al., 2025), with the key difference that the noise levels of the conditioning neighboring chunks, *change* throughout the stitching process while they remain fixed in history-guided autoregressive sampling.

As we show in Sec. 4.2, Omni Guidance enhances temporal consistency across a wide range of stochasticity levels and thus provides extra affordance for reducing oversmoothing. Specifically, Omni Guidance enables *partial* stochasticity $\sigma^k = \eta \sqrt{1 - \alpha^{k-1}}$, where $\eta \in (0, 1)$, the two of which in tandem reduce oversmoothing while maintaining similar levels of consistency.

3.5 LONG-RANGE CONSISTENCY VIA CYCLIC CONDITIONING

In theory, our stitching method described in Sec. 3.2 through 3.4 has global context as the theoretical receptive field of each segment grows with every denoising step, somewhat analogous to the growing receptive field along the depth of a CNN (Luo et al., 2017). Therefore, one could reasonably expect GVS to enable zero-shot loop closure, a form of global consistency. In practice, we observe that while GVS significantly improves temporal consistency, it does not enforce it globally. Fig. 4 demonstrates that very long generations do not visually “return to the same place”, suggesting that information does not propagate as widely across the stitched video as necessary.

To enable loop closures, we propose adding more factors to the compositional distribution in Eq. 3 by denoising additional diffusion windows that contain *temporally distant but spatially close chunks*



Figure 6: **Qualitative Comparison with Baselines.** Autoregressive sampling collides with the generated scene, fails to dream up the desired **staircase**, and does last-minute **loop closure**, resulting in discontinuities in scene appearance. StochSync performs better at these tasks, but it generates shape-shifting scenes that lack temporal consistency. GVS, on the other hand, avoids collisions, generates the desired **staircase**, and **closes loops**, all the while maintaining temporal consistency.

– jointly with the original set of diffusion windows. For example, as shown in Fig. 5, the chunk containing the frame at the end of the Panorama 1-loop trajectory is denoised by two diffusion windows: one that conditions the target chunk on its temporal neighbors (temporal window) and one on its *spatial* neighbors (spatial window). We propose to alternate between these two sets of context windows at every denoising step, a procedure we call *cyclic conditioning*. As a result, the generation of the target chunk is conditioned on *both of its spatial and temporal neighbors* over the course of the entire denoising process, resulting in successful loop closure. We visualize the full set of spatial windows for each trajectory in Fig. 8. Note that some target chunks do not have spatial neighbors and are denoised only by temporal windows.

4 EXPERIMENTS

We empirically evaluate GVS as a stitching method for camera-guided video generation and as an alternative to autoregressive sampling for video length extrapolation. Further experimental details and results can be found in Appendix A and B and video results on our [project page](#).

Benchmarks. To evaluate long-horizon, camera-guided video generation against a predefined camera trajectory, we create a dataset of challenging conditioning trajectories, which are listed in Table 1. These camera trajectories are designed to test various video model capabilities, including video length extrapolation, loop closures, and collision avoidance.

Baselines. 1) History-Guided Autoregressive (AR) Sampling (Song et al., 2025): an autoregressive extension method for ultra-long video generation. 2) StochSync (Yeo et al., 2025): a diffusion stitching method for panorama generation and 3D mesh texturing. All sampling methods, including ours, are evaluated using the same camera-conditioned video model open-sourced by Song et al. (2025), a Diffusion-Forcing Transformer model trained on the RealEstate10K dataset (Zhou et al., 2018) with an 8-frame-long context window. For conditioning trajectories that require loop closing, we augment Autoregressive Sampling with a memory mechanism built on field-of-view-based retrieval (Zhou et al., 2025; Xiao et al., 2025) and StochSync with our proposed loop-closing mechanism.

Metrics. To evaluate the frame-to-frame consistency (F2FC) of camera-guided video generation, we use MEt3R cosine (Asim et al., 2025) averaged over every pair of consecutive frames. We measure long-range consistency (LRC) also with MEt3R cosine (Asim et al., 2025), now averaged over pairs of frames that are temporally distant but deemed to be spatially close based on the field-of-view overlap of their conditioning cameras. We use the collision detection mechanism in (Schneider et al., 2025) to evaluate collision avoidance (CA), whereby a collision is claimed if the inferred metric video depth for any frame (Chen et al., 2025b) falls below a threshold. Finally, we evaluate video frame quality using the imaging quality (IQ) and aesthetic quality (AQ) metric proposed in VBench (Huang et al., 2024) and we use the inception score (IS) for certain ablations (Salimans et al., 2016).

Trajectory	Autoregressive						StochSync						Ours (GVS)					
	F2FC(\downarrow)	LRC(\downarrow)	IQ(\uparrow)	AQ(\uparrow)	CA(\downarrow)	F2FC(\downarrow)	LRC(\downarrow)	IQ(\uparrow)	AQ(\uparrow)	CA(\downarrow)	F2FC(\downarrow)	LRC(\downarrow)	IQ(\uparrow)	AQ(\uparrow)	CA(\downarrow)			
Panorama 1-loop	0.168	0.339	0.458	0.409	N/A	0.183	0.164	0.515	0.489	N/A	0.138	0.141	0.537	0.461	N/A			
Panorama 2-loop	0.169	0.171	0.460	0.422	N/A	0.259	0.279	0.500	0.470	N/A	0.155	0.116	0.483	0.376	N/A			
Circle 1-loop	0.220	0.411	0.432	0.377	0.625	0.204	0.258	0.546	0.459	0	0.160	0.244	0.546	0.432	0			
Circle 2-loop	0.207	0.280	0.459	0.387	0.775	0.252	0.305	0.488	0.419	0	0.182	0.206	0.465	0.358	0			
Straight line	0.138	N/A	0.456	0.365	0.325	0.124	N/A	0.544	0.409	0	0.080	N/A	0.615	0.423	0			
Stairs	0.166	N/A	0.513	0.345	0.075	0.204	N/A	0.571	0.417	0	0.137	N/A	0.621	0.401	0			
Staircase circuit	0.132	0.449	0.397	0.329	0.625	0.179	0.221	0.563	0.438	0	0.129	0.176	0.607	0.419	0			

Table 1: **Comparison with Baselines on Camera-guided Video Generation.** Our method outperforms both baselines in terms of temporal consistency (F2FC), long-range consistency (LRC), and collision avoidance (CA), while demonstrating comparable video quality (IQ, AQ). Note that while StochSync has zero collisions on paper, it achieves this by shape-shifting the scene, as reflected in its poor temporal consistency. We display results averaged over 40 generations.

η	Straight line				Stairs				η	Straight line				Stairs			
	F2FC(\downarrow)	IQ(\uparrow)	AQ(\uparrow)	IS(\uparrow)	F2FC(\downarrow)	IQ(\uparrow)	AQ(\uparrow)	IS(\uparrow)		F2FC(\downarrow)	IQ(\uparrow)	AQ(\uparrow)	IS(\uparrow)	F2FC(\downarrow)	IQ(\uparrow)	AQ(\uparrow)	IS(\uparrow)
0	0.153	0.537	0.420	2.17	0.201	0.550	0.392	1.81	0	0.138	0.553	0.455	2.43	0.177	0.566	0.409	2.10
0.5	0.124	0.499	0.407	1.76	0.177	0.540	0.397	1.48	0.5	0.110	0.556	0.463	2.06	0.160	0.578	0.419	1.72
0.9	0.084	0.458	0.400	1.40	0.146	0.539	0.381	1.51	0.9	0.080	0.615	0.423	1.65	0.137	0.621	0.401	1.66
1.0	0.061	0.422	0.407	1.54	0.135	0.500	0.396	1.40	1.0	0.071	0.610	0.431	1.53	0.130	0.600	0.404	1.67

(a) without Omni Guidance

(b) with Omni Guidance

Table 2: **Ablation on Omni Guidance and Stochasticity.** Without Omni Guidance (a), increasing stochasticity consistently improves temporal consistency (F2FC) but often results in oversmoothing, which is reflected in the general decline of video quality metrics (IQ, AQ, IS). Omni Guidance (b) complements stochasticity by enhancing consistency across a wide range of stochasticity levels, providing our method extra affordance to reduce oversmoothing.

4.1 COMPARISON WITH BASELINES

As shown in Table 1, our method outperforms both baselines in terms of temporal (frame-to-frame) consistency, long-range (loop) consistency, and collision avoidance, while demonstrating comparable video generation quality. These quantitative results are corroborated in Fig. 6, which demonstrates AR sampling’s inability to plan and take future conditioning into account: on the Straight Line benchmark, AR sampling *collides* with the generated scene, after which generations quickly collapse (see frames in *green*). More notably, on Stairs, AR sampling often fails to dream up the desired staircase and instead collides with the ceiling. On Panorama 2-loop, AR sampling demonstrates loop closing abilities (compare frames in *purple*) but often loop-closes at the “last-minute”, stitching together visually inconsistent scenes to return to the same place (compare frames in *red*). StochSync avoids collisions and generates the desired staircase on Straight Line and Stairs, but it does so by *shape-shifting* the scene and compromising on temporal consistency. On Panorama 2-loop, StochSync also demonstrates loop closing, but often fails to reconcile high-frequency details, which is reflected in Table 1. GVS, on the other hand, generates samples that are stable, faithful to the conditioning camera trajectory (*i.e.*, avoids collisions and generates the desired staircase), temporally consistent, and visually close loops. Please find more baseline comparisons in Fig. 18, 19, and 20.

4.2 ABLATIONS

Omni Guidance and Stochasticity. In Table 2 and Fig. 3, we demonstrate the effectiveness of Omni Guidance and how it complements stochasticity. Table 2 (a) shows that increasing stochasticity consistently improves temporal consistency. However, this comes at the cost of oversmoothed generations, as shown by the second row of Fig. 3 and the general decline in video quality metrics in Table 2 (a).

Loop Closing	Omni Guidance	Panorama 1-loop				Panorama 2-loop			
		F2FC(\downarrow)	LRC(\downarrow)	IQ(\uparrow)	AQ(\uparrow)	F2FC(\downarrow)	LRC(\downarrow)	IQ(\uparrow)	AQ(\uparrow)
✗	✗	0.137	0.950	0.442	0.423	0.137	0.917	0.442	0.414
✗	✓	0.141	0.962	0.554	0.463	0.140	0.917	0.546	0.461
✓	✗	0.138	0.201	0.430	0.407	0.166	0.133	0.402	0.355
✓	✓	0.138	0.141	0.537	0.461	0.155	0.116	0.483	0.376

Table 3: **Ablation on Loop Closing and Omni Guidance.** Without an explicit loop closing mechanism, our method fails to display long-range consistency (LRC), even with the help of Omni Guidance. Activating our loop closing mechanism significantly improves long-range consistency, which can be further bolstered by Omni Guidance.

