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Abstract

The brain effortlessly solves blind source separation (BSS) problems, but the
algorithm it uses remains elusive. In signal processing, linear BSS problems are
often solved by Independent Component Analysis (ICA). To serve as a model of a
biological circuit, the ICA neural network (NN) must satisfy at least the following
requirements: 1. The algorithm must operate in the online setting where data
samples are streamed one at a time, and the NN computes the sources on the fly
without storing any significant fraction of the data in memory. 2. The synaptic
weight update is local, i.e., it depends only on the biophysical variables present in
the vicinity of a synapse. Here, we propose a novel objective function for ICA from
which we derive a biologically plausible NN, including both the neural architecture
and the synaptic learning rules. Interestingly, our algorithm relies on modulating
synaptic plasticity by the total activity of the output neurons. In the brain, this could
be accomplished by neuromodulators, extracellular calcium, local field potential,
or nitric oxide.

1 Introduction

In the brain, visual, auditory, and olfactory systems effortlessly identify latent sources from their
mixtures [1, 2, 3, 4]. In unsupervised learning, such task is known as blind source separation (BSS) [5].
BSS is often solved by Independent Component Analysis (ICA) [6, 7], which assumes a generative
model, wherein the observed stimuli are linear combinations of independent sources. ICA algorithms
determine the linear transformation back from the observed stimuli into their original sources without
knowing how they were mixed in the first place.

Developing a biologically plausible ICA algorithm may provide critical insight into neural compu-
tational primitives because ICA may be implemented throughout the brain. In particular, receptive
fields of V1 neurons may be the result of performing ICA on natural images [8, 9]. Similarly, ICA
may account for the receptive fields in the auditory system [10]. Moreover, the neural computational
primitives used in the visual and the auditory cortex may be similar, as evidenced by anatomical
similarity and by developmental experiments where auditory cortex neurons acquire V1-like receptive
fields when visual inputs are redirected there [11]. Therefore, ICA may serve as a computational
primitive underlying learning throughout the neocortex.

The majority of existing ICA algorithms[5], for example, information-theoretic ones [12, 13, 14, 15,
16] do not meet our biological plausibility requirements. In this work, for the biological plausibility of
neural networks (NN), we require that i) they operate in the online (or streaming) setting, namely, the
input dataset is streamed one data vector at a time, and the corresponding output must be computed
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without storing any significant fraction of the dataset in memory, ii) the weights of synapses in an
NN must be updated using local learning rules, i.e., they depend only on the biophysical variables
present in only the two neurons that the synapse connects or extracellular space near the synapse.
Most existing bio-inspired ICA NNs [17, 18, 19, 20, 7] operate online but, when extracting multiple
components, rely on non-local learning rules, i.e., a synapse needs to “know” about the individual
activities of neurons other than the two it connects.

More biologically plausible ICA algorithms with local learning rules are limited to sources whose
kurtosis deviates from the normal distribution in the same direction, are hand-crafted (ad hoc), and
lack good theoretical guarantees[21, 22, 20]. An alternative to analyzing NNs with ad hoc learning
rules is the normative approach. In the normative approach, an optimization problem with known
offline solution is used as a starting point to derive online optimization algorithm which maps onto an
NN with local learning rules. Such a normative approach led to the development of more biologically
plausible ICA networks but only in limited settings of either nonnegative ICA [23, 24] or bounded
component analysis [25, 26]

In this work, we develop a biologically plausible ICA neural network inspired by kurtosis-based
ICA methods [27, 7, 28]. Specifically, we take inspiration in the Fourth-Order Blind Identification
(FOBI) procedure which separates sources with distinct kurtosis [27]. In this context, distributions
are often distinguished depending on their kurtosis relative to a Gaussian distribution, i.e., super- and
sub-Gaussian distribution known respectively as leptokurtic (“spiky”) and platykurtic (“flat-topped”).
Our normative approach is based on a novel similarity-preserving objective for ICA with an intuitive
geometric interpretation. We reformulate this objective as a min-max optimization problem and solve
it online by stochastic gradient optimization. We demonstrate that our algorithm performs well on
synthetic datasets, audio signals, and natural images.

