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Abstract

A popular approach to streaming speech trans-001
lation is to employ a single offline model with002
a wait-k policy to support different latency re-003
quirements, which is simpler than training mul-004
tiple online models with different latency con-005
straints. However, there is a mismatch prob-006
lem in using a model trained with complete007
utterances for streaming inference with partial008
input. We demonstrate that speech represen-009
tations extracted at the end of a streaming in-010
put are significantly different from those ex-011
tracted from a complete utterance. To address012
this issue, we propose a new approach called013
Future-Aware Streaming Translation (FAST)014
that adapts an offline ST model for streaming015
input. FAST includes a Future-Aware Inference016
(FAI) strategy that incorporates future context017
through a trainable masked embedding, and018
a Future-Aware Distillation (FAD) framework019
that transfers future context from an approxi-020
mation of full speech to streaming input. Our021
experiments on the MuST-C EnDe, EnEs, and022
EnFr benchmarks show that FAST achieves bet-023
ter trade-offs between translation quality and024
latency than strong baselines. Extensive anal-025
yses suggest that our methods effectively al-026
leviate the aforementioned mismatch problem027
between offline training and online inference.028

1 Introduction029

Streaming speech translation (ST) systems generate030

real-time translations by incrementally processing031

audio frames, unlike their offline counterparts that032

have access to complete utterances before trans-033

lating. Typically, streaming ST models use uni-034

directional encoders (Ren et al., 2020; Ma et al.,035

2020b; Zeng et al., 2021) and are trained with a036

read/write policy that determines whether to wait037

for more speech frames or emit target tokens. How-038

ever, it can be expensive to maintain multiple mod-039

els to satisfy different latency requirements (Zhang040

and Feng, 2021; Liu et al., 2021a) in real-world041

applications. Recently, some works (Papi et al.,042

(a) Training: Full speech encoding (b) Testing: Streaming encoding

Figure 1: (a) and (b) represent the input mismatch be-
tween offline training and streaming testing.

2022; Dong et al., 2022) have shown that a single 043

offline models with bidirectional encoders (such as 044

Wav2Vec2.0 (Baevski et al., 2020)) can be adapted 045

to streaming scenarios with a wait-k policy (Ma 046

et al., 2019) to meet different latency requirements 047

and achieve comparable or better performance, par- 048

tially due to the more powerful bidirectional en- 049

coders. However, there is an inherent mismatch in 050

using a model trained with complete utterances on 051

incomplete streaming speech during online infer- 052

ence (Ma et al., 2019). 053

Intuitively, speech representations extracted 054

from streaming inputs (Figure 1(b)) are less infor- 055

mative than those from full speech encoding (Fig- 056

ure 1(a)) due to limited future context, especially to- 057

ward the end of the streaming inputs, which can be 058

exacerbated by the aforementioned mismatch prob- 059

lem. This raises a natural question: how much do 060

the speech representations differ between the two 061

inference modes? We analyze the gap in speech 062

representations, measured by cosine similarity, at 063

different positions in the streaming input compared 064

to using the full speech (Section 3). We observe a 065

significantly greater gap for representations closer 066

to the end of a streaming segment, with an average 067

similarity score as low as 0.2 for the last frame, 068

and the gap quickly narrows for earlier frames (Fig- 069

ure 2). Additionally, we observe more degradation 070

in translation quality for utterances with the great- 071

est gap in speech representations between online 072
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and offline inference (see Appendix B.2).073

