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Abstract
Socratic questioning is an effective teaching001
strategy, encouraging critical thinking and002
problem-solving. The conversational capabil-003
ities of large language models (LLMs) show004
great potential for providing scalable, real-time005
student guidance. However, current LLMs of-006
ten give away solutions directly, making them007
ineffective instructors. We tackle this issue008
in the code debugging domain with TreeIn-009
struct, an Instructor agent guided by a novel010
state space-based planning algorithm. TreeIn-011
struct asks probing questions to help students012
independently identify and resolve errors. It es-013
timates a student’s conceptual and syntactical014
knowledge to dynamically construct a ques-015
tion tree based on their responses and current016
knowledge state, effectively addressing both017
independent and dependent mistakes concur-018
rently in a multi-turn interaction setting. In019
addition to using an existing single-bug debug-020
ging benchmark, we construct a more challeng-021
ing multi-bug dataset of 150 coding problems,022
incorrect solutions, and bug fixes– all carefully023
constructed and annotated by experts. Exten-024
sive evaluation shows TreeInstruct’s state-of-025
the-art performance on both datasets, proving it026
to be a more effective instructor than baselines.027
Furthermore, a real-world case study with five028
students of varying skill levels further demon-029
strates TreeInstruct’s ability to guide students030
to debug their code efficiently with minimal031
turns and highly Socratic questioning.032

1 Introduction033

With the rapidly expanding conversational and rea-034

soning abilities of large language models (LLMs),035

there has been a substantial rise in demand for036

exploiting their capabilities within a multitude of037

educational applications (Kasneci et al., 2023) in038

order to widen accessibility to personalized feed-039

back. Specifically, several recent works explore040

the use of LLMs for providing feedback and guid-041

ance to students (Wang et al., 2023; Kazemitabaar042

Single-Turn Assistant: I'll be happy to help you. You made 
an error in the recursive function. Here is the corrected code:

Multi-Turn Instructor: I'll be happy to help you. How is the 
Fibonacci sequence defined and computed?

Student: The Fibonacci sequence is a series of numbers in 
which each number is the sum of the two preceding ones.

Instructor: That is correct! Let's take a step further. How 
are you utilizing recursion for computing the sequence?

Student: Oh, I see. I made an error in the recursive 
condition. I should change n-2 to n-1.

Student: Hey, I really need help. My Fibonacci function 
is not returning the correct number.

…

Figure 1: The Instructor’s goal is to generate multi-turn
Socratic questions while guiding the Student towards
the correct solution.

et al., 2024; Sheese et al., 2024; Lyu et al., 2024). 043

However, LLMs are typically optimized to generate 044

customer-serving, assistant-like responses, which 045

also translates into the types of questions asked. 046

This style of questioning can be sub-optimal de- 047

pending on the specific domain that question gener- 048

ation is applied to, especially educational domains 049

(Cotton, 1988; Sahamid, 2016; Yang et al., 2005; 050

Wilson, 1987). For instance, if a student is seeking 051

help from an instructor for correcting their mistakes 052

(e.g., debugging their buggy code), we consider 053

two forms of potential responses: assistant-like 054

and instructor-like. As shown in Figure 1, an 055

assistant-like response would not be a successful 056

educational interaction as it leads to the Assistant 057

directly providing an answer. On the other hand, 058

an Instructor-like response reflects the educational 059

philosophy of Socratic questioning. 060

Socratic questioning is a teaching strategy where 061

the Student independently solves their problem 062

by answering guiding questions, instead of being 063

given the solution directly (Wilson, 1987). This 064
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is a more effective learning strategy because the065

weight of learning falls on the Student as they must066

put in effort to answer a question as opposed to067

solely relying on the model (Cotton, 1988; Kasneci068

et al., 2023). Therefore, we aim to re-orient an069

LLM to be an Instructor, not an assistant, by asking070

Socratic questions that (1) help the Student under-071

stand their mistakes, and (2) do not directly provide072

the answer. To tackle these challenges, we propose073

TreeInstruct based on the following principles:074

1. State space estimation: An Instructor plans its075

conversation with a Student based on the “dis-076

tance” between their initial answer and the op-077

timal, correct answer within the estimated state078

space. In other words, it tracks the knowledge079

state of the Student within this space throughout080

the Instructor-Student interactions.081

2. Tree-based Socratic questioning: An Instruc-082

tor generates turn-level Socratic questions con-083

ditioned on both the Student’s current knowl-084

edge state and misunderstanding(s), the latter085

derived from their responses to the Instructor’s086

questions. This step dynamically constructs a087

Socractic question tree.088

3. Adaptive conversation restructuring: An In-089

structor updates their initial conversation plan090

based on how the Student is progressing in091

the conversation, as reflected by updates (or092

lack thereof) to the Student’s knowledge state.093

This planning can include both questioning and094

teaching actions.095

While these principles can apply to many edu-096

cational domains, this paper focuses on code de-097

bugging, which presents unique challenges. Real-098

world code debugging often involves multiple, po-099

tentially interdependent conceptual and syntactical100

bugs. For instance, Figure 1 shows that first re-101

solving the Student’s conceptual misunderstanding102

of recursion in Fibonacci helps them identify their103

recursive syntactical bug (Figure 1). However, ex-104

isting work fails to account for such nuances and105

assumes single-turn feedback (Kazemitabaar et al.,106

2024; Wang et al., 2023; Lyu et al., 2024). This107

ignores the sub-steps required for the Student to108

understand each bug.109

In contrast, TreeInstruct constructs a multi-turn110

debugging plan (state representation), defined as111

the set of Student misunderstandings and mistakes112

(state variables) to be resolved in order to com-113

prehend and correct their bug(s). We define all114

potential paths to complete these tasks as the state 115

space. We traverse the space using Socratic ques- 116

tions and trace which variables have been resolved, 117

grounded based on the Student’s responses. 118

While existing LLM-based tutors are effective 119

in fixing the Student’s code with high success, they 120

are either prone to directly revealing code answers 121

or cannot be adapted to new Student responses. For 122

example, CodeAid (Kazemitabaar et al., 2024) di- 123

rectly reveals the code answer and provides code 124

57% of the time. It achieves a mere 55% rate of 125

helpfulness. On the other hand, TreeInstruct ex- 126

ploits the state space to dynamically construct a 127

tree of questions based on (1) incorrect Student 128

responses, or (2) gaps in the Student’s knowledge. 129

The sibling and parent-child relationships between 130

questions reflect the manner in which they traverse 131

the state space. Finally, it exploits both the Stu- 132

dent’s knowledge state and any proposed bug fixes 133

to serve as the dynamic stopping condition. Overall, 134

TreeInstruct takes a more structured approach to 135

multi-turn conversational feedback, as (1) ground- 136

ing the conversation on the state space representa- 137

tion ensures that all bugs are sufficiently addressed, 138

and (2) constructing a tree based on the Student’s 139

current level of understanding allows for more rel- 140

evant and personalized question generation. 141

We summarize our contributions below: 142

• To the best of our knowledge, TreeInstruct is the 143

first work to explore state space estimation and 144

dynamic tree-based questioning for multi-turn 145

Socratic instruction. 146

• We construct a novel challenging multi-bug de- 147

bugging dataset with 150 expert-annotated con- 148

ceptual and syntactical problems and buggy solu- 149

tions/fixes. 150

• Extensive experiments on an existing benchmark 151

and our constructed dataset demonstrate that 152

TreeInstruct can be universally applied to both 153

open and closed source-settings. 154

• We also showcase that TreeInstruct’s strong So- 155

cratic questioning abilities widely outperform 156

all baselines through both (1) rigorous quantita- 157

tive and qualitative expert evaluation (on aver- 158

age, preferred over 78.43% of the time) and (2) 159

real-world interactions with students of varying 160

coding abilities. 161

Reproducibility: We release our data and source 162

code1 to facilitate further studies. 163

1https://anonymous.4open.science/r/TreeInstruct
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Algorithm 1 TreeInstruct
Require: P (Problem Description), B (Buggy Code, Bug Descriptions), C (Corrected B Code, Bug Fixes)
1: S = {τ1, τ2, . . . , τk} ← GenerateState(P,B,C) ▷ Section 3.2: State representation: (resolved?, task)
2: l← 0, Q← {l : []}, H ← [], F ← {} ▷ Tree level, question list/level, conv. history, Student bug fixes
3: q ← GenerateQuestion(P,B,C, τ1) ▷ Section 3.3: Generate initial question