Figure 7: **GVS can visually navigate through the Impossible Staircase.** GVS can generate a 120-frame navigation video through our variant of Oscar Reutersv  rd's *Impossible Staircase*, which is shown on the left. The video forms a *visually continuous loop* between the end points of the conditioning camera trajectory despite their height difference.

In Table 2 (b), Omni Guidance enhances temporal consistency across a wide range of stochasticity levels, providing GVS additional flexibility to reduce oversmoothing; going from maximum stochasticity ($\eta = 1$) to partial stochasticity ($0 < \eta < 1$) reduces oversmoothing but worsens consistency, which can be compensated for by adding Omni Guidance (compare rows 2 and 3 in Fig. 3 and compare row 4 of Table 2 (a) and row 3 of Table 2 (b), respectively).

Note that for *Straight Line* adding Omni Guidance at maximum stochasticity $\eta = 1$ actually hurts temporal consistency, *on paper*. This is because oversmoothing is so severe that adding Omni Guidance, which generally increases scene complexity, makes the task of consistency a harder one.

Loop Closure and Omni Guidance. In Table 3 and Fig. 4, we highlight the need for an explicit loop closing mechanism in stitching and illustrate how Omni Guidance bolsters loop closing. As shown in Fig. 4, without our proposed loop closing mechanism our method fails to visually return to the same place, which suggests that the *effective* receptive field of GVS is *not global*. This finding is corroborated in Table 3, which shows that even Omni Guidance cannot make up for the absence of explicit loop closing. When our loop closing mechanism is activated, however, adding Omni Guidance significantly improves long-range consistency, demonstrating that both components of our method are crucial for effective loop closure.

It should be noted that activating our loop closing mechanism results in oversmoothed generations on Panorama 2-loop for the default stochasticity level $\eta = 0.9$ (see Fig. 4 and 6). However, we show in Appendix B.3 that stochasticity can be further reduced to alleviate oversmoothing without compromising consistency, which is made possible by Omni Guidance.

4.3 NEW APPLICATION: THE IMPOSSIBLE STAIRCASE

In Fig. 7, we showcase a novel application that leverages all of this paper's contributions: we generate a video that navigates through a variant of Oscar Reutersv  rd's impossible staircase (Penrose & Penrose, 1958). The two end points of the conditioning trajectory differ in height, yet we form a *visually continuous loop* by using our proposed loop-closing mechanism. Please find the implementation details in Appendix A.2.

486 **5 DISCUSSION**

488 **Limitations.** GVS achieves collision-free camera-guided video generation by breaking causality,
 489 the downside of which is that it cannot be applied to online problem settings where future camera
 490 poses are not available, such as interactive video generation and streaming. Furthermore, we find
 491 that conditioning on external images is difficult as GVS struggles to propagate the context frames to
 492 the rest of the target video. GVS does not require retraining of the backbone, which also means that
 493 GVS' performance is dependent on its backbone. For example, GVS fails to loop-close wide-baseline
 494 viewpoints, which aren't in its backbone's training data, and often struggles to distinguish the start
 495 of an upward staircase from the end of a downward staircase due to the backbone's limited context
 496 window (see Fig. 1). Finally, the spatial windows in our cyclic conditioning strategy are manually
 497 defined and hence is not currently scalable. We elaborate on these shortcomings and suggest future
 498 work in Appendix C.

499 **Conclusion.** In this paper, we introduced *Generative View Stitching* (GVS), a training-free diffusion
 500 stitching method for camera-guided video generation. GVS is designed to be compatible with any
 501 Diffusion-Forcing video model, which enables *Omni Guidance*, a robust technique that enhances the
 502 temporal consistency in stitching, and by extension, enables loop closing. Given its ability to generate
 503 camera-guided videos that are consistent, faithful to the conditioning trajectory, and stable, GVS
 504 not only establishes itself as a competitive video stitching framework, but also presents a promising
 505 alternative to autoregressive extension for long video generation.

506 **REFERENCES**

508 Mohammad Asim, Christopher Wewer, Thomas Wimmer, Bernt Schiele, and Jan Eric Lenssen. Met3r:
 509 Measuring multi-view consistency in generated images. In *IEEE Conference on Computer Vision
 510 and Pattern Recognition (CVPR)*, 2025.

511 Sherwin Bahmani, Ivan Skorokhodov, Guocheng Qian, Aliaksandr Siarohin, Willi Menapace, Andrea
 512 Tagliasacchi, David B. Lindell, and Sergey Tulyakov. Ac3d: Analyzing and improving 3d camera
 513 control in video diffusion transformers. In *IEEE Conference on Computer Vision and Pattern
 514 Recognition (CVPR)*, 2025a.

516 Sherwin Bahmani, Ivan Skorokhodov, Aliaksandr Siarohin, Willi Menapace, Guocheng Qian, Michael
 517 Vasilkovsky, Hsin-Ying Lee, Chaoyang Wang, Jiaxu Zou, Andrea Tagliasacchi, David B. Lindell,
 518 and Sergey Tulyakov. Vd3d: Taming large video diffusion transformers for 3d camera control. In
 519 *International Conference on Learning Representations (ICLR)*, 2025b.

520 Jianhong Bai, Menghan Xia, Xiao Fu, Xintao Wang, Lianrui Mu, Jinwen Cao, Zuozhu Liu, Haoji
 521 Hu, Xiang Bai, Pengfei Wan, et al. Recammaster: Camera-controlled generative rendering from a
 522 single video. In *IEEE International Conference on Computer Vision (ICCV)*, 2025.

524 Philip J. Ball, Jakob Bauer, Frank Belletti, Bethanie Brownfield, Ariel Ephrat, Shlomi Fruchter,
 525 Agrim Gupta, Kristian Holsheimer, Aleksander Holynski, Jiri Hron, Christos Kaplanis, Marjorie
 526 Limont, Matt McGill, Yanko Oliveira, Jack Parker-Holder, Frank Perbet, Guy Scully, Jeremy
 527 Shar, Stephen Spencer, Omer Tov, Ruben Villegas, Emma Wang, Jessica Yung, Cip Baetu, Jordi
 528 Berbel, David Bridson, Jake Bruce, Gavin Buttimore, Sarah Chakera, Bilva Chandra, Paul Collins,
 529 Alex Cullum, Bogdan Damoc, Vibha Dasagi, Maxime Gazeau, Charles Gbadamosi, Woohyun
 530 Han, Ed Hirst, Ashyana Kachra, Lucie Kerley, Kristian Kjems, Eva Knoepfel, Vika Koriakin,
 531 Jessica Lo, Cong Lu, Zeb Mehring, Alex Moufarek, Henna Nandwani, Valeria Oliveira, Fabio
 532 Pardo, Jane Park, Andrew Pierson, Ben Poole, Helen Ran, Tim Salimans, Manuel Sanchez,
 533 Igor Saprykin, Amy Shen, Sailesh Sidhwani, Duncan Smith, Joe Stanton, Hamish Tomlinson,
 534 Dimple Vijaykumar, Luyu Wang, Piers Wingfield, Nat Wong, Keyang Xu, Christopher Yew, Nick
 535 Young, Vadim Zubov, Douglas Eck, Dumitru Erhan, Koray Kavukcuoglu, Demis Hassabis, Zoubin
 536 Gharamani, Raia Hadsell, Aäron van den Oord, Inbar Mosseri, Adrian Bolton, Satinder Singh, and
 537 Tim Rocktäschel. Genie 3: A new frontier for world models. [https://deepmind.google/](https://deepmind.google/blog/genie-3-a-new-frontier-for-world-models/)
 538 [blog/genie-3-a-new-frontier-for-world-models/](https://deepmind.google/blog/genie-3-a-new-frontier-for-world-models/), 2025.

539 Omer Bar-Tal, Lior Yariv, Yaron Lipman, and Tali Dekel. Multidiffusion: Fusing diffusion paths for
 540 controlled image generation. In *International Conference on Machine Learning (ICML)*, 2023.

540 Shengqu Cai, Ceyuan Yang, Lvmin Zhang, Yuwei Guo, Junfei Xiao, Ziyan Yang, Yinghao Xu,
 541 Zhenheng Yang, Alan Yuille, Leonidas Guibas, et al. Mixture of contexts for long video generation.
 542 *arXiv preprint arXiv:2508.21058*, 2025.

543

544 E.F. Camacho and C.B. Alba. *Model Predictive Control*. Springer London, 2013.

545 Hila Chefer, Uriel Singer, Amit Zohar, Yuval Kirstain, Adam Polyak, Yaniv Taigman, Lior Wolf,
 546 and Shelly Sheynin. VideoJAM: Joint appearance-motion representations for enhanced motion
 547 generation in video models. In *International Conference on Machine Learning (ICML)*, 2025.

548

549 Boyuan Chen, Diego Martí Monsó, Yilun Du, Max Simchowitz, Russ Tedrake, and Vincent Sitzmann.
 550 Diffusion forcing: Next-token prediction meets full-sequence diffusion. In *Advances in Neural
 551 Information Processing Systems (NeurIPS)*, 2024.

552

553 Guibin Chen, Dixuan Lin, Jiangping Yang, Chunze Lin, Junchen Zhu, Mingyuan Fan, Hao Zhang,
 554 Sheng Chen, Zheng Chen, Chengcheng Ma, Weiming Xiong, Wei Wang, Nuo Pang, Kang Kang,
 555 Zhiheng Xu, Yuzhe Jin, Yupeng Liang, Yubing Song, Peng Zhao, Boyuan Xu, Di Qiu, Debang
 556 Li, Zhengcong Fei, Yang Li, and Yahui Zhou. Skyreels-v2: Infinite-length film generative model.
 557 *arXiv preprint arXiv:2504.13074*, 2025a.

558

559 Sili Chen, Hengkai Guo, Shengnan Zhu, Feihu Zhang, Zilong Huang, Jiashi Feng, and Bingyi Kang.
 560 Video depth anything: Consistent depth estimation for super-long videos. In *IEEE Conference on
 561 Computer Vision and Pattern Recognition (CVPR)*, 2025b.