We conjecture that the lack of future contexts074

at the end of streaming inputs can be detrimen-075

tal to streaming speech translation when using an076

offline model. To this end, we propose a novel077

Future-Aware Inference (FAI) strategy. This ap-078

proach is inspired by masked language models’079

ability (Baevski et al., 2020) to construct repre-080

sentations for masked tokens from their context.081

Specifically, we append a few mask embeddings082

to the end of the streaming input and leverage the083

acoustic encoder (Wav2Vec2.0)’s ability to implic-084

itly construct representations for future contexts,085

which can lead to more accurate representations for086

the other frames in the streaming input.087

Furthermore, we propose a Future-Aware Dis-088

tillation (FAD) framework that adapts the offline089

model to extract representations from streaming090

inputs that more closely resemble those from full091

speech encoding. We expand the original stream-092

ing input with two types of future contexts: one093

with m oracle speech tokens for the teacher model,094

and another with m mask tokens for the student095

model, which is initialized from the teacher model.096

We minimize several distillation losses between097

the output of the teacher and student models. By098

incorporating additional oracle future contexts, the099

speech representations for the frames in the origi-100

nal streaming input extracted by the teacher model101

resemble those when the full speech is available.102

FAD aims to adjust the offline model to extract103

similar representations for streaming input as it104

would for full speech. In combination with FAI,105

we improve the model’s ability to extract quality106

representations during both training and inference,107

alleviating the aforementioned mismatch problem.108

We refer to our approach as FAST, which stands109

for Future-Aware Streaming Translation.110

We conducted experiments on the MuST-C111

EnDe, EnEs, and EnFr benchmarks. The results112

show that our methods outperform several strong113

baselines in terms of the trade-off between transla-114

tion quality and latency. Particularly, in the lower115

latency range (when AL is less than 1000ms), our116

approach achieved BLEU improvements of 12 in117

EnDE, 16 in EnEs, and 14 in EnFr over baseline.118

Extensive analyses demonstrate that our future-119

aware approach significantly reduces the represen-120

tation gap between partial streaming encoding and121

full speech encoding.122

2 Background and Related Work 123

Speech translation systems can be roughly catego- 124

rized into non-streaming (offline) and streaming 125

(online) depending on the inference mode. Re- 126

gardless of the inference mode, speech transla- 127

tion models typically employ the encoder-decoder 128

architecture and are trained on an ST corpus 129

D = {(x, z,y)}, where x = (x1, . . . , xT ) de- 130

notes an audio sequence, z = (z1, . . . , zI) and 131

y = (y1, . . . , yJ) the corresponding source tran- 132

scription and target translation respectively. 133

Non-Streaming Speech Translation For the 134

non-streaming ST task, the encoder maps the en- 135

tire input audio x to the speech representations 136

h, and the decoder generates the j-th target to- 137

ken yj conditional on the full representations h 138

and the previously generated tokens y<j . The de- 139

coding process of non-streaming ST is defined as 140

p(y | x) = ∏J
j=1 p (yj | x,y<j). 141

A significant amount of works have focused on 142

non-streaming ST, including pre-training (Wang 143

et al., 2020; Dong et al., 2021a; Tang et al., 2022; 144

Ao et al., 2022), multi-task learning (Liu et al., 145

2020; Indurthi et al., 2020, 2021), data augmenta- 146

tion (Pino et al., 2019; Di Gangi et al., 2019b; Mc- 147

Carthy et al., 2020), knowledge distillation (Dong 148

et al., 2021b; Zhao et al., 2021; Du et al., 2022), 149

and cross-modality representation learning (Tang 150

et al., 2021; Fang et al., 2022; Ye et al., 2022). 151

Streaming Speech Translation A streaming ST 152

model generates the j-th target token yj based 153

on streaming audio prefix x≤g(j) and the pre- 154

vious tokens y<j , where g(j) is a monotonic 155

non-decreasing function representing the ending 156

timestamp of the audio prefix that needs to be 157

consumed to generate the j-th word. The de- 158

coding probability is calculated as p(y | x) = 159∏J
j=1 p

(
yj | x≤g(j),y<j

)
. 160

Thus, a streaming ST model requires a policy to 161

determine whether to wait for more source speech 162

or emit new target tokens. Recent studies (Ma et al., 163

2020b; Ren et al., 2020; Zeng et al., 2021; Dong 164

et al., 2022) make read/write decisions based on a 165

variant of the wait-k policy (Ma et al., 2019) that 166

was initially proposed for streaming text transla- 167

tion, which alternates write and read operations 168

after reading the first k source tokens. Because 169

there is no explicit word boundaries in a stream- 170

ing audio, several works attempt to detect word 171

boundaries in the audio sequence by fixed length 172

(Ma et al., 2020b), Connectionist Temporal Classi- 173
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fication (Ren et al., 2020; Zeng et al., 2021; Papi174

et al., 2022), ASR outputs (Chen et al., 2021), or175

continuous-integrate-and fire (Dong et al., 2022;176

Chang and yi Lee, 2022). Moreover, some studies177

(Arivazhagan et al., 2019; Ma et al., 2020c; Zhang178

et al., 2020; Schneider and Waibel, 2020; Miao179

et al., 2021; Zhang and Feng, 2022a,c; Zhang et al.,180

2022; Chang and yi Lee, 2022; Liu et al., 2021b;181

Zhang and Feng, 2022b) explore adaptive policies182

to dynamically decide when to read or write for183

streaming text and/or streaming speech translation.184

Zhang and Feng (2022d) fill future source posi-185

tions with positional encoding to introduce future186

information during training for simultaneous ma-187

chine translation (MT) within the prefix-to-prefix188

framework. In this paper, we focus on a matter189

less attended to – how to alleviate the mismatch190

between offline training and online inference.191

Knowledge Distillation for Streaming Trans-192

lation Existing studies on streaming text and/or193

speech translation usually introduce future informa-194

tion by distilling sequence-level knowledge from195

offline MT (Ren et al., 2020; Zhang et al., 2021;196

Liu et al., 2021b; Zhu et al., 2022; Deng et al.,197

2023) and online MT (Zaidi et al., 2021). More-198

over, Ren et al. (2020) leverage the knowledge from199

the multiplication of attention weights matrices of200

streaming ASR and MT models to supervise the201

attention of the streaming ST model. However, our202

FAD aims to reduce the representation gap between203

full speech and streaming speech.204

3 Preliminary Analysis205

In this section, we examine the mismatch problem206

in Transformer-based (Vaswani et al., 2017) ST207

architecture between offline training and online de-208

coding. In offline full-sentence ST, the speech rep-209

resentation of each frame is obtained by attending210

to all frames, including future frames, in the trans-211

former encoder layers. Recently, a common ap-212

proach in speech translation is to stack a pre-trained213

Wav2Vec2.0 (Baevski et al., 2020) as the acoustic214

encoder with a semantic MT encoder-decoder, re-215

sulting in state-of-the-art performance in the ST216

task (Han et al., 2021; Dong et al., 2022; Fang217

et al., 2022; Ye et al., 2022). This approach lever-218

ages the ability of Wav2Vec2.0 pre-training to learn219

better speech representations.220

When applying an offline model to streaming221

inference, the lack of future frames causes an ap-222

parent mismatch problem, which can lead to a de-223

Figure 2: The average cosine similarity s̄−τ of the end
100 positions in the streaming speech.

terioration in the extracted speech representations. 224

To quantify this effect, we examine three offline 225

ST models trained on the MuST-C EnDe dataset 226

using the Chimera (Han et al., 2021), STEMM 227

(Fang et al., 2022), and MoSST (Dong et al., 2022) 228

architectures, with a trainable acoustic encoder ini- 229

tialized from Wav2Vec2.0. We conduct analysis 230

on the tst-COMMON set with a duration between 231

2s and 10s by removing outliers and noisy data, 232

resulting 1829 examples. 233

For an input sequence of audio frames x = 234

(x1, . . . , xT ), the convolutional subsampler of 235

Wav2Vec2.0 shrinks the length of the raw audio 236

by a factor 320 and outputs the full speech rep- 237

resentation sequence a. For readability reasons, 238

we uniformly use the notation T to denote the se- 239

quence length of a = (a1, . . . , aT ). This simplified 240

notation does not undermine any of our conclusions 241

while making the equations for readable.For stream- 242

ing input ∀t ≤ T, x̂t = (x1, . . . , xt), Wav2Vec2.0 243

will output the representation ât = (ât,1, . . . , ât,t). 244

To quantify the difference in speech representa- 245

tions between offline and online inputs, we com- 246

pute the cosine similarity st,t′ between the speech 247

representation at the t′-th (t′ ≤ t) position in the 248

streaming audio input x̂t and at the same position 249

with full-sentence encoding. We then calculate the 250

statistics s̄−τ by averaging the cosine similarity 251

over both the testset B and the time dimension with 252

a reverse index −τ corresponding to a position 253

τ − 1 frames before the end of the streaming input. 254

st,t′(x) = cos(ât,t′ , at′),∀t′ ≤ t, (1) 255

s̄−τ =
1

|B|
∑
x∈B

1

|x| − τ + 1

|x|∑
t=τ

st,t−τ+1(x) (2) 256

Figure 2 displays the s̄−τ curve for the last 100 257

positions in streaming inputs. For τ > 10, the 258
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averaged cosine similarity s̄−τ is greater than 0.8,259