4: while ∃ τ ∈ S s.t. ¬isResolved (S, F,C) do ▷ Section 3.4: Process while tasks or bugs remain
5: r ← StudentResponse(q)
6: v, w ← VerifyResponse(q, r) ▷ Section 3.3: is r to q correct (v); why or why not (w)?
7: H.add(q, r)
8: Q[l].add(q)
9: if v = false then ▷ Incorrect student response

10: q ← GenerateSiblingQuestion(τ,Q[l], H,w) ▷ Section 3.3: factor in why the student was incorrect
11: else ▷ Correct student response
12: S,w ← UpdateUnderstanding(S, q, r) ▷ Section 3.3: tasks τi . . . τk resolved? If ¬S[τ ], why (w)?
13: if ¬S[τ ] then
14: q ← GenerateChildQuestion(τ,Q[l], H,w) ▷ Section 3.3: factor in why τ was unresolved
15: l← l + 1 ▷ Advance to next tree level
16: else ▷ Task τ resolved
17: F ← GetStudentBugFixes(H) ▷ Section 3.4: ask Student for bug fixes (if any)
18: l← 0, Q← {l : []} ▷ τ resolved→ create new tree

2 Related Works164

2.1 Knowledge Tracing165

Knowledge tracing tracks student knowledge to per-166

sonalize their learning experience, including under-167

standing specific concepts, behavior, and recall abil-168

ity. There are two primary methods: probabilistic169

and deep learning-based. Probabilistic knowledge170

tracing, as it was first introduced, uses a Hidden171

Markov Model (HMM) to maintain binary states,172

learned and unlearned, for each skill as learners173

engage with exercises. This approach, from which174

we draw inspiration, updates the likelihood of these175

states based on performance (Corbett and Ander-176

son, 1994; Yudelson et al., 2013). Some models use177

open-ended paths to states (Rafferty et al., 2016),178

while others use deep learning-based, long-term179

memory capabilities essential for learning (Piech180

et al., 2015). These methods are performative, but181

such state spaces hinder effectiveness and require182

large amounts of annotated training data.183

Our methodology addresses the challenge of184

limited annotated data by dynamically generating185

states during interactions between instructors and186

students. We monitor these evolving states through187

a component we refer to as the Verifier. Using these188

dynamically generated states, we tailor the educa-189

tional experience by personalizing the sequence190

and type of questions posed to learners.191

2.2 Socratic Reasoning in Educational AI192

There have been several works exploring Socratic193

reasoning in education (Herbel-Eisenmann and194

Breyfogle, 2005; Wang and Demszky, 2024; Alic195

et al., 2022; Demszky and Hill, 2022). More re- 196

cently, prior work (Al-Hossami et al., 2023b,a) has 197

highlighted the poor performance of prompting- 198

based methods in performing Socratic Reasoning 199

for the education domain (Achiam et al., 2023), 200

even with Chain-of-Thought (CoT) (Wei et al., 201

2022), as they often give away answers without 202

asking clarifying questions, or the questions are 203

unrelated to the student’s response or original bug 204

(Achiam et al., 2023). In contrast, TreeInstruct miti- 205

gates this issue by explicitly grounding the question 206

generation step on both a target state variable τ and 207

any Student misunderstanding gauged from their 208

previous response. 209

2.3 LLMs for Interactive Education 210

Recent generative approaches within the AI tutor- 211

ing space have attempted to generate responses 212

which cater to the student’s type of mistake or re- 213

quest, but only in single-turn settings. CodeAid 214

(Kazemitabaar et al., 2024) is an assistive tool 215

that helps students debug their code. However, 216

the Instructor is specifically designed to directly 217

provide single-turn responses to the Student, such 218

as answering student questions, explaining con- 219

cepts, and helping to write code. In contrast, Tree- 220

Instruct aims to instruct the Student socratically 221

through questions. BRIDGE (Wang et al., 2023) 222

is an Instructor-like framework that aims to help 223

students with math mistakes. The LM estimates the 224

type of error, the strategy of error remediation, and 225

the instructor intention behind the remediation (all 226

are chosen from a predetermined set). However, 227

our methodology makes use of a more structured 228
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approach that works well for multi-turn conversa-229

tions while adapting to the Student’s learning.230

Output: 
Final bug fixes 
from Student

State Space Estimation

Buggy Code →        → Correct Code

Tree-Based Questioning

Input: 
Problem Statement,
Buggy Code, Correct Code

Nodes: 
Instructor’s state 
variable guided 
questions

Edges: 
Path to new 
understanding 
based on Student 
response and 
Verifier analysis 

Update state 
representation
True, True, False

Instructor Student Verifier

State Variable Value

Task      (e.g., Understand) False

Task      (e.g., Recognize) False

Task      (e.g., Modify) False

1

2

3

tasks to lead student to 
understanding their conceptual 

and syntactical mistakes

Figure 2: We propose TreeInstruct, a novel tree-guided
instructional questioning framework for meaningful ed-
ucational debugging guidance.

3 Methodology231

As shown in Figure 2, TreeInstruct aims to dy-232

namically guide the multi-turn conversation based233

on its estimated state space. Section 3.1.2 provides234

an overview of the three different agents we use235

and their respective roles during the state space236

generation/update and tree construction processes237

(outlined in Figure 3). This allows TreeInstruct to238

respond to the Student’s current level of understand-239

ing adequately. Algorithm 1 contains the pseudo-240

code for all components in our method.241

3.1 Preliminaries242

3.1.1 Problem Description243

As input, the Instructor is given the Student’s buggy244

code that contains e errors, a problem statement,245

bug descriptions, and their respective fixes. The246

Instructor guides the Student to generate a list of247

all bug fixes based on their interactions with the248

Instructor. The overall goal is for the Student to249

resolve their own conceptual and syntactical errors250

in a Socratic fashion to reach the correct code.251

3.1.2 Agents252

In a real-world setting, a Socratic educator (e.g.,253

an instructor, a teaching assistant, a professor) ex-254

ecutes two tasks when interacting with a Student: 255

(1) ask relevant questions to the Student, and (2) 256

assess the Student’s understanding based on their 257

responses. Following this cyclical pattern, we break 258

down our educator into two roles: an Instructor and 259

a Verifier, with persona prompts specified in Tables 260

9 and 11 in Appendix I, respectively. The Instructor 261

and Verifier perform their respective tasks specified 262

in Algorithm 1 via zero and one-shot prompting. 263

The Instructor agent’s job is to generate questions 264

to ask the Student (GenerateQuestion, GenerateSi- 265

blingQuestion, and GenerateChildQuestion in Alg. 266

1; details provided in Section 3.3). The Verifier 267

agent has a significantly more involved role: 268

1. State space estimation (Section 3.2): The 269

Verifier determines a set of tasks which will 270

lead a Student’s to understanding and correct- 271

ing their problem and buggy code. This is 272

GenerateState in Alg. 1. 273

2. Assess Student Response (Section 3.3): Once 274

the Student answers the Instructor’s question, 275

the Verifier must judge the response’s accuracy, 276

given the question-answer pair interaction. This 277

is VerifyResponse in Alg. 1. 278

3. Assess Student Understanding of Target State 279

Variable (Section 3.3): To update the Student’s 280

state space representation, the Verifier must de- 281

termine whether the Student would have needed 282

a sufficient understanding of the target state vari- 283

able in order to generate their response. This is 284

UpdateUnderstanding in Alg. 1. 285

4. Verify Student Bug Fixes (Section 3.4): Each 286

time the Student understands a target state vari- 287

able, they are asked to provide, if any, recom- 288

mended bug fixes based on the conversation his- 289

tory. This serves as an early stopping condition. 290

This is isResolved in Alg. 1. 291

3.2 State Space Estimation 292

The goal of state space estimation is to determine 293

the optimal criteria to track a Student’s global un- 294

derstanding of a problem P and their code, such 295

that from the initial buggy state B, we can traverse 296

the space to reach the goal state (correct code C). 297

We define the state space as the set of all possi- 298

ble tasks that a Student could perform to correct 299

their buggy code. We claim that the optimal state 300

space can be represented by a series S of k tasks 301

which leads the Student from their buggy code B 302
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→ Instructor: I'll be happy to help you. How is the Fibonacci sequence defined and computed?

