
Published as a conference paper at ICLR 2025

SIMPLE REFLOW: IMPROVED TECHNIQUES FOR
FAST FLOW MODELS

Beomsu Kim
Apple and KAIST

Yu-Guan Hsieh
Apple

Michal Klein
Apple

Marco Cuturi
Apple

Jong Chul Ye
KAIST

Bahjat Kawar
Apple

James Thornton
Apple

ABSTRACT

Diffusion and flow-matching models achieve remarkable generative performance
but at the cost of many sampling steps, this slows inference and limits applica-
bility to time-critical tasks. The ReFlow procedure can accelerate sampling by
straightening generation trajectories. However, ReFlow is an iterative procedure,
typically requiring training on simulated data, and results in reduced sample qual-
ity. To mitigate sample deterioration, we examine the design space of ReFlow and
highlight potential pitfalls in prior heuristic practices. We then propose seven im-
provements for training dynamics, learning and inference, which are verified with
thorough ablation studies on CIFAR10 32 × 32, AFHQv2 64 × 64, and FFHQ
64 × 64. Combining all our techniques, we achieve state-of-the-art FID scores
(without / with guidance, resp.) for fast generation via neural ODEs: 2.23 / 1.98
on CIFAR10, 2.30 / 1.91 on AFHQv2, 2.84 / 2.67 on FFHQ, and 3.49 / 1.74 on
ImageNet-64, all with merely 9 neural function evaluations.

1 INTRODUCTION

The diffusion model (DMs) paradigm (Sohl-Dickstein et al., 2015; Ho et al., 2020) has changed
the landscape of generative modelling of perceptual data, benefitting from scalability, stability and
remarkable performance in a diverse set of tasks ranging from unconditional generation (Dhariwal
& Nichol, 2021) to conditional generation such as image restoration (Chung et al., 2023), editing
(Meng et al., 2022), translation (Su et al., 2023), and text-to-image generation (Rombach et al.,
2022). However, to generate samples, DMs require numerically integrating a differential equation
using tens to hundreds of neural function evaluations (NFEs) (Song et al., 2021b;a). Naively reduc-
ing the NFE increases discretization error, causing sample quality to worsen. This has sparked wide
interest in accelerating diffusion sampling (Song et al., 2021a; Lu et al., 2022; Zhang & Chen, 2023;
Kim & Ye, 2023; Salimans & Ho, 2022; Song et al., 2023).

Flow matching models (FMs) (Lipman et al., 2023) are a closely related class of generative model
sharing similar training and sampling procedures and enjoying similar performance to diffusion
models. Indeed, FM and DMs coincide for a particular choice of forward process (Kingma & Gao,
2023), and are also related to stochastic interpolants (Albergo & Vanden-Eijnden, 2023; Albergo
et al., 2023). Whereas diffusion models relate to entropically regularized transport (Bortoli et al.,
2021; Shi et al., 2023; Peluchetti, 2023), a key property of flow matching models is their connection
to non-regularized optimal transport, and hence deterministic, straight trajectories (Liu, 2022).

While there exist a plethora of acceleration techniques, one promising, yet less explored avenue is
ReFlow (Liu et al., 2022; Liu, 2022), also known as Iterative Markovian Fitting (IMF) (Shi et al.,
2023). ReFlow straightens ODE trajectories through flow-matching between marginal distributions
coupled by a previously trained flow ODE, rather than using an independent coupling. Theoretically,
with an infinite number of ReFlow updates, the resulting learned ODE should be straight, which
enables perfect translation between the marginals with a single function evaluation (Liu et al., 2022).

In practice however, ReFlow results in a drop in sample quality (Liu et al., 2022; 2024). To address
this problem, recent works on sampling acceleration via ReFlow opt to use heuristic tricks such
as perceptual losses that only loosely adhere to the underlying theory (Lee et al., 2024; Zhu et al.,

1

Published as a conference paper at ICLR 2025

2024). Consequently, it is unclear whether the marginals are still preserved after ReFlow. This is
problematic, as exact inversion and tractable likelihood calculation require access to a valid proba-
bility flow ODE between the marginals. Moreover, these two functions are critical to downstream
applications such as zero-shot classification (Li et al., 2023) etc.

The goal of this work is to study and mitigate the performance drop after ReFlow without violating
the theoretical setup. Although technical in nature, we call our method simple, as, similar to simple
diffusion (Hoogeboom et al., 2023), it does not rely on latent-encoders, perceptual losses, or premet-
rics, whose effect on the learned marginals is poorly understood. To this end, we first disentangle
the components of ReFlow. Next, we examine the pitfalls of previous practices. Finally, we propose
enhancements within the theoretical bounds, and verify them through rigorous ablation studies.

Our contributions are summarized as follows.

• We generalize and categorize the design choices of ReFlow (Section 3.1). We gener-
alize the ReFlow training loss and categorize the design choices of ReFlow into three key
groups: training dynamics, learning, and inference. Within each group, we discuss previ-
ous practices, highlight their potential pitfalls, and propose improved techniques.

• We analyze each improvement via ablations (Sections 3.2, 3.3, and 3.4). For each pro-
posed improvement, we verify its effect on sample quality via extensive ablations on three
datasets: CIFAR10 32 × 32 (Krizhevsky, 2009), FFHQ 64 × 64 (Karras et al., 2019), and
AFHQv2 64 × 64 (Choi et al., 2020). We demonstrate that our techniques are robust, and
they offer consistent gains in FID scores (Heusel et al., 2017) on all three datasets.

• We achieve state-of-the-art results (Section 4). With all our improvements, we set state-
of-the-art FIDs for fast generation via neural ODEs, without perceptual losses or premet-
rics. Our best models achieve 2.23 FID on CIFAR10, 2.30 FID on AFHQv2, 2.84 FID on
FFHQ, and 3.49 FID on ImageNet-64, all with merely 9 NFEs. In particular, our models
outperform the latest fast neural ODEs such as curvature minimization (Lee et al., 2023)
and minibatch OT flow matching (Pooladian et al., 2023). We are also able to further en-
hance the perceptual quality of samples via guidance, setting 1.98 FID on CIFAR10, 1.91
FID on AFHQv2, 2.67 FID on FFHQ, and 1.74 FID on ImageNet-64, also with 9 NFEs.

2 BACKGROUND

Let P0 and P1 be two data distributions on Rd. Rectified Flow (RF) (Liu et al., 2022; Liu, 2022)
is an algorithm which learns straight ordinary differential equations (ODEs) between P0 and P1 by
iterating a procedure called ReFlow. Below, we describe ReFlow, and explain how it can be applied
to diffusion probability flow ODEs to learn fast generative flow models.

2.1 FLOW MATCHING AND REFLOW

Let us first define the flow matching (FM) loss and its equivalent formulation as a denoising problem
LFM(θ;Q01) := E(x0,x1)∼Q01

Et∼unif(0,1) [ℓMSE(x1 − x0,vθ(xt, t))] (1)

:= E(x0,x1)∼Q01
Et∼unif(0,1)[t

−2 · ℓMSE(x0,Dθ(xt, t))] (2)

where vθ : Rd×(0, 1)→ Rd is a velocity parameterized by θ, ℓMSE(x,y) := ∥x−y∥22, xt := (1−
t)x0+ tx1, and Q01 is a coupling, i.e., a joint distribution, of P0 and P1, and Dθ(xt, t) := xt− tvθ
is a denoiser that is optimized to recover the original data x0 given a corrupted observation xt and
time t as inputs. According to the FM theory, a velocity which minimizes Eq. (1) or a denoiser
which minimizes Eq. (2) can translate samples from Pi to P1−i, i ∈ {0, 1}, by solving the ODE

dxt = vθ(xt, t) dt = t−1(xt −Dθ(xt, t)) dt, t ∈ (0, 1) (3)
from t = i to 1− i (Lipman et al., 2023). Let us call the denoiser which minimizes Eq. (2) w.r.t. the
independent coupling Q01 = P0 ⊗ P1 as D1

θ .

For n ≥ 1, ReFlow minimizes Eq. (2) with coupling induced by Dn
θ to obtain Dn+1

θ whose ODE
has a lower transport cost. Specifically, observe that Eq. (3) with Dn

θ induces a coupling

dQn01(x0,x1) :=

{
dP1(x1)δ(x0 − solve(x1,D

n
θ , 1, 0))

dP0(x0)δ(x1 − solve(x0,D
n
θ , 0, 1))

(4)

2

Published as a conference paper at ICLR 2025

where δ is the Dirac delta, and solve(x,Dn
θ , t0, t1) solves Eq. (3) from time t = t0 to t1 with initial

point x. Concretely, given xi ∼ Pi for i ∈ {0, 1}, we sample x1−i ∼ Q1−i|i(·|xi) by integrating
Eq. (3) from t = i to 1− i starting from xi. The two expressions in Eq. (4) are equivalent, since an
ODE defines a bijective map between initial and terminal points.

RF guarantees that if Dn+1
θ is a minimizer of LFM(θ;Qn01), the ODE with Dn+1

θ converges to a
perfectly straight ODE as n → ∞. If an ODE has perfectly straight trajectories, it is possible to
translate between the marginals with a single Euler step, e.g., x0 = Dθ(x1, 1) when translating
from t = 1 to 0 (see Section 3 of Liu et al., 2022).

2.2 REFLOW WITH DIFFUSION PROBABILITY FLOW ODES

Given distribution P0 on Rd and Gaussian perturbation kernel dQσ|0(yσ|y0) := N (yσ|y0, σ
2I),

DMs solve the denoising score matching (DSM) (Vincent, 2011) problems

LDSM(θ) := Eσ∼SEy0∼P0Eyσ∼Qσ|0(·|y0) [ℓMSE(y0,Fθ(yσ, σ))] (5)

to learn a denoiser Fθ : Rd × (0,∞) → Rd. Fθ then defines a probability flow ODE between P0

and P0 ∗ N (0, σ̂2I) ≈ N (0, σ̂2I) for a large σ̂:

dyσ = σ−1(yσ − Fθ(yσ, σ)) dσ, σ ∈ (0,∞). (6)

When P1 is standard normal, Eq. (3) with D1
θ and Eq. (6) are equivalent, as Eq. (3) with the change

of variables (yσ, σ) := (xt

1−t ,
t

1−t) and Eq. (6) are identical (Lee et al., 2024). It follows that we can
straighten diffusion probability flow ODE trajectories via ReFlow. Specifically, with the coupling

dQ1
01(x0,x1) =

{
dP1(x1)δ(x0 − solve(x1

1−t ,Fθ,
t

1−t , 0))
dP0(x0)δ(x1 − (1− t) · solve(x0,Fθ, 0,

t
1−t))

(7)

where t ≈ 1 and solve(y,Fθ, σ0, σ1) solves Eq. (6) from σ = σ0 to σ1 with initial point y, we can
minimize Eq. (1) to learn D2

θ , and so on. Because optimizing Eq. (1) is often expensive, a typical
procedure is to perform one ReFlow step with Eq. (7) to get D2

θ , and distill Eq. (3) trajectories into
a student model for one-step generation (Liu et al., 2022; Zhu et al., 2024; Liu et al., 2024).

3 IMPROVED TECHNIQUES FOR REFLOW

We now investigate the design space of ReFlow and propose improvements. Specifically, in Section
3.1, we generalize the FM loss and identify the components that constitute ReFlow. The components
are organized into three groups – training dynamics, learning, and inference. In Sections 3.2, 3.3,
and 3.4, we investigate the pitfalls of previous practices and propose improved techniques in each
group. To show that our improvements are robust, we provide rigorous ablation studies on CIFAR10
32×32, AFHQv2 64×64, and FFHQ 64×64. We find that ReFlow training and sampling are very
different from those of DMs, and generally require distinct techniques for optimal performance.