Our online algorithm maps onto a single-layer NN that can separate independent sources without
pre-processing. The synaptic weights in our NN are updated using local learning rules, extending
more conventional Hebbian learning rules by a time-varying modulating factor, which is a function of
the total output activity. The presence of such a modulating factor suggests a role of the extracellular
environment on synaptic plasticity. Modulation of the plasticity rules by overall output activity
agrees with several experimental studies that have reported that a third factor, in addition to pre- and
post-synaptic activities, can play a crucial role in modulating the outcome of Hebbian plasticity. This
could be accomplished by neuromodulators [29, 30, 31, 32], extracellular calcium [33], local field
potential [34], or nitric oxide [35, 36, 37].

2 Problem statement and inspiration

The problem of BSS consists of recovering a set of unobservable source signals from observed
mixtures. When mixing is linear, BSS can be solved by ICA, which decomposes observed random
vectors into statistically independent variables.

Mathematically, ICA assumes the following generative model. There are d sources recorded T
times forming the columns of S := [s1, . . . , sT ] ∈ Rd×T whose components s1t , . . . , s

d
t are assumed

non-Gaussian and independent. Without loss of generality, we assume that each source has zero-
mean, unit variance, and finite kurtosis. We also assume that sources have distinct kurtosis as is
commonly done in kurtosis-based ICA methods [28]. The kurtosis of a random variable v is defined
as kurt[v] = E

[
(v − E(v))4

]
/
(
E
[
(v − E(v))2

])2. Finally, sources are linearly mixed, i.e., there exists
a full rank mixing matrix, A ∈ Rd×d, producing the d-dimensional mixture, xt:

xt = Ast ∀t ∈ {1, . . . , T} . (1)

Then the goal of ICA algorithms is to determine a linear transformation of the observed signal,
WICA ∈ Rd×d, such that

yt := WICAxt, ∀t ∈ {1, . . . , T} , (2)

recovers unknown sources possibly up to a permutation and a sign flip.
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Figure 1: A. The three steps of the FOBI procedure illustrated on a 2D dataset. The purple and
pink arrows show the axes of the independent sources si. (i) the observed signal, xt, (ii) the whitened
data, ht, (iii) norm-weighted whitened data, zt, black arrows represent the principal directions of
zt (iv) the recovered sources, yt are projections of ht onto the principal directions of zt. These
three steps are combined into a single objective function as indicated by color-coding. B. Schematic
of the generative model and de-mixing by the NN we derived. The output layer consists of two-
compartment neurons whose synapses obey local learning rules. The dendritic compartments of
the output neurons whiten data. The somatic compartments reconstruct the sources by rotating the
whitened data. The pale blue rounded rectangle represents modulation of plasticity by output activity.

2.1 Review of the FOBI procedure

FOBI algorithm exploits a connection between ICA and Principal Component Analysis (PCA)
[38, 39] pointed out in [27, 40]. We reproduce the proof of source recovery by FOBI from [27, 40] in
Appendix A.

Description of the procedure. FOBI procedure consists of three steps, see Fig. 1A. First, the data
must be whitened, i.e., all components become decorrelated and of unit variance, Fig. 1A(ii). The
whitening step can be performed using sample covariance, Cx = 1

T

∑T
t=1 xtx

>
t , as follows:

Step 1: whiten ht = C−1/2x xt .

Data whitening is often the first step in many ICA algorithms because recovering the sources after
whitening corresponds to finding an orthogonal rotation matrix [17]. Various ICA methods differ
in how the rotation is chosen. In FOBI, the whitened data, ht, is scaled by its norm and termed zt.
Then, the directions of ht and st with distinct kurtosis are recovered by finding the eigenvectors of
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the sample covariance matrix 1
T

∑T
t=1 ztz

>
t , Fig. 1A(iii).