562

563 Karan Dalal, Daniel Koceja, Gashon Hussein, Jiarui Xu, Yue Zhao, Youjin Song, Shihao Han,
 564 Ka Chun Cheung, Jan Kautz, Carlos Guestrin, Tatsunori Hashimoto, Sanmi Koyejo, Yejin Choi,
 565 Yu Sun, and Xiaolong Wang. One-minute video generation with test-time training. In *IEEE
 566 Conference on Computer Vision and Pattern Recognition (CVPR)*, 2025.

567

568 Decart, Julian Quevedo, Quinn McIntyre, Spruce Campbell, Xinlei Chen, and Robert Wachen. Oasis:
 569 A universe in a transformer. 2024. URL <https://oasis-model.github.io/>.

570

571 Ian Failes. The big effects moments in the one-shot '1917'. <https://beforesandafters.com/2020/01/17/the-big-effects-moments-in-the-one-shot-1917/>,
 572 2020.

573

574 Hossein Goli, Michael Gimelfarb, Nathan Samuel de Lara, Haruki Nishimura, Masha Itkina, and
 575 Florian Shkurti. Stitch-ope: Trajectory stitching with guided diffusion for off-policy evaluation. In
 576 *Advances in Neural Information Processing Systems (NeurIPS)*, 2025.

577

578 Google DeepMind. Veo-3-tech-report.pdf. Technical report, 2025.

579

580 Yuwei Guo, Ceyuan Yang, Anyi Rao, Zhengyang Liang, Yaohui Wang, Yu Qiao, Maneesh Agrawala,
 581 Dahua Lin, and Bo Dai. Animatediff: Animate your personalized text-to-image diffusion models
 582 without specific tuning. In *International Conference on Learning Representations (ICLR)*, 2024.

583

584 Hao He, Yinghao Xu, Yuwei Guo, Gordon Wetzstein, Bo Dai, Hongsheng Li, and Ceyuan Yang.
 585 Cameractrl: Enabling camera control for text-to-video generation. In *International Conference on
 586 Learning Representations (ICLR)*, 2025a.

587

588 Hao He, Ceyuan Yang, Shanchuan Lin, Yinghao Xu, Meng Wei, Liangke Gui, Qi Zhao, Gordon
 589 Wetzstein, Lu Jiang, and Hongsheng Li. Cameractrl ii: Dynamic scene exploration via camera-
 590 controlled video diffusion models. In *IEEE International Conference on Computer Vision (ICCV)*,
 591 2025b.

592

593 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint arXiv:2207.12598*,
 594 2022.

595

596 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In *Advances in
 597 Neural Information Processing Systems (NeurIPS)*, 2020.

598

599 Emiel Hoogeboom, Jonathan Heek, and Tim Salimans. Simple diffusion: End-to-end diffusion for
 600 high resolution images. In *International Conference on Machine Learning (ICML)*, 2023.

594 Anthony Hu, Lloyd Russell, Hudson Yeo, Zak Murez, George Fedoseev, Alex Kendall, Jamie Shotton,
 595 and Gianluca Corrado. Gaia-1: A generative world model for autonomous driving. *arXiv preprint*
 596 *arXiv:2309.17080*, 2023.

597

598 Xun Huang, Zhengqi Li, Guande He, Mingyuan Zhou, and Eli Shechtman. Self forcing: Bridging
 599 the train-test gap in autoregressive video diffusion. In *Advances in Neural Information Processing*
 600 *Systems (NeurIPS)*, 2025.

601

602 Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianxing
 603 Wu, Qingyang Jin, Nattapol Chanpaisit, Yaohui Wang, Xinyuan Chen, Limin Wang, Dahua Lin,
 604 Yu Qiao, and Ziwei Liu. VBench: Comprehensive benchmark suite for video generative models.
 605 In *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2024.

606

607 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
 608 based generative models. In *Advances in Neural Information Processing Systems (NeurIPS)*,
 609 2022.

610

611 Jaihoon Kim, Juil Koo, Kyeongmin Yeo, and Minhyuk Sung. Syncweedies: A general generative
 612 framework based on synchronized diffusions. In *Advances in Neural Information Processing*
 613 *Systems (NeurIPS)*, 2024.

614

615 Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,
 616 Bo Wu, Jianwei Zhang, et al. Hunyuandvideo: A systematic framework for large video generative
 617 models. *arXiv preprint arXiv:2412.03603*, 2024.

618

619 Lu Ling, Yichen Sheng, Zhi Tu, Wentian Zhao, Cheng Xin, Kun Wan, Lantao Yu, Qianyu Guo, Zixun
 620 Yu, Yawen Lu, et al. DL3dv-10k: A large-scale scene dataset for deep learning-based 3d vision. In
 621 *IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2024.

622

623 Nan Liu, Shuang Li, Yilun Du, Antonio Torralba, and Joshua B Tenenbaum. Compositional visual
 624 generation with composable diffusion models. In *European Conference on Computer Vision*
 625 (*ECCV*), 2022.

626

627 Luma AI Team. Introducing dream machine: Luma's first generative video model, 2024.

628

629 Wenjie Luo, Yujia Li, Raquel Urtasun, and Richard S. Zemel. Understanding the effective receptive
 630 field in deep convolutional neural networks. In *Advances in Neural Information Processing*
 631 *Systems (NeurIPS)*, 2017.

632

633 Yunhao Luo, Utkarsh A Mishra, Yilun Du, and Danfei Xu. Generative trajectory stitching through
 634 diffusion composition. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2025.

635

636 Utkarsh Aashu Mishra, Shangjie Xue, Yongxin Chen, and Danfei Xu. Generative skill chaining:
 637 Long-horizon skill planning with diffusion models. In *Conference on Robot Learning (CoRL)*,
 638 2023.

639

640 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *IEEE International*
 641 *Conference on Computer Vision (ICCV)*, 2023.

642

643 Lionel Sharples Penrose and Roger Penrose. Impossible objects: a special type of visual illusion.
 644 *British journal of psychology*, 49:31–3, 1958.

645

646 Runway. Introducing Runway Gen-4. <https://runwayml.com/research/introducing-runway-gen-4>, 2025.

647

648 Lloyd Russell, Anthony Hu, Lorenzo Bertoni, George Fedoseev, Jamie Shotton, Elahe Arani, and
 649 Gianluca Corrado. Gaia-2: A controllable multi-view generative world model for autonomous
 650 driving. *arXiv preprint arXiv:2503.20523*, 2025.

651

652 Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
 653 Improved techniques for training gans. In *Advances in Neural Information Processing*
 654 *Systems (NeurIPS)*, 2016.

648 Sand.ai, Hansi Teng, Hongyu Jia, Lei Sun, Lingzhi Li, Maolin Li, Mingqiu Tang, Shuai Han, Tianning
 649 Zhang, W. Q. Zhang, Weifeng Luo, Xiaoyang Kang, Yuchen Sun, Yue Cao, Yunpeng Huang,
 650 Yutong Lin, Yuxin Fang, Zewei Tao, Zheng Zhang, Zhongshu Wang, Zixun Liu, Dai Shi, Guoli
 651 Su, Hanwen Sun, Hong Pan, Jie Wang, Jiejin Sheng, Min Cui, Min Hu, Ming Yan, Shucheng Yin,
 652 Siran Zhang, Tingting Liu, Xianping Yin, Xiaoyu Yang, Xin Song, Xuan Hu, Yankai Zhang, and
 653 Yuqiao Li. Magi-1: Autoregressive video generation at scale. *arXiv preprint arXiv:2505.13211*,
 654 2025.

655 Manuel-Andreas Schneider, Lukas Höller, and Matthias Nießner. Worldexplorer: Towards generating
 656 fully navigable 3d scenes. In *ACM SIGGRAPH Asia*, 2025.

657

658 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 659 learning using nonequilibrium thermodynamics. In *International Conference on Machine Learning*
 660 (*ICML*), 2015.

661 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *International*
 662 *Conference on Learning Representations (ICLR)*, 2021a.

663 Kiwhan Song, Boyuan Chen, Max Simchowitz, Yilun Du, Russ Tedrake, and Vincent Sitzmann.
 664 History-guided video diffusion. In *International Conference on Machine Learning (ICML)*, 2025.

665

666 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 667 Poole. Score-based generative modeling through stochastic differential equations. In *International*
 668 *Conference on Learning Representations (ICLR)*, 2021b.

669 Dani Valevski, Yaniv Leviathan, Moab Arar, and Shlomi Fruchter. Diffusion models are real-time
 670 game engines. In *International Conference on Learning Representations (ICLR)*, 2025.

671

672 Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
 673 Haiming Zhao, Jianxiao Yang, Jianyuan Zeng, Jiayu Wang, Jingfeng Zhang, Jingren Zhou, Jinkai
 674 Wang, Jixuan Chen, Kai Zhu, Kang Zhao, Keyu Yan, Lianghua Huang, Mengyang Feng, Ningyi
 675 Zhang, Pandeng Li, Pingyu Wu, Ruihang Chu, Ruili Feng, Shiwei Zhang, Siyang Sun, Tao Fang,
 676 Tianxing Wang, Tianyi Gui, Tingyu Weng, Tong Shen, Wei Lin, Wei Wang, Wei Wang, Wenmeng
 677 Zhou, Wente Wang, Wenting Shen, Wenyuan Yu, Xianzhong Shi, Xiaoming Huang, Xin Xu, Yan
 678 Kou, Yangyu Lv, Yifei Li, Yijing Liu, Yiming Wang, Yingya Zhang, Yitong Huang, Yong Li, You
 679 Wu, Yu Liu, Yulin Pan, Yun Zheng, Yuntao Hong, Yupeng Shi, Yutong Feng, Zeyinzi Jiang, Zhen
 680 Han, Zhi-Fan Wu, and Ziyu Liu. Wan: Open and advanced large-scale video generative models.
 681 *arXiv preprint arXiv:2503.20314*, 2025.

682 Xiang Wang, Hangjie Yuan, Shiwei Zhang, Dayou Chen, Jiuniu Wang, Yingya Zhang, Yujun Shen,
 683 Deli Zhao, and Jingren Zhou. Videocomposer: Compositional video synthesis with motion
 684 controllability. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2023.