3.1 THE DESIGN SPACE OF REFLOW

Generalizing weight and time distribution. Let the joint distribution of (x0,x1, t,xt) be given by
x0,x1 ∼ dQ01, t ∼ T, and xt = (1− t)x0 + tx1. Then Eq. (2) can also be expressed as

LFM(θ;Q01) = Et∼unif(0,1)Ext∼Qt [w(t) · LFM(θ;Q01,xt, t)] , (8)

where LFM(θ;Q01,xt, t) := Ex0∼Q0|t(·|xt) [ℓMSE(x0,Dθ(xt, t))] , (9)

and w(t) = t−2. This shows that the FM loss is separable w.r.t. (xt, t), and the optimal denoising
function is given by the posterior mean (Robbins, 1956): D∗(xt, t) = Ex0∼Q0|t(·|xt)[x0]. Hence,
we may replace w(t) with a general weight w(xt, t) and use a general time distribution T

LFM(θ;Q01) = Et∼TExt∼Qt
[w(xt, t) · LFM(θ;Q01,xt, t)] . (10)

This is minimized under the same condition, given that w(xt, t) > 0 and T is supported on (0, 1).

3

Published as a conference paper at ICLR 2025

RF RF++ Baseline Simple ReFlow (Ours)
Train Dynamics (Sec. 3.2)
Weight w(xt, t) 1/t2 1, 1/t 1 1/ sg[LFM(θ;Q01,xt, t)]
Time distribution dT(t) ∝ 1 cosh(4(t− 0.5)) cosh(4(t− 0.5)) 10t

Loss function ℓ ℓMSE, LPIPS Pseudo-Huber, LPIPS ℓMSE ℓI+λHPF

Learning (Sec. 3.3)
Dθ initialization with DM ✗ ✓ ✓ ✓
Dθ dropout probability 0.15 Equal to EDM 0.15 ≪ 0.15
Sampling from Q01 Backward Backward Backward Forward, Projection

Inference (Sec. 3.4)
ODE Solver Euler Euler, Heun Heun DPM-Solver
Discretization of [0, 1] Uniform Uniform Uniform Sigmoid κ = 20

Reference (Liu et al., 2022)
(Zhu et al., 2024) (Lee et al., 2024) – –

Table 1: Comparison of practices for optimizing the ReFlow loss Eq. (13) and solving the ODE
Eq. (3). sg means stop gradient and HPF denotes high-pass filter. Baseline is the combination of
most recent techniques which do not violate the flow matching theory.

Generalizing the loss function. We also consider using general loss functions in ReFlow, i.e.,
LFM(θ;Q01,xt, t) = Ex0∼Q0|t(·|xt) [ℓ(x0,Dθ(xt, t))] (11)

for general ℓ : Rd ×Rd → R. It is difficult to precisely characterize the class of ℓ that preserves the
minimizers of Eq. (1), and popular losses such as LPIPS (Kendall et al., 2018) and pseudo-Huber
(PH) (Song & Dhariwal, 2024) lack this guarantee. However, ℓMSE has been observed to be sub-
optimal compared to, e.g., LPIPS and PH for training fast models (Lee et al., 2024). To mitigate this
trade-off between theoretical correctness and practicality, we consider a wider class of losses

ℓϕ(x,y) := ∥ϕ(x)− ϕ(y)∥22 (12)

for invertible linear maps ϕ : Rd → Rd. This again ensures that the loss is minimized when Dθ

outputs the posterior mean, and ℓMSE is a special case of this loss with the identity map ϕ = I .

Generalized FM loss. Combining the two generalizations, we have our generalized FM loss
LGFM(θ;Q01) = Et∼TExt∼Qt [w(xt, t) · LGFM(θ;Q01,xt, t)] , (13)

where LGFM(θ;Q01,xt, t) := Ex0∼Q0|t(·|xt) [ℓϕ(x0,Dθ(xt, t))] . (14)

The following proposition ensures its theoretical correctness. Proof is deferred to Appendix E.1.
Proposition 1. Letw(xt, t), dT(t) be positive, and ϕ be an invertible linear map. Then, θ minimizes
Eq. (13) if and only if it minimizes Eq. (1).

3.1.1 TRAINING DYNAMICS, LEARNING, AND INFERENCE

We now observe that there are seven components that constitute ReFlow: time distribution T, train-
ing dataset (empirical realization of Q01), weight w(xt, t), loss function ℓϕ, denoiser Dθ, and ODE
solver and discretization schedule for solving Eq. (3). We categorize them into three groups below.

Training dynamics influence the path that the model takes towards the minimizers of Eq. (13) during
training. Although the solution to which the model converges may change if dynamics changes,
training dynamics do not impact the solution set itself. Weight function w(xt, t), time distribution
T, and loss function ℓϕ belong here. Learning influence the solution set of Eq. (13) by constraining
the hypothesis class or by changing the training dataset. Parameterization of Dθ and how we sample
from Q01 belong here. Finally, inference influence generation or inversion of samples given a trained
model. ODE solver and time discretization of the unit interval belong here.

In Tab. 1, we describe recent ReFlow practices within our framework. Baseline is the collection of
most recent ReFlow techniques which do not violate FM theory (Lipman et al., 2023). We will build
up improvements on this baseline setting in the subsequent sections.

3.2 IMPROVING TRAINING DYNAMICS

Evaluation protocol. To evaluate a training setting, we perform a single ReFlow step. Unless writ-
ten otherwise, we initialize ReFlow denoisers with pre-trained EDM (Karras et al., 2022) denoisers

4

Published as a conference paper at ICLR 2025

t = 0.0 0.2 0.4 0.6 0.8 1.0
100

101

102

L(
θ;
x
t
,t

)/
m

in
x
t
L(
θ;
x
t
,t

)

DM

ReFlow

Figure 1: Min., avg., max. relative
losses after training on CIFAR10.

w(xt, t) CIFAR10 AFHQv2 FFHQ
1 2.83 2.87 4.28
1/t 2.77 2.76 4.01
1/t2 2.76 2.74 4.04

(σ2 + 0.52)/(0.5σ)2 2.78 2.82 4.04
1/Ext

[sg[LGFM(θ;Q01,xt, t)]] 2.74 2.79 3.83

1/ sg[LGFM(θ;Q01,xt, t)] 2.61 2.74 3.83

Table 2: Comparison of various w(xt, t), combined
with baseline T, ℓ, and learning choices. Best num-
bers are bolded, and second best are underlined.

and optimize Eq. (13) with Q01 = Q1
01 of Eq. (7) for 200k iterations. We sample 1M pairs from

Q1
01 by solving Eq. (6) from t = 1 to 0 with EDM models and use them for training. We measure

the performance of an optimized model by computing the FID (Heusel et al., 2017) between 50k
generated images and all available dataset images. Samples are generated by solving Eq. (3) with the
Heun solver (Ascher & Petzold, 1998) with 9 NFEs, and we use the sigmoid discretization instead of
the baseline uniform discretization for reasons discussed in Appendix F.1. We report the minimum
FID out of three random generation trials. See Appendix D for a complete description.

3.2.1 LOSS NORMALIZATION

Previous practice. There is little study on suitable loss weights for ReFlow training. For instance,
Lee et al. (2024) use w(xt, t) = 1, and such choices can be detrimental to training, as the weighted
loss w(xt, t) · LGFM(θ;Q01,xt, t) without proper modulation by w(xt, t) can have vastly different
scales w.r.t. t, leading to slow and unstable model convergence. Typically, the loss vanishes as t→ 0
since xt → x0, and to counteract this, previous works have suggested

w(xt, t) =


1/t for ReFlow (Lee et al., 2024),
(σ2 + 0.52)/(0.5σ)2, σ := t

1−t for DMs (Karras et al., 2022),
1/Ext∼Qt [sg[LGFM(θ;Q01,xt, t)]] for DMs (Karras et al., 2023b),

where sg[·] is stop-gradient. The FM weight 1/t−2 in Eq. (2) naturally emphasizes t ≈ 0 as well.

However, we claim that such weights constant w.r.t. xt can be sub-optimal for ReFlow, as ReFlow
loss scales can vary greatly w.r.t. xt even for fixed t. For instance, the following proposition shows
that, at initialization, relative loss for DM at t = 1 is constant whereas relative loss for ReFlow can
be arbitrarily large. Proof is deferred to Appendix E.2.
Proposition 2. Assume output layer zero initialization for the DM denoiser and DM initialization
for the ReFlow denoiser. Then maximum relative losses for DM and ReFlow at t = 1 are

maxx1
LDM(θ;P0 ⊗ P1,x1, 1)/minx1

LDM(θ;P0 ⊗ P1,x1, 1) = 1

maxx1
LGFM(θ;Q1

01,x1, 1)/minx1
LGFM(θ;Q1

01,x1, 1) = maxx0,x′
0
∥x0 − µ0∥22/∥x′

0 − µ0∥22
resp., where µ0 = Ex0∼P0

[x0], and minxi
, maxxi

is taken w.r.t. xi in the support of Pi.

In fact, in Fig. 1, we observe that ReFlow loss varies greatly w.r.t. xt after training as well. In
contrast to DM training loss whose minimum and maximum values differ by a factor of at most 20,
minimum ReFlow loss is at least ×100 smaller than the maximum loss for all t > 0.2.

Our improvement. Multi-task learning interpretation of loss normalization (Zhang et al., 2018;
Karras et al., 2023b) (see Appendix G) motivates a simple improvement by using

w(xt, t) = 1/ sg[LGFM(θ;Q01,xt, t)]. (15)
Similar to Karras et al. (2023b), we keep track of the loss values during training with a small neural
net that is optimized alongside Dθ using the parameterization w(xt, t) = exp(−fϕ(xt, t)).
Ablations. In Tab. 2, we compare our weight with all aforementioned weights. As expected, the
uniform weight w(xt, t) = 1 has the worst performance, as it is unable to account for vanishing loss
as t→ 0. We get noticeable FID gain by using weights such as 1/t or which place a larger emphasis
on t = 0. Our weight, which accounts for loss variance w.r.t. both t and xt, yields the best FID
across all three datasets. The gap between baselines and our weight is especially large on CIFAR10.

3.2.2 TIME DISTRIBUTION

5

Published as a conference paper at ICLR 2025

t = 0.1

MSE

PH

(a) vθ(xt, t)

t = 0

Data

Generated

t = 1

(b) FM with ℓMSE

t = 0

Data

Generated

t = 1

(c) FM with PH

Figure 3: Comparison of flow matching (FM) with ℓMSE and Pseudo Huber (PH) losses.

t = 0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

dT(t)
Cosh

LogNormal

1t

10t

100t

Figure 2: Time distribution densities.

dT(t) ∝ CIFAR10 AFHQv2 FFHQ
cosh(4(t− 0.5)) 2.61 2.74 3.83

lognormal 3.28 3.20 4.48
uniform (1t) 2.65 2.70 3.85

10t 2.62 2.69 3.77
100t 2.68 2.69 3.93

Table 3: Comparison of various T, com-
bined with our w(xt, t) and baseline ℓ
and learning choices.

Previous practice. Liu et al. (2022) and Zhu et al. (2024)
use a uniform distribution on (0, 1). On the other hand,
Lee et al. (2024) notice better performance with a time
distribution whose density is proportional to a shifted hy-
perbolic cosine function, i.e., dT(t) ∝ cosh(4(t − 0.5)),
which has peaks at t = 0 and 1. The rationale behind
using such a distribution is that, as Eq. (3) converges to
a straight ODE with ReFlows, the denoiser needs to di-
rectly predict data from noise at t ≈ 1 and vice versa at
t ≈ 0, so it is beneficial to emphasize those regions via T.

Our improvement. The peak at t = 0 of the baseline
cosh time density compensates for vanishing loss as t →
0, but as we normalize the loss with our weight, this peak
is now no longer necessary. Thus, we use a distribution
with density proportional to the increasing exponential,
i.e., dT(t) ∝ at for a ≥ 1.

