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ABSTRACT

Dataset distillation condenses large datasets into synthetic subsets, achieving per-
formance comparable to training on the full dataset while substantially reducing
storage and computation costs. Most existing dataset distillation methods assume
that all real instances contribute equally to the process. In practice, real-world
datasets contain both informative and redundant or even harmful instances, and
directly distilling the full dataset without considering data quality can degrade
model performance. In this work, we present Influence-Weighted Distillation
(IWD), a principled framework that leverages influence functions to explicitly ac-
count for data quality in the distillation process. IWD assigns adaptive weights to
each instance based on its estimated impact on the distillation objective, prioritiz-
ing beneficial data while downweighting less useful or harmful ones. Owing to its
modular design, IWD can be seamlessly integrated into diverse dataset distillation
frameworks. Our empirical results suggest that integrating IWD tends to improve
the quality of distilled datasets and enhance model performance, with accuracy
gains of up to 7.8%.

1 INTRODUCTION

High-quality training data are crucial for modern machine learning, directly affecting performance,
robustness, and generalization. Yet, with global data volume projected to reach 163 zettabytes by
2025 (Reinsel et al., 2017), the exponential growth of training data imposes unprecedented demands
on storage and computation, driving up both training time and cost. To address these challenges,
dataset distillation (Wang et al., 2018; Yu et al., 2024; Zhao et al., 2020; Kim et al., 2022) has
emerged as a powerful paradigm for distilling large training sets into synthetic subsets that can
achieve high model performance while significantly reducing the memory footprint and training time
of deep networks on large datasets. While effective, these methods have the following limitations.

Limitations. (1) Existing dataset distillation methods typically aggregate features from all real in-
stances to distill the synthetic dataset. In practice, real-world datasets often contain redundant, or
even harmful data instances that can degrade model quality, and treating these instances the same
as others can reduce the effectiveness of the distilled set (Wang et al., 2025a). For example, outliers
in real instances may introduce misleading gradients, causing the distilled data lowering general-
ization, while redundant instances, such as a large number of visually repetitive images, contribute
little novel information and cause the synthetic dataset to underutilize its limited capacity. (2) Some
methods (Sundar et al., 2023; Moser et al., 2024; Xu et al., 2024; Du et al., 2024) reduce the first lim-
itation by pruning low-quality or uninformative instances based on loss values or data characteristics
before distillation. However, simply discarding these instances may lead to substantial information
loss, since low-quality data do not necessarily imply zero contribution to the distillation process, and
overly aggressive pruning can remove potentially useful information.

Observation. Inspired by Koh & Liang (2017), we observe that influence functions can be lever-
aged to estimate the contribution of each real instance to the distillation process. Instances with
higher influence scores typically provide more useful and complementary information that enhance
the quality of the distilled dataset, whereas those with low or negative influence scores tend to be
redundant or even harmful. As shown in Fig.1, the first row on the left illustrates redundant data,
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where most instances belong to the same sub-category (airliners). Since airliners already account for
a large proportion of the airplane class in CIFAR10, additional similar instances provide little new
information and thus contribute less to the distilled dataset. The second row shows outliers, such as
blurry images or those capturing only partial views of airplanes, which may introduce misleading
features. The right part illustrates instances with higher influence scores, which are relatively rare
such as bombers, helicopters, and fighters. These instances provide complementary information that
enriches the distilled dataset and improve generalization. This insight motivates a weighting strategy
that emphasizes influential instances while down-weighting less useful ones.

Low Influence Scores  High Influence Scores

Figure 1: Distribution of instance influence scores in
dataset distillation. Most scores concentrate around
zero, reflecting that most real instances contribute
only marginally. Low-influence instances often come
from redundant sub-categories (e.g., airliners), whereas
high-influence instances, though rare (e.g., bombers,
fighters, helicopters), provide valuable information for
distillation.

