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Figure 1. We show that training on one million randomly generated embodiments in simulation (varying camera configurations, body size, and rotation
pivot point) results in RING, a generalist navigation policy that works across various robot embodiments in the real world. (A) A t-SNE visualization of
embodiment parameters for 30k random agents and three real robots (we do not train on any real robot embodiment parameters). Egocentric views from
the first camera are shown for 10 sample agents. (B) RING transfers zero-shot to a wide range of embodiments in the real-world including Stretch RE-1,
LoCoBot, Unitree Go1, RB-Y1 wheeled humanoid. (C) The policy displays embodiment-adaptive behavior, adjusting its navigation strategy based on its
embodiment.

Abstract

Modern robots vary significantly in shape, size, and
sensor configurations used to perceive and interact with
their environments. However, most navigation policies are
embodiment-specific—a policy trained on one robot typi-
cally fails to generalize to another, even with minor changes
in body size or camera viewpoint. As custom hardware be-
comes increasingly common, there is a growing need for
a single policy that generalizes across embodiments, elim-
inating the need to (re-)train for each specific robot. In
this paper, we introduce RING (Robotic Indoor Navigation
Generalist), an embodiment-agnostic policy that turns any

mobile robot into an effective indoor semantic naviga-
tor. Trained entirely in simulation, RING leverages large-
scale randomization over robot embodiments to enable ro-
bust generalization to many real-world platforms. To sup-
port this, we augment the AI2-THOR simulator to instan-
tiate robots with controllable configurations, varying in
body size, rotation pivot point, and camera parameters.
On the visual object-goal navigation task, RING achieves
strong cross-embodiment (XE) generalization—72.1% av-
erage success rate across 5 simulated embodiments (a
16.7% absolute improvement on the CHORES-S bench-
mark) and 78.9% across 4 real-world platforms, includ-
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ing Stretch RE-1, LoCoBot, and Unitree Go1—matching or
even surpassing embodiment-specific policies. We further
deploy RING on the RB-Y1 wheeled humanoid in a real-
world kitchen environment, showcasing its out-of-the-box
potential for mobile manipulation platforms.

1. Introduction
Robot embodiments are diverse and are constantly evolv-
ing to better suit new environments and tasks. This range
in body configurations—differences in size, shape, wheeled
or legged locomotion, and sensor configurations—not only
shapes how robots perceive the world but also how they act
in it. A robot with a wide field of view (FoV) or multi-
ple cameras can scan its surroundings quickly, while one
with a narrower view might need to more actively explore
a room. A small robot can squeeze through tight spaces, a
low-profile one can duck under furniture, and a larger robot
may need to follow more conservative routes. The influence
of embodiment on behavior means a policy trained on one
design, or even several, often does not perform well out of
domain.

There has been progress towards scalable cross-
embodiment training [13, 34, 46, 48, 58]. While these meth-
ods demonstrate some transfer to unseen embodiments, they
still suffer from performance degradation with relatively
small changes in embodiment (e.g., camera pose modifica-
tion on the same robot) [38, 53]. Potentially, this is due to
these methods relying on the small amount of real-world
data available in public datasets-around 20 embodiments
in total [34]. Similarly, general-purpose navigation poli-
cies [43–45] are trained on datasets with relatively few em-
bodiments (e.g., 8 robots in [44]), limiting their generaliza-
tion. A more comprehensive solution is needed—one that
can robustly handle the full spectrum of possible embodi-
ments without retraining or additional adaptation.

We introduce RING, a Robotic Indoor Navigation
Generalist. RING is trained exclusively in simulation, with-
out any use of real-world robot embodiments. In other
words, all robot platforms we evaluate on (i.e., Stretch RE-
1, LoCoBot, Unitree’s Go1, RB-Y1) are unseen by RING
during training. We leverage simulation to randomly sam-
ple 1 Million agent body configurations, varying the robot’s
camera parameters, collider sizes, and center of rotation.
Concretely, each embodiment consists of a collider box
of varying dimensions and cameras with randomized pa-
rameters, placed randomly within the collider box. Fig.1-
A presents a t-SNE[47] visualization of body parameters
for 30k such agents. Our approach builds on the success
of prior works that achieve strong real-world performance
through large-scale simulation-only training [17, 24, 65].
Simulation enables training across a vast distribution of
environments (150k ProcTHOR houses [12]) and objects

(40k+ 3D objects in Objaverse [11]) in the AI2-THOR sim-
ulator. Extensive domain randomization on visual obser-
vations and the use of pre-trained visual encoders then al-
lows simulation-trained policies to bridge the sim-to-real
gap. We follow the training procedure in FLaRe [24], first
training our policy on expert trajectories collected from 1M
randomized embodiments and subsequently fine-tuning it
with on-policy reinforcement learning (RL) in the simula-
tor.

Our results demonstrate generalization to truly unseen
embodiments. RING transfers to diverse real-world embodi-
ments without any adaptation, despite being trained entirely
in simulation without access to the real robot configurations.
We evaluate in a zero-shot setting across Stretch RE-1, Lo-
CoBot, Unitree’s Go1, RB-Y1 wheeled humanoid, and even
“Navigation Assistants,” where a human user captures ego-
centric observations on their phone and prompts RING to
predict actions. RING achieves 72.1% average success rate
in simulation (16.7% absolute improvement on CHORES-S
benchmark) and 78.9% on real robot platforms—matching
or even surpassing embodiment-specific policies. RING
can be further adapted to an embodiment-specialized policy
with even better performance (up to 10% absolute improve-
ment) with minimal finetuning. RING is easy to install, and
is ready for use by the community. We will release our pre-
trained models, code, and data.

2. RING

With the growing diversity of robots used in research labs
and real-world applications, there remains a need for a pol-
icy that can operate a wide range of embodiments and trans-
fer, in a zero- or few-shot manner, to unseen robots. We
introduce RING, a generalist policy for indoor visual navi-
gation that learns from a broad spectrum of embodiments,
trained exclusively in simulation, without any direct use of
actual robot embodiments. We show that training on an
extensive range of ∼1M random embodiments results in a
robust navigation policy, enabling zero-shot transfer to un-
seen real-world robots. To train RING, we define the space
of random embodiments (Sec. 2.1), enable generation of
expert trajectories for random embodiments in simulation
(see Appendix 7), and use state-of-the-art architecture de-
signs (Appendix 9) to train with a combination of IL and
RL methods (Sec. 2.2).

2.1. Embodiment randomization at scale

Domain randomization [8] is a class of methods in which
policies are trained across a wide range of simulated en-
vironmental parameters; the aim is to enable robustness to
unseen environments. Our approach is complementary yet
orthogonal; we apply embodiment randomization to train
policies on a diverse set of robot body parameters, enabling
robust deployment to unseen real-world robots.