Step 2a: transform zt = ‖ht‖ · ht ; Step 2b: optimize Wz := arg max
W∈Rd×d

WW>=Id

1

T
Tr

(
W

T∑
t=1

ztz
>
t W>

)
.

Finally, to recover the sources, we project the whitened data, ht, onto the rows of Wz , Fig. 1A(iv)
Step 3: project yt = Wzht .

Can a biologically plausible NN implement the FOBI algorithm? The first two steps of FOBI
do not present a problem with a biological implementation. For example, Step 2b, essentially a PCA,
can be solved by a stochastic gradient ascent algorithm using Oja’s learning rule [41]:

∆Wz = η
(
utz
>
t − utu

>
t Wz

)
. (3)

Then, Step 2b can be mapped onto a single-layer network with upstream neurons’ activity encoding
zt, and the output neurons computing the components of ut := Wzzt where the elements of Wz are
encoded in the weights of feedforward synapses. Eq.(3) gives the weight update for the feedforward
synapses with the learning rate, η > 0. However, according to step 3, the final output of FOBI
must be yt, obtained by multiplying the whitened inputs, ht, by Wz without scaling them by their
norm. Such output may be computed by another single-layer network with the same feedforward
synaptic weights, Wz , but that would require weight-sharing (or weight transport). Alternatively,
avoiding weight transport would require a non-local update rule for Wz . Thus, both alternatives lead
to biologically implausible solutions.

2.2 Similarity matching for principal subspace analysis

To find a biologically plausible implementation of FOBI, we follow the approach used previously
to derive biologically plausible networks for Principal Subspace Projection (PSP) [42], a variant
of PCA, and other tasks[43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54]. This approach starts from
reformulating the optimization objective for PSP in the so-called Similarity Matching (SM) form
[55]:

min
Y∈Rm×T

∥∥X>X−Y>Y
∥∥2
F

, (4)

where X := [x1, . . . ,xT ] is the data matrix, Y := [y1, . . . ,yT ] is the output matrix, and ‖ · ‖F the
Frobenius norm. In turn, the objective (4) can be optimized by an online algorithm that maps onto a
single-layer network of linear neurons whose synapses obey local learning rules [44].

Whereas the SM approach leads to biologically plausible NNs for solving eigenproblems, it was still
unclear how to overcome the weight transport challenge arising in the FOBI algorithm implementation.
In the next Section, we address this challenge by introducing a novel SM objective for ICA.

3 A similarity-preserving objective for ICA

To derive a single-layer NN for ICA, which can be trained with local learning rules, we adopt a
normative approach. We design a novel objective function, the solution of which projects the whitened
data, ht, onto the eigenvectors of the covariance of zt as specified in the FOBI procedure above using
the SM approach. Specifically, we propose the following generalized nonlinearly weighted similarity
matching objective using the notations, H := [h1, . . . ,hT ] and Z := [z1, . . . , zT ] as defined earlier
in Sec. 2.1 and illustrated in Fig. 1A,

min
Y∈Rd×T

∥∥∥∥∥H>
[

1

T
ZZ>

]−1
H−Y>Λ2Y

∥∥∥∥∥
2

F

, s.t.
1

T
YY> = Id , (5)

with Λ2 = diag(λ21, . . . , λ
2
d) any diagonal matrix with distinct finite positive entries.

To accomplish all the three steps above in a single-layer network, we rewrite (5) in terms of the input
data X by substituting the expressions for H (Step 1) and Z (Step 2a):

min
Y∈Rd×T

1
T YY>=Id

∥∥∥∥∥∥X>C−1/2x

[
1

T

T∑
t=1

‖C−1/2x xt‖2C−1/2x xtx
>
t C−1/2x

]−1
C−1/2x X−Y>Λ2Y

∥∥∥∥∥∥
2

F

. (6)
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Then the global minima of objective (6) recover the sources as formalized by the following theorem:

Theorem 1. Given that the sources are independent, centered, have unit variance, and distinct
kurtosis (c.f. Sec 2), then the global optimal solution for our objective (6), denoted by Y∗ satisfies

Y∗ = ΞΠS (7)

where Ξ is a diagonal matrix with ±1’s on the diagonal, and Π is a permutation matrix, and is thus
a solution to the ICA problem.