Our Proposal. Therefore, in this
work, we propose Influence-Weighted
Distillation (IWD), a principled and flexi-
ble framework that tightly integrates influ-
ence functions into the dataset distillation
process. Specifically, we extend the clas-
sical influence function theory to the dis-
tillation setting and derive a novel formu-
lation of influence under dataset distilla-
tion, which enables principled estimation
of each real instance’s contribution to the
quality of the distilled dataset. Building
on this formulation, IWD first computes
an influence score for each training in-
stance. We then use these influence scores
as soft, adaptive weights, prioritizing data
instances that are most beneficial to the
distillation objective and downweighting
those that are less informative or poten-
tially harmful. Importantly, IWD is designed as a modular plug-in that can be seamlessly incor-
porated into existing dataset distillation frameworks.

Our contributions are as follows:

(1) We extend classical influence function analysis to the dataset distillation setting, providing a new
formulation for quantifying the contribution of each real data instance to the distillation process.

(2) We propose Influence-Weighted Distillation (IWD), a modular plug-in that incorporates
influence-based data weighting into the distillation process. IWD is broadly compatible with ex-
isting dataset distillation frameworks and enhances the quality of synthetic datasets by prioritizing
informative instances while downweighting less useful or harmful ones.

(3) We conduct extensive experiments on standard benchmarks to demonstrate that IWD consis-
tently enhances the effectiveness of dataset distillation, achieving better generalization and model
performance compared to previous approaches, with accuracy improvements of up to 7.8% (on
CIFAR10).

2 RELATED WORK

Dataset distillation, also known as dataset condensation, aims to generate a synthetic dataset that
can match the performance of training on the full dataset, while enabling significant savings in data
storage and future retraining costs (Zhao et al., 2020; Cazenavette et al., 2022; Wang et al., 2018).
Specifically, these works could be classified into 4 types: (1) Meta-Model Matching (Wang et al.,
2018; Nguyen et al., 2021; Sucholutsky & Schonlau, 2021) optimizes the distilled data to maximize
performance on real data. For instance, DD (Wang et al., 2018) employs a bi-level framework that
updates the synthetic set by minimizing the loss on real data for models trained on it. (2) Gradient
Matching (Zhao et al., 2020; Lee et al., 2022; Kim et al., 2022) optimizes the synthetic data so that
their induced gradients resemble those of the original data, encouraging models trained on synthetic
set to follow similar learning dynamics and achieve comparable performance. (3) Trajectory Match-
ing (Cazenavette et al., 2022; Du et al., 2023) aligns the full optimization path of models trained
on synthetic versus real data, minimizing trajectory discrepancies so that the distilled model mimics
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the learning process of the real one. (4) Distribution Matching (Wang et al., 2025b; Zhao & Bilen,
2023) aligns feature distributions of synthetic and real data by using metrics such as MMD, enabling
synthetic set to capture the underlying structure of the real dataset.

Despite technical differences, these strategies share the common objective of reducing the discrep-
ancy between synthetic and real datasets in the matching process, while differing in the specific
features they align, such as losses, gradients, trajectories, or distributions.

Influence Function, a fundamental concept in robust statistics, was originally introduced by (Koh
& Liang, 2017) to characterize how an infinitesimal perturbation of a training instance propagates
through the learning algorithm and impacts the model’s parameters, predictions, and ultimately its
performance. Subsequent research (Schioppa et al., 2021; Agarwal et al., 2017; Pruthi et al., 2020)
extended influence functions to deep learning, where they have been employed for data valuation,
error detection, domain adaptation, and related tasks.

3 PRELIMINARIES

3.1 DATASET DISTILLATION

Dataset distillation aims to condense the full dataset D into a much smaller synthetic subset S,
such that training a model (θS) on S yields performance comparable to, or even surpassing, the
model (θD) that achieved by training on the D (Xu et al., 2024). Formally, given a large dataset
D = {xi, yi}Ni=1, the goal is to construct a synthetic set S with |S| ≪ N .