Parameters Training Range
Collider Size (αx, αy , αz) [0.2, 0.5], [0.3, 1.5], [0.2, 0.5]
Rotation Center (ox, oy , oz) [−αx/2, αx/2], [−αy/2, αy/2], [−αz/2, αz/2]
Vertical FoV (cam1, cam2) [40, 100], [40, 100]
Horizontal FoV (cam1, cam2) [40, 120], [40, 120]
Camera Pitch (cam1) [−20, 40]
Camera Pitch (cam2) [−20, 60]
Camera Yaw (cam1, cam2) always 0, [0, 360]
Camera Position (x) (cam1, cam2) [−αx/2, αx/2], [−αx/2, αx/2]
Camera Position (y) (cam1, cam2) [0.3, αy ], [0.3, αy ]
Camera Position (z) (cam1, cam2) [−αz/2, αz/2], [−αz/2, αz/2]
RGB dimensions (H, W) [112, 448], [112, 448]

Table 1. Random Embodiment Parameters. We generate 1M
different embodiments sampled from the ranges above.
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Figure 2. Different embodiments exhibit different behaviors.
Embodiment A (shown on the left) has a bigger body size com-
pared to Embodiment B (shown on the right). As a result, B can
go under the table to get to the chair but A collides with the table
and has to go around.

We model the body of the agent as an invisible col-
lider box in the AI2-THOR [29] simulator. Each agent
can have 1 or 2 RGB cameras placed at a random pose
within the collider box. Parameters corresponding to both
the body and the cameras are sampled randomly from the
ranges specified in Tab. 1. We also modify the process
of generating expert trajectories to account for the diver-
sity of embodiments, for details see Appendix 7. Below,
we detail the parameters varied in our embodiment ran-
domization: Collider size (αx, αy, αz). The agent’s body
is modeled as a collider box. We use three scale factors
(αx, αy, αz) to scale the box along x, y, z axis. Rotation
center (ox, oy, oz). These coordinates define the agent’s
pivot point. While this center is typically near (0,0), it can
vary across different robots. We sample ox from the range
[−αx

3 , αx

3 ] and oy from the range [−αy

3 ,
αy

3 ], with the sam-
pling ranges determined by the collider size. Camera pa-
rameters. Each agent is equipped with two RGB cameras
placed within the collider box. We randomize several cam-
era parameters, including position, rotation, FoV, and aspect
ratio. While the first camera always faces forward, the sec-
ond camera can rotate up to 360◦ in z-axis, enabling it to
face forward, to the sides, or backward.

2.2. Training paradigm

We adopt the training recipe of pretraining our policy on
expert trajectories collected from randomized embodiments
(Sec. 2.1), followed by finetuning with on-policy RL us-
ing the randomized embodiments in the AI2-THOR simu-
lator [29].
Large-scale imitation learning with random embodi-
ments: We train our policy using expert trajectories col-
lected from 1M randomized embodiments across 50k pro-
cedurally generated PROCTHOR houses [12], containing
approximately 40k annotated 3D objects [18]. At each time
step, the linear actor-critic head in the Causal Transformer
Decoder predicts action logits, and a cross-entropy loss is
computed between the predicted logits πt and the expert
action. We use a batch size of 240 trajectories, each with
a temporal context window of 100 steps. Training is con-
ducted on 8× H100 GPUs (80 GB each) using the AdamW
optimizer with a learning rate of 2 · 10−4 for 80k iterations.
Large-scale RL finetuning with random embodiments:
Following the training recipe in FLaRe [24], we perform
large-scale RL fine-tuning using AllenAct [50] on random-
ized embodiments in simulation. This fine-tuning phase is
critical for enabling the policy to learn through trial and
error how to navigate diverse embodiments. We use DD-
PPO with 64 parallel environments and 128 rollout steps
across 4 machines (each with 8× H100 GPUs), training
for 40M steps using the AdamW optimizer with a learning
rate of 2·10−5. As in FLaRe [24], we disable the entropy
term in the PPO loss to prevent catastrophic forgetting. For
fair comparison, we adopt the reward function from [12]:
rt = max (0,min∆0:t−1 −∆t)+st−ρ, where min∆0:t−1

is the minimum L2 distance between the agent and the tar-
get object up to time t−1, ∆t is the current L2 distance, st
is a success reward, and ρ = 0.01 is a step penalty encour-
aging task efficiency. The agent must explicitly issue Done
to receive the success reward (st = 10); otherwise, st = 0.

3. Experiments

Our experiments show that RING operates effectively across
a wide range of embodiments, including Stretch RE-1, Lo-
CoBot, Unitree Go1, and RB-Y1, despite being trained ex-
clusively in simulation without any direct exposure to real
robot embodiments. Our key results are: 1) RING gen-
eralizes zero-shot to 5 truly unseen embodiments, despite
never being trained on them, and achieves state-of-the-art
performance across multiple benchmarks (Sec. 3.1). 2) Our
policy, trained solely in simulation on randomized embodi-
ments, transfers directly to the real-world, on 5 real robots
and as navigation assistants (Sec. 3.2). 3) RING can be eas-
ily adapted to embodiment-specialized policies with min-
imal finetuning. It achieves better performance on each
specific robot (Sec. 3.3). 4) RING shows embodiment-



Model Loss Train Embodiment Benchmark Embodiment

Stretch Stretch (Nav Cam) Stretch (Factory Config) LoCoBot Unitree A1 Average

SPOC [17] IL only Stretch 57.0 (38.1)* 37.9 (19.0) 33.0 (19.3) 16.2 (5.4) 2.1 (1.6) 29.2 (16.7)
SPOC-2.3M 60.0 (30.3)* 37.5 (17.9) 46.0 (19.4) 24.0 (7.9) 10.0 (5.2) 35.5 (16.1)

POLIFORMER [65] RL only
Stretch 81.0 (58.1)* 65.0 (35.5) 47.5 (25.6) 27.5 (14.8) 42.6 (25.1) 52.7 (31.8)

LoCoBot 56.0 (32.9) 56.5 (34.7) 52.0 (27.7) 61.5 (44.7)* 50.5 (34.2) 55.4 (34.9)
Unitree A1 40.0 (25.2) 39.0 (22.5) 35.5 (20.9) 30.0 (17.4) 55.3 (48.2)* 40.0 (26.8)

FLARE [24] IL + RL Stretch 82.0 (63.5)* 55.5 (37.9) 38.0 (19.6) 21.5 (10.9) 27.0 (15.1) 44.8 (29.4)

RING-ZERO-SHOT IL + RL RING-Random 76.0 (55.9) 74.0 (52.5) 72.0 (52.7) 66.5 (45.3) 72.0 (58.6) 72.1 (53.0)

Table 2. Zero-shot Results. RING shows zero-shot generalization to four unseen embodiments. Unless otherwise specified, “Stretch” refers to the two-
camera variant of the RE-1 platform, used in[17]. All prior methods fail to generalize effectively to embodiments beyond those seen during training. Gray*
numbers indicate evaluation on the training embodiment; all others reflect zero-shot performance on unseen embodiments.

adaptive behavior, adjusting its strategies based on the
agent’s body (Sec. 3.4). 5) We perform a collision analy-
sis showing that RING remains as safe—and in some cases
even safer—than embodiment-specific policies(Sec. 10).