Ablations. We compare the performance of the expo-
nential distribution with a ∈ {1, 10, 100}, where a = 1
corresponds to the uniform distribution. We also compare
with the lognormal distribution, which has been observed to be effective for training DMs and CMs
(Karras et al., 2022; 2023b; Song & Dhariwal, 2024) Fig. 2 displays time densities, and Tab. 3 shows
training results. We first note that an emphasis on t = 1 is necessary, as evidenced by severe FID
degradation with the lognormal distribution. We then observe that 10t, which closely resembles the
cosh distribution, but without the peak at t = 0, has consistently good performance, while suffering
from a slight loss on CIFAR10. Other choices such as 1t or 100t are either too flat or sharp, yielding
worse FID. Hence, we propose to take dT(t) ∝ 10t.

3.2.3 LOSS FUNCTION

Previous practice. To accelerate convergence and mitigate sample quality degradation during Re-
Flow, previous works have employed heuristic losses in Eq. (2) such as LPIPS and

ℓ(x,y) =

{
(1/t) · (∥x− y∥22 + (ct)2)1/2 − c Pseudo-Huber (PH) (Lee et al., 2024),
LPIPS(x,y) + (1− t) · PH(x,y) LPIPS+PH (Lee et al., 2024).

While such losses perform better in practice than ℓMSE in terms of FID, they do not ensure Eq. (1) is
minimized at optimality, and so lose the theoretical guarantees of FM. We demonstrate this below.

Fig. 3 compares FM with ℓMSE and PH, where P1 is unit Gaussian and P0 is a mixture of Gaussians.
As shown in Fig. 3a, the two models learn distinct vector fields, so PH indeed induces different ODE
trajectories. While the model trained with ℓMSE translates between P0 and P1 accurately, the model
trained with PH generates incorrect distributions, e.g., the model density is not isotropic at t = 1,
and modes are biased at t = 0. So, instead of relying on empirical arguments (e.g., Section 4 in Lee
et al. (2024)) to justify heuristic losses, we show that a proper choice of the invertible linear map ϕ
in Eq. (12) can still offer non-trivial performance gains while adhering to FM theory.

Our improvement. Previous works have observed high-frequency features are crucial to diffusion-
based modeling of image datasets (Kadkhodaie et al., 2024; Zhang & Hooi, 2023; Yang et al., 2023).

6

Published as a conference paper at ICLR 2025

Loss CIFAR10 AFHQv2 FFHQ
ℓMSE 2.62 2.69 3.77
PH 2.59 2.71 3.75
LPIPS 2.81 2.65 4.02
LPIPS+PH 2.63 2.72 3.79

ℓI+0.1HPF 2.63 2.62 3.76
ℓI+10HPF 2.58 2.55 3.69
ℓI+1000HPF 3.20 2.79 4.43

Table 4: Comparison of various ℓ
combined with our w(xt, t) and T.

λ = 0 0.1 1 10 100 1000
−0.20

−0.10

0.00

0.10

∆FID
CIFAR10

AFHQv2

FFHQ

Figure 4: λ ablation.

Iteration 50k 100k 150k 200k
2.5

2.7

2.9

3.1

3.3

FID
MSE

PH

LPIPS

LPIPS + PH

φ = I + 10 HPF

Figure 5: CIFAR10 training.

Moreover, since we initialize Dθ with a pre-trained DM, we assert that the model already has a good
representation of low-frequency visual features. Hence, to accelerate the learning of high-frequency
features, we propose calculating the difference of denoiser output Dθ(xt, t) and clean data x0 after
passing them through a high-pass filter (HPF) using the linear map, i.e., use ℓϕ in Eq. (12) with

ϕ = I + λ ·HPF (16)

where λ > 0 controls the emphasis on high-frequency features. The identity matrix in Eq. (16) is
necessary to ensure that ϕ is invertible, so Eq. (1) is minimized at optimality per Prop. 1. We also
remark that using ℓϕ can be interpreted as preconditioning the gradient. Specifically, since

∇Dθ
ℓϕ(x0,Dθ(xt, t)) = ϕ⊤ϕ{∇Dθ

ℓMSE(x0,Dθ(xt, t))}, (17)

using ℓϕ in place of ℓMSE is equivalent to scaling the original FM loss gradient along the eigen-
vectors of ϕ⊤ϕ by the corresponding eigenvalues. For instance, ℓϕ with Eq. (16) amplifies gradient
magnitudes along high-frequency features by (λ + 1), and leaves gradient magnitudes along low-
frequency features unchanged. This perspective provides another justification for using ℓϕ, since
using an appropriate preconditioning matrix can accelerate convergence (Kingma & Ba, 2015).

Ablations. Tab. 4 compares our loss ℓI+λHPF for λ ∈ {0.1, 10, 1000} with ℓMSE and the heuristic
losses. If λ is too small, ℓI+λHPF has little improvement compared to ℓMSE, whereas if λ is too
large, ϕ becomes nearly singular, leading to a severe drop in the FID. Our loss with λ = 10 provides
consistent improvement over ℓMSE, doing even better than PH and LPIPS. Indeed, in Fig. 4 which
visualizes FID change w.r.t. ℓMSE for various values of λ, we observe λ = 10 provides the optimal
performance across all datasets. Morever, CIFAR10 learning curves in Fig. 5 verify that ℓI+10HPF

enjoys fast convergence compared to all other losses.

3.3 IMPROVING LEARNING

3.3.1 MODEL DROPOUT

Previous practice. Similar to simple diffusion (Hoogeboom et al., 2023), we find dropout to be
highly impactful. There is little study on the impact of dropout in denoiser UNets for ReFlow.
Dropout rates in ReFlow denoiser UNets are usually set to 0.15 (Liu et al., 2022; Zhu et al., 2024),
or equal to the dropout rates of DMs that are used to initialize ReFlow denoisers (Lee et al., 2024).
For the EDM networks, dropout rates are 0.13 on CIFAR10, 0.25 on AFHQv2, and 0.05 on FFHQ.

Our improvement. We observe that learning a straight ODE is a harder task than learning the
diffusion probability flow ODE. For instance, at t = 1, the optimal DM denoiser only needs to
predict the data mean Ex0∼P0

[x0] for any input x1 ∼ P1, but a denoiser for a perfectly straight
ODE has to directly map P1 samples to P0 samples. This means we need a larger Lipschitz constant
for the ReFlow denoiser (Salmona et al., 2022) (see Appendix G for further discussion), so we use
smaller dropout rates during ReFlow training in favor of larger UNet capacity over regularization.

Ablations. To verify that smaller dropout rates are beneficial, we return to the baseline training
setting (Tab. 1), and run a grid search over dropout probability p ∈ [0, 0.15]. In Fig. 6, which shows
FID change w.r.t. baseline p = 0.15, we find that smaller p is always beneficial. In fact, optimal
p are even smaller than those used to train EDM denoisers, despite using the same architecture
(Tab. 5). FIDs after applying optimal dropout to baseline are written in row BSL+OP of Tab. 6. We
also observe in row DYN+OP that optimal dropout rates can be combined with improved dynamics
to further enhance performance without additional grid search over p.

7

Published as a conference paper at ICLR 2025

p = 0.0 0.03 0.06 0.09 0.12 0.15
−1

−0.75

−0.50

−0.25

0.00

∆FID

CIFAR10

AFHQv2

FFHQ

Figure 6: Dropout p ablation.

CIFAR10 AFHQv2 FFHQ
RF p = 0.15 0.15 0.15

EDM p = 0.13 0.25 0.05
Ours p = 0.09 0.09 0.03

Table 5: Dropout p in each setting.

CIFAR10 AFHQv2 FFHQ
Baseline (BSL) 2.83 2.87 4.28

Dynamics (DYN)
BSL + w(xt, t) 2.61▽0.22 2.74▽0.13 3.83▽0.45

BSL + w(xt, t) + T 2.62▽0.21 2.69▽0.18 3.77▽0.51

BSL + w(xt, t) + T+ ℓϕ 2.58▽0.25 2.55▽0.32 3.69▽0.59

Learning (LRN)
BSL + Optimal p (OP) 2.63▽0.20 2.67▽0.20 3.60▽0.68

BSL + OP + Forward 2.57▽0.26 2.63▽0.24 3.60▽0.68

BSL + OP + Projected 2.57▽0.26 2.62▽0.25 3.58▽0.70

DYN & LRN
DYN + OP 2.43▽0.40 2.53▽0.34 3.17▽1.11

DYN + OP + Forward 2.38▽0.45 2.44▽0.43 3.14▽1.14
DYN + OP + Projected 2.38▽0.45 2.47▽0.40 3.13▽1.15

Table 6: Summary of our training improvements. Sub-
scripts denote FID improvement w.r.t. baseline. Evalu-
ated with sigmoid discretization (see Append. F.1).

ρ = 0.0 0.2 0.4 0.6 0.8 1.0
−0.1

−0.05

0.0

0.05

∆FID

CIFAR10

0.0 0.2 0.4 0.6 0.8 1.0

AFHQv2

0.0 0.2 0.4 0.6 0.8 1.0

FFHQ

Figure 7: ρ ablation. Solid and dotted lines show results w/o and with improved dynamics, resp.

3.3.2 TRAINING COUPLING

Previous practice. A common practice is to generate a large number of pairs from Q1
01 by solving

the diffusion probability flow ODE Eq. (6) backwards, i.e., from noise to data, and use the generated
set as an empirical approximation of Q1

01 throughout training (Liu et al., 2022; Lee et al., 2024; Zhu
et al., 2024; Liu et al., 2024). However, the set of generated x0 is only an approximation of the true
marginal P0, so naively training with generated data will accumulate error on the marginal at t = 0,
as discussed by Alemohammad et al. (2024) (see Appendix G for further discussion).

Our improvement – forward pairs. To mitigate error accumulation at t = 0, we incorporate
pairs generated by solving the diffusion probability flow ODE forwards, starting from data, coined
forward pairs. We assert forward pairs can be helpful, as x0 are exactly data points.

To use forward pairs, we first invert the training sets for each dataset, which yields additional 50k
pairs for CIFAR10, 13.5k pairs for AFHQv2, and 70k pairs for FFHQ. Due to the small number of
forward pairs, we use them in combination with backward pairs, and to prevent forward pairs from
being ignored due to the large number of backward pairs, we sample forward pairs with probability
ρ and backward pairs with probability 1− ρ at each step of the optimization.

Our improvement – projected pairs. We also propose projecting the coupling Q1
01 to Π(P0,P1),

the set of joint distributions with marginals P0 and P1, by solving the optimization problem

Q̂1
01 = argminΓ01

Wp(Γ01,Q1
01) s.t. Γ01 ∈ Π(P0,P1) (18)

where Wp is the p-Wasserstein distance (Villani, 2009), and using the projected coupling Q̂1
01 in

place of the original during training. Intuitively, this procedure can be understood as fine-tuning the
generated marginals to adhere to the true marginals without losing the coupling information in Q1

01.
We do not mix projected pairs with any other pairs. The full procedure is described in Appendix D.

Ablations. In Fig. 7, we see that it is always beneficial to use forward pairs, as long is ρ is not too
high, e.g., ρ ≤ 0.5. Otherwise, the model starts overfitting to the forward pairs. Interestingly, on
FFHQ, using forward pairs without improved training dynamics has no improvement in the FID,
implying that improved dynamics may be necessary to make the best out of the rich information
contained in the forward pairs. In rows BSL+OP+Projected and DYN+OP+Projected of Tab. 6, we
observe that projected pairs also offer improvements in the FID score across all three datasets.