indicating that the representations at those posi-260

tions in a streaming input are similar to those with261

the full speech. However, the curve shows a sharp262

decline in the averaged cosine similarity s̄−τ for263

the ending positions, particularly for the last one264

(τ = 1), suggesting that the mismatch problem can265

significantly affect the quality of speech represen-266

tation for these positions. We provide additional267

analysis in Appendix B.268

4 Method269

To address the mismatch problem between of-270

fline training and online inference, we propose a271

novel methodology called Future-Aware Stream-272

ing Translation (FAST). This approach adapts an273

offline ST model for streaming scenarios by us-274

ing a Future-Aware Inference (FAI) strategy during275

inference and a Future-Aware Distillation (FAD)276

strategy during training. An overview of our pro-277

posed method is depicted in Figure 3.278

4.1 Model Architecture279

Unlike previous works (Ren et al., 2020; Ma et al.,280

2020b; Zeng et al., 2021; Liu et al., 2021a) that281

require training multiple streaming models for dif-282

ferent latency requirements, our goal is to train one283

single offline model to meet the requirements. The284

overall architecture depicted in Figure 3(a) consists285

of an acoustic encoder, an acoustic boundary detec-286

tor, a semantic encoder, and a translation decoder.287

Acoustic encoder: The pre-trained Wav2Vec2.0288

is adopted as the acoustic encoder to learn a better289

speech representation (Ye et al., 2021, 2022).290

Acoustic boundary detector: To enable the of-291

fline ST model to perform chunk-wise streaming292

inference, we use a Continuous Integrate-and-Fire293

(CIF) module (Dong and Xu, 2020) as the acoustic294

boundary detector to dynamically locate the acous-295

tic boundaries of speech segments following (Yi296

et al., 2021; Dong et al., 2022). The CIF module297

generates an integration weight αt for each acous-298

tic representation at by Wav2Vec2.0. Then, CIF299

accumulates αt in a step-by-step way. When the300

accumulation reaches a certain threshold (e.g. 1.0),301

the acoustic representations corresponding to these302

weights are integrated into a single hidden represen-303

tation hj by weighted average, indicating a found304

token boundary. The shrunk representations h will305

be fed into the semantic encoder. To learn the cor-306

rect acoustic boundaries, we use the source text307

length J as the weakly supervised signal. 308

LCIF =

∥∥∥∥J −
∑T

t=1
αt

∥∥∥∥
2

(3) 309

There are two benefits of using CIF as a boundary 310

detector. For offline ST model, it can address the 311

length gap between speech and text. It can also pro- 312

vide the acoustic boundaries to perform read/write 313

policies for streaming inference. 314

Semantic encoder and Translation decoder: The 315

standard transformer (Vaswani et al., 2017) com- 316

posed of Le encoder layers and Ld decoder layers 317

is used. The translation loss is defined as: 318

LST(x,y) = −
∑J

j=1
log p (yj | y<j ,x) (4) 319

4.2 Future-Aware Inference 320

The offline ST model is trained with the following 321

objective function: 322

Loffline = LST + λ · LCIF (5) 323

where λ is a hyper-parameter to balance two losses. 324

Based on the analysis in Section 3, we find that 325

it is only necessary for the offline ST model to be 326

aware of a short future during streaming encoding. 327

Thus, we first propose a Future-Aware Inference 328

(FAI) strategy to enhance the representations of 329

streaming speech in Figure 3(b). 330

In this strategy, the streaming inference is di- 331

rectly performed on offline ST model without fine- 332

tuning. Particularly, we use the mask tokens of 333

Wave2Vec2.0 as the pseudo future context and ap- 334

pend them to the speech tokens generated from 335

the already consumed speech frames. Because 336

the mask token embedding is trainable when pre- 337

training Wave2Vec2.0, and the contrastive loss is to 338

identify the quantized latent audio representation of 339

masked regions based on unmasked context, this is 340

intuition that mask tokens can possibly encode fu- 341

ture context. In addition, the masking strategy dur- 342

ing pre-training results in approximately 49% of all 343

time steps being masked with a mean span length 344

of 300ms, it also guarantees that Wav2vec2.0 is 345

able to extract better speech representations even 346

with the presence of large amount of mask tokens. 347

Wav2Vec2.0 consists of a multi-layer convolu- 348

tional subsampler fc and a Transformer encoder fe. 349

During our online inference, for each audio prefix 350

x̂t = (x1, . . . , xt), the fc first outputs streaming 351

speech tokens ĉt = (c1, . . . , cτ ), where ĉ ∈ Rτ×d 352

and d is the dimension of model and τ is the 353
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Figure 3: Illustration of offline ST model and proposed methods FAI and FAD.

sequence length after convolutional subsampling.354

Then, we concatenate the streaming speech tokens355

ĉ and m mask token embeddings e ∈ Rd along356

the time dimension, resulting in a longer sequence357

of speech tokens ∈ R(τ+m)×d. The new speech358

tokens are then fed into the Transformer encoder359

fe, but only the first τ encoder outputs (i.e., speech360

features) will be kept for the CIF module because,361

as discussed in Section 3, the last m speech fea-362

tures are of poor quality and adversely affect trans-363

lation quality. Then, if an acoustic boundary is364

detected by the CIF module, the decoder will emit365

new words based on wait-k policy, otherwise, the366

streaming speech continues to be read. The FAI367

strategy is outlined in Algorithm 1 in Appendix.368

4.3 Future-Aware Distillation369

Even FAI considers mask tokens as the pseudo370

future context, it is still preferred to leverage the fu-371

ture oracle speech tokens, which is unavailable dur-372

ing inference. Therefore, we take one step further373

by proposing a fine-tuning method – Future-Aware374

Distillation (FAD). It aims to distill the knowledge375

from teachers with oracle future contexts into stu-376

dents with pseudo future contexts.377

The teacher model is the offline ST by optimiz-378

ing Eq. (5) and is frozen. The student model has379

exactly the same architecture as the teacher and is380

initialised from the teacher. However, the seman-381

tic encoder and translation decoder are frozen to382

retrain offline-trained ST performance.383

Training A naive solution is to distill knowledge384

from the full speech into every possible streaming385

speech for each audio. However, since the length386

of speech tokens is typically very large, e.g., 300387

on average, it will computational prohibitive. To388

this end, we propose a simple and efficient imple- 389

mentation via random sampling. 390

Given a full audio waveform x, fc outputs the 391

speech tokens c ∈ RT×d. We randomly sample an 392

integer t ∈ [1, T ] to construct the streaming speech 393

token c≤t. Then, we define the teacher input of fe 394

with oracle future context as following: 395

ĉT = c1:t+m ∈ R(t+m)×d, (6) 396

where m is a hyper-parameter to denote the num- 397

ber of future contexts. The most straightforward 398

approach is to use the full speech as the teacher 399

input. However, due to the bidirectional acoustic 400

encoder, the streaming speech representation of the 401

same position constantly changes when consuming 402

new frames. 403

To maintain consistency with the inference 404

method FAI, we use the mask tokens as the pseudo 405

future context and append them to the sampled 406

speech tokens to construct the student input. 407

ĉS = Concat{c1:t;m× [e]} ∈ R(t+m)×d, (7) 408

where e ∈ Rd is the mask embedding. 409

We can obtain the streaming speech representa- 410

tions from teacher fT
e and student fS

e . Then the 411

first t speech representations are fed into the CIF 412

module to derive the teacher and student weight se- 413

quence. Concretely, they can be written as follows. 414

âT , âS = fT
e (ĉ

T ), fS
e (ĉ

S) (8) 415

αT
1:t, α

S
1:t = CIF(âT1:t),CIF(â

S
1:t) (9) 416

Eventually, two distillation losses are proposed to 417

reduce the speech representation gap. 418

LW2V
KD = 1− cosine(âS1:t, â

T
1:t) (10) 419

LCIF
KD =

∑t

τ=1
KL(αT

τ ∥αS
τ ) (11) 420
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The first loss is to directly minimize the stream-421