685 Zhouxia Wang, Ziyang Yuan, Xintao Wang, Yaowei Li, Tianshui Chen, Menghan Xia, Ping Luo, and
 686 Ying Shan. Motionctrl: A unified and flexible motion controller for video generation. In *ACM*
 687 *SIGGRAPH*, 2024.

688 Ethan Weber, Norman Müller, Yash Kant, Vasu Agrawal, Michael Zollhöfer, Angjoo Kanazawa, and
 689 Christian Richardt. Fillerbuster: Multi-view scene completion for casual captures. In *International*
 690 *Conference on 3D Vision (3DV)*, 2026.

691

692 Zeqi Xiao, Yushi Lan, Yifan Zhou, Wenqi Ouyang, Shuai Yang, Yanhong Zeng, and Xingang
 693 Pan. Worldmem: Long-term consistent world simulation with memory. In *Advances in Neural*
 694 *Information Processing Systems (NeurIPS)*, 2025.

695 Virginia Yates. Rope sets a precedent. <https://theasc.com/articles/rope-sets-a-precedent>, 2023.

696

697 Kyeongmin Yeo, Jaihoon Kim, and Minhyuk Sung. Stochsync: Stochastic diffusion synchronization
 698 for image generation in arbitrary spaces. In *International Conference on Learning Representations*
 699 (*ICLR*), 2025.

700

701 Chandan Yeshwanth, Yueh-Cheng Liu, Matthias Nießner, and Angela Dai. Scannet++: A high-fidelity
 702 dataset of 3d indoor scenes. In *IEEE International Conference on Computer Vision (ICCV)*, 2023.

702 Tianwei Yin, Qiang Zhang, Richard Zhang, William T Freeman, Fredo Durand, Eli Shechtman,
703 and Xun Huang. From slow bidirectional to fast autoregressive video diffusion models. In *IEEE*
704 *Conference on Computer Vision and Pattern Recognition (CVPR)*, 2025.

705
706 Jiwen Yu, Jianhong Bai, Yiran Qin, Quande Liu, Xintao Wang, Pengfei Wan, Di Zhang, and Xihui
707 Liu. Context as memory: Scene-consistent interactive long video generation with memory retrieval.
708 In *ACM SIGGRAPH Asia*, 2025.

709
710 Tianyuan Zhang, Sai Bi, Yicong Hong, Kai Zhang, Fujun Luan, Songlin Yang, Kalyan Sunkavalli,
711 William T. Freeman, and Hao Tan. Test-time training done right. *arXiv preprint arXiv:2505.23884*,
712 2025.

713 Jensen Zhou, Hang Gao, Vikram Voleti, Aaryaman Vasishta, Chun-Han Yao, Mark Boss, Philip Torr,
714 Christian Rupprecht, and Varun Jampani. Stable virtual camera: Generative view synthesis with
715 diffusion models. In *IEEE International Conference on Computer Vision (ICCV)*, 2025.

716 Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely. Stereo magnification:
717 Learning view synthesis using multiplane images. *ACM SIGGRAPH*, 37, 2018.

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A EXPERIMENTAL DETAILS**
757758 **Algorithm 1:** Camera-guided Video Generation with GVS
759

760 **Inputs:** cameras \mathbf{p} ; context windows $\{\mathbf{w}_n\}_{n=0}^{N-1}$ each specified by $\mathcal{T}^{\text{target chunk}} + \mathcal{T}^{\text{overlap}}$
761 timesteps

762 **Outputs:** \mathbf{z} : video sample of length \mathcal{T} aligned with \mathbf{p}

763 **Function** GVS ($\mathbf{p}, \{\mathbf{w}_n\}_{n=0}^{N-1}$) :

764 $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ ▷ Initialize video sample with pure-noise sequence
 765 $\mathcal{W} \leftarrow \{\}$
 766 **for** $t = 0, \dots, T-1$ **do**
 767 **for** $n = 0, \dots, N-1$ **do**
 768 **if** $\bar{\mathbf{w}}_n$ is equal to t th target chunk **then**
 769 | $\mathcal{W}[t].\text{insert}(\mathbf{w}_n)$ ▷ Compile context windows containing t th target chunk
 770 | **end**
 771 **end**
 772 **for** $k = K-1, \dots, 1$ **do**
 773 $\epsilon^k \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ ▷ Sample pure-noise sequence for stochasticity term
 774 **for** $t = 0, \dots, T-1$ **do**
 775 | $\mathbf{w}_t^k \leftarrow \mathcal{W}[t][k \bmod |\mathcal{W}[t]|]$ ▷ Cycle through context windows
 776 | $\mathbf{x}_t^k \leftarrow f_{\mathbf{w}_t^k}(\mathbf{z}), \mathbf{p}_t^k \leftarrow f_{\mathbf{w}_t^k}(\mathbf{p}), \epsilon_t^k \leftarrow f_{\mathbf{w}_t^k}(\epsilon^k)$ ▷ Project to context window
 777 | $\tilde{\epsilon}_\theta \leftarrow (1+\gamma)\epsilon_\theta(\mathbf{x}_t^k | \mathbf{p}_t^k) - \gamma\epsilon_\theta(\emptyset, \bar{\mathbf{x}}_t^k, \emptyset | \emptyset, \emptyset, \emptyset)$ ▷ Predict guided noise
 778 | $\mathbf{x}_t^{0|k} \leftarrow \frac{\mathbf{x}_t^k - \sqrt{1-\alpha^k}\tilde{\epsilon}_\theta}{\sqrt{\alpha^k}}$ ▷ Predict clean sample
 779 | $\sigma^k \leftarrow \eta\sqrt{1-\alpha^{k-1}}$ ▷ Compute stochasticity
 780 | $\mathbf{x}_t^{k-1} \leftarrow \sqrt{\alpha^{k-1}}\mathbf{x}_t^{0|k} + \sqrt{1-\alpha^{k-1}-(\sigma^k)^2} \cdot \tilde{\epsilon}_\theta + \sigma^k \epsilon_t^k$ ▷ Run DDIM denoising step
 781 **end**
 782 $\mathbf{z} \leftarrow \text{argmin}_{\mathbf{z}} \sum_{t=0}^{T-1} \|f_{\bar{\mathbf{w}}_t^k}(\mathbf{z}) - \bar{\mathbf{x}}_t^{k-1}\|^2$ ▷ Update video sample with target chunks
 783 **end**

784
785 **A.1 IMPLEMENTATION DETAILS**
786

787 **Backbone Diffusion Models.** In this paper, we evaluate all sampling methods on three different
788 backbone diffusion models: one Diffusion-Forcing (DF) backbone (see Table 1) and two DF-free
789 backbones (see Tables 7 and 8). All three backbones support camera-conditioned video generation,
790 are trained on the RealEstate10K dataset (Zhou et al., 2018), and are opensourced by Song et al.
791 (2025). The two DF-free backbones are each trained with frame-level binary-dropout (BD) diffusion,
792 which is fully compatible with every component of GVS, and full-sequence (FS) diffusion (uniform
793 noise levels across all frames), which is compatible with GVS, *except* for Omni Guidance. The full
794 implementation details of these backbones can be found in Song et al. (2025), but we repeat the most
795 relevant points for completeness’ sake:

796 All three backbones share the same U-ViT architecture (Hoogeboom et al., 2023) (with 459M
797 parameters) that accepts $8 \times 256 \times 256$ video inputs. All conditioning signals *i.e.*, per-frame noise
798 levels and camera poses, are injected into the model via Adaptive LayerNorm. Importantly, camera
799 conditioning is injected by first computing *relative* poses with respect to the first frame and then
800 transforming them into high-dimensional ray encodings.

801 **Sampling.** For history-guided autoregressive sampling (Song et al., 2025), we use the default
802 hyperparameters from its open-sourced implementation: a deterministic DDIM sampler, which
803 corresponds to setting $\sigma^k = 0$ in Eq. 1, with a linear denoising step schedule over 50 sampling
804 steps (the number of training denoising steps is 1000), a history guidance scale of 4, which controls
805 the joint guidance on history and camera conditioning, 4 history frames per context window, and a
806 stabilization level of 0.02.

807 We repurpose the StochSync baseline (Yeo et al., 2025), originally designed for arbitrary images such
808 as 360-degree panoramas and 3D mesh textures, for camera-guided video generation; we treat the
809 video output from our backbone model as a wide image generated by an image diffusion backbone.
We use the default hyperparameters from StochSync’s implementation for 360-degree panorama