Specifically, DD (Wang et al., 2018) optimizes S in a bi-level manner, where the inner loop trains a
model on S and the outer loop minimizes the loss of this model on the full dataset D.

min
S

L(θS ;D) s.t. θS = argmin
θ

L(θ;S) (1)

where L is defined as: L(θ;D) = 1
N

∑N
i=1 ℓ(θ;xi, yi), with ℓ denoting the loss function (e.g.,

cross-entropy).

DC (Zhao et al., 2020) seeks to construct a synthetic dataset S whose training gradients closely match
those induced by the original dataset D. In this way, the model updates based on S can approximate
the training trajectory on D.

argmin
S

Eθ0∼Pθ0
[

T∑
t=0

D(∇θL
S(θ(t)),∇θL

D(θ(t)))] (2)

where θ0 ∼ Pθ0 denotes initialization from a distribution (e.g., random initialization), θ(t) denote the
model parameters after t training steps. LS and LD are the training losses on S and D, respectively,
and D(·, ·) is a distance metric (e.g., squared ℓ2 distance). In this formulation, DC updates θ(t) by
minimizing LS(θ(t)) on the synthetic dataset. IDC (Kim et al., 2022) extends the DC that updates
θ(t) by minimizing the loss LD(θ(t)) on the D. MTT (Cazenavette et al., 2022) improves upon DC
by replacing single-step gradient alignment with trajectory-level matching over multiple iterations.
MTT optimizes the synthetic dataset S such that the parameter trajectory {θ(t)S }Nt=1 of the student
model trained on S closely follows the expert trajectory {θ(t)D }Mt=1 obtained from training on the full
dataset D (with M ≫ N ), thereby reducing the discrepancy between them.

Recent works (Moser et al., 2024; Sundar et al., 2023) extend the standard distillation framework by
first pruning the original dataset D to remove less informative or detrimental instances, resulting in
a coreset Dcore, and then distilling Dcore to obtain a representative synthetic set S.

3.2 CLASSICAL INFLUENCE FUNCTION

A fundamental question in data-centric machine learning is to quantify the impact of each training
instance on the resulting model or a downstream evaluation metric. A natural and direct approach
is to measure the change in model performance when a specific data instance is removed from the
training set, known as the leave-one-out (LOO) effect. Formally, for a data instance z = (xj , yj),
the LOO effect on an evaluation metricM can be defined as:

∆M(z) =M(θD\z)−M(θD) (3)
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Figure 2: IWD Overview

where θD\z and θD are the model parameters obtained by training on D \ z and D, respectively.

However, computing the LOO effect exactly requires retraining the model N times (once for each
data instance), which is computationally expensive for large datasets and deep models. To address
this, the influence function (Koh & Liang, 2017) from robust statistics provides an efficient first-
order approximation of the LOO effect. Specifically, consider an empirical risk minimization (ERM)
objective over D:

θD = argmin
θ

L(θ;D) =
1

N

N∑
i=1

ℓ(θ;xi, yi) (4)

where ℓ(·) is a per-instance loss (e.g., cross-entropy). Classic result (Ling et al., 1984) tells us
that the influence of upweighting z on the parameters θ is given by Iup,params(z)

def
= dθϵ,z

dϵ

∣∣
ϵ=0

=

−H−1
θ ∇θL(z, θ), where Hθ

def
= 1

n

∑n
i=1∇2

θL(zi, θ) is the Hessian and is positive definite (PD) by
assumption. Building on this parameter perturbation view, we can further ask how such a change
in θ influences any differentiable evaluation metric M . By applying the chain rule, the influence
function (Koh & Liang, 2017) gives:

dM(ztest, θz,ϵ)

dϵ

∣∣∣∣
ϵ=0

= −∇θM(θD; ztest)
⊤H−1

θ ∇θℓ(θD; z) (5)

whereM(θ; ztest) denotes a differentiable evaluation metric (such as test loss or an accuracy surro-
gate) evaluated on a test instance ztest. This influence score captures how a marginal upweighting
of a training instance z propagates through the learned parameters to affect the chosen evaluation
metricM, and has been widely applied in data valuation, sample reweighting, and dataset pruning .