3.1. RING generalizes zero-shot to unseen embodiments

We perform zero-shot evaluations of all policies on four
robot embodiments: Stretch RE-1 (with 1 or 2 cameras),
LoCoBot, and Unitree A1 in simulation.
Baselines. We select prior works from both imitation
learning (IL) and reinforcement learning (RL) for com-
parison. Each baseline is trained on a specific embodi-
ment and evaluated in a zero-shot setting across four dif-
ferent embodiments. SPOC [16] is a supervised IL baseline
trained on shortest-path expert trajectories in AI2-THOR.
PoliFormer [65] is a state-of-the-art transformer-based pol-
icy for object goal navigation, trained from scratch using
RL. FLaRe [24] combines IL and RL for efficient pol-
icy fine-tuning. All baselines use similar architectures and
comparable data, except for SPOC (reason to include SPOC
2.3M). Specifically, SPOC [17] (SPOC-2.3M) is trained
with IL on Stretch RE-1 using 100k (2.3M) expert trajec-
tories; Poliformer [65] is trained from scratch on each em-
bodiment individually over 300M RL steps (more than other
baselines in terms of training frames); and FLaRe [24] fine-
tunes SPOC on Stretch RE-1 with an additional 20M RL
steps.
Experimental details. RING is first trained with IL on 1M
expert trajectories collected from randomized embodiments
in simulation, followed by finetuning with RL for an ad-
ditional 40M steps on the randomized embodiments. Note
that all four target embodiments were unseen during train-
ing. We evaluate on the navigation benchmark in CHORES-
S [17], a simulation benchmark for household robot with
200 tasks across 200 scenes. For Unitree A1, we create
a new, similar benchmark with 200 tasks adjusted for the
robot’s lower height to ensure that all targets are feasible.
Results. Tab. 2 presents the zero-shot evaluation of all poli-
cies across four embodiments. We compare Success Rate
and Success Weighted by Episode Length (SEL [15]), a met-

ric measuring efficiency. The results indicate that all single-
embodiment baselines struggle to generalize effectively to
new embodiments, with performance declining as embodi-
ment differences increase. In contrast, RING exhibits strong
generalization across all embodiments, despite not being
trained on any of them, achieving an average absolute im-
provement of 16.7% in Success Rate. In some cases, it
outperforms the baseline trained on the target embodiment:
PoliFormer trained on LoCoBot (61.5 → 68.5) and Unitree
A1 (55.3 → 72.0). These 2 more challenging embodiments
(lower FoV, low camera placement) make RL from scratch
less effective. RING benefits from more efficient learning
by training across random embodiments at scale with more
diverse navigation behaviors.

3.2. RING transfers to real-world embodiments despite
being purely trained in simulation

Robot evaluation. We zero-shot evaluate our policy on 4
unseen robots in a multi-room real-world apartment (Fig.5)
without any real-world-specific finetuning (Tab. 3). We use
the same evaluation set of 15 tasks for LoCoBot[10, 12, 65]
(3 start poses × 5 targets) and 18 tasks for Stretch RE-
1 [17, 24, 65] (3 poses × 6 goals). For Unitree Go1, we cre-
ate a new set with 3 start poses and 4 objects (toilet, sofa,
TV, trashcan) placed to match its lower viewpoint. RING
matches or outperforms specialized policies, likely due to
cross-embodiment (XE) training enabling robust sim-to-
real transfer in the presence of real-world noise. We also
deploy RING on the RB-Y1 wheeled humanoid in an un-
structured kitchen, where it successfully navigates to targets
(trashcan, apple, houseplant, mug) at two different heights
(standing/seated), using an iPhone 16 Pro camera mounted
on the robot to stream visual observations (Fig. 1-B). (More
detail in Appendix 6.1)

3.3. RING can efficiently adapt to an embodiment-
specialized policy with minimal finetuning

Although RING generalizes zero-shot across diverse em-
bodiments, some scenarios benefit from embodiment-
specialized policies for optimal performance. Here, we
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Figure 3. RING has embodiment-adaptive behavior, adjusting its navigation strategy based on the embodiment. The quadruped robot (B),
due to its lower height, walks under the bed, while the taller Stretch-RE1 robot (A) navigates around it. In (C), an agent with the same
height as Stretch-RE1 but a lower camera position initially attempts to move under the bed, assuming a shorter height. After colliding, it
adapts its strategy and navigates around the bed, similar to Stretch-RE1.

Model Train Embodiment Eval Embodiment

Stretch Stretch (FC) LoCoBot Unitree Go1

ProcTHOR [12] LoCoBot - - 26.7 -

Phone2Proc [10] LoCoBot - - 66.7 -

SPOC [16] Stretch 50.0 - - -

POLIFORMER [65]
Stretch 83.3 33.3 - -

LoCoBot - - 80.0 -
Unitree Go1 - - - 41.7

FLARE [24] Stretch 94.4 - - -

RING-ZERO-SHOT RING-Random 83.3 72.2 80.0 80.0

Table 3. Real-world Results. RING transfers zero-shot to the real-world
without any finetuning. Gray numbers are evaluated on same embodiment
as their training. RING achieves 78.9% success rate on average across 4
real-world robots.
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Figure 4. Embodiment-Specialized Adaptation. RING, pretrained on
randomized embodiments, adapts efficiently to individual robots with min-
imal fine-tuning.

show that RING can be easily adapted to a robot-specialized
policy through minimal fine-tuning. Baselines. We com-
pare with FLaRe [24], which demonstrates effective adap-
tation to new tasks and embodiments. It is pretrained
on Stretch RE-1 and finetuned on each of the three test
embodiments using up to 20M RL steps. Implementa-
tion. We finetune RING, pretrained on randomized em-
bodiments, on each robot for up to 20M RL steps, using
the same hyperparameters as FLaRe for fair comparison.
Following FLaRe, we repurpose RotateBase(±6◦) to
TiltCamera(±30◦) for LoCoBot, enabling camera con-
trol not available during zero-shot evaluation. Results. As

shown in Fig. 4, RING adapts efficiently, achieving supe-
rior performance with minimal fine-tuning. For LoCoBot
and Unitree-A1, FLaRe underperforms compared to Stretch
RE-1, suggesting that pretraining on a single embodiment
limits generalizability. This underscores the value of poli-
cies like RING that can adapt quickly and consistently to
new embodiments.

3.4. RING changes its behavior across different embod-
iments

Ideally, an optimal policy would modify its behavior de-
pending on the embodiment. For instance, a thinner robot
can navigate through narrow hallways or under furniture,
and a wider agent may need to take more conservative
paths. Our qualitative results show that RING exhibits
embodiment-adaptive behavior. In Fig. 3-A,B, both Stretch
RE-1 and Unitree A1 begin behind a bed. The low-profile
quadruped moves directly under it, while Stretch RE-1 nav-
igates around—demonstrating that RING implicitly infers
embodiment characteristics from visual input, without ac-
cess to privileged body information. Visual input reveals
cues like camera specs and, in some cases, the agent’s
height. However, vision alone can be ambiguous, prompt-
ing the agent to rely on physical interactions—such as colli-
sions—to refine its understanding. (Collision feedback may
come from actual impacts or from sensors that anticipate
collisions before they occur.) In Fig. 3-C, an agent with a
low-mounted camera but tall body misjudges its own height,
initially attempts to go under the bed, collides, and then
reroutes like Stretch RE-1. This behavior is not present in
the expert data but emerges during reinforcement learning
through training across diverse embodiments.
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Appendices for The One RING : a Robotic
Indoor Navigation Generalist
The following items are provided in the Appendix:
• Problem formulation (App. 4)
• Related work (App. 5)
• Real-world robot platforms and human evaluation details

(App. 6)
• Data collection using expert planners in simulation for

randomized embodiments (App. 7)
• Full experimental setup (App. 8)
• Model architecture details (App. 9)
• Collision analysis (App. 10)
• Impact of using a more powerful visual encoder (App. 11)
• Visualization of the randomized training embodiments

and their 5 nearest neighbors to each real robot (Stretch-
RE1, LoCoBot, Unitree A1) (App. 12)

• Out-of-distribution generalization across embodiment
parameters (App. 13)

• Limitations (App. 14)
On our website (one-ring-policy.allen.ai), we have
• Real-world qualitative videos of evaluating RING zero-

shot on five different robot platforms, including Stretch
RE-1 with our camera setup, Stretch RE-1 with factory
camera configuration, LoCoBot, Unitree GO1, and RB-
Y1 wheeled humanoid,

• Qualitative videos for human evaluation, using RING as
navigation assistant,

• Videos showing our dataset of trajectories collected from
random embodiments in simulation.