Student: The nth term in the Fibonacci sequence is the sum of the n-1 and n-2 terms.

     → Instructor: How are you utilizing recursion for computing the sequence?

Student: I recursively call the fibonacci function to get the sequence up till the (n-1)th term to retrieve the 
preceding two terms.

         → Instructor: That's not entirely correct. Let’s walk through your code; if you call fibonacci(3), what will 
sequence be initialized to?

Student: It will be set to [0].

         → Instructor: That’s correct! And is this sufficient for the computation on line 10?

Student: No, we expect [0,1] instead. I made an error in the recursive condition. I should change n-2 to n-1.

Tree-Based Questioning (Section 3.3)           A→B indicates B is generated conditioned on A

Answers incorrectly

Use Answer Feedback 
to Generate Sibling

Answers correctly & understands 
target state attribute  .     

Update State and 
Create New Tree #2

True Understand the definition of the Fibonacci Sequence.

1

1

Recognize that the recursive call only returns the sequence till the (n-2)th term.False2

2

Did not recognize that their recursive call uses the wrong argument (n-2).False2

2

2

True Recognize that the recursive call only returns the sequence till the (n-2)th term.
Modify the recursive call from fibonacci(n-2) to fibonacci(n-1).True

2

3

1

Answers correctly; 
doesn’t understand 

target state attribute.  . 

Use State Feedback to 
Generate Child

2

Create New Tree #1
1

2

2

2

, Does not properly understand their code and hence answers incorrectly.

Figure 3: We detail the process for tree-based question generation. Blue and orange text/backgrounds indicate that
the Instructor and Verifier are performing the task respectively.

to (1) understanding their conceptual and syntac-303

tical mistakes and (2) correcting their code. Each304

of these tasks is a state variable τi which either305

has a value of True or False based on whether or306

not the Student has completed it. At the very begin-307

ning of the Instructor-Student conversation, all of308

these variables are set to “False”. We provide the309

estimated state space used in Figures 2 and 3.310

1. τ1: {False, Understand the definition of the Fi-311

bonacci Sequence.}312

2. τ2: False, Recognize that the recursive call only313

returns the sequence till the (n− 2)th term.314

3. τ3: False, Modify the recursive call from315

fibonacci(n-2) to fibonacci(n-1).316

The state variables τi are structured such that317

earlier tasks have a higher priority, as their com-318

pletion may consequently resolve later tasks. For319

instance, a student’s buggy code may reflect that320

they do not understand an edge case mentioned in321

the problem statement. However, once this misun-322

derstanding is resolved, the Student may simultane-323

ously correct their related syntactical mistakes. On324

the other hand, attempting to resolve the syntactical325

mistakes, “Modifying the condition in the if state-326

ment”, beforehand may lead to an unproductive327

and less structured conversation overall.328

3.3 Tree-Based Questioning329

Tree-based questioning helps to structure the log-330

ical flow of the conversation and allows for more331

relevant, personalized questions. We use a tree to 332

encode the Student’s path to understanding at least 333

one specific target state variable τi. In each tree, (1) 334

nodes are questions, (2) sibling nodes reflect ques- 335

tions which aim to sequentially solidify the current 336

misunderstanding, and (3) each of the parent-child 337

edges connect nodes that guide to new understand- 338

ing. Guided by the state space in Section 3.2, each 339

level l in the tree has questions q of a similar diffi- 340

culty and depth; the last level of the tree indicates 341

that a specific state variable has been resolved. The 342

Verifier agent dictates the movement from level to 343

level and tree to tree. 344

Conditional generation of sibling questions. 345

The Instructor conditionally generates sibling ques- 346

tions at level l if and only if the Student incorrectly 347

answers the Instructor question (lines 6 and 10 in 348

Alg. 1). As shown in the second and third question 349

of Figure 3, these questions must lead to the same 350

level of target understanding as the original gener- 351

ated question intended so therefore, the question 352

can be rephrased or made more specific. To ensure 353

this, we ground the question generation based on 354

two things: (1) the previous questions from level 355

l, and (2) the Verifier’s explanation for why the 356

Student got the question wrong. 357

Conditional generation of child questions. The 358

Instructor conditionally generates child questions 359

at level l+1 if and only if the Student correctly an- 360

swers the Instructor question (addresses the ques- 361
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tion and has no mistakes in their answer), but still362

