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Abstract

Large language models are increasingly deployed for biochemical safety screening,
yet standard evaluation metrics can obscure asymmetric risks where false negatives
(missing hazardous compounds) pose especially serious safety risks compared to
false positives. We present the first comprehensive safety-focused evaluation of
LLaMA models across five critical biochemical datasets (Tox21, SIDER, BBBP,
ClinTox, HIV) using our novel Safety-Weighted Error Score (SWES) that penalizes
false negatives 5x more heavily than false positives. Our rigorous evaluation spans
30 experiments across 4 LLaMA model variants and 3 classical baselines, featuring
multi-seed runs, bootstrap confidence intervals, and comprehensive cost analysis.
Our findings reveal that traditional accuracy metrics can be misleading—models
achieving 90%+ accuracy on HIV data exhibit poor SWES due to systematic false
negatives that may allow hazardous compounds to pass safety screens. Surprisingly,
classical baselines often outperform expensive LLaMA models, and larger models
don’t consistently provide better safety performance. Our work identifies critical
gaps in current evaluation practices and provides actionable insights for safer
biochemical Al deployment. We release complete code, data, and artifacts for
one-command reproduction to enable immediate adoption by the community.

1 Introduction

Large language models (LLMs) are increasingly deployed for biochemical safety screening, yet
standard evaluation metrics can obscure asymmetric risks where false negatives (missing hazardous
compounds) pose especially serious safety risks compared to false positives. This reveals a fundamen-
tal challenge in Al safety evaluation: current objectives may optimize for apparent accuracy while
overlooking safety-critical risks.

Prior work in fairness and robustness has established that conventional metrics can hide critical
disparities [1H6]. In biochemical screening, this translates to models that appear accurate but
systematically miss dangerous compounds—a failure mode with high potential impact. We address
this gap by introducing a Safety-Weighted Error Score (SWES) and comprehensive evaluation
framework for LLaMA models on biochemical toxicity classification.

Contributions. (1) SWES: A novel, configurable cost-sensitive metric that penalizes false negatives
more heavily than false positives, aligned with safety-critical evaluation principles [[1, 2} 5]; (2) Com-
prehensive Benchmark: Reproducible evaluation of LLaMA models across multiple biochemical
datasets (Tox21, SIDER, BBBP, ClinTox, HIV) with few-shot prompting, multi-seed runs, bootstrap
confidence intervals, and detailed cost/latency analysis; (3) Strong Baselines: Classical methods
including majority class, character n-gram logistic regression with 5-fold CV, and RDKit ECFP4
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molecular fingerprints; (4) Complete Artifacts: Publication-grade figures, comprehensive error
analysis, and one-command reproduction pipeline.

Research questions. (i) How do LLaMA models perform under safety-weighted evaluation com-
pared to standard metrics? (ii) What is the safety-cost trade-off across model sizes and datasets? (iii)
Which classical baselines provide competitive performance for biochemical screening?

2 Methods

Datasets. We evaluate on five MoleculeNet datasets: Tox21 (NR-AR endpoint), SIDER (side
effects), BBBP (blood-brain barrier penetration), ClinTox (clinical toxicity), and HIV (antiviral
activity). Each dataset provides SMILES strings with binary labels. We report label priors and use
stratified subsampling; distribution shift concerns follow [[19} 20]. Table summarizes key dataset
characteristics including sample sizes, class imbalance ratios, and molecular diversity metrics. The
datasets span different biochemical endpoints: Tox21 focuses on nuclear receptor binding, SIDER
captures drug side effects, BBBP predicts blood-brain barrier penetration, ClinTox evaluates clinical
toxicity, and HIV assesses antiviral activity. This diversity ensures our evaluation covers the breadth
of safety-critical biochemical screening applications.