4 METHODOLOGY

While such “Prune then distill” approaches (Moser et al., 2024; Sundar et al., 2023) can enhance
generalization, they may also discard valuable information from the full dataset, potentially limiting
the performance of the distilled model. To address these limitations, we propose Influence-Weighted
Distillation (IWD), which reduces the influence of harmful data instances and emphasizes beneficial
ones, thereby improving the quality of the distilled subset.

4.1 OVERVIEW

As shown in Fig. 2, we leverage influence functions to guide the dataset distillation process. Specif-
ically, IWD introduces a distillation-specific formulation that quantifies how the contribution of a
real instance z ∈ D propagates through the construction of the synthetic dataset S and ultimately
impacts the distillation objectiveM(S;D). Based on this formulation, IWD computes an influence
score for each real instance by tracing its effect on S, and these scores are then used as adaptive
weights—highlighting instances with positive influence while suppressing redundant or harmful
ones.
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4.2 INFLUENCE FUNCTION FOR DATASET DISTILLATION

Distillation Objective Formulation. We cast dataset distillation as minimizing a discrepancy be-
tween matchable statistics of the S and D, evaluated along a reference training trajectory:

min
S

Eθ0∼Pθ0

|T |∑
t=1

D
(
Φsyn(S; θt), Φreal(D; θt)

)
s.t. θt = Ut

(
θ0; Sinner

)
(6)

Here, Ut denotes the training dynamics up to step t starting from θ0, Sinner ∈ {S, D} specifies the
dataset used for the inner training, Φsyn and Φreal extract matchable statistics from S and D under
parameters θt (e.g., predictions, gradients, features, or trajectory states), and D(·, ·) is a chosen
discrepancy (e.g., supervised loss, ℓ2 distance, MMD, or an adversarial loss).

Perturbing a single real instance. We analyze the effect of perturbing a single real instance
zj ∈ D on the distillation objective M(S;D). Let D = {zi}Ni=1 carry weights w ∈ ∆N−1,
and upweight zj by ε: wε = w+ε ej , Dε := {(zi, wε

i )}Ni=1. This induces perturbed real statistics
Φε

real(D; θt) := Φreal(D
ε; θt). The perturbed distillation objective is then

Mε(S;D) := Eθ0∼Pθ0

|T |∑
t=1

D
(
Φsyn(S; θt), Φ

ε
real(D; θt)

)
, (7)

where the inner trajectory θt = Ut(θ0;Sinner) is determined by the chosen inner-training dataset
Sinner. If Sinner = S, the perturbation ε influences only the real statistics Φreal, thereby altering
the distillation objectiveM(S;D) while leaving θt unaffected. In contrast, when Sinner = D, the
perturbation propagates into both the real statistics Φreal and the inner trajectory θt.

Definition (Distillation Influence Function). For a fixed choice of the inner-training dataset
Sinner ∈ {S,D}, the influence of upweighting zj ∈ D by ε onM(S;D) is

I(zj ; S) =
d

dε
Mε(S;D)

∣∣∣∣
ε=0

= Eθ0∼Pθ0

|T |∑
t=1

d

dε
D(aεt , bεt )

∣∣∣∣
ε=0

(8)

where, for brevity, at := Φsyn(S; θt), bt := Φreal(D; θt). We then denote ∇1D(at, bt) and
∇2D(at, bt) be the gradients of D (its first and second argument respectively). Then, we get:

d

dε
D
(
aεt , b

ε
t

)
=

〈
∇1D(at, bt),

d

dε
aεt

〉
+

〈
∇2D(at, bt),

d

dε
bεt

〉
(9)

By the chain rule through the trajectory,

d

dε
aεt = Jsyn

t

d

dε
θεt︸ ︷︷ ︸

=: uε
t,j

,
d

dε
bεt =

∂

∂ε
Φreal(D

ε; θ)

∣∣∣∣
θ=θε

t︸ ︷︷ ︸
=: sreal,εt,j

+Jreal
t

d

dε
θεt︸ ︷︷ ︸

uε
t,j

(10)

where, for brevity, Jsyn
t := ∂θΦsyn(S; θt), Jreal

t := ∂θΦreal(D; θt). Evaluating at ε = 0 yields
the shorthands ut,j := u0

t,j , srealt,j := sreal,0t,j , at := a0t , bt := b0t .