ing speech representations with cosine similarity.422

The second loss is to learn more correct acoustic423

boundaries for online inference by calculating the424

KL-divergence between two weight distributions.425

Note that according previous analysis in Sec 3, the426

representations of the first t speech tokens after fT
e427

should have high quality if m > 10, so only the428

first t speech representations are taken into account429

for loss calculation.430

Optimization The total training objective of the431

FAD can be written as L = LW2V
KD + LCIF

KD. The432

overall training procedure of the proposed method433

is shown in Figure 3(c).434

5 Experiments435

5.1 Experimental Settings436

Datasets We evaluate our approach on MuST-C V1437

English-German (EnDe), English-Spanish (EnEs)438

and English-French (EnFr) datasets (Di Gangi et al.,439

2019a), where limited previous works discussed440

the En-Fr streaming ST with BLEU-latency curve.441

All the corpora contain source audios, source tran-442

scriptions, and target translations, and the results443

reported are conducted on the corresponding tst-444

COMMON set. For speech data, we normalize445

the raw audio wave to the range of [−1, 1). For446

text data, we keep punctuation and remove non-447

printing characters, and remain case-sensitive. For448

each translation direction, the unigram Sentence-449

Piece1 model (Kudo and Richardson, 2018) is used450

to learn a shared vocabulary of size 10k.451

Model Configuration For the acoustic encoder, we452

use Wav2vec2.02 (Baevski et al., 2020) following453

the base configurations. We construct the acoustic454

boundary detector by applying the CIF (Yi et al.,455

2021) on the last dimension of speech represen-456

tation. We use 8 and 6 layers for the semantic457

encoder and the translation decoder respectively,458

with 4 attention heads and 768 hidden units.459

Training The detailed training schedule of the of-460

fline ST model can refer to Appendix C. We set the461

length m of future context tokens to 50 for both462

FAD and FAI. All hyper-parameters are tuned on463

EnDe devset and applied to other language pairs.464

We train all models with 3.2 million frames per465

batch on 8 Nvidia Tesla V100 GPUs. We imple-466

1https://github.com/google/
sentencepiece

2https://dl.fbaipublicfiles.com/
fairseq/wav2vec/wav2vec_small.pt

ment our models with Fairseq3 (Ott et al., 2019). 467

Inference We average the checkpoints of the best 468

10 epochs on development set for evaluation. We 469

perform streaming-testing with the wait-k policy. 470

k is counted by the detected acoustic units from 471

the CIF module. To follow the tradition in simul- 472

taneous translation (Zeng et al., 2021; Dong et al., 473

2022), we do not rewrite the tokens that have al- 474

ready been generated. 475

Evaluation Metrics We use SacreBLEU4 for the 476

translation quality. The latency is evaluated with 477

Average Latency (AL) (Ma et al., 2019), Average 478

Proportion (AP) (Cho and Esipova, 2016), and Dif- 479

ferentiable Average Lagging (DAL) (Cherry and 480

Foster, 2019) in the SimulEval5 (Ma et al., 2020a). 481

System Settings We compare our method with sev- 482

eral strong end-to-end streaming ST approaches. 483

(i) SimulSpeech (Ren et al., 2020) and RealTranS 484

(Zeng et al., 2021) use uni-directional encoder 485

rather than bidirectional one. (ii) MoSST (Dong 486

et al., 2022) applies an offline-trained model with 487

a monotonic segmentation module for streaming 488

testing and achieves competitive performance. (iii) 489

MMA-SLM (Indurthi et al., 2022) enhances mono- 490

tonic attention to make better read/write decisions 491

by integrating future information from language 492

models. (iv) ITST (Zhang and Feng, 2022b) learns 493

an adaptive read/write policy by quantifying the 494

transported information weight from source token 495

to the target token. (v) MU-ST (Zhang et al., 2022) 496

learns an adaptive segmentation policy to detect 497

meaningful units, which makes read/write deci- 498

sions. (vi) Baseline is our offline-trained ST model 499

(B for abbreviation). For fair comparisons, it has 500

the same structure as MoSST. 501

5.2 Main Results 502

We presents the main results in Figure 4 6. Com- 503

pared with the online models SimulSpeech, Re- 504

alTranS, and ITST, our offline model (baseline) 505

achieves higher translation quality with high la- 506

tency as it encodes bidirectional context informa- 507

tion during training, however, in the low latency re- 508

gion, it performs poorly due to the input mismatch 509

between offline-training and online-decoding. 510

B + FAI With the ability to reduce this mismatch, 511

3https://github.com/pytorch/fairseq
4https://github.com/mjpost/sacrebleu
5https://github.com/facebookresearch/

SimulEval
6The extended results for other latency metrics (AP and

DAL) are described in Appendix D.5.
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Figure 4: The translation quality (BLEU) against the latency metrics (AL) on the tst-COMMON set of MuST-C
EnDe, EnEs, and EnFr dataset. † denotes that the results are obtained from corresponding papers. offline is the
offline performance of teacher model (offline-trained ST) by greedy search. The curve corresponding to B is the
online performance of the teacher model using vanilla wait-k policy. The curve corresponding to B + FAI is the
online performance of the teacher model with our FAI strategy. The curve corresponding to FAST is the online
performance of our student model with the FAI strategy, i.e., FAD + FAI.

FAI is directly applied for our offline (baseline)512

model and can achieve higher BLEU in all latency513

regions. In particular, it outperforms our most com-514

patible baseline B by large margins in lower latency515

regions (when AL is less than 1000ms), with im-516

provements over 6 BLEU in both EnDe and EnEs,517

10 BLEU in EnFr.518

FAST (FAD + FAI) Furthermore, our FAST519

achieves the best trade-off between translation qual-520

ity and latency, especially at extremely low latency521

region (AL is about 200ms, k = 1), achieving the522

improvements of 6 BLEU in EnDe, 10 BLEU in523

EnEs, and 4 BLEU in EnFr compared to B + FAI.524

It indicates that FAST can effectively mitigate the525

input mismatch between offline-training and online-526

decoding. In addition, our method achieves com-527

parable translation quality with full-speech trans-528

lation at middle latency (at AL around 2000ms),529

especially for EnEs.530

5.3 Ablation Study531

In this section, we study the effectiveness of our532

methods. All ablation results are obtained from the533

MuST-C EnDe tst-COMMON set. The results are534

shown in Figure 5.535

(1) w/o LW2V2
KD : if removing the LW2V2

KD , the trans-536

lation quality drops by 1-2 BLEU in all latency re-537

gions, including high latency region. This demon-538

strates optimizing LW2V2
KD can guarantee the full539

speech translation.540

(2) w/o LCIF
KD: If removing the LCIF

KD, the transla-541

0 1,000 2,000 3,000 4,000 5,000
0

4

8

12

16

20

24

Average Lagging (ms)

B
L

E
U

FAST w/o LW2V2
KD

w/o LCIF
KD w/o FAI

w/o mask embeds Baseline

Figure 5: Ablation study of our method on the tst-
COMMON set of MuST-C EnDe dataset. The ob-
served points in the plots represent wait-k policy with
k = {1, 3, 5, 7, 9, 12, 15, 20, 30}.