4. Problem formulation
We define the space of possible embodiments as E, where
each embodiment e ∈ E is characterized by a configuration
vector ce, including parameters such as camera settings,
agent collider size, and center of rotation. Each task can be
modeled as a Partially Observable Markov Decision Process
(POMDP), denoted as (S,A,E,Oe, Te, R, L, P (s0), γ),
where S and A are the state and action spaces. The ob-
servation space Oe varies across embodiments due to dif-
ferences in camera parameters. The observation at time
t for embodiment e, oet = Oe(st, ce), is a function of
both the state st and embodiment parameters ce. Given
an action at, the next state follows the transition dynamics
st+1 ∼ Te(st+1|st, at, ce), which depends on the embodi-
ment (due to variations in collider size and rotation center).
Fig. 2 shows trajectories from two different embodiments
starting at the same location and following the same se-
quence of actions. They have distinct visual observations
and follow different transition dynamics—one agent moves
under the table, while the other collides with it.

Except where otherwise specified, we assume that
all embodiments share the same discrete action space

{MoveBase(±20cm), RotateBase(±6◦, ±30◦),
Done}. These actions are executed using robot-specific
low-level controllers during deployment. This simple and
platform-agnostic action space enables effective cross-
embodiment (XE) transfer, as demonstrated across both
holonomic and differential-drive robots in our experiments.
Investigating more expressive XE action spaces beyond
this sufficient version is left for future work.

5. Related work
Cross-embodiment. Cross-embodiment training has re-
ceived substantial attention from the research community.
Arguably the most representative of a large body of recent
work [3, 7, 13, 14, 19, 21, 23, 25, 28, 30, 33, 48, 54, 55,
58, 63], Open-X-Embodiment (OXE) [9] is the fruit of a
large collaboration to cover many robotic tasks, with spe-
cial emphasis in manipulation. Its usage in RT-X results in
a notable performance gain in emergent skill evaluations in
comparison to RT-2 [5]. Despite the 1.5 million trajectories
across 22 embodiments present in their dataset, the enor-
mous cost of data collection in the real world makes further
scaling challenging. CrossFormer [13] trains a transformer-
based policy on 900k trajectories spanning 30 robots, draw-
ing from OXE, navigation data from GNM [43], manipula-
tion data from DROID [27], and additional sources. How-
ever, the limited diversity of embodiments and focus on
low-level control highlight the need for denser embodiment
coverage. GET-zero [36], focused on dexterous manipula-
tion, incorporates embodiment structure via a connectivity
graph to guide attention. In contrast, we generate an arbi-
trarily large set of randomized embodiments during train-
ing, allowing our policy to generalize zero-shot to novel
embodiments without requiring access to their structure.
Foundational navigation policies Following the success in
recent developments for point-goal navigation [51], loco-
motion [4, 40, 42, 60], agile control [52], exploration [6,
57, 59], and social navigation [37], comparable results in
more nuanced tasks like semantic or object-goal naviga-
tion (ObjectNav) [2, 15, 26, 31, 41, 49, 61, 64] remain
elusive due to a lack of efficient exploration and semantic
understanding capabilities. Recently, with powerful pre-
trained vision models [35, 66] and large-scale procedu-
rally generated virtual environments [11], notable progress
in end-to-end ObjectNav policy learning for specific em-
bodiments has been achieved by means of imitation learn-
ing (IL) from shortest-path trajectories [17], RL [65], or
combinations thereof [24]. In image-goal navigation, No-
MaD [45], which extends ViNT [44], uses a diffusion pol-
icy to control a single embodiment. With the same goal in
mind, GNM [43] trains navigation policies across 6 embod-
iments using IL. In contrast, our policy benefits from RL
fine-tuning, improving robustness to compounding errors.
Leveraging large-scale training with randomized embodi-
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Figure 5. Real Evaluation Environment. Our real-world evalu-
ations are performed in a multi-room apartment with a long corri-
dor, shown here with the three starting locations for three different
robots’ evaluations.

ments in simulation, RING learns a single policy that gener-
alizes to any embodiment, including truly unseen robot plat-
forms in the real world. Unlike NoMaD, ViNT, GNM, and
Mobility VLA [56], which rely on topological map or graph
reconstruction for high-level planning, our approach is fully
end-to-end and can explore dynamic novel scenes without
requiring an explicit map. While prior work [1, 32, 62]
has explored embodiment-agnostic policies using LLMs or
VLMs, these methods are limited to short-horizon naviga-
tion and single-step prediction. In contrast, RING incorpo-
rates temporal context via a transformer decoder.

6. Real Robot Platforms and Human Evalua-
tion Setup.

6.1. Stretch RE-1, LoCoBot, Unitree GO1, RB-Y1

We use Stretch RE-1, LoCoBot, Unitree GO1, and RB-Y1
wheeled humanoid as our robot platforms for real-world
evaluations, shown in Fig. 7. For Stretch RE-1, we eval-
uate two different sensor configurations: the factory con-
figuration and the configuration suggested by SPOC [17].
For RB-Y1, we include both standing and seated config-
urations and use an iPhone 16 Pro camera mounted on
the robot to stream visual observations. The main differ-
ences among these platforms are summarized in Tab. 4. For
robot movements, we either implement a Kalman filter or
wrap around provided robot APIs to realize low-level con-
trollers for a discrete action space {MoveBase(±20cm),
RotateBase(±6◦, ±30◦), Done} across all platforms.
It is important to note that during the training stage, we do
not use any embodiment configurations from these robots
to generate imitation learning data or to initialize RL fine-
tuning embodiments.

6.2. Human Evaluations

To further show RING’s generalization to unseen embodi-
ments, we evaluate our policy as a navigation assistant with

Figure 6. iOS app for human evaluation. We developed a simple
iOS app that enables human participants to text goal, capture an
image using iPhone’s back camera, send both to a remote server,
and receive the predicted action from our RING policy.

humans as novel embodiments. Five participants navigated
a real-world kitchen by following policy outputs on their
phones. Each had unique characteristics (e.g., step size,
height, rotation, camera posture) and was tasked with reach-
ing three objects (Mug, Apple, Houseplant), yielding
15 trajectories. We compare RING to FLaRe [24], trained
only on Stretch RE-1. As shown in Tab.6, RING consis-
tently outperforms FLaRe across objects and users. Fig.9
shows two qualitative examples. Human participants. We
asked five human participants to use RING as a naviga-
tion assistant and evaluated its performance across a diverse
range of human embodiments. These embodiment varia-
tions arose from differences in camera-holding posture, par-
ticipant height, step size, and rotation angle. Tab. 5 summa-
rizes these variations across participants. As a result, each
participant contributed a distinct set of evaluation embodi-
ments and sensor configurations.
Human Evaluation Details. We developed a simple iOS
app (Fig. 6) that allows human participants to input a text
prompt (e.g., “Find a mug”), capture an image using the
iPhone’s back camera, and send both the prompt and image
to a remote server. The server processes this input using
our RING policy, predicts action probabilities, samples an
action, and returns it to the app for display. The action space
available in the app mirrors that of our real-world robot.