Substituting into (9) at ε = 0 gives

d

dε
D
(
aεt , b

ε
t

)∣∣∣∣
ε=0

=
〈
∇1D(at, bt), J syn

t ut,j

〉
+

〈
∇2D(at, bt), srealt,j + J real

t ut,j

〉
. (11)

Combining (8) and (11), we obtain the general decomposition

I(zj ; S) = Eθ0

|T |∑
t=1

[ 〈
∇2D(at, bt), srealt,j

〉︸ ︷︷ ︸
explicit (real-stats)

+
〈
J syn⊤
t ∇1D(at, bt) + J real⊤

t ∇2D(at, bt), ut,j

〉︸ ︷︷ ︸
implicit via trajectory

]
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Algorithm 1: Influence-Weighted Dataset Distillation (IWD)
Input: Dataset D; initialization distribution p(θ0); number of distilled samples M ; steps T ;

batch size n; initial learning rate η0; softmax temperature τ
Output: Weighted distilled data z̃, learning rate η̃
Initialization: z̃ = {z̃i}Mi=1, η̃ ← η0
// Influence-Weighted Distillation

1 for t = 1 to T do
2 Sample minibatch zt of n real samples from D
3 Sample initial model weights θ0 from p(θ0)
4 Update model parameters using distilled data

// Influence Score Estimation
5 for each real sample z ∈ D do
6 Estimate influence score It(z) based on current z̃
7 wt(z)← softmax(It(z)/τ)
8 Compute weighted loss on zt:
9 Ltotal =

∑
z∈zt

wt(z) · M(z̃, z)

10 Update z̃ and η̃ via gradient descent on Ltotal

The decomposition shows that the influence score naturally consists of an explicit term, capturing
the direct contribution of zj to the real-data statistics, and an implicit term, propagating through the
parameter trajectory via ut,j . The form of ut,j depends on the choice of the inner-training set Sinner:

If Sinner = S, then zj /∈ Sinner and the parameters are not updated with respect to zj . Hence
ut,j = 0, and only the explicit term remains.

If Sinner = D, then the parameters are trained on the real dataset, and ut,j follows the classical

influence function characterization (Linget al., 1984), ut,j =
dθε

t

dε

∣∣∣
ε=0

= −H−1
θt
∇θℓ(θt; zj),

where Hθt is the Hessian of the training loss at θt. In this case, the implicit term dominates, and the
formulation recovers the standard influence-function perspective.

4.3 ALGORITHM WORKFLOW

Given a real dataset D, the proposed influence-weighted dataset distillation algorithm proceeds it-
eratively as outlined in Algorithm 1. At each iteration t, a minibatch zt of n real samples is drawn
from D, and the model is initialized with θ0 ∼ p(θ0). The model is first updated using the current
synthetic dataset z̃ (Lines 2–4).

Next, the influence score It(z) of each real instance z ∈ D is estimated with respect to the cur-
rent synthetic dataset (Lines 5–6). These scores are normalized through a softmax function with
temperature τ , yielding per-instance weights wt(z). The influence-weighted distillation loss is then
computed over the minibatch zt as the weighted sum of matching losses (Lines 7–9).

Finally, both the synthetic dataset z̃ and the learning rate η̃ are updated via gradient descent on this
total loss (Line 10). This procedure is repeated for T iterations, gradually shaping z̃ to emphasize
highly influential instances while mitigating the impact of harmful ones.