does not understand the target state variable τi (line363

14 in Alg. 1). As shown in the fourth question of364

Figure 3, these questions aim to guide the Student365

to a more complete understanding of the target state.366

To ensure this, we ground the question generation367

on two things: (1) the previous questions from level368

l − 1, and (2) the Verifier’s explanation of the gaps369

in the Student’s target state understanding.370

3.4 Adaptive Conversation Restructuring371

Once the Verifier agent determines that the target372

state/task has been resolved, we exploit the same373

process to update all remaining tasks τ ∈ S, as374

multiple dependent bugs may have been concur-375

rently resolved within the same tree. After at least376

the target state variable has been resolved (line 13377

in Alg. 1), we create a new tree for any remaining378

tasks, as shown in the first interaction of Figure 3.379

This step is crucial to the multi-bug setting, as mu-380

tually independent bugs would benefit from having381

separate and distinct trees of questioning.382

For further adaptiveness to the conversation, we383

additionally provide (1) an early stopping condition384

based on the Student’s intermediate bug fixes, and385

(2) a maximum tree width and depth threshold, af-386

ter which TreeInstruct chooses to teach the Student387

their remaining gap in knowledge.388

• Bug fixes: After a task τ has been resolved, the389

Student is prompted to provide a list of natu-390

ral language bug fixes (e.g. "Replace ‘i‘ with391

‘i+1‘ on line 6.") based on their entire conver-392

sation history with the Instructor. The Verifier393

will determine if all of the ground-truth bug fixes394

have an isomorphic counterpart within the set of395

suggested Student bug fixes. Isomorphism can396

be defined as (1) having the same conclusion or397

output, (2) sharing the same underlying logical398

structure or pattern, and/or (3) being convertible399

to each other through a series of logical transfor-400

mations. If all ground-truth bug fixes have been401

resolved, then we may stop early.402

• Teaching: After generating a maximum number403

of sibling questions q or depth l, the Instructor404

appends the correct answer to Q[l][0] and re-ask405

Q[l][−1] to the Student. This ensures that the406

conversation flows in case the Student gets stuck.407

4 Experiments 408

4.1 Experimental Setup 409

In order to evaluate TreeInstruct, we uti- 410

lize a proxy Student agent based on the 411

Mistral-7B-Instruct model (Jiang et al., 412

2023) to mimic the abilities of a student while re- 413

sponding to the Instructor. The prompt we use to 414

define the Student persona is outlined in Table 10 415

of Appendix I. We additionally provide GPT4 API 416

experimental set up details in Appendix G. 417

4.2 Datasets 418

We use two datasets to evaluate our method on. 419

First, the Socratic Debugging Benchmark dataset 420

from (Al-Hossami et al., 2023b), which consists 421

of 149 problems, each with a problem statement, 422

student buggy code, bug fixes and descriptions in 423

English, and correct code. Each problem has one 424

syntactical or conceptual bug. Second, to challenge 425

our method, we also craft a novel dataset, MULTI- 426

DEBUG, based on 50 popular programming prob- 427

lems2. For each of the 50 problems, we inject 1, 2, 428

and 3 bug(s) that a student would make for a total 429

of 150 different samples. We keep track of these 430

bugs with matching bug fixes and descriptions. 431

Bugs are either conceptual or syntactical. Con- 432

ceptual bugs usually cause runtime errors or result 433

in incorrect output. Examples include misunder- 434

standing the problem statement, encountering an 435

infinite loop, or incorrectly using a library or math- 436

ematical operator (/ vs // in Python). Syntacti- 437

cal bugs cause compilation errors due to incorrect 438

Python syntax (e.g., missing a colon). 439

4.3 Baselines 440

To determine the success of TreeInstruct, we also 441

measure the performance on a few baselines. First 442

is a baseline called Vanilla. Given the same in- 443

put as TreeInstruct’s Instructor, this method simply 444

asks the base model to ask Socratic questions to 445

the Student - it does not utilize the tree structure, 446

nor does it estimate the Student’s knowledge. We 447

use both Meta-Llama-3-8B-Instruct (Touvron 448

et al., 2023) and GPT-4 (Achiam et al., 2023) 449

as base models for the Vanilla baseline. 450

Second, we use BRIDGE (Wang et al., 2023). 451

Since we are adapting this for Socratic code de- 452

bugging, we use the error type, the remediation 453

strategy, and the remediation intention to guide 454

2https://github.com/Garvit244/Leetcode/
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Table 1: Results on the Socratic Debugging Benchmark Dataset (Single Bug). Bolded and † values denote the top 2
methods respectively.

Syntactical (42 samples) Conceptual (107 samples)

Methods Avg. Turns Success Relevant Indirect Logic Success Relevant Indirect Logic

Vanilla 3.23 80.95 83.72† 76.19 78.70† 76.64† 87.35† 80.32† 78.79†

Bridge 6.00 78.57† 76.50 82.24† 41.72 62.14 78.12 79.86 34.38

TreeInstruct 5.41 77.27 92.01 96.48 88.95 80.26 95.63 89.10 94.63

Table 2: Results on the MULTI-DEBUG dataset. In total, 1-bug has 29 syntactical and 21 conceptual bugs, 2-bug
has 50 syntactical and 50 conceptual bugs, and 3-bug has 78 syntactical and 72 conceptual bugs. Bolded and †
values denote the top 2 methods respectively.

Syntactical Conceptual

Bugs Methods Avg. Turns Success Relevant Indirect Logic Success Relevant Indirect Logic

1

Vanilla 2.36 71.43 92.16 55.12 84.15 78.57 94.58 59.17 84.17
BRIDGE 16.60 50.00 93.93 98.04 24.23 68.00 97.27 96.67 35.38

TreeInstruct 7.24 76.19 93.98† 94.08 85.28† 71.43 97.57† 93.02† 86.02†

TreeInstruct 3.94 75.00† 100.00 95.59† 96.63 76.92† 100.00 88.01 94.76

2

Vanilla 8.32 53.26 83.45 74.41 60.82 62.50 86.96 74.13 59.90
BRIDGE 15.28 34.88 89.47 89.33 52.40 42.71 89.67 88.06 46.64

TreeInstruct 9.04 66.67† 93.00† 92.17† 84.59† 72.62† 94.15† 92.58† 81.46†

TreeInstruct 6.14 69.32 97.96 98.47 90.14 73.91 99.58 98.47 94.45

3

Vanilla 17.48 44.00† 69.88 64.31 52.38 67.00 84.68 84.68 41.51
BRIDGE 8.44 19.00 87.78 83.95 64.95 43.00 90.09 85.78 44.65

TreeInstruct 10.46 43.00 95.68† 88.88† 80.94† 72.00† 96.76† 97.95 83.28†

TreeInstruct 10.46 73.00 100.00 99.27 95.57 92.00 98.40 95.89† 93.63

the question generation, along with the problem-455

specific input given to TreeInstruct’s Instructor. For456

both baselines, we limit the conversations to 20457

turns per number of bugs.458

4.4 Evaluation Metrics:459

We perform qualitative and quantitative evaluation460

of our methods. Details for each metric are pro-461

vided in Appendix A. The scores are averaged462

across all turns and then averaged across all prob-463

lems. In the results, we scale the scores by 100.464

Qualitative Metrics: We develop a binary scale465

to assess the Socratic quality of questions. We466

measure each metric manually, giving a score of 1467

if the attribute is met, and 0 otherwise.468

Relevance (Relevant) measures whether the in-469

structor’s question was pertinent to the errors in the470

Student’s code. Indirectness (Indirect) measures471

if the instructor’s question refrained from directly472

revealing solutions to the bugs. Finally, Logical473

Flow (Logic) checks if the instructor’s question474

promoted a coherent conversation, facilitating the 475

Student’s problem-solving process. Each Instructor 476

question is assigned with a binary value for each of 477

the three attributes. 478

Quantitative Metrics: We apply quantitative 479

metrics to objectively evaluate the effectiveness 480

and efficiency of our framework. We calculate the 481

overall Success Rate (Success) with the number of 482

bug fixes generated by the Student that are isomor- 483

phic to the ground truth set of bug fixes. We also 484

compute the average number of turns (Avg. Turns) 485

required by the method to reach the goal state. 486

4.5 Overall Results 487

In Tables 1 and 2, we see that with more struc- 488

tured representations of student knowledge and 489

conversation state, TreeInstruct demonstrates 490

significant improvements beyond the baselines. 491

Across all multi-bug settings, we see an overall 492

improvement of 16.6% and 11.59% in the success 493

rates for syntactical and conceptual bugs, respec- 494
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tively. We also see an improvement of 13.47% and495