effectively mitigate the input mismatch between552

offline-training and online-decoding. In addition,553

our method achieves comparable translation quality554

with full-speech translation at middle latency (at555

AL around 2000ms), especially for EnEs.556

5.3 Ablation Study557

In this section, we describe experiments to evalu-558

ate the effectiveness of our methods. All ablation559

results are obtained from the MuST-C EnDe tst-560

COMMON set. The results are shown in Figure561

5.562

(1) w/o LW2V2
KD : We first remove the LW2V2

KD term563

in Eq.(14), the translation quality drops by 1-2564

BLEU in all latency regions. This demonstrates the565

important role of the LW2V2
KD in reducing the mis-566

match between full speech and streaming speech.567

(2) w/o LCIF
KD: If we remove the LCIF

KD term in568

Eq.(14), the translation quality will be slightly de-569

graded. However, we observe that the acoustic570

boundaries may become larger. For example, The571

AL value of this variant at wait-1 is greater than572

750, but the AL value of the other variants at wait-573

1 is approximately 150. Thus, adding LCIF
KD can574

ensure that the model learns correct the acoustic575

boundaries for streaming inference.576

(3) w/o FAI: In this variant, we use the well-577

trained student model with vanilla wait-k policy578

for streaming inference. It leads to significant per-579

formance degradation in low and middle latency580

region, since it does not alleviate the mismatch be-581

tween training and inference. This indicates that582

our FAD and FAI must be used together to achieve583

better streaming performance.584

(4) w/o mask embeddings: During training and585
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Figure 6: Effect from different lengths of future context.

inference, our model append m mask tokens into 586

streaming speech tokens as the pseudo future con- 587

texts. In this variant, we remove the mask tokens 588

during training and inference. We observe a sig- 589

nificant drop in translation quality, especially for 590

high latency. This result indicates that the pseudo 591

future contexts can enhance the streaming speech 592

representations. 593

5.4 How much future context is needed? 594

To answer this question, we compare our mothod 595

with different lengths of future context m. Fig- 596

ure 6 shows the results. The system that inherits 597

the mismatch problem, i.e. uses the offline model 598

directly for online decoding, is shown by setting 599

m = 0. For our method, increasing m from 0 to 600

20 obtains better translation quality. Since only the 601

representation of the end position is poor, which is 602

observed in Section 3, our method obtains similar 603

performance when m is increased from 20 to 100. 604

This also shows that our method is reasonable and 605

effective to append m future contexts instead of 606

using the full speech as the teacher. It provides a in- 607

dependent teacher for each student and ensures the 608

consistency between FAD training and FAI for stu- 609

dent model as the length of full speech is unknown 610

during streaming inference. We also investigate 611

the impact of various future context lengths on the 612

representation of the last position by calculating 613

the average cosine similarity in Eq. (4). The results 614

are shown in Figure 7. We observe that 1) as m 615

increases, the representation of the last position in 616

the streaming speech becomes better. 2) the curves 617

of the average cosine similarity for FAST becomes 618

flattened when m > 20. This is consistent with the 619

results in Figure 6. 620
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Figure 5: Ablation study of our method on the tst-
COMMON set of MuST-C EnDe dataset. The ob-
served points in the plots represent wait-k policy with
k = {1, 3, 5, 7, 9, 12, 15, 20, 30}.

tion quality will be slightly degraded. However, we 542

observe that the distances between two consecutive 543

acoustic boundaries become larger. For example, 544

the AL of this variant at wait-1 is greater than 750, 545

but the AL of the other variants at wait-1 is approx- 546

imately 150. As expected, optimizing LCIF
KD can 547

ensure the correct acoustic boundaries. 548

(3) w/o FAI: In this variant, we use the stu- 549

dent model by FAD with vanilla wait-k policy for 550

streaming inference (i.e., inference without mask 551

tokens). However, FAD training considers mask 552

tokens as student input, so this mismatch leads 553

to significant performance degradation in low and 554

middle latency regions. This indicates that our FAD 555

and FAI should be used together to achieve better 556
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our method achieves comparable translation quality554

with full-speech translation at middle latency (at555

AL around 2000ms), especially for EnEs.556
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ate the effectiveness of our methods. All ablation559

results are obtained from the MuST-C EnDe tst-560

COMMON set. The results are shown in Figure561
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BLEU in all latency regions. This demonstrates the565

important role of the LW2V2
KD in reducing the mis-566

match between full speech and streaming speech.567

(2) w/o LCIF
KD: If we remove the LCIF

KD term in568

Eq.(14), the translation quality will be slightly de-569

graded. However, we observe that the acoustic570

boundaries may become larger. For example, The571

AL value of this variant at wait-1 is greater than572

750, but the AL value of the other variants at wait-573

1 is approximately 150. Thus, adding LCIF
KD can574

ensure that the model learns correct the acoustic575

boundaries for streaming inference.576

(3) w/o FAI: In this variant, we use the well-577

trained student model with vanilla wait-k policy578

for streaming inference. It leads to significant per-579

formance degradation in low and middle latency580

region, since it does not alleviate the mismatch be-581

tween training and inference. This indicates that582

our FAD and FAI must be used together to achieve583

better streaming performance.584
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inference, our model append m mask tokens into 586

streaming speech tokens as the pseudo future con- 587

texts. In this variant, we remove the mask tokens 588

during training and inference. We observe a sig- 589

nificant drop in translation quality, especially for 590

high latency. This result indicates that the pseudo 591

future contexts can enhance the streaming speech 592

representations. 593

5.4 How much future context is needed? 594

To answer this question, we compare our mothod 595

with different lengths of future context m. Fig- 596

ure 6 shows the results. The system that inherits 597

the mismatch problem, i.e. uses the offline model 598

directly for online decoding, is shown by setting 599

m = 0. For our method, increasing m from 0 to 600

20 obtains better translation quality. Since only the 601

representation of the end position is poor, which is 602

observed in Section 3, our method obtains similar 603

performance when m is increased from 20 to 100. 604

This also shows that our method is reasonable and 605

effective to append m future contexts instead of 606

using the full speech as the teacher. It provides a in- 607

dependent teacher for each student and ensures the 608

consistency between FAD training and FAI for stu- 609

dent model as the length of full speech is unknown 610

during streaming inference. We also investigate 611

the impact of various future context lengths on the 612

representation of the last position by calculating 613

the average cosine similarity in Eq. (4). The results 614

are shown in Figure 7. We observe that 1) as m 615

increases, the representation of the last position in 616

the streaming speech becomes better. 2) the curves 617

of the average cosine similarity for FAST becomes 618

flattened when m > 20. This is consistent with the 619

results in Figure 6. 620
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streaming performance.557