5 EXPERIMENTS

In this section, we empirically evaluate the effectiveness of the proposed Influence-Weighted Distil-
lation (IWD) framework on standard dataset distillation benchmarks. We examine whether IWD can
improve over state-of-the-art baselines, assess the benefits of influence-guided weighting relative to
uniform weighting methods, and evaluate its robustness across different datasets and architectures.

Datasets. All experiments are conducted on widely used benchmark datasets for dataset distilla-
tion, including CIFAR10 (Krizhevsky et al., 2009) (60,000 32 × 32 color images in 10 classes),
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Method CIFAR10 CIFAR100 SVHN

1 10 50 1 10 50 1 10 50

Random 14.4±2.0 26.0±1.2 43.4±1.0 4.2±0.3 14.6±0.5 30.0±0.4 14.6±1.6 35.1±4.1 70.9±0.9

Herding 21.5±1.2 31.6±0.7 40.4±0.6 8.4±0.3 17.3±0.3 33.7±0.5 20.9±1.3 50.5±3.3 72.6±0.8

DC 28.3±0.5 44.9±0.5 53.9±0.5 12.8±0.3 25.2±0.3 32.1±0.3 31.2±1.4 76.1±0.6 82.3±0.3

IWD+DC 29.6±0.6 52.7±0.6 61.0±0.4 14.2±0.5 32.4±0.2 36.5±0.3 34.4±1.4 78.6±0.1 83.4±0.3

IDM 45.6±0.7 58.6±0.1 67.5±0.5 20.1±0.3 45.1±0.1 50.0±0.2 − − −
KIP 49.9±0.2 62.7±0.3 68.6±0.2 15.7±0.2 28.3±0.1 − 57.3±0.1 75.0±0.1 80.5±0.1

MTT 46.3±0.8 65.6±0.7 71.6±0.2 24.3±0.3 40.1±0.4 47.7±0.2 − − −
FRePo 46.8±0.7 65.5±0.4 71.7±0.2 28.7±0.1 42.5±0.2 44.3±0.2 − − −
IDC 50.6±0.4 67.5±0.5 74.5±0.1 28.4±0.1 45.1±0.3 − 68.5±0.9 87.5±0.3 90.1±0.1

IWD+IDC 51.5±0.5 68.3±0.6 74.9±0.3 29.1±0.3 46.1±0.5 − 70.1±0.3 88.2±0.4 90.8±0.1
PDD − 67.9±0.2 76.5±0.4 − 45.8±0.5 53.1±0.4 − − −
IWD+PDD − 68.8±0.2 76.9±0.3 − 46.7±0.4 53.5±0.3 − − −
Full Dataset 84.8±0.1 56.2±0.3 95.4±0.1

Table 1: Dataset distillation performance of state-of-the-art and the proposed IWD. The best results
are highlighted in bold, the second best are underlined, and methods with a gray background corre-
spond to variants augmented with IWD.

CIFAR100 (Krizhevsky et al., 2009) (60,000 32 × 32 images in 100 classes) and SVHN (Netzer
et al., 2011) (over 99,000 32× 32 digit images in 10 classes).

Baselines. We consider both data selection and distillation algorithms as baselines, including
Random, Herding(Welling & Bren) for selection and DC (Zhao et al., 2020), KIP (Nguyen
et al., 2021), MTT (Cazenavette et al., 2022), FRePo (Zhou et al., 2022), IDC (Kim et al., 2022),
RFAD-NN (Loo et al., 2022), IDM (Zhao et al., 2023), DREAM (Liu et al., 2023) and PDD (Chen
et al., 2023) for distillation. Herding selects real instances closest to the class mean in feature
space to best represent the real data distribution. All baseline results in the main experiments are
taken from the current state-of-the-art reports in the respective original papers or public benchmarks
to ensure a fair and up-to-date comparison.