14.89% for syntactical and conceptual bugs, respec-496

tively, across the three conversation metrics. In the497

1-bug setting, we see that the Vanilla baseline498

has the highest success for conceptual bugs. How-499

ever, this setting simultaneously has the lowest500

Indirectness score, indicating that questions were501

very direct, and gave hints towards the bug fixes,502

which evidently increased the success rate. We503

see the same trend in the syntactical, single bug504

on Vanilla setting in Table 1. Overall, TreeIn-505

struct demonstrates strong performance despite506

drastically different base models, and .507

Side-by-Side evaluation: Using the conversa-508

tional metrics, we performed a side-by-side eval-509

uation that measures how often a user prefers our510

method TreeInstruct over the baselines. More de-511

tails are in Appendix E, in which we see that on av-512

erage, TreeInstruct was preferred over BRIDGE513

79.43% more, and over Vanilla 77.43% more.514

Human Student Interaction: We also conduct a515

separate case study where human students directly516

interact with TreeInstruct (details in Appendix F).517

We see that with varying levels of programming518

backgrounds, TreeInstruct is able to help all stu-519

dents resolve the bugs in their code.520

4.5.1 Analysis521

Conceptual bugs are easier to solve than syn-522

tactical. In both tables, across all settings, it can523

be seen that questions targeted towards conceptual524

bugs have higher scores than those towards syn-525

tactical bugs. Syntactical bugs might be "harder526

to see" for the language model as it goes against527

the generation process to generate syntactically in-528

correct code. Breaking it down, a language model529

trained to generate code will always add a colon530

at the end of for loops, if-statements, and method531

signatures because the model is trained to do that.532

Even though the buggy code might have a missing533

colon, the language model might ignore it.534

More bug-specific state variables helps (1) gen-535

erate more relevant questions and (2) maintain536

conversational flow. Table 2 shows that scores537

for Relevance and Logic on conceptual bugs de-538

creases as the number of bugs increases (from539

100% relevance and 94.76% logical flow in 1-bug540

to 98.4% relevance and 93.63% logical flow in 3-541

bug). The state space representation for the 1-bug542

setting is much less compact as that of the 2- and543

3-bug settings. To elaborate, 1-bug state space rep- 544

resentations suggest 3 or 4 state variables (more 545

subtasks) to solve a bug that 2- or 3-bug state space 546

representations take 1 or 2 state variables to solve 547

(example provided in Appendix D). This indicates 548

that, across states, 1-bug settings have an easier 549

time keeping questions relevant to the bugs (as 550

there is only one). Additionally, the conversation 551

flows better as there are no inter-bug dependencies 552

that the Instructor has to take into account. 553

Bug dependency affects success rate. Table 2 554

shows that the success rate (SR) for 3-bug and 1- 555

bug are higher than that of 2-bug. 1-bug settings 556

are overall relatively easier given that only one bug 557

must be resolved. However, compared to the base- 558

lines, which feature low success and logic rates, 559

Tree-Instruct demonstrates a comparatively strong 560

performance in 3-bug settings. This is likely due to 561

its state space and tree creation structure factoring 562

in the inter-bug dependencies. 563

For example, in the Fibonacci problem in Figure 564

1, a student could have made the following two 565

bugs: (1) they did not add a base case for the recur- 566

sion, and (2) they did not correctly write the recur- 567

sive call. Once they solve one of the bugs, they will 568

have understood recursion better, enabling them 569

to solve the other bug easily. TreeInstruct’s pri- 570

oritization of conceptual errors in the state space 571

estimation (Section 3.2) and dependency awareness 572

(Section 3.4) are the key to its high 3-bug perfor- 573

mance. The same cannot necessarily be said for the 574

2-bug setting as it could have mutually independent 575

bugs that require special attention to solve. 576

5 Conclusion 577

This paper proposes a novel method, TreeInstruct, 578

for state space estimation and dynamic tree-based 579

questioning for multi-turn Socratic instruction. We 580

construct a novel multi-bug debugging dataset, 581

MULTI-DEBUG, with 150 expert-annotated con- 582

ceptual and syntactical problems and buggy solu- 583

tions/fixes. Extensive experiments on an existing 584

benchmark and MULTI-DEBUG demonstrate that 585

TreeInstruct can be universally applied to both open 586

and closed source-settings. We also showcase that 587

TreeInstruct’s strong Socratic questioning abilities 588

widely outperform all baselines through both (1) 589

rigorous quantitative and qualitative expert eval- 590

uation (preferred over 77.94% of the time), and 591

(2) real-world interactions with students of varying 592

coding abilities (in Appendix F). 593
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6 Limitations & Future Work594

While TreeInstruct provides an intuitive framework595

which demonstrates promising results for effective596

multi-turn Socratic instruction, it contains a few597

limitations that form the foundation for future, im-598

pactful research areas.599

Firstly, Tables 1 and 2 shows high qualitative600

scores for the questions asked by TreeInstruct.601

While these are encouraging, the success rates still602

have large room for improvement– the highest suc-603

cess rate is 77.27%. This indicates that Socratic604

questions alone are not sufficient for teaching a stu-605

dent to debug their code. We judge the efficacy of606

questions locally, whereas the next step would be607

to judge them globally across the conversation. We608

leave it to future work to devise an effective global609

questioning scheme and evaluation metric.610

Additionally, our method is dependent on the611

base model’s reasoning capabilities, specifically for612

the Verifier agent. In our results, with a stronger613

model, we see higher scores for Logic and Success.614

Although our method shows comparable results615

between GPT-4 and Llama-3-8b, this may be a616

bottleneck, as stronger and bigger models require a617

higher deployment cost.618

Next, in the few failure cases, we see some ad-619

verse effects of our method’s reliance on the rea-620

soning capabilities of the base model. First, our621

method can get stuck into a cyclical conversation622

with the Student if they are particularly weak in an623

area and cannot understand the target state even af-624

ter multiple rounds of direct questioning and teach-625

ing. In these cases, the number of turns rises to626

20-30.627

Moreover, the base language models cannot fully628

grasp abstract concepts such as trees and linked629

lists. Even humans require diagrams to work out630

potential solutions or teach one another. With the631

language-reliant teaching strategies, our method632

might not be able to effectively teach in these do-633

mains.634

These limitations give way to exciting future635

work. Firstly, we can make use of vision lan-636

guage models to provide students with multi-modal637

teaching strategies, instead of relying solely on lan-638

guage. Additionally, we can enhance the frame-639

work, so it will explore new instruction methods640

when the questioning becomes cyclical. This can641

also help make the Instructor more reliable to gen-642

erate consistent output across multiple runs on the643

same problem. Furthermore, we can utilize a struc-644

tured fine-tuning approach to help the model bet- 645

ter leverage the Verifier feedback and tree-based 646

question generation process and make hierarchi- 647

cal Socratic planning and questioning inherent to a 648

model. Overall, TreeInstruct can also be extended 649

to automatically generalize to different teaching 650

domains (e.g., quantitative reasoning). 651

7 Ethics Statement 652

We are committed to the transparency and repro- 653

ducibility of our research. We encourage our re- 654

search community to make use of our open-source 655

code and dataset to further improve our method- 656

ology. Our research involves the evolving inter- 657

section of large language models (LLMs) and edu- 658

cation, where the deployment of language model 659

instructors and their interactions with students have 660

been relatively unexplored. The role of technology 661

and language models is being widely discussed 662

with respect to its impact on student dependence 663

and lack of critical thinking. Given the rapid and 664

wide-scale deployment of LMs to the public, we 665

emphasize the importance of designing Socratic 666

dialogue systems in the hopes of bettering educa- 667

tional support for all students and educators. 668
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A Evaluation Metrics 774

Here, we describe our qualitative and quantitative 775

metrics in depth. The scores are averaged across all 776

turns and then averaged across all problems of the 777

same setting and dataset. In our results, we scale 778

the scores by 100. 779

Qualitative: We develop a binary scale to assess 780

the Socratic quality of questions. Previous work 781

identifies multiple dimensions of Socratic question- 782

ing, including relevance to specific needs, implicit- 783

ness of the answer, and structural coherence. For 784

each question, we measure the below attributes of 785

the conversation manually (giving a score of 1 if 786

the attribute is met, and 0 otherwise): 787

• Relevance (Relevant): The instructor’s question 788

was pertinent to the errors in the student’s code. 789

• Indirectness (Indirect): The instructor’s ques- 790

tion refrained from directly revealing solutions 791

to the bugs. 792

• Logical Flow (Logic): The instructor’s question 793

promoted a coherent conversation, facilitating 794

the student’s problem-solving process. 795
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Quantitative: We apply quantitative metrics to796