8

Published as a conference paper at ICLR 2025

CIFAR10 AFHQv2 FFHQ
Unif. 2.36▽0.47 2.34▽0.53 2.97▽1.31

EDM 2.80▽0.03 3.61△0.74 6.78△2.50

Ours
κ = 10 2.31▽0.52 2.31▽0.56 2.87▽1.41
κ = 20 2.23▽0.60 2.30▽0.57 2.84▽1.44

κ = 30 2.45▽0.38 2.78▽0.09 3.32▽0.96

Table 7: Various discretizations
applied to our best models and
DPM-Solver with r = 0.4.

t = 0.0 0.05 0.5 0.95 1.0
10−5

10−4

10−3

10−2

‖τ‖2

Uniform

EDM

Sigmoid κ = 15

Figure 8: Truncation error.

κ = 0 5 10 15 20 25 30
2.0

2.2

2.4

2.6

2.8

3.0

3.2

FID

2.23

2.30

2.84

CIFAR10

AFHQv2

FFHQ

Figure 9: κ ablation.

3.4 IMPROVING INFERENCE

i/N = 0 0.25 0.5 0.75 1.0

0.0

0.2

0.4

0.6

0.8

ti
Uniform

EDM

Sigmoid

Figure 10: Discretizations.

Previous practice. To generate data after ReFlow, previous works
often use an uniform discretization {ti = i/N : i = 0, . . . , N} of
[0, 1] along with the Euler or Heun to integrate Eq. (3) from t = 1 to
0 (Liu et al., 2022; 2024; Lee et al., 2024; Zhu et al., 2024).

Our improvement. As ReFlow ODE converges to a straight ODE,
we assert that high-curvature regions in ODE paths now occur near
t ∈ {0, 1}. While the previously proposed EDM schedule

t0 = 0, ti =
σi

σi+1 where σi = (σ
1/d
min + i

N (σ
1/d
max − σ1/d

min))
d

for solving diffusion probability flow ODEs emphasizes t ∈ {0, 1},
we note that it does not perform better than the uniform discretization, as shown in Tab. 7. Similar
to Lin et al. (2024), we speculate that this is because tN < 1. Specifically, vθ(x1, tN) ̸= vθ(x1, 1)
since tN ̸= 1, but the integration of the ODE is done with vθ(x1, tN) in place of vθ(x1, 1), leading
to erroneous ODE trajectories.

Instead of tuning {σmin, σmax, d} to address this problem, we propose a simple sigmoid schedule

{ti = (sig(κ(iN − 0.5))− sig(−κ2))/(sig(κ2)− sig(−κ2)) : i = 0, . . . , N} (19)

with one parameter κ which controls the concentration of ti at t ∈ {0, 1}. Here, sig is the sigmoid
function. As κ → 0, {ti} converges to the uniform discretization, and as κ → ∞, all ti with
i < N/2 will converge to 0, and all ti with i > N/2 will converge to 1.

To solve the ODE Eq. (3), we consider DPM-Solver (Lu et al., 2022) with the update rule

xti ← xti+1 + (ti − ti+1)(
1
2rvθ(xsi+1 , si+1) + (1− 1

2r)vθ(xti+1 , ti+1)) (20)

where si+1 = tri t
1−r
i+1 and r ∈ (0, 1]. We recover the second order Heun update (the baseline solver)

with r = 1, but we assert that we can obtain better performance by tuning r.

Ablations. In Tab. 7, we display results for solving Eq. (3) with various discretizations and DPM-
Solver with r = 0.4. First, row κ = 10 shows that we can indeed mitigate the timestep mismatch
problem in the EDM schedule. It also shows we can gain improvements by using r < 1 (in the
baseline setting, we use the sigmoid schedule with κ = 10 and Heun). See Appendix F.2 for a
full ablation over r. Second, rows κ = 20, 30 tells us we can get even better results by increasing
sharpness, but too large κ hurts performance.

To investigate the performance difference between discretizations, we visualize local truncation error
∥τ∥2 in Fig. 8, where τ given time-step ti and xti+1

∼ Qti+1
is defined as

τ = (xti+1
+ (ti − ti+1)vθ(xti+1

, ti+1))− solve(xti+1
,Dθ, ti+1, ti).

We first note that the uniform distribution incurs large error near t ∈ {0, 1}. This highlights that we
indeed must place more points near those t in order to control discretization error. While the EDM
schedule has less error at those regions, because tN ̸= 1, the mismatch between the initial state x1

and time tN does not ensure the ODE is solved properly. Finally, we see that our schedule is able to
control the error at the extremes. While the error for our schedule increases near t ≈ 0.5, Fig. 9 tells
us we can sacrifice accuracy at intermediate t to prioritize perceptual quality by choosing a large κ.

9

Published as a conference paper at ICLR 2025

Method CIFAR10 AFHQv2 FFHQ ImageNet (cond.) Reference
NFE FID STN NFE FID STN NFE FID STN NFE FID STN

DM ODE
EDM 35 1.97 14.19 79 1.96 28.41 79 2.39 27.15 79 2.30 26.76 (Karras et al., 2022)

9 37.91 – 9 28.03 – 9 56.84 – 9 35.46 –
DPM-Solver 9 4.98 – – – – 9 9.26 – 9 6.64 – (Lu et al., 2022)
AMED-Solver 9 2.63 – – – – 9 4.24 – 9 5.60 – (Zhou et al., 2024)

FM ODE
MinCurv 9 8.76 5.87 9 13.63 10.45 9 10.44 10.49 – – – (Lee et al., 2023)
FM-OT 142 6.35 – – – – – – – 138 14.45 – (Lipman et al., 2023)
OT-CFM 100 4.44 – – – – – – – – – – (Tong et al., 2023)
MOT-50 – – – – – – – – – 132 11.82 – (Pooladian et al., 2023)
FM* 100 2.96 10.73 100 2.73 16.20 100 3.30 16.71 – – – Baseline
MOT-512* 100 3.29 8.77 100 5.53 13.45 100 4.69 14.29 – – –
MOT-1024* 100 3.18 8.59 100 5.83 13.45 100 4.84 14.07 – – –
MOT-4096* 100 3.16 8.34 100 6.18 12.68 100 4.92 13.47 – – –
ReFlow 110 3.36 – – – – – – – – – – (Liu et al., 2022)
Simple ReFlow* 9 2.23 1.64 9 2.30 3.30 9 2.84 2.87 9 3.49 2.72 Ours

+ Guidance* 9 1.98 2.49 9 1.91 5.60 9 2.67 3.24 9 1.74 3.92

Table 8: Comparison of neural ODE methods. MOT-b is minibatch OT with minibatch size b,
and MinCurv is curvature minimizing flow. We report FID and straightness (STN): S(vθ) :=∫ 1

0
E [∥(x1 − x0)− vθ(xt, t)∥2] dt. Star * next to a method denotes our training results.

4 APPLICATIONS

Comparison to other fast flow methods. Our approach significantly outperforms other ODE ap-
proaches, e.g., minibatch-OT FM (Pooladian et al., 2023; Tong et al., 2023) and curvature mini-
mization (Lee et al., 2023), see see Tab. 8. Where possible, we report straightness (Liu et al., 2022),
which quantifies how an ODE trajectory deviates from a straight line between its initial and terminal
points (see Tab. 8 and Eq. (21) and further details in Appendix D). We attribute the inferior baseline
performance due to bias in minibatch OT, and discuss this and other pitfalls in Appendix A.

w = 0.0 0.2 0.4 0.6 0.8 1.0
1

2

3

4

5

FID

2.58

1.83

1.74

BSL

DYN + LRN

DYN + LRN + INF

Figure 11: ImageNet-64 FID
at 9 NFEs without and with
our improvements.

Improving perceptual quality via guidance. DMs often use guid-
ance such as classifier-free guidance (CFG) (Ho & Salimans, 2022)
or autoguidance (AG) (Karras et al., 2024) to enhance the percep-
tual quality of samples. As observed by Liu et al. (2024), condi-
tional ReFlow models can also be combined with CFG. While it
is unclear what effect guidance has on the marginals of ReFlow
models, we also apply AG / CFG to our best unconditional / condi-
tional models, since perceptual quality may be of interest for certain
downstream tasks. We already achieve state-of-the-art results for
fast ODE-based generation, but we obtain even lower FID scores
with guidance, as shown in the last row of Tab. 8. See Appendix F.2
for a full ablation over guidance strength.

Class-conditional ImageNet-64. We verify the scalability of our training dynamics (DYN), learn-
ing (LRN), and inference (INF) choices on ReFlow with the class-conditional ImageNet-64 EDM
model. We use 8M backward, 4M forward pairs, and ρ = 0.2. Fig. 11 at CFG scale w = 0, i.e., no
guidance, confirms that our techniques are effective. DYN+LRN improves BSL FID from 4.27 to
3.91, and INF further improves the FID to 3.49, improving on prior state-of-the-art fast flow meth-
ods. With CFG w = 0.4, our DYN+LRN+INF model achieves an even better FID score of 1.74.
Also, our techniques consistently improve CFG FIDs, implying that they offer orthogonal benefits.

5 CONCLUSION

We decompose the design space of ReFlow into training dynamics, learning, and inference. Within
each group, we examine prior practices and their potential pitfalls. We propose seven improved
choices for loss weight, time distribution, loss function, model dropout, training data, ODE dis-
cretization and solver. We verify the robustness of our techniques on CIFAR10, AFHQv2, and
FFHQ, and their scalability on ImageNet-64. Our techniques yield SoTA results among fast neural
ODE methods, without latent-encoders, perceptual losses, or premetrics. In terms of FID score,
weight and dropout contributed most. However, in terms of novelty, we believe training data im-
provements and the generalized loss function are our largest contributions.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

This work was supported by the National Research Foundation of Korea under Grant RS-2024-
00336454 and by the Institute of Information & communications Technology Planning & Evaluation
(IITP) grant funded by the Korea government (MSIT) (No.2019-0-00075, Artificial Intelligence
Graduate School Program (KAIST)).

REFERENCES

Michael S. Albergo and Eric Vanden-Eijnden. Building Normalizing Flows with Stochastic Interpolants. In
ICLR, 2023.

Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying framework
for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023.

Sina Alemohammad, Josue Casco-Rodriguez, Lorenzo Luzi, Ahmed Imtiaz Humayun, Hossein Babaei, Daniel
LeJeune, Ali Siahkoohi, and Richard Baraniuk. Self-Consuming Generative Models Go MAD. In ICLR,
2024.

Donald G. Anderson. Iterative procedures for nonlinear integral equations. J. ACM, 12(4):547–560, October
1965. ISSN 0004-5411. doi: 10.1145/321296.321305. URL https://doi.org/10.1145/321296.
321305.

Uri M. Ascher and Linda R. Petzold. Computer Methods for Ordinary Differential Equations and Differen-
tialAlgebraic Equations. Society for Industrial and Applied Mathematics, 1998.

Marc G Bellemare, Ivo Danihelka, Will Dabney, Shakir Mohamed, Balaji Lakshminarayanan, Stephan Hoyer,
and Rémi Munos. The cramer distance as a solution to biased wasserstein gradients. arXiv preprint
arXiv:1705.10743, 2017.

Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion Schrödinger Bridge with
Applications to Score-Based Generative Modeling. In NeurIPS, 2021.

Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. StarGAN v2: Diverse Image Synthesis for
Multiple Domains. In CVPR, 2020.

Hyungjin Chung, Jeongsol Kim, Michael T. Mccann, Marc L. Klasky, and Jong Chul Ye. Diffusion Posterior
Sampling for General Noisy Inverse Problems. In ICLR, 2023.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In C.J. Burges, L. Bot-
tou, M. Welling, Z. Ghahramani, and K.Q. Weinberger (eds.), Advances in Neural Information Processing
Systems, volume 26. Curran Associates, Inc., 2013. URL https://proceedings.neurips.cc/
paper_files/paper/2013/file/af21d0c97db2e27e13572cbf59eb343d-Paper.pdf.

Marco Cuturi, Laetitia Meng-Papaxanthos, Yingtao Tian, Charlotte Bunne, Geoff Davis, and Olivier Teboul.
Optimal transport tools (ott): A jax toolbox for all things wasserstein. arXiv preprint arXiv:2201.12324,
2022.