Proof. We give the detailed proof of the theorem in Appendix A.

4 Derivation of the algorithm

While our objective (6) can be minimized by taking gradient descent steps with respect to Y, this
would not lead to an online algorithm because such computation requires combining data from
different time steps. Instead, following [44], we introduce auxiliary matrix variables corresponding
to synaptic weights, which store sufficient statistics allowing for the ICA computation using solely
instantaneous inputs. Such substitution leads to a min-max optimization problem that is solved by
gradient descent/ascent. A corresponding online optimization algorithm using stochastic gradient
descent/ascent maps onto an NN with local learning rules.

4.1 Min-max formulation

Here we modify the objective (6) by introducing auxiliary variables, namely W and M, leading
to a min-max optimization problem. In the following sub-sections, the gradient descent/ascent
optimization of the min-max objective will lead to an online algorithm that maps onto an NN where
W and M correspond to synaptic weights.

We expand the square in Eq. (6), normalizing by T 2, and dropping terms that do not depend on Y
yielding:

min
Y∈Rd×T

1

T 2
Tr
(
−2X>ΓxXY>Λ2Y + Y>Λ2YY>Λ2Y

)
s.t.

1

T
YY> = Id , (8)

where, for convenience, we introduce

Γx := C−1/2x

[
1

T

T∑
t=1

‖C−1/2x xt‖2C−1/2x xtx
>
t C−1/2x

]−1
C−1/2x .

The quartic term in Y in (8) is a constant under the decorrelation constraint and can be dropped from
the optimization.

We now introduce auxiliary matrix variables W and M, resulting in:

min
Y∈Rd×T

min
W∈Rd×d

max
M∈Rd×d

L(W,M,Y) , (9)

where L(W,M,Y) :=
1

T
Tr
(
−2X>W>Y + Y>MY

)
+ Tr

(
WΓ−1x W>Λ−2 −M

)
.

To verify the equivalence between the minimization problem (8) and the min-max problem (9) take
partial derivatives of L(W,M,Y) with respect to W (resp. M) and note that the minimum (resp.
maximum) is achieved when W = 1

T Λ2YX>Γx (resp. 1
T YY> = Id). Substituting optimal W

and M leads back to (8).

Finally, interchanging the order of minimization with respect to Y, with the optimization with respect
to W and M, yields

min
W∈Rd×d

max
M∈Rd×d

min
Y∈Rd×T

L(W,M,Y). (10)

The interchange is justified by saddle point property of L(W,M,Y) with respect to Y and M [44].
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4.2 Gradient optimization in the offline setting

In this subsection, we optimize the objective (6) in the offline setting, where the entire data matrix X
is accessible. In this case, we solve the min-max problem (9) by alternating optimization steps. For
fixed W and M, we minimize the objective function L(W,M,Y) over Y, which yields the relation

Y := arg min
Y∈Rd×T

L(W,M,Y) = M−1WX . (11)

Before applying gradient optimization steps of the objective function L(W,M,Y) with respect to
W and M, we first simplify Γ−1x appearing in (10), as a part of the term, Tr

(
WΓ−1x W>Λ−2

)
,

Γ−1x = C1/2
x

[
1

T

T∑
t=1

‖C−1/2x xt‖2C−1/2x xtx
>
t C−1/2x

]
C1/2
x =

1

T

T∑
t

αtxtx
>
t , (12)

where αt = ‖C−1/2x xt‖2 is the squared norm of the whitened data. As the transformation from
whitened data to the recovered sources is an orthogonal rotation, the squared norm of the sources and
of the outputs is preserved:

αt = ‖C−1/2x xt‖2 = ‖st‖2 = ‖yt‖2 . (13)

We then use (13) to rewrite (12) as

Γ−1x = 1
T X ddiag(Y>Y)X> = 1

T

T∑
t=1

‖yt‖2xtx>t , (14)

where ddiag(·) represents a diagonal matrix which keeps only the diagonal elements of the argument
matrix.