objectively evaluate the effectiveness and efficiency797

of our framework.798

• Overall Success Rate (Success): We check799

whether the final list of bug fixes generated by800

the Student, BS , and the ground truth set of big801

fixes, BGT , are isomorphic (Section 3.4). The802

success rate is calculated as |BGT ∪BS |/|BGT |.803

• Average Number of Turns (Avg. Turns): We804

compute the average number of turns required by805

the method to reach the goal state. This metric806

provides insight into the efficiency and depth of807

the interaction process.808

B Human Expert Evaluators809

As mentioned before, our metrics in Tables 1 and810

2 were obtained using human expert evaluators:811

two computer science teaching assistants with at812

least four years of high-school, undergraduate,813

and graduate-level teaching experience, with pro-814

ficiency in Python and located in the USA. They815

were given the same set of instructions and the816

following set of guidelines:817

• Assign a score of 1 for Relevance if the ques-818

tion will eventually lead the Student to under-819

stand their bug(s).820

• Assign a score of 0 for Indirect if a question821

explicitly or implicitly states a solution.822

• Assign a score of 0 for Logic if the current823

question does not naturally flow from the Stu-824

dent’s previous answer.825

Below are some special cases/considerations the826

evaluators were also given:827

• If the Verifier is wrong and asks the same ques-828

tion despite the Student getting the question829

correct, give a score of 0 for Relevance.830

• If a question seems out of order, give a score831

of 0 for Logic.832

• If a question deep into the conversation is833

vague, gives a score of 0 for Relevance and834

Logic.835

• If the answer is provided in a hint after 2836

rounds of similar questions, and the Student837

still does not understand, do not penalize the838

Instructor for Indirect.839

• For determining Success, do not penalize the 840

Student if the bug fix is in natural language 841

rather than code. 842

C Ablation Studies 843

Table 3 compares the results of the 3-bug setting 844

with two ablation settings: 845

• No Teaching: We remove the teaching func- 846

tionality that kicks in when the Student has 847

answered three consecutive questions incor- 848

rectly. Conversation is still guided by the state 849

space representation, tree-based questioning, 850

its updates, and the bug fixes proposed by the 851

Student. 852

• No State: We remove the state space represen- 853

tation. We guide conversation based on the 854

conversation history, the previous questions 855

asked, the Verifier feedback on the Student’s 856

answer, and the bug fixes proposed by the Stu- 857

dent. 858

Overall, we can see that when comparing the 859

Llama-based ablations with the GPT4-based base- 860

lines, our ablation performance is still competitive, 861

especially with respect to the relevance and indi- 862

rectness of the questions. However, the significant 863

drops in performance indicate the importance of 864

our different modules, especially TI No State. 865

We provide a detailed analysis of our ablation re- 866

sults below: 867

From TI to TI No Teaching, we see 868

the Success rates and Logic scores to drop by 869

17.20% and 11.32%, respectively, on average. 870

Teaching is a crucial part of our method because 871

if the Student truly does not know a concept, then 872

asking them more questions will not help them 873

learn. While the Instructor’s job in TreeInstruct is 874

to ask questions, at a certain point, it should teach 875

the Student to clear their confusion. Hence, when 876

we remove teaching, we see even fewer bugs solved 877

and more repeated questions being asked, leading 878

to low logical flow. However, we still see 879

Next, for TI No State, we see significant 880

drops of 18.25% in Success rates, 46.63% in 881

Relevance, and 51.39% in Logic scores, on av- 882

erage. The state space representation guides the 883

question generation, ensures the questions are on 884

topic to the bugs, and keeps track of the Student’s 885

misunderstandings. Without this grounding, we 886

noticed that the conversations (1) deviate from the 887
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Table 3: Results on the 3-bug setting of the MULTI-DEBUG dataset compared with three ablation settings. TI
indicates TreeInstruct, our method.

Syntactical Conceptual

Methods Avg. Turns Success Relevant Indirect Logic Success Relevant Indirect Logic

Vanilla 17.48 44.00† 69.88 64.31 52.38 67.00 84.68 84.68 41.51
BRIDGE 8.44 19.00 87.78 83.95 64.95 43.00 90.09 85.78 44.65

TreeInstruct 10.46 43.00 95.68† 88.88 80.94† 72.00† 96.76† 97.95 83.28†

TreeInstruct 10.46 73.00 100.00 99.27 95.57 92.00 98.40 95.89† 93.63

TI No Teaching 9.69 30.61 90.75 97.61† 72.84 50.00 94.62 95.17 68.78
TI No State 16.34 25.51 51.61 97.21 41.09 53.00 47.57 94.70 20.36

real bugs– exploring areas such as time complexity888

optimization, which might not be the focus of the889

problem, (2) contain countless repeated questions890

that the Student already answered, and (3) jump891

from topic to topic abruptly in consecutive turns.892

These results show how impactful the state space893

representation is.894

D Comparing State Space895

Representations in Multi-Bug Settings896

Here, we compare the state space representations897

of the 1-bug, 2-bug, and 3-bug settings for the two898

sum problem. In the two sum problem, given is an899

array of integers and a target value. The goal is to900

return the indices of two numbers that add up to901

the target value. Below is the correct code.902

1 . d e f twoSum ( s e l f , nums , t a r g e t ) :903

2 . d = {}904

3 . f o r i i n r a n g e ( l e n ( nums ) ) :905

4 . d i f f e r e n c e = t a r g e t −nums [ i ]906

5 . i f d i f f e r e n c e i n d :907

6 . r e t u r n [ d [ d i f f e r e n c e ] , i ]908

7 . d [ nums [ i ] ] = i909

8 . r e t u r n d910

In the 1-bug setting, the Student mis-911

takenly writes nums[i]-target instead of912

target-nums[i] on line 4. In the 2-bug set-913

ting, along with the previous bug, the Student also914

initializes d as a list (d=[]) instead of a dictionary915

on line 2. Finally, in the 3-bug setting, the Student916

forgets to add a colon at the end of the if-statement917

on line 5.918

Tables 4, 5, and 6 outline the state space repre-919

sentations for the 1-bug, 2-bug, and 3-bug settings.920

As shown, 1-bug uses 3 states (states 1, 2, and 3) to921

solve the same but that 3-bug uses 1 state (state 1)922

to solve. This means the 1-bug state representation923

1. Understand the problem statement and the
requirement to find two numbers that add up to
a specific target.
2. Understand the logic behind calculating the
difference as target - nums[i].
3. Correctly implement the difference calcula-
tion in the code.

Table 4: State space representation for 1-bug on the
two-sum problem.

1. Understand how to correctly calculate the
difference between the target and the current
number in the array.
2. Understand the difference between lists and
dictionaries in Python.
3. Correctly initialize a dictionary in Python.
4. Understand how to use a dictionary to store
and retrieve values in Python.

Table 5: State space representation for 2-bug on the
two-sum problem.

is much less compact than that for 3-bug. 924

E Side by Side Evaluation 925

As mentioned in the main text, we perform a side- 926

by-side evaluation to measure the percentage of 927

times a user prefers our method TreeInstruct over 928

the baselines baselines. Preference was measured 929

as the average of all conversation metrics across 930

syntactical and conceptual bugs. Based on the met- 931

rics, we assign each method a ranking (1, 2, or 3). 932

Table 7 shows that TreeInstruct was preferred 68- 933

94.6% of the time over the baselines. On average, 934

TreeInstruct was preferred over BRIDGE 79.43% 935

of the time, and over Vanilla 77.43% of the time. 936
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1. Understand how to correctly calculate the
difference as ‘target-nums[i]‘.
2. Understand how to initialize a dictionary
using ‘‘ instead of ‘[]‘.
3. Understand how to use a dictionary to store
and retrieve values.
4. Understand the correct syntax for an if-
condition, including the necessary colon at the
end.

Table 6: State space representation for 3-bug on the
two-sum problem.

Table 7: Results on the side-by-side evaluation. Bolded
and † values denote the top 2 comparisons respectively.
Note: S-bug refers to the Socratic Debugging Bench-
mark. We abbreviate TreeInstruct as TI.