Prafulla Dhariwal and Alex Nichol. Diffusion Models Beat GANs on Image Synthesis. In NeurIPS, 2021.

Tim Dockhorn, Arash Vahdat, and Karsten Kreis. GENIE: Higher-Order Denoising Diffusion Solvers. In
NeurIPS, 2022.

Jean Feydy, Thibault Séjourné, François-Xavier Vialard, Shun-ichi Amari, Alain Trouvé, and Gabriel Peyré.
Interpolating between Optimal Transport and MMD using Sinkhorn Divergences. In AISTATS, 2019.

Zhengyang Geng, Ashwini Pokle, William Luo, Justin Lin, and J. Zico Kolter. Consistency Models Made Easy.
arXiv preprint arXiv:2406.14548, 2024.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative Adversarial Nets. In NeurIPS, 2014.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, and Bernhard Nessler. GANs Trained by a Two Time-
Scale Update Rule Converge to a Local Nash Equilibrium. In NeurIPS, 2017.

Jonathan Ho and Tim Salimans. Classifier-Free Diffusion Guidance. arXiv preprint arXiv:2207.12598, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. In NeurIPS, 2020.

11

https://doi.org/10.1145/321296.321305
https://doi.org/10.1145/321296.321305
https://proceedings.neurips.cc/paper_files/paper/2013/file/af21d0c97db2e27e13572cbf59eb343d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/af21d0c97db2e27e13572cbf59eb343d-Paper.pdf

Published as a conference paper at ICLR 2025

Emiel Hoogeboom, Jonathan Heek, and Tim Salimans. Simple diffusion: End-to-end diffusion for high reso-
lution images. In ICML, 2023.

Zahra Kadkhodaie, Florentin Guth, Eero P. Simoncelli, and Stéphane Mallat. Generalization in diffusion models
arises from geometry-adaptive harmonic representations. In ICLR, 2024.

Tero Karras, Samuli Laine, and Timo Aila. A Style-Based Generator Architecture for Generative Adversarial
Networks. In CVPR, 2019.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the Design Space of Diffusion-Based
Generative Models. In NeurIPS, 2022.

Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen, and Timo Aila.
Alias-Free Generative Adversarial Networks. In NeurIPS, 2023a.

Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Analyzing and
Improving the Training Dynamics of Diffusion Models. In CVPR, 2023b.

Tero Karras, Miika Aittala, Tuomas Kynkäänniemi, Jaakko Lehtinen, Timo Aila, and Samuli Laine. Guiding a
Diffusion Model with a Bad Version of Itself. arXiv preprint arXiv:2406.02507, 2024.

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-Task Learning Using Uncertainty to Weigh Losses for
Scene Geometry and Semantics. In CVPR, 2018.

Beomsu Kim and Jong Chul Ye. Denoising MCMC for Accelerating Diffusion-Based Generative Models. In
ICML, 2023.

Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Uesaka, Yutong
He, Yuki Mitsufuji, and Stefano Ermon. Consistency Trajectory Models: Learning Probability Flow ODE
Trajectory of Diffusion. In ICLR, 2024a.

Sanghwan Kim, Hao Tang, and Fisher Yu. Distilling ODE Solvers of Diffusion Models into Smaller Steps. In
CVPR, 2024b.

Diederik P. Kingma and Jimmy Lei Ba. Adam: A Method for Stochastic Optimization. In ICLR, 2015.

Diederik P Kingma and Ruiqi Gao. Understanding Diffusion Objectives as the ELBO with Simple Data Aug-
mentation. In NeurIPS, 2023.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University of
Toronto, 2009.

H. W. Kuhn. The hungarian method for the assignment problem. Naval Research Logistics Quarterly, 2(1-2):
83–97, 1955. doi: https://doi.org/10.1002/nav.3800020109. URL https://onlinelibrary.wiley.
com/doi/abs/10.1002/nav.3800020109.

Sangyun Lee, Beomsu Kim, and Jong Chul Ye. Minimizing Trajectory Curvature of ODE-based Generative
Models. In ICML, 2023.

Sangyun Lee, Zinan Lin, and Giulia Fanti. Improving the Training of Rectified Flows. arXiv preprint
arXiv:2405.20320, 2024.

Alexander C. Li, Mihir Prabhudesai, Shivam Duggal, Ellis Brown, and Deepak Pathak. Your Diffusion Model
is Secretly a Zero-Shot Classifier. In ICCV, 2023.

Shanchuan Lin, Bingchen Liu, Jiashi Li, and Xiao Yang. Common Diffusion Noise Schedules and Sample
Steps are Flawed. In WACV, 2024.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow Matching for
Generative Modeling. In ICLR, 2023.

Qiang Liu. Rectified Flow: A Marginal Preserving Approach to Optimal Transport. arXiv preprint
arXiv:2209.14577, 2022.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow Straight and Fast: Learning to Generate and Transfer
Data with Rectified Flow. arXiv preprint arXiv:2209.03003, 2022.

Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng, and Qiang Liu. InstaFlow: One Step is Enough for
High-Quality Diffusion-Based Text-to-Image Generation. In ICLR, 2024.

12

https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800020109
https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800020109

Published as a conference paper at ICLR 2025

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. DPM-Solver: A Fast ODE Solver
for Diffusion Probabilistic Model Sampling in Around 10 Steps. In NeurIPS, 2022.

Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon. SDEdit:
Guided Image Synthesis and Editing with Stochastic Differential Equations. In ICLR, 2022.

Stefano Peluchetti. Non-denoising forward-time diffusions. arXiv preprint arXiv:2312.14589, 2021.

Stefano Peluchetti. Diffusion bridge mixture transports, schrödinger bridge problems and generative modeling.
Journal of Machine Learning Research, 24(374):1–51, 2023.

Aram-Alexandre Pooladian, Heli Ben-Hamu, Carles Domingo-Enrich, Brandon Amos, Yaron Lipman, and
Ricky T. Q. Chen. Multisample Flow Matching: Straightening Flows with Minibatch Couplings. In ICML,
2023.

Herbert Robbins. An empirical Bayes approach to statistics. In Proceedings of the Third Berkeley Symposium
on Mathematical Statistics and Probability, 1956.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-Resolution
Image Synthesis with Latent Diffusion Models. In CVPR, 2022.

Tim Salimans and Jonathan Ho. Progressive Distillation for Fast Sampling of Diffusion Models. In ICLR,
2022.

Antoine Salmona, Valentin de Bortoli, Julie Delon, and Agnès Desolneux. Can Push-forward Generative
Models Fit Multimodal Distributions? In NeurIPS, 2022.

Yuyang Shi, Valentin De Bortoli, Andrew Campbell, and Arnaud Doucet. Diffusion Schrödinger Bridge Match-
ing. In NeurIPS, 2023.

Richard Sinkhorn. A Relationship Between Arbitrary Positive Matrices and Doubly Stochastic Matrices. The
Annals of Mathematical Statistics, 35(2):876 – 879, 1964. doi: 10.1214/aoms/1177703591. URL https:
//doi.org/10.1214/aoms/1177703591.

Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep Unsupervised Learn-
ing using Nonequilibrium Thermodynamics. In ICML, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising Diffusion Implicit Models. In ICLR, 2021a.

Yang Song and Prafulla Dhariwal. Improved Techniques for Training Consistency Models. In ICLR, 2024.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole.
Score-Based Generative Modeling through Stochastic Differential Equations. In ICLR, 2021b.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency Models. In ICML, 2023.

Josef Stoer and Roland Bulisch. Introduction to Numerical Analysis, volume 12. Springer Science+Business
Media New York, 2002.

Xuan Su, Jiaming Song, Chenlin Meng, and Stefano Ermon. Dual Diffusion Implicit Bridges for Image-to-
Image Translation. In ICLR, 2023.

Alexander Tong, Kilian Fatras, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-Brooks, Guy
Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models with minibatch optimal
transport. arXiv preprint arXiv:2302.00482, 2023.

Cédric Villani. Optimal Transport: Old and New. Springer Berlin, Heidelberg, 2009.

Pascal Vincent. A Connection Between Score Matching and Denoising Autoencoders. Neural Computation,
23(7):1661–74, 2011.

Xingyi Yang, Daquan Zhou, Jiashi Feng, and Xinchao Wang. Diffusion Probabilistic Model Made Slim. In
CVPR, 2023.

Qinsheng Zhang and Yongxin Chen. Fast Sampling of Diffusion Models with Exponential Integrator. In ICLR,
2023.

Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shectman, and Oliver Wang. The Unreasonable Effectiveness
of Deep Features as a Perceptual Metric. In CVPR, 2018.

13

https://doi.org/10.1214/aoms/1177703591
https://doi.org/10.1214/aoms/1177703591

Published as a conference paper at ICLR 2025

Yifan Zhang and Bryan Hooi. HiPA: Enabling One-Step Text-to-Image Diffusion Models via High-Frequency-
Promoting Adaptation. arXiv preprint arXiv:2311.18158, 2023.

Zhenyu Zhou, Defang Chen, Can Wang, and Chun Chen. Fast ODE-based Sampling for Diffusion Models in
Around 5 Steps. In CVPR, 2024.

Yuanzhi Zhu, Xingchao Liu, and Qiang Liu. SlimFlow: Training Smaller One-Step Diffusion Models with
Rectified Flow. In ECCV, 2024.

A FASTER ODES VIA COUPLINGS

A.1 FASTER SAMPLING VIA STRAIGHT PATHS

Generative ODEs with straight trajectories can be solved accurately with substantially fewer velocity
evaluations than those with high-curvature trajectories (Stoer & Bulisch, 2002). In fact, probability
flow ODEs with perfectly straight trajectories can translate one distribution to another with a single
Euler step. For an ODE with velocity vθ, we can quantify its straightness as (Liu et al., 2022):

S(vθ) :=
∫ 1

0
E [∥(x1 − x0)− vθ(xt, t)∥2] dt (21)

where the expectation is over ODE trajectories {xt : t ∈ [0, 1]} generated by vθ. An ODE with zero
straightness has linear trajectories, which means it can translate initial points to terminal points with
a single function evaluation.

One approach to encourage straight paths is to learn ODEs which minimize trajectory curvature (Lee
et al., 2023) by parameterizing the coupling with a neural network which takes as input some image
and outputs a sample such the distribution of these samples is close to Gaussian. Another approach
is based on connections to optimal transport.

A.2 CONNECTION TO OPTIMAL TRANSPORT

For any convex ground cost, the solution to the dynamic optimal transport on continuous support
will be straight trajectories, see e.g. Liu (2022). In addition, training a flow matching model on
samples from an optimal transport coupling will preserve the coupling, providing the vector field of
the flow matching model is conservative.

As an aside, more generally performing bridge matching (Peluchetti, 2021; Shi et al., 2023) on an
entropically-regularized optimal coupling will preserve the coupling, though the trajectory will be
given by an SDE, and hence no longer straight. In the limit as the entropic regularization term tends
to zero, then this recovers the non-regularized optimal coupling with squared Euclidean ground cost
(Shi et al., 2023; Peluchetti, 2023).

This motivates learning an optimal transport (OT) coupling and then performing bridge / flow match-
ing on this coupling. There are two dominant ways to do this, either ReFlow (also known as Iterative
Markovian fitting) (Liu et al., 2022; Liu, 2022; Lee et al., 2024; Shi et al., 2023) or approximating
the coupling using mini-batches (Tong et al., 2023; Pooladian et al., 2023).

A.2.1 MINI-BATCH OPTIMAL TRANSPORT FLOW MATCHING

We first make a distinction between the loss batch size bloss and coupling batch size bcoupling where
bcoupling ≥ bloss. The loss batch size, bloss, is the number of input pairs (x0, x1) used per training
iteration in the flow matching loss Eq. (1), whereas the coupling batch size, bcoupling, refers to the
number of independently sampled pairs used as input into the mini-batch OT solver.