(4) w/o mask embeddings: During training and558

inference, our model appends m mask tokens into559

streaming speech tokens as the pseudo future con-560

texts. In this variant, we remove the mask tokens561

during both training and inference. Even though562

no mismatch, we still observe a significant drop in563

translation quality, especially for high latency. This564

result indicates that the pseudo future contexts can565

enhance the streaming speech representations.566

5.4 How much future context is needed?567

To answer this question, we explore the FAST568

(FAD + FAI) with different lengths of future con-569

text. Figure 6 shows the overall results. m = 0570

means the offline system without distillation. The571

offline system inherits the mismatch problem, but572

our method gradually improves the performance as573

m increasing from 0 to 20. Since we found only574

the representation of last 10 positions is poor (in575

Section 3), FAST obtains similar BLEU-AL curve576

when m is significantly larger than 10, e.g., 20-100.577

After the FAD training, we investigate the repre-578

sentation of the last position (before mask tokens)579

by s̄−1 in Eq. (2) w.r.t. m. The results are shown580

in Figure 7. We observe that 1) as m increases, the581
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Figure 8: Effect on the average cosine similarity s̄−t′ of
the streaming speech representations at the end positions
(before mask tokens). After applying FAI and FAST,
the representations of the end positions are improved.

streaming speech representation of the last position 582

becomes better; 2) the curves of the cosine similar- 583

ity becomes flattened when m > 10 significantly. 584

This is consistent with the trend in Figure 6. 585

5.5 Analysis on The Representation Gap 586

Figure 8 plots the changes of average cosine simi- 587

larity s̄−t′ in Eq. (2) of the last 40 positions (before 588

mask tokens) in the streaming speech after apply- 589

ing the FAI or FAST (FAD + FAI). They achieve at 590

least 0.6 and 0.8 cosine similarity at the last posi- 591

tion, respectively. The baseline only has the < 0.6 592

cosine similarity for the last 4 positions and only 593

0.2 for the last position. It indicates that the repre- 594

sentations with FAI are closer to those of the full 595

speech, especially at the ending positions, and FAD 596

training can further close this gap. 597

6 Conclusion 598

In this paper, we examine streaming speech trans- 599

lation from a new perspective. We investigate 600

the effects of the input mismatch between offline- 601

training and online-decoding. We find that the rep- 602

resentations at the ending positions in the stream- 603

ing input are particularly poor, directly impacting 604

the translation quality. We propose FAST, which 605

introduces future contexts to improve these rep- 606

resentations during training and testing via FAD 607

and FAI, respectively. Experiments and analysis 608

demonstrate their effectiveness in bridging the rep- 609

resentation gap between full speech encoding and 610

partial streaming encoding. Furthermore, our meth- 611

ods can be generally beneficial to streaming speech 612

translation models that are based on Wav2Vec2.0. 613

In the future, we will explore the relevant method 614

independent on Wav2Vec2.0. 615

8



7 Limitations616

Our proposed method is built upon the Wav2Vec2.0617

model, whose superior representation power has618

been shown to enhance the performance of offline619

ST models. Nevertheless, it should be noted that620

the parameters of Wav2Vec2.0 model are consid-621

erably large, approximately 95M. As a result, this622

may lead to increased computational costs during623

training and inference. As the future work men-624

tioned in our conclusion, we will explore the rele-625

vant method independent on Wav2Vec2.0.626

The CIF module for detecting the acoustic627

boundary is optimized from the weakly supervised628

signal – total length of text tokens. In streaming629

inference, the boundary detector is not guaranteed630

to predict accurate boundaries. In other words,631

it is not guaranteed to align each text token with632

detected boundaries during online inference. How-633

ever, due to the good performance of overall trans-634

lation quality, we hypothesize that these boundaries635

may represent some meaningful acoustic units. It636

should be another future work to explore the under-637

lying meaning.638
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Algorithm 1 Pseudocode of FAI strategy strategy in a PyTorch-like style.

# model: an offline-trained ST model consists of a acoustic encoder Wav2vec2.0, a token boundary detector
, a semantic encoder, and a decoder

# m: mask length, K: wait lagging, audio: audio waveform
# mask_emb: pre-trained mask embedding in Wav2vec

N = 0 # the number of source text tokens
x = [] # streaming audio prefix
y = [] # translations
mask_embs = mask_emb.repate(m, 1) # mask embeddings: m × d
while y[-1] != "<eos>":

if x == audio: # audio has been read
y = y + model(a,y) # write new target token

elif N - len(y) < K: # wait K detected source tokens
x = x + read(audio) # incrementally read audio
c = model.wav2vec2.cnn(x) # audio tokens τ × d

c = torch.cat((c, mask_embs), dim=0) # concatenate audio tokens and mask embeddings, (τ + m) × d
a = model.wav2vec2.encoder(c) # audio representations, (τ + m) × d
a = a[:a.shape[0] - m,:] # discard the predicted representations, τ × d

if model.token_detector(a): # source text token boundary is detected
N += 1

else:
h = model.semantic_encoder(a)
y = y + model.decoder(h, y) # write new target token

A Data Statistics 993

We evaluate our model on MuST-C V1 English-German (EnDe), English-Spanish (EnEs) and English- 994

French (EnFr) datasets (Di Gangi et al., 2019a). For training set, we follow Dong et al. (2022) to filter out 995

short speech of less than 1000 frames (62.5ms) and long speech of more than 480,000 frames (30s). The 996

statistics of different language pairs are illustrated in Table 1. 997

split EnDe EnEs EnFr

train 225,271 260,041 269,248
dev 1,418 1,312 1,408
tst-COMMON 2,641 2,502 2,632

Table 1: Number of samples for each split of MuST-C datasets.

B Additional Preliminary Analysis 998

B.1 Which part of streaming speech representation is worse? 999

To further verify that only the representation of the end position in streaming speech is poor, we calculate 1000

the cosine similarity st,t′ between the speech representation at the t′-th (t′ ≤ t) position in the t-th 1001

streaming audio input x̂t and the speech representation at the same position in the full encoding. Then we 1002

average the cosine similarities over the sentences in dataset B to obtain robust statistics. 1003

For t′ ≤ t, s̄t,t′ =
1

|Bt|
∑
x∈Bt

st,t′(x) =
1

|Bt|
∑
x∈Bt

cos(ât,t′ , at′), (12) 1004

where Bt = {x : |x| ≥ t} contains the audio inputs with length no shorter than t. 1005

We empirically compare the averaged cosine similarity at the beginning, middle, and end positions 1006

of the speech representations. Figure 9 shows s̄t,t′ of the first three (t′ = 1, 2, 3), middle three (t′ = 1007

⌊1+t
2 ⌋ − 1, ⌊1+t

2 ⌋, ⌊1+t
2 ⌋+ 1), and last three (t′ = t− 2, t− 1, t) positions for each encoding step t. At 1008

the beginning and middle positions, the averaged cosine similarity s̄t,t′ is greater than 0.8 except t′ = 1, 1009

indicating that the representations at such positions in the partial streaming input are close to those in the 1010

full speech. Note that t′ = 1 with a slightly lower similarity won’t hurt the performance much, because 1011

in practice it is almost impossible to apply wait-1 policy (only read 20ms speech input) in streaming ST. 1012

However, the s̄t,t′ declines significantly for the end positions, especially for the last one. In addition, we 1013
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Figure 9: The average cosine similarity s̄t,t′ of the first three (t′ = 1, 2, 3), middle three (t′ = ⌊ 1+t
2 ⌋ −

1, ⌊ 1+t
2 ⌋, ⌊ 1+t

2 ⌋+ 1), and last three (t′ = t− 2, t− 1, t) positions for each encoding step t.

observe that as t becomes larger, the streaming input will gradually approximate the full speech input,1014

then the gap of the speech representation between the offline and the online input becomes smaller. We1015

conclude that the representations of the end position in the streaming speech are particularly inferior.1016

1017

B.2 Does the poor representation at the last positions of streaming speech affect streaming ST1018

performance?1019
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Figure 10: Performance with degree of deteriora-
tion of the representation at the last position of the
streaming speech.