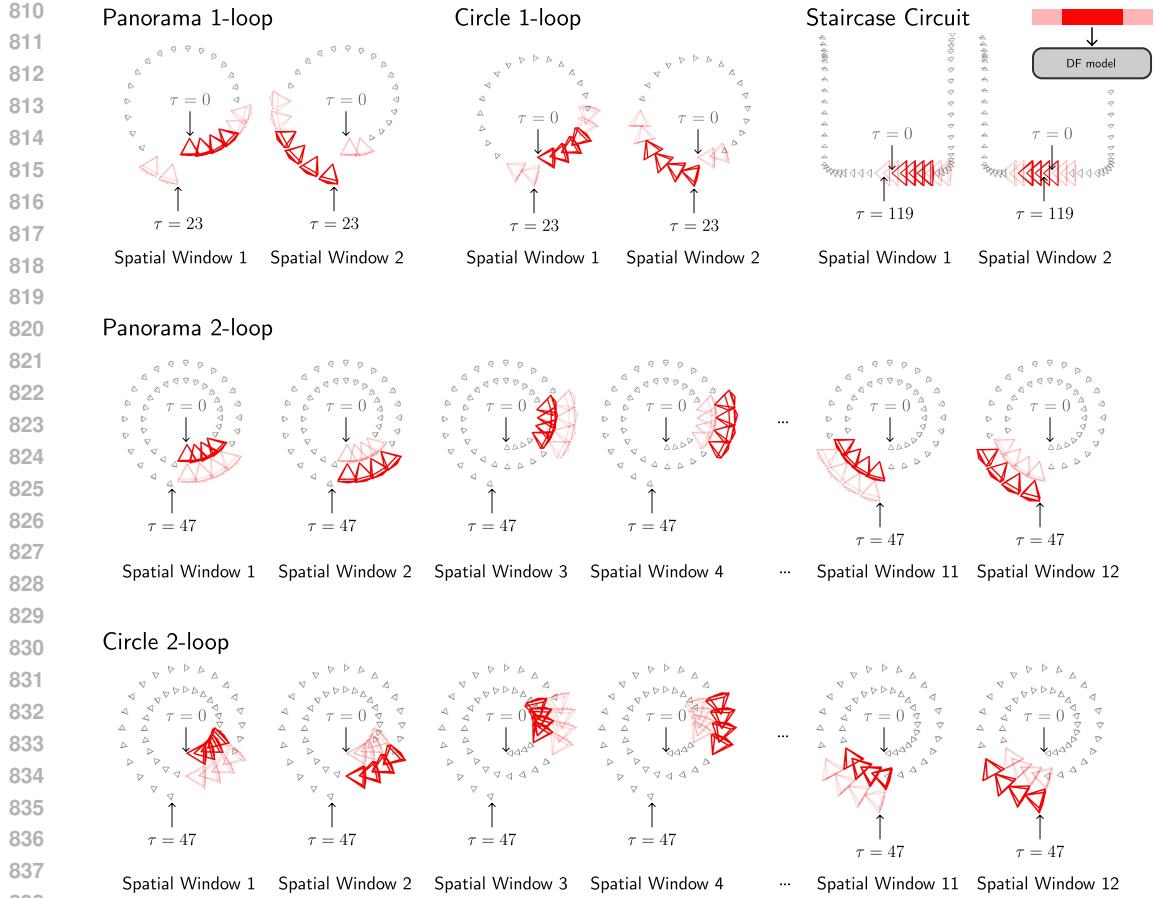


Figure 8: **Spatial Context Windows that Define Our Method’s Cyclic Conditioning Strategy.** Note that for Panorama 1-loop and Panorama 2-loop, we intentionally offset the camera centers from the panorama’s rotation center to better distinguish between different parts of conditioning trajectory. We visualize Circle 1-loop and Circle 2-loop as spirals also for better clarity.

generation: a maximum stochasticity DDIM sampler ($\sigma^k = \sqrt{1 - \alpha^{k-1}}$), a linear denoising step schedule over 25 sampling steps from $K = 900$ to $K^{\text{stop}} = 270$, multi-step computation of clean samples, which is initially run for 50 steps and linearly decreased as the outer-loop denoising progresses, and two alternating sets of non-overlapping context windows, which are offset from each other by 4 frames. While the default guidance scale is 7.5, we find that this leads to unrealistic generations for the given backbone and task and therefore we lower the guidance scale to 4. Note that this guidance scale only controls camera conditioning as StochSync does not guide with history.

Our method (GVS) is outlined in Algorithm 1, where $t \in \{0, 1, \dots, T - 1\}$ indexes the t th target chunk, which is comprised of timesteps $\{\tau\}_{\tau=t\mathcal{T}^{\text{target chunk}}}^{t(\mathcal{T}^{\text{target chunk}}+1)-1}$, and $\mathcal{T}^{\text{target chunk}}$, $\mathcal{T}^{\text{overlap}}$, \mathcal{T} denote the size of each target chunk, overlap length between context windows, and target video length respectively; \bar{w} denotes the target chunk of context window w , and $f_w(z)$ denotes the selection of frames from video estimate z that lie within w .

Our method uses a partial stochasticity DDIM sampler ($\sigma^k = \eta\sqrt{1 - \alpha^{k-1}}$) with stochasticity level $\eta = 0.9$ and a guidance scale of $\gamma = 1$. Note that our guidance scale convention represents no guidance with $\gamma = 0$, whereas the baseline methods represent no guidance with $\gamma = 1$. Our method employs overlapping context windows with $\mathcal{T}^{\text{overlap}} = 2$ and $\mathcal{T}^{\text{target chunk}} = 4$. In other words, each 8-frame-long context window is comprised of 2 frames from the past chunk, the target chunk, and 2 frames from the future chunk. We visualize this in Fig. 2 but with half the context window size.

Loop-Closing Mechanism. For conditioning camera trajectories that require loop-closing *i.e.*, Panorama 1-loop, Panorama 2-loop, Circle 1-loop, Circle 2-loop, and Staircase circuit, we equip all sampling methods with a loop-closing mechanism.



Figure 9: GVS Stably Scales to Longer Videos Given More Test-Time Compute.

Inspired by Xiao et al. (2025); Zhou et al. (2025), we augment history-guided autoregressive sampling with a memory mechanism that retrieves previously generated frames whose field-of-view overlap with the current generation exceeds a threshold. At every autoregressive step, we generate 1 frame conditioned on a maximum of 3 retrieved history frames, which are placed at the right end of the context window, and the 4 latest history frames, which are placed at the left end; if there are less than 3 retrieved frames, we pad with pure-noise frames.

We augment StochSync with our cyclic conditioning mechanism, which we tailor to its non-overlapping window sampling strategy. For trajectories that form a single loop *i.e.*, Panorama 1-loop, Circle 1-loop, and Staircase circuit, we use StochSync’s original strategy of alternating between two sets of context windows, which is a form of cyclic conditioning; the second set includes a context window that “wraps around” the loop and thus enforces consistency between the start and end of the camera trajectory. For Panorama 2-loop and Circle 2-loop, we add a third set of non-overlapping context windows that enforces consistency between corresponding frames in the first and second loops, similar to “Spatial windows 1 ~ 12” in Fig. 8.

Our method loop closes via cyclic conditioning, whereby target chunk t is denoised by two alternating sets of context windows: 1) temporal context windows, which contain timesteps $\{\tau\}_{\tau=t\tau_{\text{target chunk}}-\tau_{\text{overlap}}}^{t(\tau_{\text{target chunk}}+1)+\tau_{\text{overlap}}-1}$, and 2) spatial context windows, which we summarize in Fig. 8.

A.2 DETAILS ON THE IMPOSSIBLE STAIRCASE (SEC. 4.3)

To loop close the two end points of the Impossible Staircase trajectory, we use a cyclic conditioning technique similar to that of Staircase Circuit, which is shown in Fig. 8. The key difference is that we modify the conditioning camera segments for the two spatial windows, which condition the first frame on the last frame and vice versa; we replace the original camera segments, which are *disconnected* due to the height difference between the end points of the trajectory, with a *continuous straight line* to encourage visual continuity.

A.3 COMPUTE RESOURCES

We run every experiment on a single NVIDIA H200 GPU and report the resulting metrics. We also provide a *scalable* implementation of GVS that can be run on a lower-VRAM GPU, such as the NVIDIA RTX A6000. At every denoising step, the scalable implementation denoises every context window *one-by-one*, whereas the default implementation denoises all context windows in parallel.

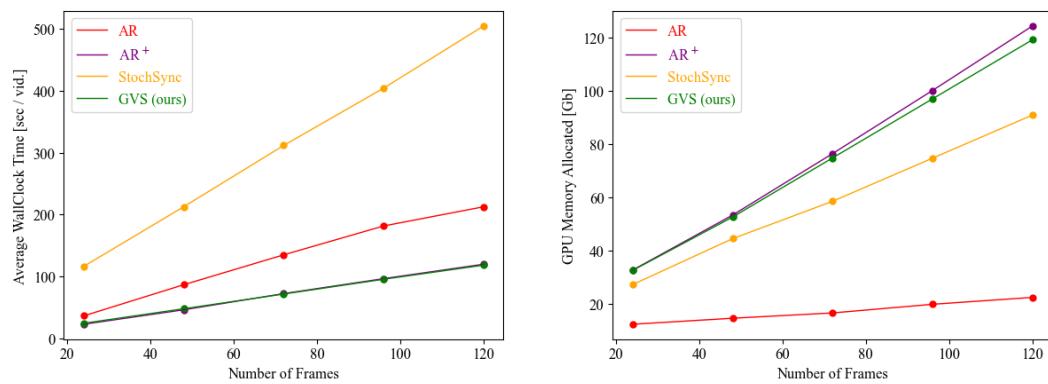


Figure 10: Inference Costs as a Function of Target Sequence Length.

	Time Complexity	Space Complexity	$\mathcal{T} = 24$		$\mathcal{T} = 48$		$\mathcal{T} = 72$		$\mathcal{T} = 96$		$\mathcal{T} = 120$	
			wall time	malloc	wall time	malloc						
AR	$\mathcal{O}(BTK_s)$	$\mathcal{O}(BT)$	36.19	12.37	86.51	14.63	134.84	16.62	181.48	19.87	212.52	22.46
AR ⁺			22.60	32.74	45.94	53.40	72.15	76.50	96.36	100.22	119.66	124.45
StochSync	$\mathcal{O}(BTK_s^2)$	$\mathcal{O}(BT)$	116.29	27.29	212.60	44.54	311.68	58.58	404.29	74.78	504.80	90.98
GVS (Ours)	$\mathcal{O}(BTK_s)$	$\mathcal{O}(BT)$	24.20	32.62	47.69	52.66	71.46	74.87	95.33	97.07	118.10	119.27

Table 4: **Theoretical Complexity and Empirical Performance.** B denotes batch size, K_s denotes the number of sampling timesteps, and T denotes the number of diffusion windows to be processed, which is directly proportional to the target sequence length \mathcal{T} for a fixed context window. All methods use a batch size $B = 1$, except for AR⁺, which has a batch size $B = T$ to match the memory costs of GVS. “wall time” denotes the average wallclock time taken generate a single video (units: seconds / video) and “malloc” denotes the GPU memory allocated (units: Gb), respectively.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 APPLICATION: THE INDEFINITE STAIRCASE

In Fig. 9, we further highlight the long-horizon stability of GVS by generating a 1080-frame video that climbs an 18-story staircase (here there is no loop closure between the end points of the conditioning trajectory). The entire video is collision-free and stable, demonstrating GVS’ scaling properties and its potential as an alternative to autoregressive extension for long video generation.

B.2 INFERENCE COST

In Fig. 10 and Table 4, we compare the theoretical complexity and empirical inference costs of GVS and the baselines. To measure the empirical performance, we consider a video generation task on the Straight Line trajectory of varying lengths $\mathcal{T} \in [24, 48, 72, 96, 120]$ with batchsize $B = 1$ and measure 1) “wall time”, the wallclock time to generate a single video averaged over 40 samples and 2) “malloc”, the GPU memory allocated.