The procedure for obtaining mini-batch couplings is to first independently sample bcoupling items
denoted (yi)

bcoupling
i=1 (xi)

bcoupling
i=1 from both marginal distributions xi ∼ P0 and yi ∼ P1. The next

step is to run a mini-batch OT solver to obtain a coupling matrix P = (pi,j)
bcoupling
i=1,j=1 such that∑

i,j pi,j = 1,
∑
i pi,j = 1/bcoupling,

∑
j pi,j = 1/bcoupling.

The final step is to sub-sample the coupling batch of size bcoupling to obtain bloss aligned pairs
(x̃i, ỹi)

bloss
i=1 ∼ P , which are then fed into loss Eq. (1) and corresponding standard gradient based

optimization procedure.

14

Published as a conference paper at ICLR 2025

Mini-batch bias. In stochastic gradient descent, for example, losses computed on uniformly sam-
pled batches are unbiased with respect to the measures the batches were sampled from. This is not
true for mini-batch OT couplings with respect to the true OT coupling between marginals (Belle-
mare et al., 2017). Indeed, marginal preservation within mini-batches may force points in each
minibatchto be mapped together, such points may not be mapped, or have very low probability of
being mapped, in the true OT coupling. Asymptotically the mini-batch couplings should converge
to the true OT coupling solvers the mini-batch size increases. Unfortunately, this is not practically
feasible with discrete OT solvers for large datasets or indeed for measures with continuous support.
The mini-batch and true OT couplings would also be the same for infinite regularization, indeed the
couplings would both be independent couplings and so not very informative.

Subsampling. Computing OT couplings for large batch sizes is not typically possible using the
Hungarian algorithm (Kuhn, 1955) due to the cubic time complexity. However, entropic approxi-
mations from Sinkhorn (Sinkhorn, 1964) is of only quadratic complexity and can be implemented
on modern GPU-accelerators (Cuturi, 2013; Cuturi et al., 2022), hence enables fast computation of
discrete entropic OT for batches in excess of 100, 000 points.

Prior works (Tong et al., 2023; Pooladian et al., 2023) set bloss = bcoupling and do not subsample. This
is problematic as mini-batch OT is only justified as being close to optimal in the asymptotically large
batch regime. Although we can compute the coupling for large batch sizes, the optimization setup
for training the neural network via FM is limited by hardware memory and so it becomes infeasible
to set bloss = bcoupling for large batch size. Prior works therefore use small coupling batch size.

Subsampling should still preserve marginal distributions. We observe in Tab. 8 that the straight-
ness of the generative trajectories increases as batch size grows, as expected, however generative
performance in terms of FID gets increasingly worse compared to regular flow matching. This is a
surprising empirical result that warrants further investigation.

A.2.2 REFLOW AND ITERATIVE MARKOVIAN FITTING

ReFlow (Liu et al., 2022; Liu, 2022; Lee et al., 2024) and more generally Iterative Markovian Fitting
(Shi et al., 2023) are procedures which iteratively refine the coupling between marginals. We shall
focus on ReFlow for brevity. ReFlow first takes an independent coupling, then involves training a
flow between samples from that coupling, known as a Markovian projection. Simulating from this
trained flow is then used to define an updated coupling. This process is repeated between updating
a flow and coupling until convergence. It has been shown that this process iteratively reduces the
transport cost for any convex ground cost, and hence straightens the paths between coupling whilst
retaining the correct marginals.

Note that ReFlow results in a coupling which is slightly stronger than optimal transport. OT aims to
minimize the transport cost for a specific ground cost function, whereas ReFlow reduces transport
cost for all convex costs. ReFlow can be limited to specific convex ground cost by ensuring the
vector field takes a specific conservative form (Liu, 2022).

B FAST SAMPLING VIA HIGHER ORDER SOLVERS

One can use higher-order solvers which utilize higher order differentials of the ODE velocity to
take large integration steps or reduce truncation error (Karras et al., 2022; Dockhorn et al., 2022;
Lu et al., 2022; Zhang & Chen, 2023). While this approach is generally training-free, recent works
(Zhou et al., 2024; Kim et al., 2024b) have incorporated trainable components which minimize
truncation error to further accelerate sampling.

C DISTILLATION AND CONSISTENCY MODELS

The goal of distillation within the field of diffusion models is typically to compress multiple steps
along a probability flow ODE of a teacher diffusion model into a fewer steps steps of a student
model. We refer to this as discrete-time distillation (DTD). Representative methods are progressive
distillation (Salimans & Ho, 2022), and consistency distillation (Song et al., 2023; Song & Dhariwal,
2024; Kim et al., 2024a; Geng et al., 2024). While distillation and ReFlow are similar in the aspect

15

Published as a conference paper at ICLR 2025

CIFAR10 AFHQv2 FFHQ ImageNet-64
Iterations 200k 200k 200k 500k
Minibatch Size 512 256 256 1024
Adam LR 2e−4 2e−4 2e−4 2e−4
Label dropout – – – 0.1
EMA 0.9999 0.9999 0.9999 0.9999
Num. Backward Pairs 1M 1M 1M 8M
Num. Forward Pairs 50k 13.5k 70k 4M

Table 9: Training hyper-parameters.

that they train a new model using the outputs a teacher diffusion model, we emphasize that they are,
in fact, complementary approaches, and can benefit from one another. We discussion this point in
more detail in the following section.

C.1 REFLOW VS. DISTILLATION

We remark that faster ODEs have several practical benefits over discrete-time distillation alone.
Since translation along an ODE is a bijective map, we can achieve fast inversion and likelihood
evaluation by integrating the ODE backwards starting from data.

Fast ODEs can be combined with discrete-time distillation. For instance, Lee et al. (2023); Liu et al.
(2024); Zhu et al. (2024) have observed it is substantially easier to distill ODE models with straight
trajectories. One may also use any ODE solver with a continuous time ODE, and there may be
some benefit using adaptive solvers. Lee et al. (2023; 2024) also report combining RF models with
higher-order solvers improves the trade-off between generation speed and quality.

D EXPERIMENT SETTINGS

D.1 TRAINING AND EVALUATION

To evaluate a training setting, we initialize ReFlow denoisers with pre-trained EDM (Karras et al.,
2022) denoisers, and optimize Eq. (13) with Q01 = Q1

01 of Eq. (7). Specific optimization hyper-
parameters are reported in Tab. 9. We sample backward and forward pairs from Q1

01 by solving
Eq. (6) with EDM models and use them throughout training. Specifically, we use the EDM dis-
cretization with the Heun solver (Ascher & Petzold, 1998). We use sampling budgets of 35 NFEs
for CIFAR10 and 79 NFEs for AFHQv2, FFHQ, and ImageNet. FIDs of backward training samples
are reported in the first row of Tab. 8.

We measure the generative performance of the optimized model by computing the FID (Heusel
et al., 2017) between 50k generated images and all available dataset images. Inception statistics are
computed using the pre-trained Inception-v3 model (Karras et al., 2023a). Samples are generated
by solving Eq. (3) with the Heun solver with 9 NFEs, and we report the minimum FID score out of
three random generation trials, as done by Karras et al. (2022). For reasons described in Appendix
F.1, we use the sigmoid discretization instead of the baseline uniform discretization.

D.1.1 BEST SETTINGS

Here, we report hyper-parameters used to produce results for our best models in Table 8.

CIFAR10. High-pass filter λ = 10, dropout probability 0.09, forward pairs with mixing ratio
ρ = 0.4, sigmoid discretization with κ = 20, DPM-solver r = 0.4, AutoGuidance scale w = 0.6.

AFHQv2. High-pass filter λ = 10, dropout probability 0.09, forward pairs with mixing ratio ρ =
0.4, sigmoid discretization with κ = 20, DPM-solver r = 0.4, AutoGuidance scale w = 1.0.

FFHQ. High-pass filter λ = 10, dropout probability 0.03, forward pairs with mixing ratio ρ = 0.2,
sigmoid discretization with κ = 20, DPM-solver r = 0.4, AutoGuidance scale w = 0.3.

ImageNet-64. High-pass filter λ = 10, dropout probability 0.05, forward pairs with mixing ratio
ρ = 0.2, sigmoid discretization with κ = 20, DPM-solver r = 0.4, CFG scale w = 0.4.

16

Published as a conference paper at ICLR 2025

D.2 FLOW MATCHING BASELINES

We strove to obtain competitive baselines for base and mini-batch OT flow matching methods, and
indeed achieved superior performance to comparable implementations from Tong et al. (2023) on
the datasets considered.

Firstly, similar to Karras et al. (2022), we formulate flow matching as x0 or mean-prediction
rather than using regression target X0 − X1. We parameterize the mean-prediction to be of form
Dθ(xt, t) = cskip(t)xt + cout(t)Fθ(cin(t), cσ(t)) where Fθ is a neural network:

Et,Xt,X0
λ(t)∥Dθ(Xt, t)−X0∥2. (22)

The scalar functions cσ, cskip, cout, cin, λ(t) are derived according to the reasoning of Karras et al.
(2022) in Sec D.2.2. We set σ0,T = 0 for the independent coupling.

Throughout we use the a similar setup as Karras et al. (2022) but with the flow matching loss and
new preconditioning. In particular for AFHQv2, FFHQ and CIFAR10 we use the SongNet from
Song et al. (2021b) with corresponding hyperparameters from Karras et al. (2022) per dataset.

The time-sampling during training is taken to be uniform and the Euler solver with 100 steps is used
for computing FID and straightness metrics, in order to be comparable to other reported baselines
from Tong et al. (2023).

D.2.1 MINI-BATCH FLOW MATCHING

The mini-batch flow matching experiments use the same learning rate, networks, and training ob-
jectives as base flow matching. The primary difference is in how the inputs, Xt,X0, are sampled.

We follow the procedure outlined in Sec. A.2.1 for sampling mini-batches, using Sinkhorn
(Sinkhorn, 1964; Cuturi, 2013) as the mini-batch solver based on the OTT-JAX library (Cuturi et al.,
2022). Images were scaled to [−1, 1] as is standard in diffusion models and flattened. The squared
Euclidean ground cost was used.

The regularization parameter was set to ϵ = 2, qualitatively this provided a reasonable trade-off
between meaningful coupling visually and the time to compute using convergence threshold defaults
from Cuturi et al. (2022). The default regularization parameter from Cuturi et al. (2022) did not
provide a visually meaningful coupling on large batches, and setting parameter less than ϵ < 1 took
over the maximum iteration threshold of 2, 000 iterations to converge, and hence was not feasible
for training.

Each Sinkhorn loop took approximately 100 − 200 Sinkhorn iterations without acceleration tech-
niques, and wall-clock time up to roughly 0.8s for the largest coupling batch size 8192. We then ran
acceleration techniques including Anderson acceleration (Anderson, 1965) with memory 2, epsilon
decay starting from 10, and initializing potentials from prior batches to reduce runtime. This sped
up the mini-batch process to 0.4s per Sinkhorn loop, and convergence of Sinkhorn in approximately
20− 30 Sinkhorn iterations.

We ablated the coupling batch size between 512, 1024, 4096, 8192. The loss batch size was kept
constant at 512 for CIFAR10 and 256 for AFHQV2 and FFHQ.

Scope for further improvements: Unfortunately, Cov[X0, xT] = σ2
0,T is not known for mini-

batch couplings and hence as in the independent coupling we set σ0,T = 0 in the preconditioning
computation. It is possible that this is sub-optimal and may be estimated in better ways.

Although straightness improves with larger batch size and our implementation achieves better FID
scores than prior baselines, mini-batch OT flow matching is still not well understood. It is puzzling
as to why performance in terms of FID gets worse compared to base flow matching. This is corrob-
orated in Table 5 of Tong et al. (2023) where FID for CIFAR10 is 3.74 with the mini-batch coupling
and 3.64 with independent coupling, however we notice a significant discrepancy at 2.98 FID for
the independent coupling and 3.16 for the best mini-batch coupling. We leave further investigations
to future work.