Participants follow the suggested action at their own pace
and chosen rotation degree, as specified in Tab. 5. After
each step, they tap the Predict button to repeat the pro-
cess: capturing a new image and sending it, along with the
original prompt, to the server. This continues until either



Stretch RE-1 Stretch RE-1 (Factory) LoCoBot Unitree GO1 RB-Y1 (standing) RB-Y1 (seated)
Body dimension (cm) 33×34×141 33×34×141 35×35×89 64.5×28×40 60×69×140 60×69×92
Camera model 2× D455 D435 D435 D435 iPhone 16 Pro Camera iPhone 16 Pro Camera
Camera vertical FoV 59◦ 69◦ 42◦ 42◦ 73◦ 73◦

Camera horizontal FoV 90◦ 42◦ 68◦ 68◦ 53◦ 53◦

Camera height (cm) 140 130 87 28 140 92
Camera pitch 27◦ 30◦ 0◦ 0◦ 0◦ 0◦

Table 4. Details about evaluation robot platforms. Our four robot platforms have varying dimensions and camera configurations, resulting in diverse
evaluation embodiments.

H1 H2 H3 H4 H5
Height 6′3′′ 5′10′′ 5′5′′ 6′1′′ 5′11′′

Step size 0.25m 0.35m 0.4m 0.3m 0.3m
Rotation Degrees 30◦ 45◦ 45◦ 35◦ 30◦

Table 5. Details about human evaluators. Our five human par-
ticipants have varying heights, step size, and rotation degrees, re-
sulting in different evaluation embodiments.

Model Train Embodiment Object Human Participants

H1 H2 H3 H4 H5 Average

FLARE [24] Stretch RE-1
✓ ✗ ✗ ✗ ✗

40.0%✗ ✓ ✓ ✓ ✓

✗ ✗ ✗ ✗ ✓

RING-ZERO-SHOT RING-Random
✓ ✗ ✗ ✗ ✓

73.3%✓ ✓ ✓ ✓ ✓

✗ ✓ ✓ ✓ ✓

Table 6. Human Evaluation. Five individuals navigate to 3 differ-
ent objects ( Apple, Houseplant, Mug) following the
policy’s output actions on their phones in a kitchen area (example
trajectories in Fig. 9). RING-ZERO-SHOT shows much better gen-
eralization to human embodiment than the FLaRE baseline trained
on Stretch RE-1.

the Done action is returned or 100 steps have been exe-
cuted. An episode is considered successful if the target ob-
ject is visible in the final image, within 1 meter, when RING
issues the Done action.

Fig. 9 shows the layout of the evaluation scene and two
sample trajectories, including two locations for a Mug, three
for a Houseplant, and one for an Apple. Participants
always begin in the bottom-left corner of the scene (results
shown in Tab. 6).

7. Data Generation with Expert Planners

Expert planners introduced by [17] are not efficient and ro-
bust for random embodiments. As a result, we made major
improvements to the planners to allow for better trajecto-
ries.

The major factor in this improvement is to consider
safety of the policy (defined as the avoidance of approach-
ing any obstacles along the way.) We use A* [20, 22] to
generate safe navigation trajectories for training as follows:
1) Extract reachable locations in a scene on a finely spaced
grid, ensuring that the agent’s collider does not intersect
with any object’s collider. Thus, different embodiments
yield different reachable locations according to their col-

lider. 2) Compute a clipped Euclidean distance to the near-
est obstacle. Then, for each location, set the cost of visiting
it as the inverse of the third power of the distance. 3) Con-
struct a grid-like graph where each reachable location is a
node connected to its immediate neighbors. For each con-
nection, assign a cost equal to the maximum cost of visiting
either of the two connected nodes. 4) Extract a minimum-
cost path connecting the reachable positions in the graph
nearest to the source and to the target via A*. 5) Extract
waypoints by skipping over points in the A* path as long as
skipping them doesn’t increase the total path cost from the
latest waypoint. 6) The expert linearly interpolates between
waypoints up to the precision reachable by the action space
to generate each trajectory.

8. Additional Benchmark/Experiment Details

Action Space. Following on prior work with
AI2-THOR, we discretize the action space for
all agents in our training: {MoveAhead,
MoveBack, RotateRight, RotateLeft,
RotateRightSmall, RotateLeftSmall,
Done}. Here, MoveAhead advances the robot by
0.2 meters, MoveBack moves the robot backward by
0.2 meters, RotateRight/RotateRightSmall
rotates it clockwise by 30◦ / 6◦ around the yaw axis,
and RotateLeft/RotateLeftSmall rotates it
counterclockwise by 30◦ / 6◦ around the yaw axis,
and Done indicates the agent has located the target,
ending the episode. We evaluate RING zero-shot on
all robots (Stretch-RE, LoCoBot, Unitree Go1) with
the same action space using their low-level controllers.
When finetuning for embodiment-specialized policies,
we finetune for a slightly different action space for Lo-
CoBot: {MoveAhead, MoveBack, RotateRight,
RotateLeft, LookUp, LookDown, Done}.
LookUp tilts the camera up by 30◦ around the roll axis and
LookDown tilts the camera down by 30◦ around the roll
axis. All baselines are trained and evaluated with the same
action space for fair comparison.
Success Criteria. We follow the definition of Object Goal
Navigation from [2], where an agent must explore its envi-
ronment to locate and navigate to a specified object within a
maximum of n steps. To indicate it has found the target, the
agent must execute the Done action. Success is determined
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Figure 7. Robot platforms. We use 3 different platforms, including Stretch RE-1, LoCoBot, and Unitree GO1 for our real-world evalua-
tions.

t=0: Find a mug. t=10 t=15 t=20

t=25 t=30 t=35 t=40

t=0: Find a trashcan. t=8 t=20 t=28

t=32 t=36 t=44 t=51

Figure 8. RB-Y1 Trajectories. We deploy the policy on the wheeled humanoid in an unstructured kitchen area (layout shown in Fig. 9) to navigate to
different objects. We include both seated and standing configurations and use an iPhone 16 Pro camera to stream the visual observations.

by the environment based on whether the agent is within a
distance d of the target and if the target is visible in its view.
If the agent exceeds n steps without executing the Done
action, the episode is considered a failure. For simulation
benchmarks, we follow CHORES-S [17] with n = 600 and
d = 2. For real-world evaluations, we use n = 300 and
d = 1.

Success weighted by collision (SC). Collision is one of
the main challenges for a unified policy operating across
diverse embodiments in visual navigation tasks. Previous

works measure the collision rate (#collisions
#steps ) to understand

how often a policy collides with objects in a scene. How-
ever, this does not reflect the effectiveness of the policy at
the task level. For example, in a successful episode, a sin-
gle collision and multiple collisions should have different
impacts on the performance measurement. As a results, in-
spired from Success Weighted by Episode Length (SEL),
we propose Success Weighted by Collision (SC),

SC =
1

N

N∑
i=1

Si
1

1 + ci
, (1)
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Figure 9. Human Trajectories. Two sample trajectories from two
individuals navigating to a houseplant and an apple using RING.

where Si is a binary indicator of success for episode i, ci is
the number of collisions in episode i, and N is the number
of evaluation episodes. In this metric, the policy is penal-
ized most heavily for a single collision, with the penaliza-
tion decreasing for each additional collision, as the penalty
diminishes inversely with the number of collisions. Intu-
itively, > 0 collisions are much worse than 0, as a real robot
may suffer damage from one bad collision, but the differ-
ence between 10 and 11 collisions is a more marginal dif-
ference.
Hyparameters. We list the hyperparameters used in train-
ing and the architecture in Table 7.

Imitation Learning
Batch Size 224
Context Length 100
Learning Rate 0.0002

RL Finetuning
Total Rollouts 64
Learning Rate 0.0002
Mini Batch per Update 1
Update Repeats 4
Max Gradient Norm 0.5
Discount Value Factor γ 0.99
GAE λ 0.95
PPO Surrogate Objective Clipping 0.1
Value Loss Weight 0.5
Entropy Loss Weight 0.0
Steps for PPO Update 128

Model Architecture
Transformer State Encoder Layers 3
Transformer State Encoder Hidden Dims 512
Transformer State Encoder Heads 8
Causal Transformer Deocder Layers 3
Causal Transformer Deocder Hidden Dims 512
Causal Transformer Deocder Heads 8

Table 7. Hyperparameters for training and model architecture.

8.1. Real-World Benchmarks

We evaluate 3 of the robots (Stretch-RE1, LoCoBot, Uni-
tree Go1) in a multi-room apartment shown in Fig. 5.
Based on the embodiment, the benchmark has different
starting locations and objects. Among our target object
categories, Apple can be found in the Living room and
Kitchen, Bed can only be found in the Bedroom, Sofa
and Television can only be found in the Living room,
Vase can be found in the Livingroom, Corridor, Office, and
Kitchen, Chair can be found in the Office and Kitchen,
HousePlant can be found in the Living room, Office, and
Kitchen.

We also deploy the policy on the RB-Y1 wheeled hu-
manoid in an unstructured kitchen environment—similar to
the human evaluation setting.
• LoCoBot: Following Phone2Proc [10], use the same five

target object categories, including Apple, Bed, Sofa,
Television, and Vase, and the three starting poses
shown in 5.

• Stretch RE-1: We follow SPOC [16] to use the same six
target object categories, including Apple, Bed, Chair,
HousePlant, Sofa, and Vase, and the three starting
poses, shown in Fig. 5. We consider 2 different cam-
era configurations for Stretch: 1) off-the-shelf camera
equipped on the Stretch RE-1 (D435 with a vertical field
of view of 69◦ and resolution of 720 × 1280), 2) fol-
lowing [17], we use 2 Intel RealSense 455 fixed cam-
eras, with a vertical field of view of 59◦ and resolution
of 1280× 720. The cameras are mounted facing forward
but pointing downward, with the horizon at an angle of
27◦.

• Unitree Go1: We create a new evaluation set for Uni-
tree Go1 with 3 starting poses (Fig. 5) and 4 ob-
jects (toilet, sofa, TV, trashcan) positioned
to accommodate the robot’s lower height, ensuring that
the objects can be visible from its lower viewpoint.

• RB-Y1: The wheeled humanoid navigates to various
target objects in a real kitchen area, including a mug,
apple, houseplant, and trashcan (2 example tra-
jectories shown in Fig. 8).

9. Model Architecture Details
We will now detail RING’s architecture (see Fig. 10),
which is inspired by previous works POLIFORMER [65] and
FLARE [24].
Visual encoder. We use the Vision Transformer from
the pretrained SIGLIP-VIT-B/16 as our visual encoder.
Since the RGB images vary in dimensions across differ-
ent embodiments, we include an additional preprocessing
step before feeding them into the encoder. Specifically,
we pad each RGB image to a square and then resize it
to 256 × 256. In addition, we mask the image from the



Figure 10. RING Architecture. Black text denotes module hyperparameters; gray text indicates hidden feature vectors. RING takes
as input visual observations and a language instruction, and outputs an action. During RL finetuning, it also predicts a value estimate.
For embodiments with only one camera (e.g., LoCoBot and Unitree), we mask the second camera image with zeros. We use the Vision
Transformer and Text Encoder from SIGLIP-ViT-B/16 for visual and goal encoding, respectively. Their outputs are projected to v and
g with dimension d. A Transformer State Encoder integrates v, g, and a state token embedding f into a state feature s. A Causal
Transformer Decoder uses s and past experiences from a KV-Cache to produce a belief state b, which is passed to a Linear Actor-Critic
Head to predict actions and (during finetuning) value estimates.

2nd camera with zeros for the embodiments with only one
camera. The visual backbone takes the RGB observation
i ∈ R256×256×3 as input and produces a patch-wise repre-
sentation r ∈ R 256

16 × 256
16 ×h, where h = 768 is the hidden

dimension of the visual representation. We reshape the vi-
sual representation into a ℓ×h matrix, ℓ = 256·256/16·16,
and project the representation to produce v ∈ Rℓ×d, where
d = 512 is the input dimension to the transformer state
encoder. Note that since we have two RGB images from
two cameras, we produce two visual representations v1,2 at
the end of this module. The vision encoder remains frozen
through training.
Goal encoder. We follow the Text Transformer from the
pretrained SIGLIP-VIT-B/16 to encode the given natural
language instruction into goal embedding t ∈ R64×h, where
h = 768 is the hidden dimension and this Text Transformer
returns 64 tokens after padding. Before passing the goal em-
bedding to the transformer state encoder, we always project
the embedding to the desired dimension d = 512, resulting
in g ∈ R64×512.
Transformer State Encoder. This module summarizes the
state at each timestep as a vector s ∈ Rd. The input to this
encoder includes two visual representations v1,2, the goal
feature g, and an embedding f of a STATE token. These
features are concatenated and fed to the non-causal trans-
former encoder. The output corresponding to the STATE
token is the state feature vector s ∈ Rd which summarizes
the state at each timestep. This feature vector is a goal-
conditioned visual state representation.
Causal transformer decoder. We use a causal transformer
decoder to perform explicit memory modeling over time.
This can enable both long-horizon (e.g., exhaustive explo-
ration with backtracking) and short-horizon (e.g., navigat-

Nearest Neighbors

Stretch RE-1 N1 N2 N3 N4 N5
Camera Position (x) (meters 0 -0.06 0.11 0 -0.08 0.03
Camera Position (y) (meters 1.44 1.13 0.67 0.24 0.72 0.32
Camera Position (z) (meters 0.07 0.03 0.06 0.07 0.07 -0.03
Camera Pitch (degrees) 27 29 33 34 32 33
Camera Yaw (degrees) 0 0 0 0 0 0
Vertical FoV (degrees) 59 57 56 54 59 54
RGB Resolution (H) 224 224 224 224 224 224
RGB Resolution (Y) 396 394 394 396 396 398
Rotation Center (x) (meters) 0 0 0.09 -0.17 0 0.02
Rotation Center (z) (meters) 0.11 0.02 0.02 -0.08 0.04 -0.12
Collider Size (x) (meters) 0.34 0.23 0.28 0.49 0.33 0.24
Collider Size (y) (meters) 1.41 1.41 0.9 0.84 1.23 0.43
Collider Size (z) (meters) 0.33 0.27 0.41 0.29 0.44 0.38
distance - 0.38 0.7 0.79 0.8 0.92

Table 8. Five Nearest Neighbor Embodiments for Stretch RE-1
in Training Data.

ing around an object) planning. Concretely, the causal
transformer decoder constructs its state belief bt using the
sequence of state features s = {sj |j=t

j=0} within the same
trajectories. To avoid recomputing the attention on the pre-
vious state features, we follow PoliFormer [65] to use KV-
Cache to store the past Key and Value into two cache ma-
trices in each attention layer. Therefore, we only perform
feedforward computation for the most current state feature
st.
Linear actor-critic head. With the latest state belief bt, we
simply use a linear actor-critic head to project it to predict
action logits over the action space. For RL-finetuning, the
linear actor-critic head also predicts a value estimate about
the current state.

10. Collision analysis

RING is trained with randomized body dimensions and
is not explicitly provided with real embodiment informa-



Nearest Neighbors

Locobot N1 N2 N3 N4 N5
Camera Position (x) (meters) 0 -0.09 0.12 0.03 −0.06 -0.1
Camera Position (y) (meters) 0.87 1.01 0.81 0.39 0.85 0.42
Camera Position (z) (meters) 0 -0.1 -0.05 -0.1 -0.02 0.09
Camera Pitch (degrees) 0 0 0 -1 0 1
Camera Yaw (degrees) 0 0 0 0 0 0
Vertical FoV (degrees) 42 45 44 42 45 45
RGB Resolution (H) 224 224 224 224 224 224
RGB Resolution (Y) 396 396 394 394 392 392
Rotation Center (x) (meters) 0 0.04 0.1 0.1 -0.02 -0.15
Rotation Center (z) (meters) 0 -0.13 0 0.13 0.02 -0.12
Collider Size (x) (meters) 0.35 0.27 0.36 0.37 0.27 0.42
Collider Size (y) (meters) 0.89 1.28 1.23 0.86 1.46 0.59
Collider Size (z) (meters)scale z 0.4 0.43 0.23 0.36 0.36 0.45
distance - 0.18 0.22 0.34 0.41 0.42

Table 9. Five Nearest Neighbor Embodiments for LoCoBot in
Training Data.

Nearest Neighbors

Unitree A1 N1 N2 N3 N4 N5
Camera Position (x) (meters) 0.01 0.08 0.03 -0.01 -0.04 0.1
Camera Position (y) (meters) 0.3 0.56 0.37 0.85 0.55 0.82
Camera Position (z) (meters) 0.27 -0.11 0.06 0 0.12 0.02
Camera Pitch (degrees) 0 -3 -2 -4 -5 -5
Camera Yaw (degrees) 0 0 0 0 0 0
Vertical FoV (degrees) 42 49 49 51 50 51
RGB Resolution (H) 270 224 224 224 224 224
RGB Resolution (Y) 480 448 446 448 446 446
Rotation Center (x) (meters) 0 -0.07 0.05 -0.07 -0.09 -0.14
Rotation Center (z) (meters) 0.04 -0.02 0 -0.12 0.12 0.11
Collider Size (x) (meters) 0.3 0.46 0.27 0.35 0.27 0.49
Collider Size (y) (meters) 0.34 1.24 0.45 1.47 0.67 1.39
Collider Size (z) (meters) 0.64 0.34 0.37 0.36 0.33 0.39
distance - 0.76 0.78 1.04 1.1 1.12

Table 10. Five Nearest Neighbor Embodiments for Unitree A1
in Training Data.

Model Train Embodiment Safe Episode ↑
Stretch LoCoBot Unitree A1

POLIFORMER [65]
Stretch 45.0 - -

LoCoBot - 42.0 -
Unitree A1 - - 49.25

FLARE [24] Stretch 62.0 - -

RING-ZERO-SHOT RING-Random 67.0 64.5 48.5

Table 11. RING has more Safe Episodes (with no collisions) compared
to embodiment-specific baselines.

tion. Regardless, the learned policy remains as safe—and
in some cases even safer—than embodiment-specific poli-
cies (Tab. 11). Collision-avoidance behavior can be further
improved by incorporating a small collision penalty into the
RL reward (Tab. 12).
RING learns to take conservative paths without explicit
knowledge of its collider size. Expert trajectories are gen-
erated using A*, finding minimum-cost paths where the cost
is defined as the inverse of the Euclidean distance to the
nearest obstacles. During reinforcement learning, collisions
slow down the agent’s progress, leading to lower rewards
through a step penalty. Since collisions cause no meaning-
ful state changes and only waste time, the policy learns to
avoid them to complete tasks more efficiently. We evaluate
RING against embodiment-specific baselines using the met-
ric Safe Episodes—the percentage of episodes completed
without any collisions. As shown in Tab. 11, RING achieves
a higher percentage of Safe Episodes compared to the base-

Model Collision Penalty Metrics

Success ↑ SEL ↑ SC ↑ CR ↓ Safe Episode ↑

RING
✗ 67.62 56.24 42.53 7.77 46.90
✓ 66.33 56.87 49.05 4.03 60.57

Table 12. Collision Penalty. Adding a small collision penalty
(0.1) to the reward function results in 50% less collision, forcing
the policy to take more conservative paths.

lines. By training across a large number of embodiments
and without access to exact body size information, RING
learns to take more conservative actions through reinforce-
ment learning, promoting safer navigation.
Include collision penalty to take safer routes. Adding a
small collision penalty of 0.1 to the reward function can fur-
ther reduce collision rate (CR) by 50%. The resulting pol-
icy is more conservative, regardless of embodiment size. To
quantify these results, we created a custom benchmark sim-
ilar to CHORES-S [17], consisting of 2,000 random embodi-
ments across 2,000 scenes. We evaluate 2 different versions
of our policy on this benchmark, comparing metrics such
as Success Rate, Success Weighted by Collision (SC), Col-
lision Rate (CR), and Safe Episode. As shown in Tab. 12,
adding the collision penalty reduces the collision rate (CR)
(7.77% → 4.03%) as well as increases the percentage of
trajectories without collisions (46.90% → 60.57%).

11. A More Powerful Pretrained Visual En-
coder.

The default vision encoder used in our policies is the pre-
trained SIGLIP-VIT-B/16. In this section, we examine the
impact of using a more powerful visual encoder on RING’s
performance. We train RING-LARGE using OpenAI’s VIT-
L/14 336PX CLIP model [39]. Table 13 compares the re-
sults, showing that a stronger visual encoder significantly
improves zero-shot performance across all four embodi-
ments (approximately 9% improvement on average). A
larger visual encoder is particularly beneficial in our policy,
as the visual observations are highly varied due to random-
ized camera parameters. To ensure fair comparison with the
baselines and because VIT-L/14 is more computationally
demanding, we chose to use the VIT-B/16 encoder for our
main experiments. We will release the training code for the
community for those interested in training with the larger
visual encoder.