Autoregressive (AR) sampling incurs linear time complexity in T , the number of diffusion windows to be processed, as it processes diffusion windows sequentially, one-by-one. This implies linear time complexity in the target sequence length \mathcal{T} , which is directly proportional to the number of diffusion windows to be processed T for a fixed context window. AR sampling incurs linear space complexity in T and in \mathcal{T} , as it has to store the outputs of each diffusion window. GVS, which also has linear time and space complexity in T , enables parallelization along the temporal dimension: unlike AR sampling, GVS can stack all T diffusion windows along the batch dimension and simultaneously process them in a single forward pass through the backbone diffusion model. In other words, for the same batch size B , GVS enables shorter runtimes than AR sampling at the cost of increased memory usage. This is useful in minibatch or single-sequence generation settings that prioritize low batch-level latency, such as interactive one-shot cinematography where users iteratively refine a single target video i.e. no batching opportunity.

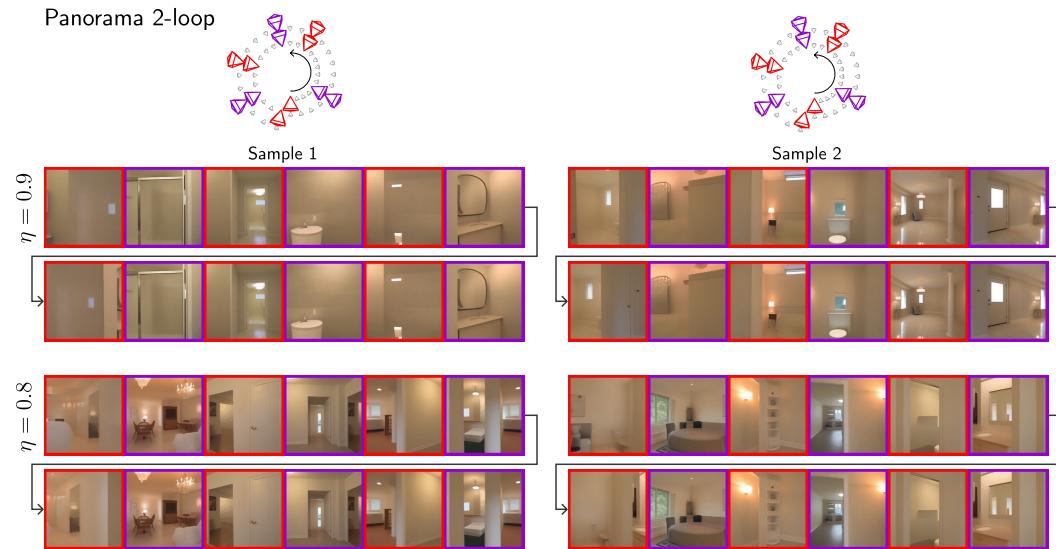


Figure 11: **Lowering Stochasticity Levels Reduces Oversmoothing.** Note that we intentionally offset the camera centers from the panorama’s rotation center to better distinguish between different parts of the conditioning trajectory.

Omni Guide	η	Panorama 2-loop				
		F2FC(\downarrow)	LRC(\downarrow)	IQ(\uparrow)	AQ(\uparrow)	IS(\uparrow)
✗	0.9	0.166	0.133	0.402	0.355	1.59
✗	0.8	0.175	0.147	0.380	0.359	1.56
✓	0.9	0.155	0.116	0.483	0.376	2.03
✓	0.8	0.151	0.113	0.483	0.389	2.41

Table 5: **Omni Guidance Provides Additional Affordance to Reduce Oversmoothing.**

Note that AR sampling can also be parallelized for better GPU utilization by generating multiple videos *in batches*, which reduces the average runtime per video at the expense of increased memory usage. In fact, when we set batchsize of AR sampling as $B = T$ (we denote this method AR^+), the average runtime and memory usage is virtually the same as that of GVS. However, AR^+ achieves worse batch-level latency than GVS, especially for longer target sequences, not to mention that for our problem setting AR^+ also results in collisions with the generated scene, which is a crucial shortcoming.

StochSync is also parallelizable across the temporal dimension, but it is even slower than AR sampling due to its quadratic complexity in K_s , the number of sampling timesteps.

B.3 ABLATION ON OMNI GUIDANCE AND STOCHASTICITY

In Fig. 11 and Table 5, we further demonstrate how Omni Guidance provides additional affordance to reduce oversmoothing without sacrificing consistency. Fig. 11 demonstrates that for Panorama 2-loop, the default stochasticity level $\eta = 0.9$ results in oversmoothed generations, which can be alleviated by reducing the stochasticity level to $\eta = 0.8$. Table 5 shows that stochasticity can be reduced *without sacrificing consistency* due to the graceful tradeoff properties afforded by Omni Guidance (compare rows 3 and 4); without Omni Guidance, reducing stochasticity hampers both temporal and long-range consistency (F2FC, LRC).

B.4 ABLATION ON BACKBONE DIFFUSION MODELS

To investigate the generalizability of GVS to other backbone diffusion models, we perform additional experiments on two Diffusion-Forcing-free backbones that share the same architecture and training data as the DF backbone used in the main paper. The details of these DF-free backbones (BD backbone and FS backbone) can be found in section A.1.

1026	1027	1028	1029	1030	1031	1032	1033	1034	1035	1036	1037	Trajectory			Full Sequence Diffusion			Binary Dropout Diffusion			Diffusion Forcing				
												F2FC(\downarrow)	LRC(\downarrow)	IQ(\uparrow)	AQ(\uparrow)	CA(\downarrow)	F2FC(\downarrow)	LRC(\downarrow)	IQ(\uparrow)	AQ(\uparrow)	CA(\downarrow)	F2FC(\downarrow)	LRC(\downarrow)	IQ(\uparrow)	AQ(\uparrow)
Panorama 1-loop			0.138	0.228	0.391	0.429	N/A	0.139	0.136	0.557	0.466	N/A	0.138	0.141	0.537	0.461	N/A								
Panorama 2-loop			0.166	0.139	0.332	0.384	N/A	0.137	0.100	0.443	0.391	N/A	0.155	0.116	0.483	0.376	N/A								
Circle 1-loop			0.169	0.349	0.460	0.409	0	0.165	0.233	0.538	0.455	0.025	0.160	0.244	0.546	0.432	0								
Circle 2-loop			0.201	0.245	0.386	0.379	0.025	0.170	0.187	0.470	0.378	0.025	0.182	0.206	0.465	0.358	0								
Straight line			0.095	N/A	0.443	0.405	0	0.076	N/A	0.625	0.432	0	0.080	N/A	0.615	0.423	0								
Stairs			0.154	N/A	0.587	0.380	0	0.132	N/A	0.604	0.420	0	0.137	N/A	0.621	0.401	0								
Staircase circuit			0.143	0.354	0.520	0.411	0	0.133	0.171	0.603	0.448	0	0.129	0.176	0.607	0.419	0								

Table 6: Ablation on Backbone Models.

1038	1039	1040	1041	1042	1043	1044	1045	1046	1047	1048	1049	1050	1051	1052	Trajectory			Autoregressive			StochSync			Ours (GVS)		
															F2FC(\downarrow)	LRC(\downarrow)	IQ(\uparrow)	AQ(\uparrow)	CA(\downarrow)	F2FC(\downarrow)	LRC(\downarrow)	IQ(\uparrow)	AQ(\uparrow)	CA(\downarrow)		
Pan	orama	1-loop				0.157	0.338	0.524	0.446	N/A	0.199	0.222	0.500	0.496	N/A	0.139	0.136	0.557	0.466	N/A						
Pan	orama	2-loop				0.167	0.224	0.562	0.442	N/A	0.280	0.449	0.456	0.464	N/A	0.137	0.100	0.443	0.391	N/A						
Circle	1-loop					0.180	0.489	0.517	0.414	0.350	0.205	0.258	0.511	0.464	0.0	0.165	0.233	0.538	0.455	0.025						
Circle	2-loop					0.184	0.300	0.547	0.432	0.475	0.294	0.494	0.478	0.438	0.0	0.170	0.187	0.470	0.378	0.025						
Straight	line					0.123	N/A	0.469	0.372	0.650	0.138	N/A	0.536	0.403	0.0	0.076	N/A	0.625	0.432	0.0						
Stairs						0.184	N/A	0.545	0.366	0.400	0.214	N/A	0.563	0.432	0.0	0.132	N/A	0.604	0.420	0.0						
Staircase	circuit					0.392	0.429	0.456	0.317	0.900	0.207	0.248	0.567	0.444	0.025	0.133	0.171	0.603	0.448	0.0						

Table 7: Comparison with Baselines on Backbone Trained with Binary-Dropout (BD) Diffusion.

Table 6 and Fig. 15 demonstrates that GVS can also be applied to DF-free backbones; GVS generates long-horizon rollouts that are stable, collision-free, and reasonably consistent. It should be noted that since the FS backbone does not support Omni Guidance, GVS displays slightly worse consistency on the FS backbone than on the DF backbone or BD backbone, which do support Omni Guidance.

Furthermore, the experimental takeaways for the DF backbone from sections 4.1 and 4.2 also hold for its DF-free counterparts: Tables 7 and 8 and Figures 16 and 17 show that GVS outperforms AR sampling in terms of collision avoidance and consistency and StochSync in terms of temporal consistency. In particular, for the FS backbone, AR sampling collapses beyond the first context window since it does not support conditioning on context frames (as also demonstrated by Song et al. (2025)), whereas GVS generates reasonably consistent videos that are stable and collision-free. Not only that, Table 9 demonstrates that for the BD backbone, which is fully compatible with every component of GVS, Omni Guidance enhances temporal consistency across a wide range of stochasticity levels, providing additional flexibility to reduce oversmoothing.

These results suggest that GVS can potentially be applied to a wide range of off-the-shelf video diffusion models, regardless of their training framework.

B.5 ABLATION ON SAMPLING STEPS

In Tables 10 and 11, we examine the effect of varying the number of sampling timesteps $K_s \in [25, 50, 100, 200]$. Since the theoretical receptive field of each target chunk grows with every denoising step, one could reasonably expect consistency to constantly improve as K_s increases.

Surprisingly, while increasing K_s at low values generally improves frame-to-frame (F2FC) and long-range consistency (LRC), at higher values consistency deteriorates. We attribute this trend to the observation that increasing K_s also generally increases scene complexity (as reflected in the general improvement of video quality metrics IQ, AQ, and IS), making the task of consistency a harder one. Furthermore, we also find that increasing the number of sampling timesteps does not obviate the

1080	1081	1082	1083	1084	1085	1086	1087	1088	1089	1090	1091	Trajectory		Autoregressive				StochSync				Ours (GVS)				
												F2FC(\downarrow) LRC(\downarrow) IQ(\uparrow) AQ(\uparrow) CA(\downarrow)				F2FC(\downarrow) LRC(\downarrow) IQ(\uparrow) AQ(\uparrow) CA(\downarrow)				F2FC(\downarrow) LRC(\downarrow) IQ(\uparrow) AQ(\uparrow) CA(\downarrow)						
												Panorama 1-loop	0.528	0.846	0.370	0.334	N/A	0.196	0.191	0.484	0.485	N/A	0.138	0.228	0.391	0.429
Panorama 1-loop	0.515	0.720	0.335	0.289	0.800	0.288	0.449	0.474	0.444	N/A	0.166	0.139	0.332	0.384	N/A											
Panorama 2-loop	0.523	0.890	0.372	0.320	0.800	0.199	0.271	0.531	0.449	0.0	0.169	0.349	0.460	0.409	0.0											
Circle 1-loop	0.494	0.716	0.328	0.285	0.950	0.275	0.441	0.502	0.427	0.0	0.201	0.245	0.386	0.379	0.025											
Circle 2-loop	0.557	N/A	0.417	0.330	0.225	0.150	N/A	0.583	0.440	0.0	0.095	N/A	0.443	0.405	0.0											
Straight line	0.526	N/A	0.463	0.337	0.300	0.198	N/A	0.626	0.415	0.0	0.154	N/A	0.587	0.380	0.0											
Stairs	0.644	0.869	0.331	0.273	0.950	0.197	0.222	0.583	0.442	0.025	0.143	0.354	0.520	0.411	0.0											
Staircase circuit																										

Table 8: Comparison with Baselines on Backbone Trained with Full-Sequence (FS) Diffusion.

η	Straight line				Stairs				η	Straight line				Stairs			
	F2FC(\downarrow) IQ(\uparrow) AQ(\uparrow) IS(\uparrow)				F2FC(\downarrow) IQ(\uparrow) AQ(\uparrow) IS(\uparrow)					F2FC(\downarrow) IQ(\uparrow) AQ(\uparrow) IS(\uparrow)				F2FC(\downarrow) IQ(\uparrow) AQ(\uparrow) IS(\uparrow)			
	0	0.150	0.494	0.453	1.79	0.204	0.512	0.422	2.09	0.136	0.540	0.499	2.17	0.187	0.545	0.450	2.55
0.5	0.116	0.446	0.416	1.68	0.178	0.499	0.411	1.78		0.114	0.552	0.491	2.67	0.170	0.551	0.456	2.94
0.9	0.080	0.442	0.413	1.56	0.137	0.502	0.401	1.56		0.076	0.625	0.432	1.65	0.132	0.604	0.420	2.18
1.0	0.063	0.415	0.384	1.44	0.117	0.494	0.412	1.49		0.068	0.609	0.427	1.59	0.121	0.610	0.426	1.63

(a) without Omni Guidance

(b) with Omni Guidance

Table 9: Ablation on Omni Guidance and Stochasticity for the BD backbone.

K_s	Panorama 1-loop				Panorama 2-loop				K_s	Panorama 1-loop				Panorama 2-loop				
	F2FC(\downarrow) LRC(\downarrow) IQ(\uparrow) AQ(\uparrow)				F2FC(\downarrow) LRC(\downarrow) IQ(\uparrow) AQ(\uparrow)					F2FC(\downarrow) LRC(\downarrow) IQ(\uparrow) AQ(\uparrow)				F2FC(\downarrow) LRC(\downarrow) IQ(\uparrow) AQ(\uparrow)				
	25	0.140	0.917	0.516	0.451	0.141	0.918	0.518	0.455	0.141	0.191	0.512	0.449	0.165	0.163	0.418	0.365	
50	0.141	0.962	0.554	0.463	0.140	0.917	0.546	0.461		50	0.138	0.141	0.537	0.461	0.155	0.116	0.483	0.376
100	0.150	0.948	0.560	0.464	0.148	0.926	0.567	0.473		100	0.147	0.139	0.558	0.466	0.151	0.109	0.514	0.373
200	0.155	0.988	0.569	0.472	0.158	0.916	0.573	0.480		200	0.154	0.143	0.571	0.476	0.148	0.110	0.550	0.369

(a) without Loop Closing

(b) with Loop Closing

Table 10: Ablation on Sampling Timesteps.

K_s	Straight line				Stairs				K_s	Straight line				Stairs				
	F2FC(\downarrow) IQ(\uparrow) AQ(\uparrow) IS(\uparrow)				F2FC(\downarrow) IQ(\uparrow) AQ(\uparrow) IS(\uparrow)					F2FC(\downarrow) IQ(\uparrow) AQ(\uparrow) IS(\uparrow)				F2FC(\downarrow) IQ(\uparrow) AQ(\uparrow) IS(\uparrow)				
	25	0.089	0.566	0.423	1.53	0.140	0.575	0.394	1.70	0.080	0.615	0.423	1.65	0.137	0.621	0.401	1.66	
50	0.080	0.615	0.423	1.60	0.141	0.626	0.402	1.73		100	0.078	0.640	0.422	1.60	0.141	0.626	0.402	1.73
100	0.080	0.613	0.439	1.58	0.149	0.609	0.413	2.18		200	0.080	0.613	0.439	1.58	0.149	0.609	0.413	2.18

Table 11: [Continued] Ablation on Sampling Timesteps.

need for our explicit loop closing mechanism (see Table 10). We therefore use an intermediate value $K_s = 50$ as the default, which balances consistency, scene complexity, and inference costs (for GVS, time and space complexity is linear in K_s , as stated in Table 4).

B.6 ABLATION ON CHUNKING PROFILE

In Table 12, we investigate GVS’ sensitivity to the chunking profile by varying the target chunk size $\mathcal{T}_{\text{target chunk}}$ and the overlap length $\mathcal{T}_{\text{overlap}}$ between neighboring windows. Each context window is comprised of $\mathcal{T}_{\text{target chunk}}$ frames in the target chunk, flanked by $\frac{\mathcal{T}_{\text{overlap}}}{2}$ past and future conditioning frames on both sides. It can be seen that increasing $\mathcal{T}_{\text{overlap}}$, or equivalently reducing $\mathcal{T}_{\text{target chunk}}$,

$\mathcal{T}_{\text{target chunk}}$	$\mathcal{T}_{\text{overlap}}$	Straight Line				Stairs					
		F2FC(\downarrow)	IQ(\uparrow)	AQ(\uparrow)	IS(\uparrow)	F2FC(\downarrow)	IQ(\uparrow)	AQ(\uparrow)	IS(\uparrow)		
		6	2	0.087	0.510	0.396	1.65	0.147	0.583	0.385	1.50
		4	4	0.079	0.616	0.421	1.52	0.138	0.618	0.404	1.67
		2	6	0.089	0.624	0.429	1.91	0.136	0.620	0.449	2.41

Table 12: **Ablation on Chunking Profile.**

generally enhances temporal consistency but also increases scene complexity as demonstrated by the improvement in video quality metrics (IQ, AQ, and IS). For Stairs this does not affect the trend of enhanced temporal consistency, but for Straight Line, increasing $\mathcal{T}_{\text{overlap}}$ eventually worsens consistency as increased scene complexity makes the task of consistent generation a harder one. For all of our main experiments, we therefore choose intermediate values $\mathcal{T}_{\text{target chunk}} = 4$ and $\mathcal{T}_{\text{overlap}} = 4$, which balances consistency, scene complexity, and inference costs (for a given target sequence length \mathcal{T} , reducing $\mathcal{T}_{\text{target chunk}}$ increases the number of context windows to be processed \mathcal{T} , resulting in higher inference costs, as shown in Table 4 and Fig. 10).

B.7 ADDITIONAL QUALITATIVE COMPARISONS WITH BASELINES

In Fig. 18, 19, and 20, we visualize additional qualitative comparisons with baselines, which corroborate our findings in Sec. 4.1: AR sampling collides with the generated scene, after which generation collapses, and often fails to close loops. StochSync avoids collisions, but achieves this by shape-shifting the scene. Our method, GVS, generates stable and temporally consistent samples that are collision-free and closes loops.

C LIMITATIONS, CHALLENGES, AND FUTURE WORK

C.1 APPLICATION TO ONLINE SETTINGS

GVS achieves collision-free camera-guided video generation by breaking causality, which precludes GVS from being applied to online problem settings, such as interactive video generation and streaming, where future camera poses are not available.

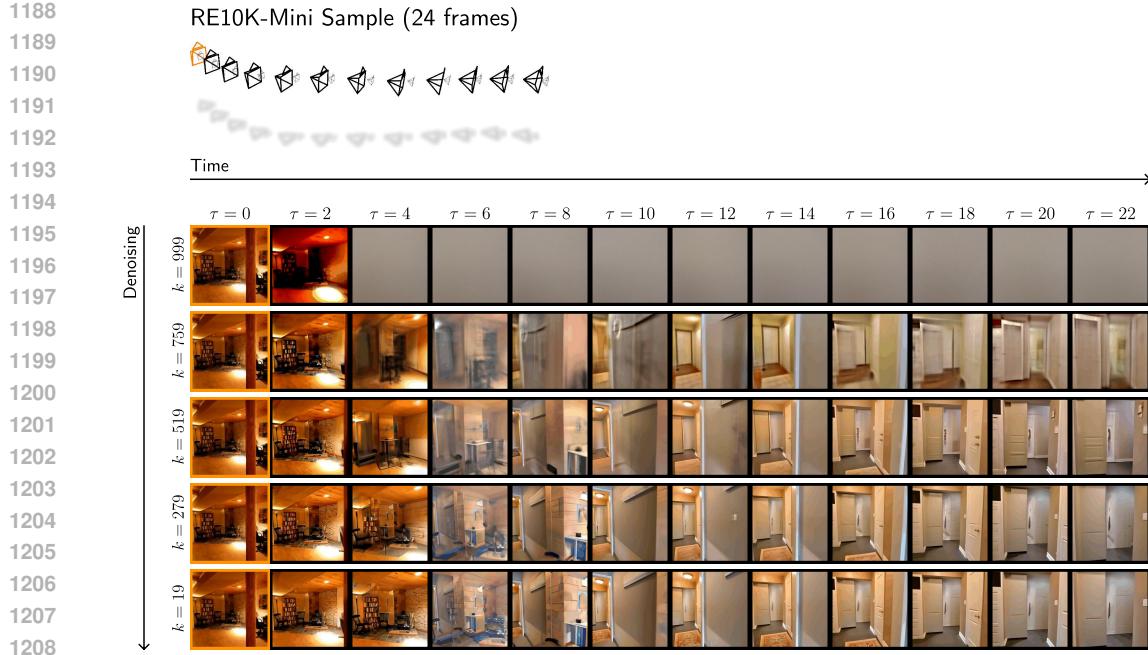
One interesting direction for future research is to extend GVS’ stitching approach to the online problem setting and enable collision avoidance during interactive generation and streaming. Such a method would be the generative analog of model predictive control (Camacho & Alba, 2013) *i.e., model predictive generation*: at each autoregressive step, diffusion stitching would be used to generate a sequence longer than the context window conditioned on history and “future” camera poses, after which the future portion of the generated frames would be discarded. These “future” camera poses could be defined, for example, with motion extrapolation methods that favor open space and smoothness or a learned model that predicts user camera controls as a function of history.