17

Published as a conference paper at ICLR 2025

D.2.2 PRECONDITIONING

In the interest of generality, we derive EDM-style preconditioning (Karras et al., 2022) for the more
general case of bridge matching / stochastic interpolant (Peluchetti, 2023; 2021; Shi et al., 2023;
Albergo et al., 2023) which recovers preconditioning for flow matching for γt = 0,

Let Xt = αtX0 + βtXT + γtϵ where ϵ ∼ N (0, I). Consider prediction of form Dθ(xt, t) =
cskip(t)xt + cout(t)Fθ(cin(t), cσ(t)) and λ(·) weighted loss per Eq. (22).

The loss per Eq. (22) may be written:

Et,Xt,X0
λ(t)cout(t)

2∥Fθ(Xt, t)− cout(t)
−1(X0 − cskip(t)Xt)∥2 (23)

Setting λ(·). In order to uniformly weight the loss per time step, we set λ(t) = cout(t)
−2 similarly

to Karras et al. (2022).

Setting cin(t). We take the strategy of finding cin such that Var[cin(t)Xt] = 1.

Let Var[X0] = σ2
0 , Var[XT] = σ2

T and Cov[X0, xT] = σ2
0,T

Var[cin(t)Xt] = cin(t)
2
[
α2
tσ

2
0 + β2

t σ
2
0 + 2αtβtσ

2
0,T + γ2t

]
= 1 (24)

cin(t) =
[
α2
tσ

2
0 + β2

t σ
2
T + 2αtβtσ

2
0,T + γ2t

]− 1
2 (25)

Setting cskip and cout. The prediction target of Dθ(xt, t) is X0, hence the target of network Fθ is
cout(t)

−1 [X0 − cskip(t)xt]. We choose cskip and cout to ensure regression target has uniform variance
i.e. Var

[
cout(t)

−1 [X0 − cskip(t)Xt]
]
= 1,

Var
[
cout(t)

−1 [X0 − cskip(t)Xt]
]
= 1 (26)

cout(t)
2 = Var [X0 − cskip(t)Xt] (27)

cout(t)
2 = Var [(1− αtcskip(t))X0 − cskip(t)(βtXT + γtϵ)] (28)

cout(t)
2 = (1− αtcskip(t))

2σ2
0 (29)

− 2βt(1− αtcskip(t))cskip(t)σ
2
0,T (30)

+ cskip(t)
2β2
t σ

2
T + γ2t cskip(t)

2 (31)

Given the fixed relationship between cskip and cout, we choose cskip to minimize cout

dc2out

dcskip
= − 2αt(1− αtcskip(t))σ

2
0 (32)

− 2βtσ
2
0,T + 4αtβtσ

2
0,T cskip(t) (33)

+ 2cskip(t)β
2
t σ

2
T + 2γ2t cskip(t) (34)

With first order condition dc2out
dcskip

= 0, we obtain:

cskip(t) =
αtσ

2
0 + βtσ

2
0,T

α2
tσ

2
0 + 2αtβtσ2

0,T + β2
t σ

2
T + γ2t

. (35)

D.3 COUPLING PROJECTION

Recall that we propose projecting Q1
01 to Π(P0,P1) at the end of each iteration

Q̂1
01 := projΠ(P0,P1)(Q

1
01) (36)

and using Q̂1
01 in place of Q1

01. However, the projection operation is well-defined only if there
is a suitable metric on the space under consideration (the space of distributions, in our case). An
applicable metric is the p-Wasserstein distance Wp. Then, projection w.r.t. Wp is defined as

Q̂1
01 = argmin

Γ01

Wp(Γ01,Q1
01) s.t. Γ0 = P0, Γ1 = P1. (37)

18

Published as a conference paper at ICLR 2025

Furthermore, we may parameterize

dΓ01(x0,x1) = dΓ0|1(x0|x1)dP1(x1) or dP0(x0)dΓ1|0(x1|x0) (38)

which means (with the first parameterization), we only have to enforce the marginal constraint

Q̂1
01 = argmin

Γ01

Wp(Γ01,Q1
01) s.t. Γ0 = P0, dΓ01 = dΓ0|1dP1. (39)

Noting that

Γ0 = P0 ⇐⇒ D(Γ0,P0) = 0 (40)

for distances or divergences D, we can optimize

min
Γ01

D(Γ0,P0) + λW p
p (Γ01,Q1

01) s.t. dΓ01 = dΓ0|1dP1 (41)

for decreasing values of λ and stop when D(Γ0,P0) saturates. In practice, we solve

min
Γ01

D(Γ0,P0) + λ SKDp(Γ01,Q1
01) s.t. dΓ01 = dΓ0|1dP1 (42)

with gradient descent, where SKD stands for Sinkhorn Divergence (Feydy et al., 2019). We approx-
imate Q1

01 as a mixture of diracs using the generated backward pairs, and approximate D using a
Generative Adversarial Network (Goodfellow et al., 2014). Since we do not know an appropriate
value of λ, we initialize λ from a large value, e.g., λ = 1000, decay it by a factor of 0.1 every time
FID saturates. If decaying λ does not offer any more FID improvement, we terminate optimization,
and use the optimized Γ01 as Q̂1

01. The full optimization procedure is described in Algorithm 2.

Algorithm 1 Coupling projection given λ

1: Inputs: P0, Q1
01, Γ01, batch size B, discriminator Dψ , discriminator learning rate η, coupling

learning rate γ, evaluate FID every NFID iterations, SKDp coefficient λ
2: Initialize i← 0, Γ01,best ← Γ01, FIDbest ← FID(Γ0,P0)
3: while training do
4: Sample {x̃n0}Bn=1 ∼ P0, {(xn0 ,xn1)}Bn=1 ∼ Q1

01, {(x̂n0 , x̂n1)}Bn=1 ∼ Γ01

5: ψ ← ϕ+ η∇ψ{
∑
n logDψ(x̃

n
0) +

∑
n log(1−Dψ(x̂

n
0))}

6: x̂n0 ← x̂n0 − γ∇x̂n
0
{log(1−Dψ(x̂

n
0)) + λ SKDp({(x̂n0 , x̂n1)}Bn=1, {(xn0 ,xn1)}Bn=1)}

7: i← i+ 1
8: if i % NFID = 0 then
9: FIDcurr ← FID(Γ0,P0)

10: if FIDcurr ≥ FIDbest then
11: return Γ01,best, FIDbest
12: else
13: (Γ01,best,FIDbest)← (Γ01,FIDcurr)
14: end if
15: end if
16: end while

Algorithm 2 Coupling projection

1: Inputs: P0, Q1
01, batch size B, discriminator Dψ , discriminator learning rate η, coupling learn-

ing rate γ, evaluate FID every NFID iterations, initial λ, λ decay factor ρ ∈ (0, 1)
2: Initialize i← 0, Γ01 ← Q1

01, Γ01,best ← Q1
01, FIDbest ← FID(Γ0,P0)

3: while training do
4: Γ01,FIDcurr ← ALG1[P0,Q1

01,Γ01, B,Dψ, η, γ,NFID, λ]
5: if FIDcurr ≥ FIDbest then
6: return Γ01,best

7: else
8: (λ,Γ01,best,FIDbest)← (ρ · λ,Γ01,FIDcurr)
9: end if

10: end while

19

Published as a conference paper at ICLR 2025

E PROOFS

E.1 PROOF OF PROPOSITION 1

Lemma 1. The following statements are equivalent.

(a) θ minimizes LFM(θ;Q01,xt, t).

(b) θ minimizes LGFM(θ;Q01,xt, t).

(c) Dθ(xt, t) = Ex0∼Q0|t(·|xt)[x0].

Proof. We first observe that (writing Dθ in place of Dθ(xt, t) for brevity)

∇Dθ
LGFM(θ;Q01,xt, t) = ϕ⊤ϕ{∇Dθ

LFM(θ;Q01,xt, t)} (43)

and since ϕ is invertible, ϕ⊤ϕ is invertible as well, which implies

∇Dθ
LGFM(θ;Q01,xt, t) = 0 ⇐⇒ ∇Dθ

LFM(θ;Q01,xt, t) = 0. (44)

Because both LGFM(θ;Q01,xt, t) and LFM(θ;Q01,xt, t) are strongly convex w.r.t. Dθ, this means
θ minimizes LGFM(θ;Q01,xt, t) iff θ minimizes LFM(θ;Q01,xt, t) iff

Dθ(xt, t) = Ex0∼Q0|t(·|xt)[x0]. (45)

This establishes the equivalence of the three claims.

Lemma 2. Let µ be a σ-finite measure. If f > g on a set A with µ(A) > 0,
∫
A
f dµ >

∫
A
g dµ.

Proof. By linearity of integrals, we can assume g = 0. Since f > 0 on A, we may express

A = ∪∞n=1An, An := {x ∈ A : f(x) > 1/n}. (46)

Since µ(A) > 0, there is n such that µ(An) > 0. Otherwise, by subadditivity of measures,

µ(A) ≤∑∞
n=1 µ(An) = 0 (47)

which contradicts the assumption µ(A) > 0. It follows that∫
A
f dµ ≥

∫
An

f dµ ≥
∫
An

1
n dµ = µ(An)

n > 0. (48)

This establishes the claim.

Proof of Proposition 1. Denote the measure of (t,xt) where t ∼ unif(0, 1) and xt ∼ Qt as µ.
(Assuming Dθ can approximate a sufficiently large set of functions), define θ∗ as the neural net
parameter which satisfies

Dθ∗(xt, t) = Ex0∼Q0|t(·|xt)[x0] (49)

for any (xt, t) such that

LGFM(θ;Q01,xt, t) ≥ LGFM(θ∗;Q01,xt, t) (50)

or equivalently,

LFM(θ;Q01,xt, t) ≥ LFM(θ∗;Q01,xt, t) (51)

for any (xt, t) and θ by Lemma 1.

We now show that a minimizer of Eq. (13) minimizes Eq. (1). Suppose θ minimizes Eq. (13), but
there is a set A with positive measure, i.e., µ(A) > 0, such that

Dθ(xt, t) ̸= Ex0∼Q0|t(·|xt)[x0] (52)

for all (xt, t) ∈ A. By Lemma 1,

LGFM(θ;Q01,xt, t) > LGFM(θ∗;Q01,xt, t) (53)

20

Published as a conference paper at ICLR 2025

for all (xt, t) ∈ A, and since w(xt, t) and dT(t) are positive by assumption,

dT(t) · w(xt, t) · LGFM(θ;Q01,xt, t) > dT(t) · w(xt, t) · LGFM(θ∗;Q01,xt, t) (54)

for all (xt, t) ∈ A, so by Lemma 2,

E(t,xt)∼µ[1A(xt, t) · dT(t) · w(xt, t) · LGFM(θ;Q01,xt, t)] (55)

> E(t,xt)∼µ[1A(xt, t) · dT(t) · w(xt, t) · LGFM(θ∗;Q01,xt, t)] (56)

where 1A(xt, t) = 1 if (xt, t) ∈ A and 0 if not, and so

LGFM(θ;Q01) = E(t,xt)∼µ[dT(t) · w(xt, t) · LGFM(θ;Q01,xt, t)] (57)

> E(t,xt)∼µ[dT(t) · w(xt, t) · LGFM(θ∗;Q01,xt, t)] = LGFM(θ∗;Q01) (58)

which contradicts the assumption that θ minimizes Eq. (13). It follows that if θ minimizes Eq. (13),

Dθ(xt, t) = Ex0∼Q0|t(·|xt)[x0] (59)

almost everywhere w.r.t. µ, it also minimizes

LFM(θ;Q01,xt, t) (60)

almost everywhere w.r.t. µ by Lemma 1, which implies θ minimizes Eq. (1).