We now obtain the update rules for W and M by gradient-descent ascent on (10) and by replacing
Γ−1x according to (14)

W←W + 2η
(

1
T

YX> −Λ−2WΓ−1
x

)
= W +

2η

T

(
YX> −Λ−2WXddiag(Y>Y)X>

)
, (15)

M←M +
η

τ

(
1

T
YY> − Id

)
. (16)

Here τ > 0 is the ratio between the learning rates for W and M, and η ∈ (0, τ) is the learning rate
for W, ensuring that M remains positive definite given a positive definite initialization.

4.3 Online algorithm

We now solve the min-max objective (9) in the online setting. At each time step, t, we minimize over
the output, yt, by repeating the following gradient descent steps until convergence:

yt ← yt + γ(ct −Myt) , (17)

where γ is a small step size, and we have defined the projection ct := Wxt, with biological
interpretation described in Sec 5. As in (11), the dynamics converge to yt = M−1ct. We now take
stochastic gradient descent-ascent steps in W and M. We thus replace the averages in Eqs. (15)-(16)
with their online approximations

1

T
YX> → ytx

>
t ;

1

T
YY> → yty

>
t ;

1

T
Λ−2WX ddiag(Y>Y)X> → ‖yt‖2Λ−2ctx>t .

This yields our online ICA algorithm (Algorithm 1) and the NN, see Section 5.

5 Biological interpretation and neural implementation

We now show that our online ICA algorithm (Algorithm 1) maps onto an NN with local, activity-
dependent synaptic update rules, which emulate aspects of synaptic plasticity observed experimentally.
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Algorithm 1 A similarity-preserving algorithm for Independent Component Analysis.
input data {x1, . . . ,xT }; dimension d
output {y1, . . . ,yT }; dimension d . estimated sources
initialize the matrix W, and positive definite matrix M.
for t = 1, 2, . . . , T do

ct ←Wxt ; . projection of inputs
run the following until convergence:

dyt(γ)
dγ = ct −Myt(γ) ; . neural dynamics

W←W + 2η(yt − ‖yt‖2Λ−2ct)x>t ; M←M + η
τ (yty

>
t − Id) ; . synaptic updates

end for

5.1 Neural architecture and dynamics

Our algorithm can be implemented by a biologically plausible NN presented in Fig. 1B. The network
consists of an input layer of d neurons, representing the input data to be separated into independent
components, and an output layer of d neurons, with separate dendritic and somatic compartments,
estimating the unknown sources. The network includes a set of feedforward synapses between the
inputs and the dendrites of the output neurons as well as a set of lateral synapses between the output
somas Fig. 1B.

Although two-compartment neurons have not been common in machine learning, in neuroscience,
they are often used to model pyramidal cells - the most numerous neuron type in the neocortex. Such
neuron consists of an apical dendritic compartment, as well as a somatic compartment, which have
distinct membrane potentials [56, 57, 58, 59]. Recently, such two-compartment neurons appeared in
bio-inspired machine learning algorithms [60, 61, 62, 51, 63, 64].

At each time step t, the network computes in two phases. First, the mixture xt, represented in the
input neurons, is multiplied by the weight matrix W encoded by the feedforward synapses connecting
the input neurons to the output neurons. This yields the projection ct = Wxt computed in the
dendritic compartments of the output neurons and then propagated to their somatic compartments.

Second, the d-dimensional output signal yt is computed as somatic activity in the output neurons and
corresponds to the estimated sources. This is accomplished by the fast recurrent neural dynamics in
lateral connection, Eq. (17), converging to the equilibrium value assignment of yt in Algorithm 1.
The lateral synapses in Fig. 1B implement only the off-diagonal elements of M. Whereas diagonal
elements of M would correspond to autapses (self-coupling of neurons), such Hebbian/ani-Hebbian
networks can be designed without them [44, 45].