C.2 EXTERNAL IMAGE CONDITIONING

We show that GVS does not effectively propagate externally provided context frames to the rest of the target video. In Fig. 12, we apply GVS to a single-image-to-video task defined by a **context frame** and corresponding camera trajectory sampled from the RE10K-Mini dataset (Song et al., 2025) and visualize the clean-sample predictions at select denoising steps. After noise level $k = 999$, frame $\tau = 2$ commits to the scene depicted in the context frame $\tau = 0$, while the remaining frames are ambivalent. However, by noise level $k = 759$, future frames $\tau = 12$ and beyond commit to a different scene, as there is no direct information propagation from the context frame. By the end of the stitching process, the context frame has only propagated to frame $\tau = 4$, resulting in the awkward transition between these two diverged scenes as shown in frames $\tau = 6$ and $\tau = 8$.

Note that GVS *without* external context frames avoids divergent scenes as neighboring frames can affect *each other* throughout the stitching process; on the other hand, external context frames are unaffected by the rest of the target video. Autoregressive sampling also precludes divergent scenes as new generations are conditioned on *fully* denoised history.

Controlling information propagation in stitching by modulating the per-frame noise levels of the Diffusion-Forcing backbone could potentially enable external image conditioning, which would not



1209 **Figure 12: GVS Struggles to Propagate External Context Frames Throughout the Entire Video.**

1210 only improve video quality and user controllability, but also enable extending GVS to online problem
1211 settings via model predictive generation (see section C.1). We leave this investigation for future work.
1212

1213 C.3 LOOP-CLOSING WIDE-BASELINE VIEWPOINTS

1214 We find that GVS fails to loop-close wide-baseline viewpoints. To probe the root cause, we benchmark
1215 GVS on the **Forward–Orbit–Backward** trajectory, which is comprised of collinear **forward** and
1216 **backward** camera segments that are connected by a 180-degree orbit camera segment, as shown in
1217 Fig. 13. This experiment suggests that this failure mode stems from the specific Diffusion-Forcing
1218 backbone used by our method, which is trained on RE10K – a dataset comprised of camera trajectories
1219 with small viewpoint shifts.

1220 To elaborate, without our loop closing mechanism, GVS generates a video that correctly tracks the
1221 camera motion *i.e.*, depicts the generated scene from the correct viewpoint, but whose forward and
1222 backward segments do not view the same scene; the brown countertop present in the right side of
1223 frame 0 is *absent* in frame 13, which marks the end of the orbit, and the color of the floor in each
1224 frame is different.

1225 When our loop closing mechanism is activated, the forward and backward camera segments depict
1226 the same scene, but incorrectly do so from the *same* viewpoint, as opposed to opposite viewpoints.
1227 This is because the spatial context window we design for cyclic conditioning, shown in the top-right
1228 of Fig. 13, contains wide-baseline cameras in the conditioning trajectory, which is out-of-distribution
1229 to the backbone model. Fig. 14 shows that applying single-window diffusion on this conditioning
1230 trajectory results in the same failure mode, where the generated video fails to track the camera motion.
1231 This failure mode may be addressed by training a Diffusion-Forcing backbone on multi-view datasets
1232 with wider baselines, such as DL3DV (Ling et al., 2024) and ScanNet++ (Yeshwanth et al., 2023),
1233 which is another promising direction for future work.

1234 C.4 SCALABLE CYCLIC CONDITIONING

1235 The spatial neighbors in our proposed cyclic conditioning mechanism are manually defined per
1236 trajectory (see Fig. 8). To scale cyclic conditioning to arbitrary trajectories, one could potentially
1237 learn a separate model that selects spatial neighbors based on their noisy frames and/or the field-
1238 of-view (FOV) overlap (Xiao et al., 2025) of their conditioning cameras. We leave this line of
1239 investigation for future work.



1259 Figure 13: **GVS Fails to Loop-Close Wide-Baseline Viewpoints.** Note that the camera centers of
1260 the **forward** and **backward** segments, which are collinear in implementation, are visually offset for
1261 better clarity.

1268 Figure 14: **Diffusion-Forcing Backbone Fails on Wide-Baseline Camera Trajectories.** Note that
1269 the camera centers, which are collinear in implementation, are visually offset for better clarity.
1270

C.5 STRUCTURALLY SIMILAR CAMERA TRAJECTORY SEGMENTS

1273 In some corner cases, GVS struggles to distinguish camera trajectory segments with similar structure.
1274 This is due to the limited context of the Diffusion-Forcing backbone and its use of *relative* poses for
1275 camera conditioning. Fig. 1 presents a notable example, where the start of the upward staircase is
1276 identical to the end of the downward staircase up to a rigid transformation. Due to this ambiguity,
1277 GVS often generates a small set of *ascending* steps at the bottom of the downward staircase (note
1278 that, otherwise, the generated video faithfully tracks the descending camera motion). Extending GVS
1279 to accept additional forms of conditioning, such as context images and text, could help resolve this
1280 ambiguity.

1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

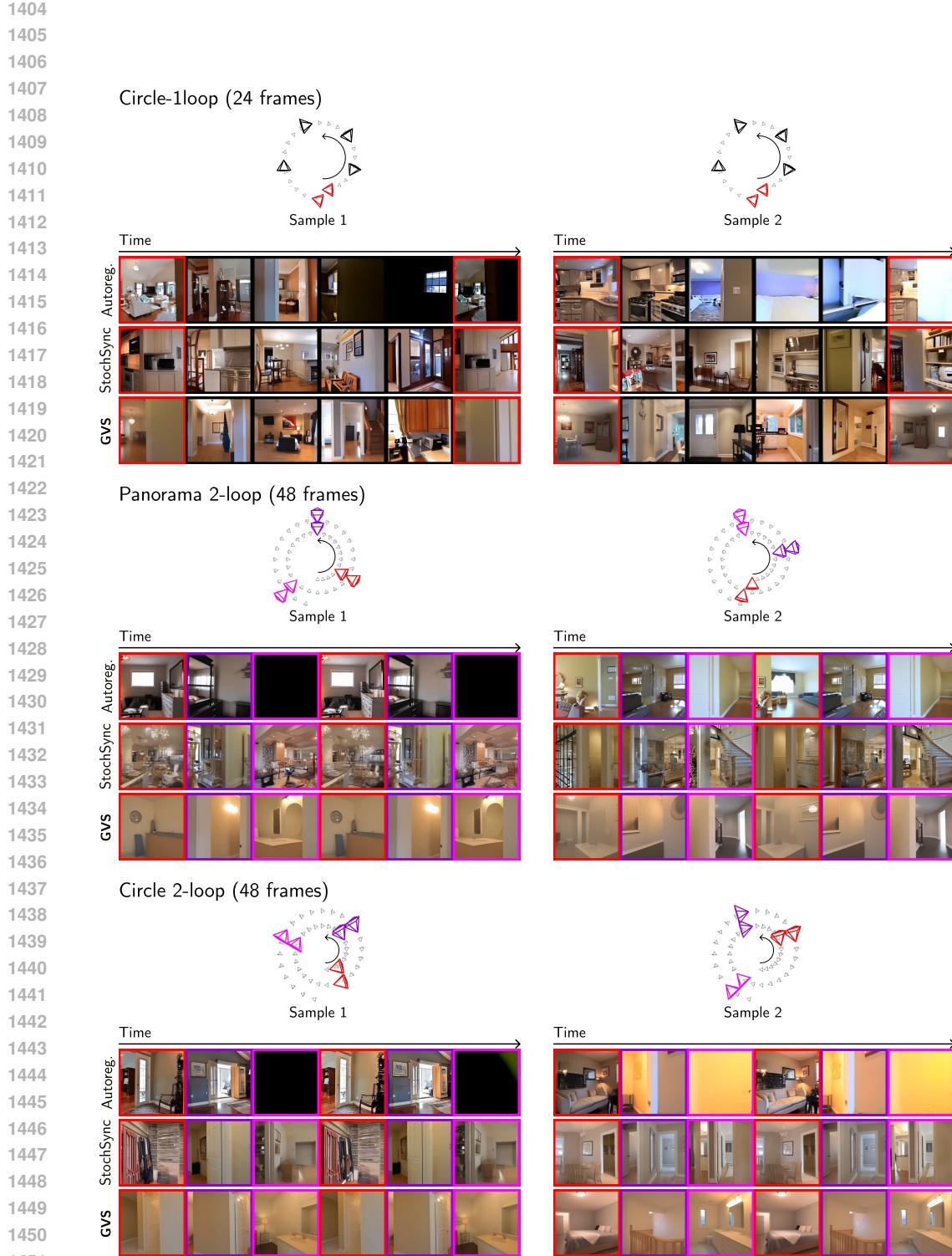


Figure 19: [Continued] Additional Qualitative Comparisons with Baselines. Note that we intentionally offset the camera centers from the panorama's rotation center to better distinguish between different parts of the conditioning trajectory. We visualize Circle 1-loop and Circle 2-loop as spirals also for better clarity.

Figure 20: [Continued] Additional Qualitative Comparisons with Baselines.

1502
1503
1504
1505
1506
1507
1508
1509
1510
1511