12. Nearest Neighbor Embodiments to Real
Robots in our Training Data

Fig. 12 presents a t-SNE visualization of the embodiment
parameters ce ∈ R19 for 50k samples from the random em-
bodiments in our training set (examples showin in Fig. 11).
We also show the corresponding parameters for Stretch, Lo-



Figure 11. Random embodiments in the AI2-THOR simulator. Right column shows the egocentric view from the main camera and the
left column shows a third-person view of the agent –white boxes indicate the robot colliders for visualization purposes only.

Model Visual Encoder
Benchmark Embodiment

Stretch Stretch (Nav) LoCoBot Unitree A1

RING SIGLIP-VIT-B/16 76.0 74.0 66.5 72.0
RING-LARGE VIT-L/14 336PX CLIP 83.8 77.7 75.3 79.9

Table 13. A Stronger Visual Encoder. Using a more powerful
vision encoder significantly improves the zero-shot performance
across all embodiments.

Figure 12. t-SNE visualization of the embodiment parameters
ce ∈ R19 for 50k random agents. The three specific robots are
also shown for visualization (they are not included in our training
set).

CoBot, and Unitree A1 for visualization purposes. Our ran-
dom embodiments range widely over the space of possible
embodiments, with many closely approximating each of the
three real robots. Tables 8, 9, and 10 list the five nearest
neighbors to each robot in the compressed t-SNE space and
their corresponding embodiment parameters. Although the
nearest neighbors do not exactly match each robot’s em-
bodiment, they are sufficiently similar across different pa-
rameters. This extensive coverage of the embodiment space
and proximity to real-world embodiments ensure consistent
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Figure 13. Selected training ranges for the four embodiment
parameters (camera height, camera FOV, camera pitch, and
collider size). The green regions represent the narrower ranges
used during training, excluding the values corresponding to the
real robots. The results of policies trained on each selected range
are presented in Table 14.

zero-shot generalization to all three robots.

13. Generalization to out-of-distribution em-
bodiment parameters

The random embodiments in our training set span a wide
range of possible configurations, with many closely approx-
imating each of the three real robots. Although the train-
ing data covers the full range of each embodiment param-
eter individually, the specific combination of parameters
corresponding to each real robot is not explicitly included.
This is demonstrated by the nearest-neighbor embodiments
shown in Appendix 12. In this section, we examine the ex-
tent to which the policy generalizes to out-of-distribution
values of individual embodiment parameters.

We focus on four specific parameters: camera height,
camera field of view (FOV), camera pitch, and collider size.
For each parameter, we define a narrower range that ex-



Embodiment Parameter Training Range
Success Rate↑ / Collision Rate ↓

Stretch Stretch (Factory Config) LoCoBot Unitree A1 Average

Camera Height [0.4, 0.8] 55.3 / 9.3 51.0 / 9.8 51.5 / 9.8 59.3 / 9.2 54.3 / 9.5
Camera FoV [40, 60] 54.0 / 14.3 51.6 / 15.5 53.4 / 12.8 61.5 / 11.5 55.1 / 13.5
Camera Pitch [-20, -2] 54.5 / 12.9 53.5 / 9.7 56.5 / 11.2 59.8 / 12.7 56.1 / 11.6
Collider Size [0.20, 0.32] 60.5 / 18.0 53.5 / 21.4 55.0 / 14.9 54.0 / 18.6 55.7 / 18.2

No Filter - 58.8 / 9.6 60.0 / 9.5 56.5 / 7.9 60.9 / 8.3 59.1 / 8.8

Table 14. Out-of-distribution (OOD) generalization for different embodiment parameters. For each of the four embodiment parame-
ters, we select 50k random embodiments from a narrow training range that excludes the parameter values of the real robots (as shown in
Fig. 13). Zero-shot evaluations are performed on four real robots, each with parameter values outside the training distribution. Success and
collision rates are reported for each robot and averaged across all robots.

Model Ablations Success ↑ SEL ↑ SC ↑ CR ↓ Safe Episode ↑
Body Config

RING ✗ 67.62 56.24 42.53 7.77 46.90
RING-EMB-COND ✓ 69.44 57.42 44.69 8.0 46.54

Table 15. Conditioning RING on embodiment parameters.
We explicitly provide the embodiment parameters to the policy
(RING-EMB-COND) and compare with RING without any infor-
mation about the embodiment. Both policies are evaluated on a
custom benchmark consisting of 2000 random embodiments in
2000 scenes.

cludes the values corresponding to the real robots. From
the training data, we filter the random embodiments to se-
lect 50k samples within each of these specified ranges. For
comparison, we also train a version of the policy using 50k
unfiltered embodiments that span the full range of each pa-
rameter. The selected training ranges for each parameter are
illustrated in Fig. 13.

We then perform zero-shot evaluations of the policies
trained on each selected range using four robots whose pa-
rameters lie outside the training ranges. The success rate
and collision rate are summarized in Table 14. The results
indicate that policies trained on narrower ranges still gen-
eralize to out-of-distribution parameters, achieving only a
slightly lower success rate. However, evaluation on unseen
embodiment parameters leads to a significantly higher colli-
sion rate, particularly for the policy trained with a narrower
range of collider sizes. This suggests that the agent may rely
more on physical contact with the environment to infer its
embodiment configurations. Comparing Table 14 and Ta-
ble 2, the average success rate drops by 13%, emphasizing
that the number of random embodiments used during train-
ing is crucial to develop an embodiment-agnostic policy ca-
pable of effectively handling a wide range of embodiments.

14. Limitations

Although RING has the advantage of being deployable on
a wide range of embodiments without any privileged infor-
mation about its current body, when available it may be ben-

eficial to have a policy explicitly conditioned on the current
embodiment specification. This might lead to improved per-
formance and more desirable behaviors, such as increased
efficiency and collision avoidance.

We train RING-EMB-COND by explicitly providing the
embodiment information to the policy. The embodiment pa-
rameters are represented as a configuration vector ce ∈ R19,
with each dimension corresponding to a specific embodi-
ment parameter listed in Table 1. This information is passed
as an additional token to the Transformer State Encoder.
We use a simple MLP to project ce to the desired fea-
ture dimension e ∈ R1×512 before passing it to the encoder.
Tab. 15 evaluates the 2 versions of the policy on our cus-
tom benchmark consisting of 2,000 random embodiments
across 2,000 scenes, comparing metrics such as Success
Rate, Success Weighted by Collision (SC), Collision Rate
(CR), and Safe Episode (percentage of episodes without any
collisions).

The results do not show a clear benefit to conditioning
the policy on embodiment information. This could be due
to several reasons. It is possible that most relevant infor-
mation about environment hazards and agent motion can be
already inferred from visual observations. It is also possi-
ble that a significant fraction portion of collisions (both with
an without embodiment specification provided) occur with
objects that never enter the agent’s visual field, in which
case extra information about its own embodiment would not
help. Alternatively, a more effective method for condition-
ing the policy on the parameters may exist. Future work
should explore this with additional examination of agent-
environment collision and designing improved policy ar-
chitectures to better integrate embodiment parameters, ul-
timately training a more efficient and robust policy that ex-
plicitly incorporates embodiment information.
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