Comparison 3-bug 2-bug 1-bug S-bug

TI vs BRIDGE 71.43† 68.00† 83.67 94.63
TI vs Vanilla 100.00 90.00 69.39† 50.33†

BRIDGE vs Vanilla 57.14 62.00 40.82 24.83

Interpretation. When we say TreeInstruct was937

preferred 79.43% more over BRIDGE, this means938

that across all 50 3-bug problems and ranking con-939

figurations, TI was given a higher ranking than940

BRIDGE (TI is ranked #1 while BRIDGE is ranked941

#2, TI is ranked #1 while BRIDGE is ranked #3, TI942

is ranked #2 while BRIDGE is ranked #3) 79.44%943

of the time. Each of the 50 problems can have944

multiple preferences (TI over BRIDGE, TI over945

Vanilla, Bridge over Vanilla, etc.) which is why946

they will not necessarily add up to 100.947

F Interactive Evaluation with Human948

Students949

For our main evaluation, we used950

Mistral-7B-Instruct to represent a951

Student. We noticed that Mistral is an overconfi-952

dent model that (1) suggests incorrect bug fixes953

in between the conversations and (2) jumps to fix954

bugs that do not exist in the code. Therefore, we955

worked with human students to test our method956

on the following two settings: Socratic Debugging957

on TreeInstruct and 3-bug on TreeInstruct .958

We gathered 5 human volunteers of varying levels959

of programming backgrounds and knowledge960

(ensuring to anonymize their identities):961

• Level 1: Student knows how TreeInstruct962

works; they act as an adversary to intention-963

ally provide bad inputs that will try to make 964

the method fail. 965

• Level 2: Student is new to TreeInstruct; they 966

are a basic programmer who has been learning 967

to code in Python for a few months. 968

• Level 3: Student is new to TreeInstruct; they 969

are a non-computer science major who does 970

not use Python often, but knows the basic high 971

level concepts of data structures and syntax. 972

• Level 4: Student is new to TreeInstruct; they 973

have been using Python for 2 years and is in 974

their final year of undergraduate education in 975

computer science. 976

• Level 5: Student knows how TreeInstruct 977

works; they act as an ally to intentionally pro- 978

vide good inputs so the method can resolve 979

the bugs in as little turns as possible. 980

When conducting the study, we adhered to the fol- 981

lowing experimental process: 982

1. We presented the student with the problem 983

statement and gave them as much time as they 984

needed to fully understand it. 985

2. The students were given two minutes to review 986

the buggy code. We noted down how many 987

bugs each of the students were able to identify 988

before their conversation. 989

3. The students conversed with TreeInstruct un- 990

til they were able to identify all of the bugs 991

present in the code. 992

We provide the results of this interactive study 993

in Table 8. We used the same three single and 3- 994

bug questions for all students, leading to 30 human 995

student interactions in total. We also conducted a 996

post-interaction interview with each of the students 997

and provide an overview of their feedback below: 998

Socratic questioning helped students learn pro- 999

gramming concepts. The Level 3 student stated 1000

that, "If there was no conversation, I would be put 1001

off from attempting to fix and just try a bunch of 1002

different things based on the errors." Overall, stu- 1003

dents of Levels 2-4 (students with no knowledge 1004

of the system) were not able to identify all of the 1005

bugs before their interactions, but ended up solving 1006

them independently under the Socratic guidance of 1007

TreeInstruct. 1008
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Table 8: Results of human student evaluation across s(ingle)-bug (Socratic Debugging benchmark) and 3-bug
(MULTI-DEBUG dataset) settings, broken down by the student level.

Syntactical Conceptual

Bugs Methods Avg. Turns Success Relevant Indirect Logic Success Relevant Indirect Logic

S-bug

Level 1 6.0 100.00 66.67 66.67 100.00 100.00 91.67† 100.00 50.79
Level 2 12.0 100.00 66.67 83.33† 75.00† 50.00† 100.00 100.00 50.00
Level 3 8.0 0.00† 87.50† 100.00 50.00 100.00 67.50 90.00† 42.50
Level 4 1.0 100.00 100.00 0.00 100.00 100.00 57.14 100.00 64.29†

Level 5 1.0 100.00 100.00 100.00 100.00 100.00 100.00 75.00 75.00

3-bug

Level 1 19.0 83.33† 75.93 97.92† 74.77 100.00 100.00 88.89† 79.49
Level 2 11.7 83.33† 100.00 100.00 78.57 100.00 100.00 86.67 82.50
Level 3 6.67 100.00 100.00 100.00 85.71† 100.00 100.00 100.00 100.00
Level 4 4.7 100.00 93.33† 100.00 76.67 100.00 100.00 83.33 88.89†

Level 5 3.0 100.00 100.00 83.33 100.00 100.00 83.33† 100.00 83.33

Underlying model had a significant impact on1009

user experience. Students had a significantly bet-1010

ter experience with TreeInstruct compared to1011

TreeInstruct . Specifically, the quality of the1012

Verifier determined whether or not the questions1013

posed by the Instructor would be overly repetitive1014

or not.1015

F.1 Analysis1016

Table 8 contains the results. We see that from Level1017

1 to Level 5, the conversation have fewer turns, es-1018

pecially in the 3-bug setting. Additionally, we see1019

that syntactical bugs are harder to solve for weaker1020

students (on average, a success rate of 86.67%),1021

which is intuitive as these students do not have a1022

strong foundation in Python syntax. On the other1023

hand, conceptual bugs are easier to solve (on av-1024

erage, a 95% success rate). Overall, the results1025

show that our method can adapt to various levels1026

of students effectively.1027

G Model Inference Experimental Setup1028

G.1 GPT-4 API1029

For GPT-4, we made use of OpenAI’s GPT-4 API.1030

Overall, we use temperature sensitivity t = 0 for1031

all generation tasks, except for t = 0.1 for state1032

space estimation and t = 0.3 for instructor question1033

generation.1034

Using $30 / 1M input tokens and $60 / 1M output1035

tokens, we break down the cost for each method.1036

TreeInstruct uses an average of 35,000 input tokens1037

and 4,000 output tokens, which adds up to $1.291038

per conversation. BRIDGE uses an average of1039

18,000 input and 5,500 output tokens, which adds1040

up to $0.87 per conversation. Vanilla uses an1041

average of 31,000 output and 2,200 output tokens, 1042

which adds up to $1.06 per conversation. 1043

G.2 Mistral and Llama 1044

We run the Mistral-7B-Instruct-0.2 and Llama-3 1045

models locally on 2 NVIDIA-RTX A6000 GPUs. 1046

For one pass on a dataset (i.e., 150 problems/- 1047

conversations), TreeInstruct takes approximately 4 1048

hours. We use the same temperature settings as the 1049

GPT-4 API. 1050

H License 1051

All of the datasets used in this work, including our 1052

own, is under the Apache 2.0 License. Our use 1053

of existing artifact(s) is consistent with their in- 1054

tended use, specifically for the Socratic Debugging 1055

benchmark and in general, programming practice 1056

and feedback for the problems used in the MULTI- 1057

DEBUG dataset. 1058

I Prompts 1059

A few of the prompts use one-shot learning, and the 1060

fields are prefixed with "example". These examples 1061

are hand chosen, with no criteria in mind. The 1062

example problem relates to a solution that outputs 1063

the Fibonacci sequence of length n, where n is the 1064

input. We provide the specific prompts starting 1065

from the next page. 1066
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You are an Instructor helping a Student debug their code to solve the following problem statement
(after tag ’problem’). You have access to their buggy code (after tag ’bug_code’). Do not ask questions
that explicitly or implicitly mention the following:

Table 9: Instructor agent persona prompt

You are a Student writing code to solve the above problem statement (after tag ’problem’), and you
have written the below buggy code (after tag ’buggy_code’). You are seeking help from your Instructor
help solve your ’buggy_code’. Your role is to answer the questions that the Instructor asks you as if
you were an introductory programmer with a beginner’s level of coding knowledge.

Table 10: Student agent persona prompt

You are an assistant to the Instructor helping a Student debug their code to solve the following problem
statement (after tag ’problem’). Your role is to determine the Student’s understanding (or lack thereof)
within the Instructor-Student interactions. You have access to the correct code (after tag ’correct_code’).
Assume the Student is a introductory programmer with a beginner’s level of coding knowledge.

Table 11: Verifier agent persona prompt

Given the student’s buggy code (after tag ’buggy_code’), bug description (after tag ’bug_description’),
bug fixes (after tag ’bug_fixes’), and the correct code (after tag ’correct_code’) for solving the problem
statement (after tag ’problem’), we define the state representation of a set of Instructor-Student
interactions as a series of necessary tasks which lead the Student from their ’buggy_code’, with
bugs described in ’bug_description’, to understanding and correcting their conceptual and syntactical
mistakes to reach ’correct_code’ with the ’bug_fixes’.

We define a state representation as a list of state attributes, where each attribute denotes a specific task
that is NECESSARY for the student to successfully understand and implement the given problem.
A NECESSARY task directly addresses at least one of the ’bug_description’s and thus, is NOT
ALREADY ADDRESSED in ’buggy_code’. In other words, if a task is not successfully completed,
the Student will never be able to correct their ’buggy_code’ to ’correct_code’.