Architectures and Distillation Settings. We adopt the original configurations of each baseline, with
modifications only to incorporate our weighted loss. Our framework is applied to three represen-
tative dataset distillation methods: DC, IDC and PDD, where we use the optimal hyper-parameters
reported in their original papers. To further assess the transferability of the distilled data, we evaluate
models trained on the synthetic datasets using CovNet-3 and ResNet-10 (He et al., 2015).

Evaluation. Once the synthetic subsets have been constructed for each dataset, they are used to train
randomly initialized networks from scratch, followed by evaluation on their corresponding testing
sets. For each experiment, we report the mean and the standard deviation of the testing accuracy of
5 trained networks. To train networks from scratch at evaluation time, we use the SGD optimizer
with a momentum of 0.9 and a weight decay of 5× 10−4. For DC, the learning rate is set to be 0.1.
For IDC, the learning rate is set to be 0.01. For PDD, the learning rate is set to be 0.01. During
the evaluation time, we follow the augmentation methods of each method to train networks from
scratch.

5.1 DISTILLATION RESULTS

Overall Performance. Table 1 presents the test accuracy of our proposed IWD framework, as well
as all baselines, on CIFAR10, CIFAR100, and SVHN under varying numbers of distilled images
per class (1, 10, 50). Across all settings, IWD consistently outperforms its base counterparts.

We see that all combinations—IWD+DC, IWD+IDC and IWD+PDD—consistently yield large im-
provements over their respective base distillation frameworks across all datasets and IPCs. Specif-
ically, IWD + DC outperforms DC by significant margins of 1.3%/7.8%/6.1% on CIFAR10,
1.4%/7.2%/4.4% on CIFAR100, and 3.2%/2.5%/1.1% on SVHN. IWD + IDC outperforms IDC
by significant margins of 0.9%/0.8%/0.4% on CIFAR10, 0.7%/1.0% on CIFAR100(IPC =
1/10), and 1.6%/0.7%/0.7% on SVHN. IWD + PDD outperforms PDD by significant margins of
0.9%/0.4% on CIFAR10(IPC = 10/50) and 0.9%/0.4% on CIFAR100(IPC = 10/50).
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Compared with their uniform-weighting counterparts, the improvements are substantial, suggesting
that IWD effectively mitigates the limitations of uniform weighting. Moreover, for DC, IDC and
PDD, which already incorporate more sophisticated objectives, IWD still yields additional gains,
demonstrating the general applicability of IWD across diverse distillation frameworks.

5.2 ABLATION STUDY
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Figure 3: Ablation Study of Influence Weighting. Results on CIFAR10 (IPC = 1, 10, 50)
show that IWD consistently outperforms Random-Select, Influence-Select, and
Influence-Prune, demonstrating the effectiveness of weighting instances by influence.
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(a) Ablation Study of (b) Ablation Study of Robustness Across Architectures.

Original +IWD

Figure 4: Ablation studies on CIFAR10. (a) Ablation Study of τ . Effect of softmax temperature τ
under varying IPCs, showing a unimodal accuracy trend where moderate τ achieves the best balance
between emphasizing high-influence instances and retaining global information. (b) Ablation Study
of Architectures. Robustness across architectures (ConvNet-3, ResNet-10), where IWD consis-
tently outperforms corresponding baselines, demonstrating generality beyond specific backbones.

Ablation Study of Influence Weighting. We compare four methods to understand how instance
influence should be exploited during distillation: (1) Random-Select: uniformly sample real in-
stances and train the model directly on this subset. (2) Influence-Select: use only the most influential
real instances and train the model directly on this subset. (3) Influence-Prune-then-Distill: remove
the lowest-influence tail of the real data and run the standard distillation algorithm on the remaining
set (we retain the highest-influence 90% by default). (4) IWD (ours): use all real instances but weight
them by the softmax of their influence scores (Sec. 4), thereby emphasizing helpful instances while
down-weighting harmful ones during distillation. We conduct this ablation on CIFAR10 under
varying IPCs (1, 10, 50), following the same experimental setup as in Sec. 5.