To answer this question, we only calculate the average1020

cosine similarity in the last position for each sample.1021

∀x, s̄−1(x) =
1

T

t=T∑
t=1

cos(ât,t, at), (13)1022

s̄−1(x) reflects the degree of deterioration of the rep-1023

resentation at the last position of the streaming speech.1024

We sort the dataset by the value of the degree and1025

divide them evenly into 5 groups to ensure enough1026

samples in each group. The translation quality of each1027

group is shown in Figure 10. The performance of1028

streaming ST drops close to 10 points as the repre-1029

sentation at the last position of the streaming speech1030

becomes worse, while the full-sentence ST fluctuates1031

less than 4 points. In addition, the performance gap1032

between the streaming ST and the full-sentence ST becomes larger as the representation at the last1033

position gets worse. In the worse group, the streaming ST is 12.41 points lower than the full-sentence ST.1034

Therefore, we conclude that the poor representation at the end position of the streaming speech has a1035

strong effect on the translation quality.1036

C Details of Offline Training1037

We use an Adam optimizer with learning rate 1e−4 and warmup step 10k. We decay the learning rate1038

with inverse square root schedule.1039

The offline ST model is first trained by a multi-task learning, including ASR and ST tasks. A language1040

identity tag is prepended to the target sentence for indicating which task is learned. In this stage, the CIF1041

module which is used to detect the acoustic boundary is deactivated, in other words, the CIF module is1042

not trained. The main purpose is to learn a better decoder, i.e., a well-trained language model. Then, we1043

activate the CIF module such that its parameters are trainable, and continue to train for another several1044

epochs. In this stage, only the ST task is learned.1045
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Monotonic Level Easy Medium Hard AL

Offline (greedy) 26.38 23.22 21.26 -
Baseline 18.88 12.95 10.38 1295
+ FAI 23.88+5.00 18.99+6.04 16.45+6.07 1143
FAST 24.44+5.56 19.89+6.94 16.53+6.15 1135

Table 2: Performance (BLEU) on different monotonic levels on test set of MuST-C EnDe.

D Additional Experiments 1046

D.1 Why we use AL rather than k? 1047

In our presented results, we plot the BLEU v.s. AL rather than k. We argue that k is not a fair metric to 1048

evaluate the latency. In text streaming translation, different tokenization (e.g., different number of BPE 1049

operations) will lead to different token boundaries for the same sentence. It indicates the k tokens do not 1050

necessarily represent the same partial sentence for different BPE methods. This situation becomes even 1051

severer for speech streaming translation. As we have a source text token boundary detector in our model, 1052

the first k detected text tokens will represent different lengths of audio frames for different input audios. 1053

To be precise, the wait-k policy used in our streaming speech translation is actually wait-k detected tokens 1054

policy. Therefore, we prefer to use AL rather than k as the latency metric in our experiments. 1055

D.2 What examples are improved by our strategies? 1056

For tst-COMMON on MuST-C EnDe, we use awesome-align7 (Dou and Neubig, 2021) to identify the 1057

token-level alignment between source transcription and target translation following Zhang and Feng 1058

(2022d). First, we define the source-to-target alignment position shift as max{0, i − j}, where the ith 1059

source token is aligned to the jth target token. If i − j is large, it means in order to translate the jth 1060

target token, the model may need to read more until seeing the ith source token. Then we calculate the 1061

monotonic level of each example as the averaged alignment position shift over the number of aligned 1062

tokens, i.e., 1063

monotonic_level =
1

|aligned_pairs|
∑

(i,j)∈aligned_pairs

max{0, i− j} (14) 1064

We evenly divide the test set into three groups according to different monotonic levels.For each group, we 1065

evaluate different inference methods and report the results in Table 2. As we explained in D.1, it is almost 1066

impossible to guarantee the same AL for different inference methods. For a fair comparison, we try our 1067

best to set the AL of different methods to be approximately equal. We can see our inference strategies 1068

show a significant advantage on the non-monotonic examples (medium and hard groups). 1069

D.3 How important of the Wav2Vec2.0? 1070

As we mentioned in the main text, the special audio token “mask" in Wav2Vec2.0 is pre-trained on the 1071

Librispeech dataset to reconstruct the corresponding feature conditional on unmasked context via the 1072

contrastive task. In our experiments, we didn’t include contrastive learning as the auxiliary task in the 1073

downstream ST training. And in our FAI inference, we directly leverage the mask embeddings as the 1074

future context by appending them to the streaming input. However, we found the speech representations 1075

after ST training becomes even better. Particularly, we calculate the cosine similarity between every 1076

predicted future representation and full speech representations at the same position, and the results are 1077

illustrated in Figure 11. On either the Librispeech or the MuST-C audio test set, the fine-tuned Wav2Vec2.0 1078

can produce better speech representations from the masking inputs. 1079

D.4 Why are all predicted features discarded? 1080

7https://github.com/neulab/awesome-align
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Figure 11: We measure the accuracy of predicted context by calculating the cosine similarity between every
predicted future representation and full speech representations at the same position.
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Figure 12: BLEU v.s. AL on different p.

In FAI strategy, all the output representations corre-1081

sponding to the m = 50 masking tokens will be dis-1082

carded, because we have demonstrated that the repre-1083

sentations at the ending positions are inferior. However,1084

as shown in 11, the first 10 predicted representations are1085

not as bad as the next 40. Therefore, on the EnDE test1086

set, we also conduct another streaming ST inference1087

by appending different numbers of predicted context1088

to the original speech representations. We use discard1089

rate p to measure the number of appending features.1090

When p = 1.0, all predicted features are discarded and1091

it reduces to the standard FAI inference. In Figure 12,1092

we compare the streaming speech translation quality1093

between regular FAI and its variant. It is concluded that1094

the predicted future context is too noisy and harmful to the performance.1095

D.5 Additional Results on EnDe/Es and EnFr1096

In this section, we evaluate our methods with other latency metrics AP and DAL. The AP-BLEU and1097

DAL-BLEU curves on the MuST-C EnDe, EnEs, and EnFr tst-COMMON sets are shown in Figure 13.1098

For three language pairs, our proposed methods can consistently improve the baseline by a large margin.1099

E Numeric Results for the Figures1100

We also provide the numeric results for Figures 4 and 13 in Tables 3, and for Figures 5 in Table 4, and for1101

Figures 4 in Table 5, for Figure 6 in Table 6.1102
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Figure 13: The translation quality (BLEU) against the latency metrics (AP, DAL) on the tst-COMMON set of
MuST-C EnDe, EnEs and EnFr dataset.
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Model Lagging (k)
En-De En-Es En-Fr