5.2 Synaptic plasticity rules

To highlight the locality of our learning rules, we rewrite the element-wise synaptic updates for W
and M in Algorithm 1 using sub-/super-scripts:

Wij ←Wij + 2η

(
yitx

j
t − ‖yt‖2

cit
λ2i
xjt

)
; Mij ←Mij +

η

τ

(
yity

j
t − δij

)
, 1 ≤ i, j ≤ d . (18)

In Eqs. (18), xjt is the activity of the jth input neuron, yit is the activity of the ith output neuron, and
cjt is the dendritic current of the jth output neuron, all at time t. Furthermore, the influence of the
dendritic current ctj on a synapse’s strength is modulated by the term ‖yt‖2, representing the overall
activity of the output neurons.

How could total output neuronal activity be signaled to each feedforward synapse in the network?
There are several diffusible molecules in the brain which may affect synaptic plasticity and whose
concentration may depend on the overall neural activity. These include extracellular calcium [33],
GABA[29, 65], dopamine [30, 66, 67], noradrenaline [31, 68], D-Serin [32, 69, 70] or nitric oxide
(NO), although its range of action is contested [35, 36, 37]. Finally, local field potential can also
affect synaptic plasticity [34]. For the learning rule to function in the online setting signaling must be
fast, a requirement favoring local field potential and extracellular calcium out of the above candidates.
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The learning rule (18) for feedforward synaptic weights, W, simplifies significantly near the optimum
of the objective, M ≈ Id, and for the converged output activity, ct = Wxt = Myt:

∆W = ηt
(
I− ‖yt‖2Λ−2M

)
ytx
>
t ≈ ηt

(
I− ‖yt‖2Λ−2

)
ytx
>
t . (19)

Such an update is a nonlinearly modulated Hebbian learning rule where the sign of plasticity changes
with the total output activity. For low total output activity, ‖yt‖2 < λ2i , the update is Hebbian, i.e.,
long-term potentiation (LTP) for correlated inputs and outputs. For high output activity, ‖yt‖2 > λ2i ,
the update is anti-Hebbian, i.e., long-term depression (LTD) for correlated inputs and outputs. We
compare and contrast this global activity-dependent modulation of plasticity with the Bienenstock,
Cooper, and Munro (BCM) rule in subsection 5.3.

Whereas three-factor learning has been invoked in multiple computational, especially reward-based,
models [71, 72, 73, 74], our model is the first to propose such learning in the fully normative approach
for ICA.

5.3 Comparison with existing rules

To understand the distinctive features of our model versus existing approaches, we compare and
contrast it with three existing models: 1. Oja’s learning rule, 2. BCM learning rule [75], and 3.
error-gated Hebbian rule (EGHR) [69].

1. Nonlinear Oja’s learning rule. [76, 19] generalized the original Oja’s rule, Eq. (3), with a
component-wise nonlinear function g(·) as ∆W = g(yt)x

>
t − g(yt)g(yt)

>W. However, this
model and follow-up work inherited the main drawbacks of the standard Oja’s rule, i.e., they require
pre-whitening of the data and rely on non-local learning rules. Indeed, the last term of the learning
rules of nonlinear Oja implies that updating the weight of a synapse requires precise knowledge of
output activities of all other neurons which are not available to the synapse (cf. [77] for details on
standard PCA rules and networks of nonlinear neurons [78]).

2. BCM learning rule. Switching of the sign of plasticity depending on the total output activity
Eq. (19) is reminiscent of the BCM rule. It was initially postulated and later connected to an objective
function [79, 80] characterizing the deviation from Gaussian distribution but mainly focusing on
skewness rather than kurtosis as in our model. For correlated input and output, the BCM rule induces
LTD for “sub-threshold" responses and LTP for “super-threshold" responses, with the threshold being
a function of average output activity. Unfortunately, multiple output BCM neurons respond to the
same dominant feature, producing an incomplete, highly redundant code [79, 80]. In contrast, our
network has lateral inhibitory connections whose weights are updated via anti-Hebbian rule Eq. (18)
leading to the recovery of multiple sources. Although experimental evidence has validated BCM-like
plasticity in parts of the visual cortex and the hippocampus, other brain areas have yet to show similar
behavior. Interestingly, an “inverse” BCM rule, similar to ours has been proposed in the cerebellum
[81, 82, 83].