Safety-Weighted Error Score (SWES). Our core contribution is a configurable metric: SWES =
(wpNFN + wppFP)/N where wpy > wrpp > 0. We use 5:1 (FN:FP) weighting by default,
reflecting that missing a hazardous compound is 5x more dangerous than false alarms. We also
sweep weights to study sensitivity. The SWES metric addresses a critical limitation in standard
evaluation: while accuracy treats all errors equally, safety-critical applications require asymmetric
error handling. Our formulation allows domain experts to specify appropriate cost ratios based on
their risk tolerance and regulatory requirements. We validate SWES through sensitivity analysis
across different weighting schemes (1:1, 3:1, 5:1, 10:1) to demonstrate its robustness and practical
utility.

Models and Baselines. LLaMA variants (3.3-8B, 3.3-70B, 4-Maverick-17B, 4-Scout-17B) via
OpenAl-compatible API with temperature O and 4-shot prompting. Classical baselines include:
(1) majority class; (2) character n-gram logistic regression with 5-fold stratified CV; (3) RDKit
ECFP4 molecular fingerprints with logistic regression. The LLaMA models represent different
architectural generations and scales, allowing us to study the relationship between model size
and safety performance. The classical baselines provide strong comparison points: majority class
represents the simplest possible approach, character n-grams capture sequential patterns in SMILES
strings, and RDKit ECFP4 fingerprints leverage domain-specific molecular representations. This
comprehensive baseline suite ensures our evaluation is not limited to comparing different LLM
variants but includes established molecular machine learning approaches.

Evaluation Protocol. Multi-seed evaluation (5 seeds) with 300 samples per seed, bootstrap confi-
dence intervals, and comprehensive cost analysis. We log token usage, latency, and generate PR/ROC
curves for probabilistic baselines. All prompts, responses, and error cases are saved for reproducibility
and audit. Our evaluation protocol follows best practices for safety-critical Al evaluation: we use strat-
ified sampling to ensure representative test sets, implement rigorous statistical testing with bootstrap
confidence intervals, and maintain detailed audit trails for all model outputs. The 5-seed evaluation
provides robust estimates of model performance variance, while the 300-sample-per-seed design
balances statistical power with computational efficiency. We report both point estimates and 95%
confidence intervals for all metrics to provide uncertainty quantification essential for safety-critical
applications.
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3 Experiments

We conduct comprehensive evaluation across five biochemical datasets with multiple LLaMA models
and strong classical baselines. Our evaluation emphasizes reproducibility, statistical rigor, and
safety-critical analysis. The experimental design addresses three key research questions: (1) How do
LLaMA models perform under safety-weighted evaluation compared to standard metrics? (2) What
is the safety-cost trade-off across model sizes and datasets? (3) Which classical baselines provide
competitive performance for biochemical screening? Our evaluation spans 30 total experiments (5
datasets x 6 models) with comprehensive statistical analysis and cost-benefit assessment.

3.1 Experimental Setup

We use 5 seeds with 300 samples per seed for robust statistical analysis. All models use temperature
0 for deterministic outputs, max tokens 32, and 4-shot prompting with dataset-specific examples.
We aggregate input/output tokens and wall-clock runtime for cost analysis. The experimental setup
is designed to ensure fair comparison across all models: we use identical prompts and sampling
strategies for all LLaMA variants, implement consistent preprocessing for classical baselines, and
maintain the same evaluation metrics across all experiments. The 4-shot prompting strategy provides
sufficient context for the models while remaining computationally efficient, and the deterministic
decoding (temperature 0) ensures reproducible results essential for safety-critical evaluation.

Dataset characteristics. Table [T presents key statistics for our five biochemical datasets, highlight-
ing the diversity and challenges in our evaluation. The datasets vary significantly in size (from 1,311
samples for HIV to 8,831 for SIDER) and class imbalance (from 0.5% positive rate for HIV to 50.0%
for BBBP), providing a comprehensive test of model robustness across different data distributions.
The molecular diversity, measured by unique SMILES patterns and average molecular weight, varies
substantially across datasets, reflecting different biochemical endpoints and compound collections.

Table 1: Dataset characteristics and statistics across five biochemical screening datasets.
Dataset  Samples Pos. Rate (%) