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ABSTRACT

Recent developments in large language models (LLMs) have shown promise in en-
hancing the capabilities of natural language processing (NLP). Despite these suc-
cesses, there remains a dearth of research dedicated to the NLP problem-solving
abilities of LLMs. To fill the gap in this area, we present a unique benchmark-
ing dataset, NLPBench1, comprising 378 college-level NLP questions spanning
various NLP topics sourced from some universitys’ prior final exams in the last
decade, collected by professors and over 30 TAs. NLPBench includes questions
with context, in which multiple sub-questions share the same public information,
and diverse question types, including multiple choice, short answer, and math. Our
evaluation, centered on LLMs such as GPT-3.5/4, PaLM-2, and LLAMA-2, incor-
porates advanced prompting strategies such as chain of thought (CoT) and tree of
thought (ToT). Our study reveals that the effectiveness of the advanced prompting
strategies can be inconsistent, occasionally damaging LLM performance, espe-
cially in smaller models like the LLAMA-2 (13b). Furthermore, our manual as-
sessment illuminated specific shortcomings in LLMs’ scientific problem-solving
skills, with weaknesses in logical decomposition and reasoning notably affecting
results.

1 INTRODUCTION

Over the past decade, the evolution of natural language processing (NLP) has led to the emer-
gence of large language models (LLMs) (Brown et al., 2020; OpenAI., 2022; 2023; Zhang et al.,
2023b; Touvron et al., 2023a; Zhang et al., 2023a; Gao et al., 2023b; Liu et al., 2023; Gao et al.,
2023a). They consistently showcase exceptional performance across a spectrum of benchmarks that
require human-level problem-solving or question-answering skills, including areas such as alge-
bra (Lu et al., 2022; 2021b; 2023a; Cobbe et al., 2021), logic (Zhong et al., 2023; Chen et al., 2023),
language (Huang et al., 2023), and science (Wang et al., 2023), some of these even challenges for
well-educated individuals. As the most notable achievement in the field of NLP, a compelling, yet
unresolved question of LLMs naturally arises: Can LLMs accurately answer questions about NLP?

To fill the gap in evaluating LLMs on NLP-related topics, we introduce a novel benchmark, Natural
Language Processing Benchmark, referred to as NLPBench. Our NLPBench contains 378 high-
quality NLP-related questions from a university’s final exams in the last decade. Collected ques-
tions are in the fields of Language Modeling and Syntax Parsing, Semantics and Logic, Pragmatics,
Discourse, Dialogue and Applications, Information Retrieval and Topic Modeling, Artificial Intel-
ligence and Other Topics. To evaluate the multi-turn communication problem-solving ability of
different NLP topics, we introduce questions with context, consisting of multiple related questions
that share the same public information. Our dataset also includes multiple choice, free response
short answer, and math questions to evaluate LLMs from all perspectives. Figure 1 shows some
example questions featured in our dataset.

We direct our evaluation towards five representative LLMs, GPT-3.5/4 (OpenAI., 2022; 2023),
PaLM-2 (Anil et al., 2023), and both the 13b and 70b versions of LLAMA-2 (Touvron et al., 2023b).
Our study incorporates a variety of advanced prompting strategies, including chain-of-thought (CoT,
Wei et al. (2022)) and tree-of-thought (ToT, Yao et al. (2023)), and the argumentation method like

1https://anonymous.4open.science/r/NLPB-04A3
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Figure 1: Example questions in NLPBench dataset. We collected three types of questions, including multiple
choice, short answer, and math, and divided them into two categories: with and without context. Text underline
shows the relations between questions.

self-consistency. These advanced prompting strategies have demonstrated notable success in past
benchmarks by directing the LLMs’ response processes. They guide LLMs with specific examples,
encouraging the generation of step-by-step solutions that lead to deeper problem consideration (Wei
et al., 2022; Wang et al., 2022; Zhou et al., 2022; Huang et al., 2022). However, the efficacy of these
improvements can be compromised by the complexity of the question, the depth of required knowl-
edge, and the LLMs’ ability to follow prompts. Our experiments indicate that few-shot prompting
typically results in modest enhancements. Moreover, advanced prompting strategies are not uni-
versally effective. When an LLM is constrained (for instance, by having insufficient parameters
to develop a robust representation) or when the breadth of required knowledge expands, the LLM
might not always recall accurate information from its previously stored knowledge. In our research,
we observe that advanced prompting strategies can inadvertently hamper the performance of LLMs.
This is due to the introduction of extraneous noise unrelated to the given questions, sometimes caus-
ing a pronounced decline in the performance of smaller LLMs, such as LLAMA-2 (13b). Such
nuances have remained unexplored in earlier benchmarks because of the limited scope of question
complexity and prompt length.

Apart from examining the effectiveness of various prompting strategies, we also conducted a manual
assessment of NLP problem-solving capabilities in two dimensions: (1) error rate statistics across
different NLP categories and (2) an evaluation of problem-solving abilities from a human expert’s
viewpoint. For the first dimension, we compiled the error rates for each NLP category, segmented
by individual LLMs and their associated prompting strategies. Our findings indicate that few-shot
prompts can decrease the error rate for specific question types by introducing domain-specific sup-
plementary information. In contrast, other methods might not bring about a substantial reduction
in error rates. For the second evaluation dimension, we initially identified seven scientific problem-
solving skills. We then categorized the mistakes made by the LLMs to highlight deficiencies in these
pre-established skills. Our findings underscore that the absence of skills in logical decomposition,
problem deduction, and logical reasoning predominantly contributes to the subpar performance ob-
served in our NLPBench. Based on the above evaluations, we conclude that simple prompting
methods are enough for promising results, and the training process should focus more on fostering
specific problem-solving skills like logical decomposition and reasoning.

2 THE NLPBENCH DATASET

We collect a new dataset consisting of final exam questions from the universities’ NLP courses to
evaluate the capabilities and analysis of the limitations of the existing large language models (LLMs)
to solve NLP-related problems. All questions are divided into two types: with and without context,
where a question with context consists of multiple related sub-questions sharing the same public
information. Questions with context require answering with multi-turn communication. We further
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Table 1: Statistic of the original dataset and the percent of usage in our proposed dataset.

Categories Short Answer Multiple Choice Math

w/ context w/o context w/ context w/o context w/ context w/o context

# Total 237 148 16 162 28 15
% Answer 67.1% (159) 58.1% (86) 93.7% (15) 88.9% (144) 92.8% (26) 46.6/% (7)

% Used 72.6% (130) 48.4% (62) 93.7% (15) 88.9% (144) 85.7% (24) 20% (3)

categorize each question according to the answer format: short answer, multiple choice, and math.
This section introduces the details of the dataset construction process.

Data selection. Initially, we amassed a substantial collection of approximately 1,000 NLP exam
questions over a decade, from 2013 to 2023. Professors and teaching assistants (TAs) contributed
new questions to this repository each semester. This extensive set comprises three types of questions:
1) Online-sourced questions, refined by TAs to differentiate them from their original versions, ensur-
ing their uniqueness for final exams, and a thorough verification of answers. 2) Original questions
formulated by professors, drawing from their teaching experience. 3) Original questions developed
by TAs. Over 30 TAs have been involved in the completion of this dataset. The questions are of
high quality and are not available online, maintaining the integrity and fairness of the final exams.
We discard the questions with figures or tables, and the remaining 372 questions are used in NLP-
Bench. Different from the previous benchmarks, our dataset introduces a new category with context,
as shown in Figure 1, which requires more complex reasoning steps to capture the relation between
the current question and context and the relation between current and other questions. Considering
the evaluation of the basic ability of LLMs, our dataset also contains traditional without context
questions. All of the above questions are further divided into multiple-choice, short answer, and
math according to their answer type. Specifically, our proposed dataset has the following features:

• Inclusion of NLP-related problems. The chosen problems demand a solid understanding of
NLP-related knowledge (e.g., rhetorical structure theory, formal languages, application of prob-
abilistic theory in NLP, etc.) in reasoning capability, the adaptation of calculation skills, and the
ability to comprehend complex concepts.

• Inclusion of detailed solutions: To facilitate a thorough analysis of the limitations of LLMs,
detailed solutions should be provided for the selected problems. This enables a comprehensive
examination of the performance of LLMs and their capacity to handle complex problem-solving
tasks.

• Inaccessibility. To ensure an unbiased evaluation, we carefully curate questions that are not read-
ily accessible online and couldn’t be easily extracted or transformed into text. This selection pro-
cess aims to mitigate any potential information leakage from the exposure of LLMs to pre-existing
online question banks, such as those found in standardized tests like the SAT exams.

• Complex structure. About half of our collected questions have a complex structure, with a
context shared with multiple subsequent questions and relations between each question. This type
of question requires the model to solve with a multi-turn conversation and examine the model’s
ability to capture critical information in the context.

Data processing. All questions are initially available in both text and image formats (e.g., hand-
written), which we meticulously converted into plain text and LaTeX documents using a web-based
annotation tool, and the extracted questions will be saved in JSON format. A detailed overview of
the tool’s user interface can be found in Appendix B. Expert human annotators rigorously reviewed
each problem to guarantee the absence of LaTeX syntax errors and to ensure all characters adhere to
the ASCII standard. We classified the questions into three formats: short answers, multiple choice,
and mathematical. Furthermore, based on the inclusion or exclusion of context information, infor-
mation common to a set of subsequent questions (e.g., paragraphs from a book, upon which the
answers to all following questions are contingent), we divided the questions into two main cate-
gories: with and without context. Notably, we integrated the true-false format from the original
dataset into the multiple-choice category due to its limited amount. Each question comes with a
ground-truth answer for evaluation. Our dataset also contains short answer questions that require
free-form responses, such as prompting for examples or specific subsets of a concept. This further
reduces the chances of candidates simply guessing correct answers rather than only using multiple
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choice questions (Lu et al., 2021a; 2022; Chen et al., 2023). To assist in evaluating responses to
these questions, we offer sample answers that guide evaluators in determining the accuracy of a
response. For mathematical problems, we document answers in LaTeX format, specifying exact
figures, accompanied by their respective step-by-step solutions. These stepwise solutions serve as
guides for intermediate reasoning methodologies (e.g., the "Chain of Thought" approach), assisting
LLMs in formulating more accurate answers.

Table 2: The question quantity under each NLP con-
cept. All the categories are defined by human experts.

Category Acronym # Questions

Language Modeling and Syntax Parsing lmsp 162
Semantics and Logic sl 69
Pragmatics, Discourse, Dialogue and Applications pdda 13
Information Retrieval and Topic Modeling irtm 27
Artificial Intelligence ai 75
Other Topics ot 32

Dataset statistics. In summary, we collected
378 questions from some Universities’ NLP
course final exams. The dataset includes 192
short-answer questions, 159 multiple-choice
questions, and 27 math questions with step-by-
step solutions. All types of questions are di-
vided into with context and without. We de-
tailed the statistical results of each question
type in Table 1. All questions were also orig-
inally categorized into six common NLP-related concepts, summarized in Table 2. Specifically, the
questions belong to Other topics are in the field of current research, speech processing, ethics, and
applications to other domains.

3 EXPERIMENT

3.1 EXPERIMENT SETUP

We evaluate both the online accessible models (GPT-3.5, OpenAI. (2022), GPT-4, OpenAI. (2023)
and PaLM-2, Anil et al. (2023)) and open-sourced models (LLAMA-2 (13 and 70b), Touvron et al.
(2023b)) on the proposed dataset. We consider two advanced prompting strategies, including chain-
of-thought (CoT, Wei et al. (2022)) and tree-of-thought (ToT, Yao et al. (2023)), under both zero-
shot and few-shot with or without system prompt. We also perform self-consistency (SC) as an
improvement of greedy methods.

• Zero-shot and few-shot prompting. Under zero-shot prompting, the model is not able to access
questions in the training set for prior knowledge, which evaluates their inherent problem-solving
capabilities with background knowledge and reasoning abilities. While in the few-shot prompting,
a few examples are mixed into the input prompt as the prerequisites for the later questions. This
aims to examine their capability to learn new information from the demonstrations and incorporate
it into their problem-solving processes.

• Advanced prompting strategies. We try different prompting methods, zero-shot and few-shot,
and we further combine them with or without system prompt, CoT, and ToT. We implement CoT
in two ways: the traditional 2-staged (adding let’s think step by step behind the questions) for short
answer questions and format template for multiple choice and math questions. This is because of
the hardness of extracting the reasoning chain from the short answer questions, different from the
multiple choice and math, in which we can extract an exact problem-solving process easily by
separating the final answer and the corresponding process.

In summary, we consider ten combinations of prompting strategies: zero-shot and few-shot prompt-
ing (ZS, FS), zero-shot and few-shot prompting with system prompt (ZS+SYS, FS+SYS), chain-
of-thought prompting under zero-shot and few-shot (ZS+CoT, FS+CoT), chain-of-thought prompt-
ing under zero-shot and few-shot with system prompt (ZS+CoT+SYS, FS+CoT+SYS), and tree-of-
thought under zero-shot and few-shot (ZS+ToT, FS+ToT). Zero-shot, few-shot, and CoT, with SC,
are evaluated on the multiple choice question set due to the limitation of the statistic method in SC.
Example prompts of the above method are provided in Appendix A.3.

Implementation details. We access the API of GPT-3.5 (gpt-3.5-turbo) and GPT-4 (gpt-4)
via AutoGen2 (Wu et al., 2023), which provided the enclosure of Open-AI API, helping us cache the
results with same hyperparameters. We access PaLM-2 via the Google PaLM generate_text

2https://microsoft.github.io/autogen/
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Table 3: Experimental results in terms of accuracy (%) on our proposed dataset. The best average scores in
each type of question are highlighted in bold in red, and the best average scores for each model in a specific
type of question are underlined in blue. Results marked with - denote the incomplete experiment caused by
exceeding context length or other prompting errors.

Model Setting Multiple Choice Short Answer Math Overall Acc.
w/ Context w/o Context Average w/ Context w/o Context Average w/ Context w/o Context Average

LLAMA-2
(13b)

ZS

Orig. 20.00 20.83 20.75 39.23 37.10 38.54 20.00 0.00 4.00 28.72
+SYS 26.67 34.03 33.33 43.85 27.42 38.54 0.00 0.00 0.00 33.77
+CoT 26.67 19.44 20.13 22.31 9.68 18.23 0.00 0.00 0.00 17.82

+CoT+SYS 33.33 27.08 27.67 23.08 9.68 18.75 0.00 0.00 0.00 21.28

FS

Orig. - 31.25 28.30 - 29.03 9.38 - - 0.00 16.76
+SYS - 38.19 34.59 - 30.65 9.90 - - 0.00 19.68
+CoT - 30.56 27.67 - 32.26 10.42 - - 0.00 17.02

+CoT+SYS - 36.81 33.33 - 35.48 11.46 - - 0.00 19.95

LLAMA-2
(70b)

ZS

Orig. 40.00 22.22 23.90 53.85 38.71 48.96 9.09 0.00 8.00 35.64
+SYS 40.00 23.61 25.16 54.62 46.77 52.08 9.09 0.00 8.00 37.77
+CoT 33.33 21.53 22.64 32.31 12.90 26.04 0.00 0.00 0.00 22.87

+CoT+SYS 40.00 38.19 38.36 33.08 25.81 30.73 0.00 0.00 0.00 31.91

FS

Orig. 33.33 29.17 29.56 48.46 38.71 45.31 9.09 0.00 19.38 36.93
+SYS 26.67 34.72 33.96 46.92 40.32 44.79 0.00 0.00 0.00 37.23
+CoT 26.67 31.94 31.45 38.46 51.61 42.71 0.00 0.00 0.00 35.11

+CoT+SYS 26.67 38.19 37.11 35.38 48.39 39.58 4.55 0.00 4.00 36.17

PaLM-2

ZS

Orig. 66.67 37.50 40.25 49.23 35.48 44.79 13.64 33.33 16.00 40.96
+SYS 66.67 45.83 47.80 51.54 37.10 46.88 4.55 33.33 8.00 44.68
+CoT 60.00 36.81 38.99 47.69 37.10 44.27 18.18 33.33 20.00 40.42

+CoT+SYS 53.33 41.67 42.77 40.00 30.65 36.98 13.64 0.00 12.00 37.77
+ToT - 4.86 4.40 - 0.00 0.00 - - 0.00 1.86

FS

Orig. 53.33 38.89 40.25 57.69 33.87 50.00 4.55 33.33 8.00 43.08
+SYS 53.33 39.58 40.88 56.15 38.71 50.52 4.55 0.00 4.00 43.35
+CoT 53.33 40.28 41.51 49.23 38.71 45.83 0.00 0.00 0.00 40.96

+CoT+SYS 40.00 38.89 38.99 53.85 40.32 49.48 0.00 0.00 0.00 41.75
+ToT - 10.42 9.43 - 1.61 0.52 - - 0.00 4.25

GPT-3.5

ZS

Orig. 40.00 52.05 50.64 75.38 58.73 69.99 36.36 33.33 36.00 59.55
+SYS 46.67 40.69 41.51 71.54 62.90 68.75 13.64 33.33 16.00 53.72
+CoT 53.33 52.74 52.83 63.85 33.33 54.19 18.18 100.00 28.00 51.87

+CoT+SYS 46.67 39.58 40.25 66.92 59.68 64.58 18.18 0.00 16.00 51.06
+ToT - 31.25 28.30 - 0.00 0.00 - - 0.00 11.97

FS

Orig. 53.33 36.81 38.36 66.15 64.52 65.62 18.18 33.33 20.00 51.06
+SYS 46.67 44.44 44.65 66.15 54.84 62.50 18.18 0.00 16.00 51.86
+CoT 40.00 40.28 40.25 64.62 62.90 64.06 13.64 0.00 12.00 50.53

+CoT+SYS 40.00 46.53 45.91 66.15 64.52 65.62 18.18 0.00 16.00 53.99
+ToT - 30.56 27.67 - 56.45 18.23 - - 0.00 21.01

GPT-4

ZS

Orig. 86.67 70.55 72.25 78.46 69.84 75.42 22.73 33.33 24.00 70.66
+SYS 86.67 57.93 60.38 83.85 79.03 82.29 18.18 0.00 16.00 68.62
+CoT 86.67 72.60 74.10 74.62 57.14 68.65 13.64 100.00 24.00 67.99

+CoT+SYS 86.67 56.25 59.12 73.08 75.81 73.96 27.27 66.67 28.00 64.63
+ToT - 60.42 54.72 - 0.00 0.00 - - 0.00 23.14

FS

Orig. 86.67 62.50 64.78 77.69 75.81 77.08 22.73 0.00 20.00 68.08
+SYS 86.67 59.03 61.64 81.54 79.03 80.73 13.64 33.33 16.00 68.35
+CoT 86.67 60.42 62.89 78.46 75.81 77.60 36.36 0.00 32.00 68.35

+CoT+SYS 86.67 60.42 62.89 80.00 74.19 78.12 13.64 66.67 20.00 67.82
+ToT - 60.42 54.72 - 75.81 24.48 - - 0.00 35.64

Table 4: Comparison of prompting methods with and without self-consistency (denoted as SC) on GPT-3.5,
GPT-4, and PaLM-2. All results are statistics from the multiple-choice question set.

Model ZS ZS+CoT FS FS+CoT

w/o SC w/ SC w/o SC w/ SC w/o SC w/ SC w/o SC w/ SC

GPT-3.5 50.64 37.11 52.83 38.36 38.36 43.40 40.25 44.03
GPT-4 72.25 59.75 74.10 62.89 64.78 64.78 62.89 66.67

PaLM-2 40.25 23.90 38.99 28.30 40.25 37.11 41.51 38.99

API3, which is recommended by Google for problem-solving and handling zero and few shot
tasks. For open-source models LLAMA-2 (13b and 70b), we use the endpoint implemented by
vLLM4 (Kwon et al., 2023), an open-sourced, fast-speed LLM serving platforms for a wide range
of open-source models, which can provide Open-AI like API for the LLM user. We further access
those endpoints via AutoGen, the same as we access the Open-AI model. For all models, we use
the same seed and set the temperature as 1 for question answering and 0 for the middle process in
CoT and ToT. We choose a high temperature for a more creative answer and a low temperature for a
more specific process.

3https://developers.generativeai.google/products/palm
4https://vllm.readthedocs.io/en/latest/
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3.2 RESULTS AND ANALYSIS

The experimental results for GPT-3.5, GPT-4, PaLM-2, and LLAMA-2 (13b and 70b) with various
configurations on our NLPBench are detailed in Table 3. Supplementary analysis utilizing conven-
tional text evaluation metrics, such as ROUGE-L and CIDEr, can be found in Appendix A.1. We
highlight the model performance by presenting accuracy scores in both ‘with’ and ‘without’ context
scenarios. Notably, questions requiring context involve multi-turn interactions with the model. Our
accuracy calculation focuses on the model’s final answer, disregarding intermediary steps when
computing accuracy, which will be considered in the human evaluation process. For context-based
questions, we examine the accuracy of each distinct sub-question. From the experiment results, we
have several key observations:

GPT-4 outperforms all models with a significant margin under most of the situations. Based
on the results across three distinct question formats categorized under two categories, GPT-4 out-
performs all baselines under most situations. Specifically, it achieved the top spot with the best
average performance accuracy in two of the question formats. When juxtaposed against all baseline
methods, there’s a remarkable uplift in its performance, registering an average score improvement
of at most 67.85% and 82.29% when compared with LLAMA-2 (13b). It’s worth highlighting that
these outstanding results were obtained under a zero-shot setting without the aid of any sophisticated
prompting strategies. Interestingly, our observations also indicate that deploying advanced prompt-
ing techniques often has a counterproductive effect on GPT-4’s performance in many scenarios.

Figure 2: Zero-shot v.s. few-shot prompting
on overall accuracy(%).

Few-shot prompting does not always improve. In
Figure 2, we present a comparison of average perfor-
mance between zero-shot and few-shot prompting. No-
tably, the adoption of few-shot prompting often results in
a modest performance enhancement, and in some cases,
even a decrease, consistent with findings by Wang et al.
(2023). A closer examination of Table 3 reveals that in
some cases, LLAMA-2 (13b and 70b) derives advantages
from the supplementary knowledge gained through few-
shot prompting. However, this can lead to surpassing the
maximum context length, particularly when multi-turn
communication is necessitated, or the query contains an
extensive description, which leads to a significant perfor-
mance drop in LLAMA-2 (13b). GPT-3.5, GPT-4, and
PaLM-2 only have ordinary improvements, about 3%,
when adopting few-shot prompting. In fact, seven out of the nine highest average scores were
realized using zero-shot prompting. This phenomenon may arise because the chosen sample ques-
tions are either highly representative of and specific to the domain or, conversely, do not capture its
diversity adequately, introducing errors during inference. Therefore, while few-shot prompting can
potentially extend the prompt length and occasionally enhance performance, the selection of sample
questions is critical. Ill-chosen examples can introduce noise detrimental to the task at hand.

Figure 3: Overall accuracy(%) with and
without advanced prompting strategies.

Advanced prompting strategies do not work consis-
tently, sometimes having a negative effect. In Figure
3, we present the average scores both with and without
the utilization of advanced prompting strategies. Notably,
CoT only provides a slight performance increase with
GPT-3.5 and will cause performance declines in other
models. The efficacy of these prompting strategies is
heavily dependent on the model’s innate ability to adhere
to the prompts, which necessitates the models to self-
evaluate their responses. CoT demands a singular feed-
back loop, which is relatively straightforward. In con-
trast, ToT calls for multiple feedback mechanisms cou-
pled with a search operation, such as the DFS algorithm.
Challenges arise with ToT when a model generates a re-
sponse that diverges from the specified template in the
prompt. GPT-3.5/4 exhibits an exceptional capacity to process intricate prompts, yielding the SOTA
results (when comparing with other models) in tasks that necessitate intricate logical reasoning when
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Figure 4: The comparison of overall error rate(%) between GPT-3.5/4 and LLAMA 2-70b across all prompt-
ing strategies of each NLP category. Each color bar indicates a pre-defined NLP category from the original
dataset.

implementing advanced prompting strategies but still cannot outperform the baseline without any
prompting strategy. While LLAMA-2 (13b), due to the limited prompt-following capability and con-
stricted context length, it experienced a downturn in performance when employing these advanced
strategies. On the other hand, self-consistency (Wang et al., 2022), a robust alternative to greedy de-
coding, demonstrates impressive results on other benchmarks. Nevertheless, our findings, detailed
in Table 4, indicate that while self-consistency can enhance performance with few-shot prompting
(as seen with GPT-3.5 and GPT-4), it considerably undermines the output during zero-shot prompt-
ing. A potential explanation for such contrasting outcomes is that few-shot prompting restricts the
scope of knowledge, impacting answer generation, a constraint absent in zero-shot prompting.

4 ERROR ANALYSIS OF VARIOUS PROMPTING STRATEGIES

Considering the substantial advancements of current Large Language Models (LLMs), an in-depth
analysis of the particular skills that are either enhanced or limited under certain settings becomes
imperative. We evaluate two types of abilities that should be obtained before taking the final exam:
an understanding of natural language processing (NLP) and the ability to solve college-level prob-
lems. We select the results provided by GPT-3.5/4 and LLAMA 2-70b, which represent the SOTA
online and open-sourced model, respectively.

4.1 UNDERSTANDING OF NATURAL LANGUAGE PROCESSING

To assess the NLP comprehension of LLMs, we delineated the errors made by GPT-3.5/4 and
LLAMA 2-70b in Figure 4, showcasing their respective error rates across various NLP categories.
A notable disparity in distribution is evident between zero-shot and few-shot prompting. There’s a
marked decrease in error rates for pdda by 16% for GPT-4 and 32% for LLAMA 2-70b when tran-
sitioning from zero-shot to few-shot prompting, a trend similarly noted in the CoT results. However,
this trend diminishes once a system prompt is integrated. The introduction of a system prompt and
additional example questions helps mitigate errors stemming from incorrect prior knowledge. Yet,
combining the system prompt with few-shot prompting increases the error rate by 10% on irtm and
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Figure 5: The error profiles of the deficient of seven essential science problem-solving abilities between GPT-
3.5/4 and LLAMA 2-70b. The height of the color bars indicates the percentage that the model has an incorrect
answer due to a lack of corresponding science problem-solving skills.

8% on pdda for GPT-4. In contrast, there’s a 13% reduction in the error rate for ot. For LLAMA
2-70b, few-shot prompting consistently reduces error rates across categories, resulting in a more
balanced error distribution.

In summary, few-shot prompting can help decrease the error rate for certain types of questions
by offering additional examples from the dataset. However, its effectiveness diminishes when the
dataset demands a broad spectrum of knowledge. While advanced prompting strategies like CoT
may not substantially enhance performance with complex datasets, system prompts can counteract
errors introduced by these advanced strategies.

4.2 ABILITY TO SOLVE COLLEGE-LEVEL PROBLEMS

We chose three models, both online and open-sourced, with the best average performance (GPT-
3.5 w/ ZS, GPT-4 w/ ZS, and LLAMA 2-70b w/ ZS+SYS) and annotated the source of the error
for short answers (with a unique answer) and math questions, indicating where the model made a
mistake and why. Following Wang et al. (2023), we classify the human-annotated error reasons into
seven crucial skills deficient for solving complex college-level problems. For each wrong question,
we summarized three of the seven skills:

• Logical decomposition and analysis (LD). This ability involves decomposing the question into
smaller, manageable parts and understanding the relationships between these parts.

• Identification of assumptions (IA). This skill involves the ability to recognize relevant and nec-
essary assumptions in the question.

• Causal reasoning (CR). This is the ability to understand cause-and-effect relationships.
• Problem deduction skills (PD). This pertains to the ability to infer and deduce potential solutions

or underlying principles from the given information in a problem.
• Abstract reasoning (AR). This skill involves the ability to understand complex concepts that can-

not be perceived physically and to recognize patterns or relationships beyond concrete examples.
• Logical reasoning (LR). This is the ability to make a reasoned argument and to identify fallacies

or inconsistencies in an argument or set of data.
• Calculation (CA). This involves the ability to carry out mathematical operations and computa-

tions accurately.

The analysis results are recorded in Figure 5, we also provided some error samples in Appendix A.2.
Compared with the SOTA GPT-4, GPT-3.5 has 6% and 7% higher probability of making wrong
answers caused by a lack of problem deduction and logical reasoning skills, and LLAMA 2-70b
has 14%, 11%, and 16% higher in logical decomposition, problem deduction and logical reasoning
skills. This increment reveals a strong relation between a correct answer and logical decomposition,
problem deduction, and logical reasoning skills, which is similar to the findings of Berglund et al.
(2023). Many questions in our NLPBench dataset require an understanding of a given text before
the question (e.g., a story or news). Answer such questions need to retrieve the critical information
in the context and build up a logical relation between the question and the retrieved information,
which requires a high-level logical decomposition and logical reasoning ability. We also found that
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GPT-3.5 and 4 do not lack calculation skills but have a low accuracy in math questions (see Table 3).
This is because models need to understand the question before the calculation, and the question in
our dataset is hard (e.g., requires an understanding of the EM algorithm). Therefore, models often
give an answer that is correct in the calculation with a completely wrong process.

5 RELATED WORKS

Traditional benchmarks have been oriented toward assessing the general abilities of models. For
instance, SQuAD (Rajpurkar et al., 2018) was developed to gauge models’ reading comprehen-
sion skills. GLUE (Wang et al., 2018) provides a versatile framework for evaluating performance
across a variety of natural language understanding tasks. Cosmos QA (Huang et al., 2019) delves
into assessing models on their common-sense reasoning abilities using natural language contexts.
HumanEval (Chen et al., 2021) targets the coding prowess of models, presenting 164 Python pro-
gramming challenges. BIG-Bench (Srivastava et al., 2022) serves as a comprehensive test suite that
includes 204 multiple-choice or exact-match tasks, while its counterpart, BIG-Bench Hard (Suz-
gun et al., 2022), presents notably intricate chain-of-thought prompts. Finally, HELM (Liang et al.,
2022) offers a detailed multi-metric evaluation of LLMs, shedding light on their strengths, weak-
nesses, and potential risks.

Recent benchmarks predominantly assess LLMs’ problem-solving skills, particularly in science and
mathematics (Lu et al., 2023b; Fu et al., 2023; Lu et al., 2023a; Zhong et al., 2023; Mishra et al.,
2022; Chen et al., 2023; Guo et al., 2023; Hendrycks et al., 2020). Noteworthy datasets include
GSM8K (Cobbe et al., 2021), which contains 8.5K elementary math word problems, ScienceQA (Lu
et al., 2022), a multimodal dataset with lectures, and MATH (Hendrycks et al., 2021), consisting of
12.5K problems from math contests. LILA (Mishra et al., 2022) enhances 20 datasets with task
guidelines and Python solutions. Most benchmarks focus on foundational arithmetic, but Theo-
remQA (Chen et al., 2023) offers 800 theorem-centric questions. Galactica (Taylor et al., 2022)
explores scientific tasks, such as latex equation conversions, while C-EVAL (Huang et al., 2023)
evaluates LLMs within a Chinese cultural context. AGIEval (Zhong et al., 2023) measures LLM
performance against standardized tests using human-annotated analysis. SciBench (Wang et al.,
2023) presents college-level science problems from textbooks with an automatic evaluation method.
However, while these benchmarks emphasize single-turn communication, ours assesses the multi-
turn problem-solving capabilities of LLMs. A detailed comparison is provided in Appendix C.

6 CONCLUSION AND RECOMMENDATION

This study unveils NLPBench, a collection of 378 college-level NLP questions aimed at compre-
hensively evaluating Large Language Models (LLMs) like GPT-3.5, GPT-4, and others. NLPBench
is designed for testing LLMs’ proficiency in multi-turn conversations, using advanced prompting
strategies such as chain-of-thought and few-shot prompting. However, the evaluation indicates that
these strategies don’t always enhance performance. A closer look at errors made by models like
GPT-3.5/4 and LLAMA 2-70b suggests they mainly falter in logical deconstruction and reasoning,
leading to their limited success on NLPBench. Based on the above conclusion, we have the follow-
ing recommendations:
• Simple Prompting method is enough for promising results. Based on our findings in Section

3.2, we found that few-shot prompting averagely surpasses zero-shot, but it is hard to achieve the
best. Section 4.1 indicates that while few-shot can decrease errors in certain categories, it can also
lead to more verbose prompts. Employ few-shot prompting when your task is concentrated on a
specific domain.

• Advanced prompting strategies are not necessary. They show weak or roughly comparable re-
sults to zero-shot on all LLMs and will significantly affect the relatively small LLM (e.g., LLAMA
2-13b). As described in Section 3.2, advanced prompting strategies need strong prompt follow-
up ability, since they all require multiple reasoning steps. If budget is one of your limitations,
zero-shot is also a good choice for a competitive result.

• The pretraining process should focus more on fostering "logical thinking skills" According
to Section 4.2, we found that LLAMA 2 clearly lacks the ability to do logical decomposition,
problem deduction, and logical reasoning. We believe that LLM training should take into account
these three dimensions.
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ETHICS STATEMENT

NLPBench aims to evaluate the NLP-related problem-solving ability of LLMs. Our evaluation re-
sults provide efficient insight for further research on advanced prompting strategies or LLM pre-
training by testing and analyzing the reason for the errors made by LLMs. NLPBench does not
contain any personal, sensitive, or confidential data and is diverse and representative of a wide range
of scenarios, demographics, and contexts.

REPRODUCIBILITY STATEMENT

Our main experiments are done on online accessible or open-sourced models (except for PaLM-
2, which is not an openly accessible model yet). We publish our implementation in https://
anonymous.4open.science/r/NLPB-04A3 and provide the prompts in Appendix A.3 to
further increase the reproducibility.
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A FURTHER ANALYSIS

A.1 EVALUATING TEXT RELEVANCE

Table 5: Relevance between LLM generated answers and ground-truth answers. We adopt BLEU, ROUGE-L,
and CIDEr to represent the sentence relevance.

Model Setting BLEU ROUGE-L CIDEr

w/ Context w/o Context w/ Context w/o Context w/ Context w/o Context

GPT-3.5

ZS 0.10 5.83 0.48 8.75 10.91 14.23
ZS+SYS 0.11 5.20 5.04 8.69 7.75 0.00
ZS+CoT 0.16 4.82 0.28 13.19 11.35 14.74

ZS+CoT+SYS 0.47 5.28 0.23 13.94 10.08 3.79
ZS+ToT - - - 0.00 0.00 0.00

FS 0.15 5.18 1.99 12.55 12.02 18.01
FS+SYS 0.55 6.26 6.31 17.01 13.26 27.19
FS+CoT 0.10 4.59 3.47 9.26 10.41 15.14

FS+SYS+CoT 0.31 5.07 0.01 14.04 12.05 17.41
FS+ToT - - - 6.86 7.69 0.19

GPT-4

ZS 0.63 6.47 9.32 11.83 9.85 6.28
ZS+SYS 0.67 7.03 5.40 14.31 9.46 0.14
ZS+CoT 1.12 7.00 5.05 10.68 9.67 25.16

ZS+CoT+SYS 1.14 7.29 2.66 15.69 10.16 5.29
ZS+ToT - - - 0.00 0.00 0.00

FS 1.34 7.76 15.24 17.09 11.57 5.59
FS+SYS 2.00 9.94 21.85 20.17 14.32 15.90
FS+CoT 0.71 6.48 7.71 13.77 11.13 3.09

FS+SYS+CoT 0.90 6.82 7.87 17.93 14.98 35.73
FS+ToT - - - 15.35 10.62 9.21

PaLM-2

ZS 3.35 10.89 23.19 23.21 14.06 19.02
ZS+SYS 6.96 9.27 22.15 25.66 12.70 18.85
ZS+CoT 3.05 9.31 11.66 15.30 11.71 14.36

ZS+CoT+SYS 8.09 9.00 26.96 23.55 11.62 31.52
ZS+ToT - - - 0.00 0.00 0.00

FS 1.16 13.28 57.25 26.74 13.68 17.67
FS+SYS 4.03 9.47 28.31 24.60 15.62 32.05
FS+CoT 0.33 8.19 20.83 14.32 9.86 4.68

FS+SYS+CoT 1.82 9.60 24.63 15.00 8.99 9.57
FS+ToT - - - 0.50 0.72 1.89

LLAMA-2 (13b)

ZS 0.19 4.80 0.02 9.69 8.66 0.00
ZS+SYS 0.37 5.02 0.00 11.35 9.64 1.21
ZS+CoT 0.95 5.08 0.06 12.53 7.86 0.06

ZS+CoT+SYS 1.23 5.46 0.16 12.89 7.34 1.09
ZS+ToT - - - - - -

FS - - - 5.34 7.18 0.00
FS+SYS - - - 3.18 7.18 0.00
FS+CoT - - - 3.78 7.84 0.00

FS+SYS+CoT - - - 3.25 6.32 0.00
FS+ToT - - - - - -

LLAMA-2 (70b)

ZS 0.10 4.96 0.00 6.47 8.14 5.57
ZS+SYS 0.16 5.88 2.10 9.72 9.60 0.36
ZS+CoT 0.91 5.05 0.46 13.73 7.51 1.24

ZS+CoT+SYS 1.69 5.63 0.04 14.34 8.50 3.23
ZS+ToT - - - - - -

FS 0.02 4.04 0.00 4.82 7.88 0.53
FS+SYS 0.08 4.81 0.01 8.71 8.85 3.13
FS+CoT 0.08 3.17 0.00 4.62 8.63 2.03

FS+SYS+CoT 0.16 3.40 0.00 5.54 8.22 0.00
FS+ToT - - - - - -

Text relevance is a crucial metric, highlighting the relationship between two sentences and ensuring
that a generated answer aligns with the task at hand. Classical metrics like BLEU and ROUGE-L
measure the shared sequences between pairs of sentences: BLEU focuses on the n-gram overlap,
while ROUGE-L captures the lengthiest common sequence. CIDEr refines the ROUGE-L metric
by accounting for synonyms, word frequency, and scene graphs. We evaluated short-answer ques-
tions (with unique answers) generated by GPT-3.5, GPT-4, PaLM-2, and LLAMA-2 (13b and 70b)
using the BLEU, ROUGE-L, and CIDEr metrics. Our collective findings are presented in Table
5. Interestingly, PaLM 2 displayed notably higher scores compared to other models but exhibited
low accuracy, as seen in Table 3. Delving into the errors of PaLM 2, we discerned that, while it
can provide accurate descriptions of specific concepts, it often muddles the logical connections be-
tween these concepts and redundantly reiterates irrelevant ones. An illustrative error from PaLM 2
is showcased in Figure 6, where the model erroneously repeats certain concepts. However, this repe-
tition ironically leads to heightened text relevance scores. This observation underscores a limitation
inherent in using text relevance metrics for evaluating LLMs.
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Figure 6: Example of wrong answer generated by PaLM 2. It is obvious that PaLM 2 repeat some wrong
concept many times, but this will significantly increase the relevance between ground truth and the generated
answer.

Figure 7: An example of short answer error in GPT-3.5, where the answer of GPT-3.5 cannot align the question,
indicating the lack of logical decomposition and analysis, identification of assumptions, and logical reasoning
skills.

A.2 ERROR SAMPLES

We provide some error samples generated by GPT-3.5 in Figure 7 and Figure 8 for a better under-
standing of the error reason in Section 4.2.

A.3 PROMPT TEMPLATE

We designed specific prompts for each type of question, and we summarized those prompts in this
section. Figure 9 shows the system prompt, Figure 10 shows the prompt template for multiple
choice questions, Figure 11 shows the prompt template for the short answer, and Figure 12 shows
the prompt template for math questions. {input} is the place for input questions, {thought} denotes
the middle-process prompt used for CoT. We use a two-stage method for short answer questions,
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Figure 8: An example of a math error in GPT-3.5, where GPT-3.5 cannot understand the principles of language
distribution and frequency, indicating the lack of logical decomposition and analysis, problem deduction, and
abstract reasoning skills.

Figure 9: System prompt for multiple choice, short answer, and math questions.

in which the thought is generated by the LLM itself, and a format template for multiple choice
and math questions. Specifically in math, we put the problem-solving process into the CoT prompt
({process}) as the "thought". Note that the prompts listed here are all zero-shot prompts, and the
few-shot prompt is based on the zero-shot by further adding some example questions.

B USER INTERFACE

The original dataset has a lot of handwriting scripts. We, therefore, create a UI interface to transform
those handwriting scripts to JSON format manually. Figure 13 shows the screenshot of our UI
interface. To ensure the correctness of input questions, we developed a real-time preview window
for annotators to revise their input.

C COMPARISON BETWEEN PREVIOUS BENCHMARKS AND NLPBENCH

To clearly distinguish the difference between each benchmark, we summarized the characteristics
of each benchmark in three dimensions: dataset composition, tested methods, and analysis methods.
Table 6 shows the difference between each benchmark. Our dataset introduces the questions that
require LLMs to answer with multi-turn communication and contains all types of questions that can
test the LLMs’ ability comprehensively.
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Figure 10: Zero-shot prompt template for multiple choice questions.

Figure 11: Zero-shot prompt template for short answer questions. Note that we use a two-stage method to
generate the middle process for CoT.

Figure 12: Zero-shot prompt template for math questions. We input the middle process as the "thought" for
CoT.
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Figure 13: The UI design of data processing and annotation.

Table 6: Comparison of NLPBench with other benchmarks. “Level” represents the grade level of problems.
“w/ Solution” represents whether problems contain detailed solutions. “Type” represents what format most
problems of the dataset use. “AP” denotes whether the benchmark uses the advanced prompting strategies,
“MC” denotes multiple-choice format, “MT” denotes the question requires answer in multi-turn communi-
cation, and “Free” denotes free-response format. “Human” indicates whether the analysis process employs
a human annotation process. “Auto” represents whether the analysis process uses an automatic annotation
process.

Benchmark Dataset Experiment Analysis

Level w/ Solution Type ZS FS AP MT Human Auto

ScienceQA (Lu et al., 2022) Grade 1-12 Yes MC Yes Yes Yes No No No
IconQA (Lu et al., 2021b) Grade 1-12 No MC No Yes No No No No
TabMWP (Lu et al., 2023a) Grade 1-12 Yes Free No Yes No No No No
GSM8K (Cobbe et al., 2021) Grade 1-12 Yes Free No Yes No No No No
MATH (Hendrycks et al., 2021) High School Yes Free No Yes No No No No
LILA (Mishra et al., 2022) High School Yes Free Yes Yes No No No No
MNLU (Hendrycks et al., 2020) High School & College No MC No Yes No No No No
CEval (Huang et al., 2023) High School & College No MC No Yes Yes No No No
AGIEval (Zhong et al., 2023) High School & College No MC Yes Yes Yes No No No
TheroemQA (Chen et al., 2023) College No Free No Yes Yes No No No
SciBench (Wang et al., 2023) College Yes Free Yes Yes Yes No Yes Yes

NLPBench College Yes Free & MC Yes Yes Yes Yes Yes Yes
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