3. Modulated Hebbian rules. Recent neural implementations of ICA [69, 74, 70] also introduced
modulated Hebbian rules: ∆W = (E0 − E(yt))g(yt)x

>
t , with E0 a constant, E(·) a nonlinear

function of the total activity, and g(·) a component-wise nonlinear function. This learning rule shares
many similarities with ours. The term E0 is a constant characterizing the source distributions, which
could identify with our λi terms, and the function E(·) resembles our ‖yt‖2 but is model dependent
in their approach. This is where the similarities end as their objective function is inspired by the
information-theoretic framework [12, 7] and ours - by the insight from the FOBI procedure [27, 84]
and spectral methods from the SM method [44].

Their model can be considered partly normative since the neural architecture is predetermined and
uses a hand-designed error-computing neuron to determine the global modulating factor rather than
having been derived from an optimization problem. Interestingly, their model does not use lateral
connections for output decorrelation resulting in a model without direct interaction between outputs.
The presence of pairwise inhibitory interaction is crucial for our algorithm, leading to a globally
optimal solution when the sources have distinct kurtosis. Numerical and theoretical analysis of the
performance of the EGHR algorithm relies on the source distributions being the same and resulting
in several equivalent optima.
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6 Numerical simulations

In this section, we verify our theoretical results in numerical experiments. We use our model to
perform ICA on both synthetic and real-world datasets. We designed three sets of experiments to
illustrate the performance of our algorithm. In the first set, Fig. 2A, we used as sources artificially
generated signals, in the second - natural speech signals, Fig. 2B, and in the third - natural scene
images, Fig. 2C. According to the generative model, Eq. (1), we then used random full rank square
mixing matrices, A, to generate the observed mixed signals, xt. From xt, we aimed to recover the
original sources. We show that our algorithm recovers sources regardless of sub- or super-Gaussianity
of the kurtosis, which is essential for natural datasets. For details on the parameters used, see
Appendix C.

Synthetic data. We first evaluate our algorithm on a synthetic dataset generated by independent and
identically distributed samples. The data are generated from periodic signals, i.e., square-periodic,
sine-wave, saw-tooth, and Laplace random noise. The data were chosen with the purpose of including
both super- and sub-Gaussian distribution known respectively as leptokurtic (“spiky”, e.g., the Laplace
distribution) and platykurtic (“flat-topped”, the three other source signal). We show in Fig. 2A the
mixed signals in black, on the left plots. We show on the right plot the recovered sources, in red,
overlapped with the original sources, in blue, and the residual in green. We also show the histogram
of each signal on the right side of each plot. Results are shown for 300 samples. We observe that the
recovered and true sources nearly perfectly overlap, explaining the low value of the residual, which
shows the almost perfect reconstruct performed by our algorithm.

In Appendix D, we provide a numerical comparison of the performance of our algorithm with
competing models, namely, Herault-Jutten algorithm [85], EASI algorithm [86, 87], Bell and Se-
jnowski’s algorithm [12], the Amari algorithm [13], and finally nonlinear Oja algorithm [88, 76].
These models were designed with NNs in mind and are seminal works on neural ICA algorithms.
However, like nonlinear Oja algorithm, which is mentioned in Section 5.3.1, these models suffer from
biological implausibility. In brief, our model either outperforms or is competitive with the models
mentioned above. These results also confirm that our algorithm can deal with combinations of sub-
and super-Gaussian sources, with or without pre-whitening of the data.