If the student’s ’buggy_code’ shows that they have already understood and implemented a specific task,
DO NOT INCLUDE that task as a state attribute since it is REDUNDANT.

The list should be ordered, with earlier attributes/tasks given priority over later ones (e.g., conceptual
understanding tasks are a pre-requisite and thus more important than syntactical tasks). The following
is an example of the state representation for the given example problem statement: example problem:
Implement a Fibonacci sequence using recursion. {example buggy code} {example correct code}
{example state representation}. Now do the same for the following problem statement, correct code,
and student buggy code: {problem statement}, {correct code}, {buggy code}

Table 12: Internal Verifier prompt to estimate the state space representation; corresponds to the GenerateState()
method in line 1 of Alg 1.
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The Student has written code (after tag ’student_code’) to solve the problem (after tag ’problem’) and
is answering a question (after tag ’Student’) from the Instructor (after tag ’Instructor’) based on their
understanding of the ’problem’ and their ’student_code’. IF the Student suggests a solution to a bug
they identify, also consider the following:

Ensure that the Student’s suggestion is isomorphic to any one of the bug fixes mentioned in the provided
’bug_fixes’; if not, then ’answer_has_no_mistakes’ should be "False". A Student’s suggestion is isomor-
phic to a bug fix if they (1) have the same conclusion or output, (2) share the same underlying logical
structure or pattern, and (3) are convertible to each other through a series of logical transformations.

Answer the following questions and within your reasoning, think about how you would answer the
"instructor_question" yourself and include this in your "explanation".: answer_addresses_question:
<Does the Student’s response (after tag ’Student’) directly answer the Instructor’s question (after tag
’Instructor’)? Output "True or "False"> answer_has_no_mistakes: <Is the Student’s response (after tag
’Student’) to the Instructor’s question (after tag ’Instructor’) logical (no logical errors or mistakes)?
Output "True or "False">

Instructor: {Instructor question}
Student: {Student response}
bug_fixes: {bug fixes}
student_code: {student code}

Table 13: Internal Verifier prompt to assess the accuracy of the Student response with respect to the Instructor’s
question; corresponds to the VerifyResponse() method in line 6 of Alg 1.

A Student has sufficient understanding of a certain topic (specified at tag "target_understanding")
when the responses that they provide to the Instructor (specified in the "conversation_history") would
REQUIRE them to comprehend "target_understanding". This can either be demonstrated (1) explicitly,
where the Student directly mentions "target_understanding", OR (2) implicitly, where their reasoning
is isomorphic to completing the task in "target_understanding". A Student’s reasoning is isomorphic
to the "target_understanding" if they (1) have the same conclusion or output, (2) share the same
underlying logical structure or pattern, and (3) are convertible to each other through a series of logical
transformations.

Based on the Student’s response (after tag ’student_response’) to the Instructor’s question (after tag
’instructor_question’) and the conversation history (after tag ’conversation_history’), do you believe
that the Student needed to sufficiently comprehend the "target_understanding" in order to provide
their responses (after tag ’Student’ in ’conversation_history’) to the Instructor’s questions (after tag
’Instructor’ in ’conversation_history’) throughout the conversation history? Include specific quotes
from the "conversation_history" in your "explanation". Within your reasoning, think about how you
would answer the "instructor_question" yourself and include this in your "explanation".

Instructor: {Instructor question}
Student: {Student response}
target_understanding: {target understanding}

Table 14: Internal Verifier prompt to update the state space with respect to a single-turn Instructor-Student interaction;
corresponds to the UpdateUnderstanding() method in line 12 of Alg 1.
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Are any bug fixes mentioned in the conversation that you have had with the Instructor (under tag
"conversation_history")? If no, return "None". If yes, then follow the format below:

First, based on your current understanding of the problem (tag "problem") and your conversation with
the Instructor, summarize (after tag "bug_summarization") the bugs in the code explicitly mentioned
within the "conversation_history" that you believe will revise your buggy code (after tag "buggy_code")
to a correct implementation of the "problem" statement. Then, based on this summary, output a list of
the explicitly mentioned bug fixes (from "bug_fix_1" to "bug_fix_n", where n is the number of bug
fixes to make), each described briefly.

An example format/wording of a brief bug fix would be: "Replace ‘i‘ with ‘i+1‘ on line 6."

conversation history: {convo history}

Table 15: Instructor to Student prompt that asks the Student to generate a list of bug fixes; corresponds to the
GetStudentBugFixes() method in line 17 of Alg 1.

For the problem description given above (after tag ’problem’), you are given two sets of bug fixes
(under tags ’suggested_bug_fixes’ and ’correct_bug_fixes’). For each bug fix in ’correct_bug_fixes’, is
there at least one bug fix in ’suggested_bug_fixes’ that is isomorphic? Two bug fixes are isomorphic if
they (1) have the same conclusion or output, (2) share the same underlying logical structure or pattern,
and (3) are convertible to each other through a series of logical transformations. Output "True" or
"False" as your answer with an explanation.

suggested bug fixes: {student_bf}

correct bug fixes: {correct_bf}

Table 16: Internal Verifier prompt check if the Student has suggested all the correct bug fixes that are present in the
ground truth set of bug fixes, corresponds to isResolved() in line 4 of Alg. 1.

Based on the student’s current level of understanding, as demonstrated through their conversation
history (tag "conversation_history"), what is 1 follow-up question with the same level of depth and
difficulty RELATIVE to the ’previous_questions’ that you could ask based on the Student’s explanation
that would help them reach the "target_understanding"? Make sure that the question addresses the
reasons why the Student got the previous question(s) wrong, as detailed in tag "misunderstanding",
such that the Student is more likely to resolve these misunderstandings. You must generate a question
such that any correct answer to your question should automatically reflect the "target_understanding"
and resolve the "misunderstanding".

target_understanding: {target}
conversation_history: {conversation history}
previous_questions: {previous questions}
previous_misunderstanding: {explanations}
These questions should help the Student arrive at the answer themselves; do NOT give any direct hints
towards the solution (under tag "bug_fixes" and tag "bug_description").
bug_fixes: {bug fixes}
bug_descriptions: {bug descriptions}

Table 17: Internal Instructor prompt to generate a sibling question; corresponds to the GenerateSiblingQuestion()
method in line 10 of Alg 1.
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Based on the student’s current level of understanding, as demonstrated through their conversation
history (tag "conversation_history"), what is 1 follow-up question with increasing depth and difficulty
RELATIVE to the ’previous_questions’ that you could ask based on the Student’s explanation that
would help them reach the "target_understanding"? Make sure that the question addresses the reasons
why the Student has not reached the "target_understanding", as detailed in tag "misunderstanding",
such that the Student is more likely to resolve these "misunderstanding"s by answering your question.

target_understanding: {target}
conversation_history: {conversation history}
previous_questions: {previous questions}
previous_misunderstanding: {explanations}
These questions should help the Student arrive at the answer themselves; do NOT give any direct hints
towards the solution (under tag "bug_fixes" and tag "bug_description").

bug_fixes: {bug fixes}
bug_descriptions: {bug descriptions}

Table 18: Internal Instructor prompt to generate a child question; corresponds to the GenerateChildQuestion()
method in line 14 of Alg 1.

Based on the buggy code and the target understanding state (under tag "target_understanding"), what is
one question (k=1) that you could ask that would help the Student reach the "target_understanding"?
These questions should help the Student arrive at the answer themselves; do NOT give any direct hints
towards the solution (after tag ’bug_fixes’).

These questions should help the Student arrive at the answer themselves; do NOT give any direct hints
towards the solution (under tag "bug_fixes" and tag "bug_description").

target_understanding: {target}
bug_fixes: {bug fixes}
bug_descriptions: {bug descriptions}

Table 19: Internal Instructor prompt to generate the initial question; corresponds to the GenerateQuestion() method
in line 3 of Alg 1.
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