AL AP DAL BLEU AL AP DAL BLEU AL AP DAL BLEU

Baseline

1 178 0.13 359 0.02 295 0.34 1007 2.39 288 0.35 997 3.27
3 483 0.32 656 1.68 543 0.4 1054 4.09 463 0.38 1016 3.62
5 659 0.42 821 4.34 882 0.55 1239 11.37 693 0.46 1092 6.95
7 867 0.51 1032 7.79 1361 0.7 1700 20.31 1028 0.59 1300 15.1
9 1295 0.65 1531 13.31 1848 0.79 2215 24.62 1406 0.69 1630 21.66

12 1939 0.78 2234 18.72 2572 0.87 2947 27.04 1972 0.79 2222 27.4
15 2505 0.85 2788 20.67 3171 0.91 3513 27.74 2495 0.86 2741 29.89
20 3312 0.92 3559 22.33 3988 0.96 4260 27.88 3245 0.92 3462 31.7
30 4410 0.97 4576 23.16 5012 0.99 5157 27.76 4283 0.97 4435 33.09

+ FAI

1 150 0.3 494 5.94 347 0.35 641 8.38 285 0.44 632 14.45
3 475 0.53 928 12.65 775 0.59 1181 17.86 505 0.54 852 17.61
5 796 0.63 1223 16.1 1162 0.7 1589 22.71 805 0.61 1127 20.63
7 1143 0.7 1559 19.19 1608 0.78 2037 25.92 1154 0.69 1456 25.87
9 1534 0.76 1928 21.15 2076 0.83 2500 27.15 1498 0.76 1810 28.95

12 2109 0.83 2476 22.23 2736 0.89 3114 27.8 2060 0.83 2362 31.47
15 2647 0.88 2974 23.15 3301 0.93 3630 28.04 2559 0.88 2838 32.68
20 3404 0.93 3678 23.65 4072 0.96 4328 27.88 3280 0.93 3515 33.11
30 4457 0.97 4625 23.42 5045 0.99 5181 27.71 4297 0.97 4454 33.54

FAST

1 41 0.54 731 12.69 270 0.58 860 18.34 223 0.54 705 19.15
3 403 0.61 1009 14.78 722 0.65 1232 21.53 554 0.6 985 22.31
5 771 0.67 1327 17.71 1152 0.73 1629 24.78 895 0.67 1293 25.78
7 1135 0.73 1655 19.67 1594 0.79 2056 26.4 1224 0.73 1616 28.7
9 1503 0.78 1991 21.36 2031 0.84 2471 27.24 1570 0.78 1943 30.45

12 2036 0.83 2483 22.51 2650 0.89 3040 28.02 2079 0.84 2418 32.35
15 2539 0.88 2932 22.84 3194 0.92 3550 27.98 2541 0.88 2850 33.03
20 3260 0.92 3581 23.36 3943 0.96 4214 28.23 3212 0.92 3473 33.77
30 4305 0.97 4510 23.55 4928 0.98 5082 28.09 4199 0.97 4376 33.99

Table 3: Numeric results on MuST-C EnDe, EnEs, and EnFr tst-COMMON set (Figure 4 and 13).

Lagging (k)
w/o LW2V2

KD w/o LCIF
KD w/o FAI w/o mask embeds

AL BLEU AL BLEU AL BLEU AL BLEU

1 139 12 756 16.78 177 2.56 115 10.13
3 533 13.76 1220 20.01 390 2.8 459 11.86
5 911 16.24 1671 21.52 605 4.49 836 14.01
7 1288 18.17 2112 22.24 888 9.01 1211 15.12
9 1682 19.08 2527 22.41 1247 13.68 1588 15.76

12 2231 19.78 3087 22.68 1812 18.22 2138 16.44
15 2722 20.17 3562 22.73 2338 20.41 2641 16.62
20 3434 20.43 4201 22.84 3105 22.25 3363 16.75
30 4443 20.35 4992 22.73 4217 23.36 4393 16.63

Table 4: Numeric results for ablation study (Figure 5).

18



EnDe

MU-ST

AL 1023 1424 1953 2642 3621 4453 5089 5754
BLEU 17.94 20.85 22.78 24.3 24.82 24.99 25.05 25.9

RealTrans

AL 1355 1838 2290 2720 3106
BLEU 16.54 18.49 19.84 20.05 20.41

MoSST

AL 728 862 1021 1689 2088
BLEU 7.07 9.04 11.52 16.44 17.31

ITST

AL 1449 1589 1678 1778 1919 2137 2371
BLEU 17.9 18.47 19.09 19.5 20.09 20.64 21.06
AL 2618 2893 3193 3501 3876 4557 5206
BLEU 21.64 21.8 22.02 22.27 22.51 22.62 22.71

EnEs

SimulSpeech

AL 694 1336 2169 2724 3331
BLEU 15.02 19.92 21.58 22.42 22.49

RealTrans

AL 1047 1554 2043 2514 2920
BLEU 18.54 22.74 24.89 25.54 25.97

ITST

AL 960 1153 1351 1621 1964 2381 2643 2980 3434 3983
BLEU 17.77 18.38 18.71 19.11 19.77 20.13 20.46 20.75 20.48 20.64

EnFr
MMA-SLM

AL 701 1197 1704
BLEU 14.86 19.79 25.16

Table 5: Numeric results for baseline systems (Figure 4). The results of MU-ST are obtained from (Zhang et al.,
2022). The results of SimulSpeech and RealTrans are obtained from (Zeng et al., 2021). The results of MoSST are
obtained from (Dong et al., 2022). The results of ITST are obtained from (Zhang and Feng, 2022b). The results of
MMA-SLM are obtained from (Indurthi et al., 2022).

Lagging (k)
m = 5 m = 10 m = 20 m = 30 m = 50 m = 80 m = 100

AL BLEU AL BLEU AL BLEU AL BLEU AL BLEU AL BLEU AL BLEU

1 118 0.49 64 5.67 99 12.67 3 12.44 41 12.69 85 12.78 100 13.18
3 298 8.48 306 12.1 468 15.2 349 14.5 403 14.78 458 15.57 479 15.87
5 629 13.84 660 16.03 858 18.24 717 16.87 771 17.71 835 17.87 845 17.91
7 1003 17.38 1038 18.78 1237 20.23 1083 19.32 1135 19.67 1205 19.97 1225 20.07
9 1389 19.38 1424 20.2 1627 21.56 1466 21.14 1503 21.36 1562 21.61 1587 21.44
12 1957 21.46 1978 21.62 2189 22.45 2001 22.19 2036 22.51 2095 22.38 2109 22.47
15 2479 22.17 2497 22.58 2695 23.02 2507 22.75 2539 22.84 2588 23.08 2599 23.07
20 3228 22.91 3231 23.14 3425 23.29 3234 23.43 3260 23.36 3302 23.55 3311 23.54

Table 6: Numeric results for different lengths future context (Figure 6).
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