The other direction can be proven in an analogous manner.

E.2 PROOF OF PROPOSITION 2

Proof of Proposition 2. Let Q0
01 = P0 ⊗ P1. If we assume zero initialization in output layer for Dθ,

max
x1

LDM(θ;Q0
01,x1, 1)/min

x1

LDM(θ;Q0
01x1, 1) (61)

= max
x1

Ex0∼Q0
0|1(·|x1)∥x0 −Dθ(x1, 1)∥22/min

x1

Ex0∼Q0
0|1(·|x1)∥x0 −Dθ(x1, 1)∥22 (62)

= max
x1

Ex0∼Q0
0|1(·|x1)∥x0∥22/min

x1

Ex0∼Q0
0|1(·|x1)∥x0∥22 (63)

= max
x1

Ex0∼P0∥x0∥22/min
x1

Ex0∼P0∥x0∥22 = 1 (64)

On the other hand, if we use a pre-trained diffusion model to initialize Dθ,

Dθ(x1, 1) = µ0 (65)

such that

max
x1

LGFM(θ;Q1
01,x1, 1)/min

x1

LGFM(θ;Q1
01,x1, 1) (66)

= max
x1

Ex0∼Q1
0|1(·|x1)∥x0 − µ0∥22/min

x1

Ex0∼Q1
0|1(·|x1)∥x0 − µ0∥22 (67)

= max
x0

∥x0 − µ0∥22/min
x0

∥x0 − µ0∥22 (68)

because x1 7→ x0 ∼ Q1
0|1(·|x1) is now a bijective map between P0 and P1 samples.

21

Published as a conference paper at ICLR 2025

r 0.2 0.4 0.6 0.8 1.0
1.5

2.0

2.5

3.0

3.5

FID

2.23

2.29

2.63

CIFAR10

AFHQv2

FFHQ

Figure 12: DPM-Solver r

w = 0.0 0.2 0.4 0.6 0.8 1.0
1.5

2.0

2.5

3.0

3.5

FID

1.98 1.91

2.67

CIFAR10

AFHQv2

FFHQ

Figure 13: AutoGuidance w

F ADDITIONAL EXPERIMENTS

F.1 LINEAR DISCRETIZATION LACKS DISCRIMINATIVE POWER

w(xt, t) Uniform Sigmoid
1 2.88 2.87
1/t 2.89 2.76
1/t2 2.93 2.74

(σ2 + 0.52)/(0.5σ)2 2.97 2.82
1/Ext [sg[LGFM(θ;Q01,xt, t)]] 2.98 2.79

1/ sg[LGFM(θ;Q01,xt, t)] 2.95 2.74

Table 10: Uniform vs. sigmoid (κ = 10)
discretizations with Heun on AFHQv2.

While all previous works use the uniform discretiza-
tion to sample from ReFlow models, we use the sig-
moid discretization to evaluate models in Sections
3.2 and 3.3. This is because, we found that the uni-
form discretization lacks discrimination power, i.e.,
the ability to make the best of a given model, espe-
cially at small NFEs.

To demonstrate this, in Tab. 10, we re-evaluate mod-
els in Sec. 3.2.1 with the uniform discretization, and
compare them with evaluation results with the sig-
moid discretization with κ = 10. We observe that none of the FIDs with the uniform discretiza-
tion are better than the worst FID with the sigmoid discretization. Moreover, the model with our
proposed weight, when evaluated with the uniform schedule, performs worse than the model with
uniform weight.

We speculate this happens because, as analyzed in Sec. 3.4, large curvature regions for ReFlow
ODEs occur near t ∈ {0, 1}, but the uniform discretization fails to account for them. So, the
uniform discretization is unable to accurately capture the differences in ODE trajectories between
different models. Due to these reasons, we opt to use the sigmoid discretization to distinguish
training techniques that work from those that do not.

F.2 DPM-SOLVER AND GUIDANCE ABLATIONS

Recall that the DPM-Solver update for Eq. (3) is given as
xti ← xti+1 + (ti − ti+1)(

1
2rvθ(xsi+1 , si+1) + (1− 1

2r)vθ(xti+1 , ti+1)). (69)
In Fig. 12, we show the FID for various values of r ∈ (0, 1]. While we can get better FIDs than
those in Tab. 7 by using r tailored to individual datasets, we opt for simplicity and set r = 0.4 as
our improved choice, which still yields better FID than the Heun solver, i.e., using r = 1.

For conditional ReFlow models, classifier-free guidance (CFG) (Ho & Salimans, 2022) can be for-
mulated as solving the ODE

dxt = {(1 + w) · vθ(xt, t, c)− w · vθ(xt, t,∅)} dt (70)
where vθ(xt, t, c) is velocity conditioned on c, and vθ(xt, t,∅) is an unconditional velocity, and
w is guidance scale. Note that w = 0 reduces the ODE to standard class-conditional generation.
In practice, we train conditional velocities with label dropout such that vθ(xt, t, c) and vθ(xt, t,∅)
can be evaluated in parallel, by passing class labels to the former and null labels to the latter.

For unconditional ReFlow models, AutoGuidance (Karras et al., 2024) can be formulated as solving
dxt = {(1 + w) · vθ(xt, t)− w · v̂ϕ(xt, t)} dt (71)

where v̂ϕ is a degraded version of vθ. In practice, we use ReFlow models trained with the baseline
training configuration (see Tab. 1) for 10k iterations as v̂ϕ. While other choices of v̂ϕ may offer
better FIDs, as AG is not the main topic of our paper, we do not perform an extensive search.

22

Published as a conference paper at ICLR 2025

F.3 QUANTIFYING REFLOW BIAS REDUCTION

CIFAR10 AFHQv2 FFHQ
BSL 0.86 0.91 1.89
DYN 0.61 0.59 1.30
DYN+LRN 0.41 0.51 0.74
DYN+LRN+INF 0.26 0.34 0.45
DYN+LRN+INF+GD 0.01 −0.05 0.28

Table 11: Amount of bias introduced by Re-
Flow under different settings. Negative bias
means our model achieves a better FID than
the diffusion model used to generate Q1

01.

The extent of the bias introduced by ReFlow, and
its reduction with our techniques can be calculated
by comparing Tables 6, 7, 8. Specifically, since we
measure the performance of our ReFlow models via
Frechet Inception Distance (Wasserstein-2 distance
between Gaussian approximations of true and model
distributions in the feature space of the Inception
network) (Heusel et al., 2017), we may use

(FID of Qn+1
0)− (FID of Qn0)

as a proxy for the amount of bias introduced by Re-
Flow. In our work, with n = 1, Q1

0 is the EDM model marginal and Q2
0 is our ReFlow model

marginal. In Table 11, we summarize the extent of bias as we add improved training dynamics
(DYN), improved learning (LRN), improved inference (INF), and guidance (GD) to the baseline
(BSL) setting. With everything combined, our techniques achieve a significant reduction in bias.

23

Published as a conference paper at ICLR 2025

F.4 SAMPLE VISUALIZATION

(a) BSL, 2.83 FID with 9 NFEs

(b) DYN+LRN+INF, 2.23 FID with 9 NFEs

(c) DYN+LRN+INF+AG, 1.98 FID with 9 NFEs

Figure 14: CIFAR10 samples with fixed random seeds

24

Published as a conference paper at ICLR 2025

(a) BSL, 2.87 FID with 9 NFEs

(b) DYN+LRN+INF, 2.30 FID with 9 NFEs

(c) DYN+LRN+INF+AG, 1.91 FID with 9 NFEs

Figure 15: AFHQv2 samples with fixed random seeds

25

Published as a conference paper at ICLR 2025

(a) BSL, 4.27 FID with 9 NFEs

(b) DYN+LRN+INF, 3.49 FID with 9 NFEs

(c) DYN+LRN+INF+CFG, 1.74 FID with 9 NFEs

Figure 16: ImageNet-64 samples with fixed random seeds

26

Published as a conference paper at ICLR 2025

G FURTHER DISCUSSION OF OUR IMPROVEMENTS

Here, we provide further insight into why our techniques improve upon prior practice.

Loss normalization. In Section 3.1 we show that the Generalized Flow Matching objective is a
collection of regression problems aggregated over (xt, t), and at Section 3.2.1, we theoretically and
numerically show that individual regression loss values during ReFlow can have vastly different
scales with respect to (xt, t). Multi-task learning interpretation of loss normalization (Zhang et al.,
2018; Karras et al., 2023b) along with our observation motivates loss normalization with respect to
both xt and t, and in Table 2, we demonstrate that loss normalization beats all other weights.

Time distribution. In Section 3.2.2, we explain that previous work (Lee et al., 2024) uses the cosh
time distribution in order to oversample t near 0 or 1, where most of the learning happens. We
also explain that we choose the increasing exponential time distribution, since our weight function
already compensates for vanishing loss near t = 0.

Loss function. In Section 3.2.3, we show that using ϕ in the loss function is equivalent to precon-
ditioning the loss gradient, and it is well known that an appropriate gradient preconditioning can
accelerate model convergence (Kingma & Ba, 2015).

Dropout. In Section 3.3.1, we explain that we need models with larger Lipschitz constants if we
wish to learn better ReFlow models. This is because ReFlow converges to a straight ODE, and a
straight ODE is ultimately a push-forward generative model, and (Salmona et al., 2022) formally
shows that a push-forward generative model needs to have a Lipschitz constant in order to map a
unimodal distribution to a multi-modal distribution accurately. For instance, Corollaries 5, 6, 8 in
(Salmona et al., 2022) show divergence or distance between data and model distributions is lower
bounded by a decreasing function of Lipschitz constant of the push-forward model. This motivates
us to increase effective model capacity by decreasing dropout probability.

Training data. Alemohammad et al. (2024) shows that recursively training generative models on
data generated by itself reduces the quality and diversity of data. Alemohammad et al. (2024) also
shows one can delay or prevent degradation by injecting real data into the training loop. Using
forward pairs can be interpreted as an instance of injecting real data in the training loop, and using
projected pairs can be interpreted as synthesizing new real data by solving the projection problem.

Discretization. In Figure 8, as evidenced by truncation error for the uniform discretization, the
ODE after ReFlow has high curvature regions near t = 0 and 1. Truncation error for our sigmoid
discretization schedule shows it is able to effectively control the error at the extremes of the interval.

Solver. We note that Karras et al. (2022) popularized Heun as an alternative to Euler, among the
large set of solvers considered, based primarily on strong empirical performance. We argue that
DPM-solver is a generalization of Heun (coinciding for r = 1), and we observe that setting r =
0.4 performs better than Heun’s second order solver. r can be tuned cheaply, especially since our
ReFlow models produce state-of-the-art results with NFE < 10.

27

	Introduction
	Background
	Flow Matching and ReFlow
	ReFlow with Diffusion Probability Flow ODEs

	Improved Techniques for ReFlow
	The Design Space of ReFlow
	Training Dynamics, Learning, and Inference

	Improving Training Dynamics
	Loss Normalization
	Time Distribution
	Loss Function

	Improving Learning
	Model Dropout
	Training Coupling

	Improving Inference

	Applications
	Conclusion
	Faster ODEs via Couplings
	Faster sampling via straight paths
	Connection to Optimal Transport
	Mini-batch Optimal Transport Flow Matching
	ReFlow and Iterative Markovian Fitting

	Fast Sampling via Higher Order Solvers
	Distillation and Consistency Models
	ReFlow vs. Distillation

	Experiment Settings
	Training and Evaluation
	Best Settings

	Flow Matching Baselines
	Mini-batch Flow Matching
	Preconditioning

	Coupling Projection

	Proofs
	Proof of Proposition 1
	Proof of Proposition 2

	Additional Experiments
	Linear Discretization Lacks Discriminative Power
	DPM-Solver and Guidance Ablations
	Quantifying ReFlow Bias Reduction
	Sample Visualization

	Further Discussion of Our Improvements