Real-world data: Speech signals. For the audio separation task, we used speech recordings from
the freely available TSP data set [89]1 , recorded at 16kHz. The first source we use was obtained
from a male speaker (MA02 04.wav), the second source from a female speaker (FA01 03.wav), and
the third source synthetically generated from a uniform noise, as was previously used in the literature
[90]. We show our results in Fig. 2B. We show the mixtures, the true sources, the recovered sources,
and the residual. It is clear from the figure that our algorithm’s outputs recover the true sources
similarly to the synthetic dataset.

Real-world data: Natural scene images. We finally applied our algorithm to the task of recovering
images from their mixtures, on data already used for BSS tasks [7, 91, 23] 2, as shown in Fig. 2C.
Here, we show separately the original sources, top images, the mixtures, middle images, and the
recovered sources, bottom images of Fig. 2C. We considered three grayscale images of size 256×512
pixels (shifted and scaled to have zero-mean and unit variance), such that each image is treated as
one source, with the pixel intensities representing the samples. We again observe in Fig. 2C that the
recovered sources are nearly identical to the original sources. We can also see that the histograms of
the recovered sources nearly match the histograms of the original sources, up to their sign.

7 Discussion

We proposed a new single-layer ICA NN with biologically plausible local learning rules. The
normative nature of our approach makes the biologically realistic features of our NNs readily
interpretable. In particular, our NN uses neurons with two separate compartments and is trained
with extended Hebbian learning rules. The changes in synaptic strength are modulated by the total
output neuronal activity, equivalent to performing gradient optimization of our objective function.
We demonstrated that the proposed rule reliably converges to the correct solution over a wide range
of mixing matrices, synthetic, and natural datasets. The broad applicability and easy implementation

1Freely available at http://www.mmsp.ece.mcgill.ca/Documents/Data/ (Accessed May 24th 2021).
2Freely available at https://research.ics.aalto.fi/ica/data/images/ (Accessed May 24th 2021).
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Figure 2: Our ICA algorithm recovers independent sources from synthetic and real-world
mixtures. A. Synthetic data, B. Natural speech data, C. Natural image data. In A-B. mixed signals
are shown in black, the recovered signals - in red, the true sources - in blue, and their residual
difference - in blue. We also show the associated distributions. C. The sources, mixture, and
recovered sources, in top, middle and bottom rows respectively.

of our NN and learning rules could further advance neuromorphic computation [92, 93, 94] and may
reveal the principle underlying BSS computation in the brain.

Recent work on canonical correlation analysis [95, 96, 97], slow feature analysis [98], and ICA-
like algorithms have led to biologically plausible NNs [99, 100, 101, 102], some of which rely on
two-compartment neurons [103, 51]. These NNs could, in principle, be used for popular BSS tasks
known as second-order blind identification [104, 105, 106, 107] or in the context of kernel ICA
[108, 109]. This suggests the existence of a single model of two-compartment neurons and non-trivial
local learning rules for BS. In future work, we aim at proposing such a model, including high-order
statistics, temporal correlation, and diversity of views.

One limitation of our approach is the inability of the model to separate sources with the same kurtosis.
Yet, as long as sources possess some distinct even-order moments, our scaling rule can be altered
to separate the sources [27]. Another limitation is the well-known sensitivity of kurtosis to outliers.
This limitation could be overcome if scaling varies as a sublinear function of the total activity [40].
These changes do not affect the neural architecture nor the locality of the learning rules.

Clarifying the limitations of our model leads us to ask various follow-up questions left for future
work. How can we further generalize the solution beyond the choice of nonlinearity and beyond
the task of linear ICA? We could envision considering more than two covariance matrices as in
the JADE algorithm [110, 111, 112], which effectively performs joint-diagonalization of arbitrarily
many matrices. A neural solution was proposed in [113] but again relies on non-local Oja-based
rules. Ongoing work on nonlinear ICA [114, 115] is of great interest to us since it might be a perfect
candidate for multi-layered architectures.

Recently, several works proposed biologically plausible supervised learning algorithms [61, 62, 63,
53, 116]. Combining these with ICA and unsupervised learning algorithms in general would provide
a more comprehensive description of cognitive processes.
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