Across datasets and IPC settings, we observe a consistent ordering: Random-Select < Influence-
Select < Influence-Prune-then-Distill < IWD. Influence-Select is better than Random-Select because
it focuses training on the most helpful instances. Influence-Prune-then-Distill further improves upon
Influence-Select by still retaining a broader pool of real data for distillation, while discarding the
clearly harmful instances. IWD achieves the best results since it adaptively reweights all instances
instead of making hard selections: influential samples receive higher emphasis, harmful ones are
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down-weighted rather than discarded, and the information of the full dataset is preserved for the
distillation process.

Ablation Study of τ . We further investigate the effect of the softmax temperature τ in
Alg. 1. Experiments are conducted on CIFAR10 under varying IPCs, where τ is chosen from
0.01, 0.1, 1, 10, 100. As shown in Fig.4, we observe a clear unimodal behavior: for a fixed IPC, test
accuracy first increases with τ , reaches a peak, and then declines as τ continues to grow. This is
because small values of τ overemphasizes a few high-influence instances and overlook the global
information, while very large values flatten the distribution, approaching uniform weighting and di-
minishing the benefit of influence guidance. Moderate values of τ strike a balance by highlighting
helpful instances while still allowing sufficient global information to contribute. Moreover, we ob-
serve that the optimal τ increases with larger IPC. This is because as IPC grows, more distilled
images are generated, while the information carried by each individual image is limited. With more
distilled images, a larger number of real instances can contribute to the distillation process, many
of which provide useful information. Consequently, a larger τ is required to soften the weighting
distribution, allowing more instances to be effectively utilized rather than relying only on a few
dominant ones.

Ablation Study of Architectures. To further examine the robustness and generalizability of the
proposed IWD framework, we conduct experiments on multiple neural network architectures, in-
cluding a lightweight ConvNet-3 and a deeper ResNet-10. For each architecture, we apply
both our influence-weighted distillation and the corresponding baseline methods, and evaluate the
resulting test accuracies on CIFAR10.

As illustrated in Figure 4, IWD consistently yields higher accuracy than the baselines across all
tested architectures. These improvements remain stable despite substantial differences in network
depth and representational capacity, highlighting that the effectiveness of IWD is not tied to a specific
backbone design but rather provides a generally applicable enhancement to dataset distillation.

...

Influence	ScoreHigh Low
Distilled

Figure 5: Synthesized images of CIFAR10 using
IWD+ DC.

Synthesized Samples Visualization. In
Fig. 5, we show synthesized samples on
CIFAR10 distilled by IWD+DC at IPC = 1,
sorted by their estimated influence scores. We
find that low-influence samples usually fall
into two categories: (i) very simple and easy
images that are almost trivial to recognize,
thus offering little useful gradient signal; or
(ii) redundant or ambiguous images whose
gradients are unstable or even misleading. On
the other hand, high-influence samples tend
to be (i) images containing rich class-specific
features such as distinctive shapes, edges, or
colors; or (ii) harder but still informative cases,
like unusual viewpoints or partial occlusions,
that provide strong learning signals. This
aligns with the goal of IWD: the weighting
mechanism emphasizes samples that supply
valuable global information—either prototypical or challenging—while down-weighting overly
easy or redundant ones.

6 CONCLUSION

We presented Influence-Weighted Distillation (IWD), a framework that integrates influence func-
tions into dataset distillation. By assigning adaptive weights to real instances, IWD prioritizes bene-
ficial data while mitigating the impact of harmful ones, and can be seamlessly applied to existing dis-
tillation methods. Experiments on standard benchmarks show that IWD consistently improves per-
formance across datasets, IPCs, and architectures. These results demonstrate that influence-guided
weighting is a simple yet effective strategy to enhance dataset distillation. Our code is available at
https://anonymous.4open.science/r/Influence-Weighted-Distillation-4DE1.
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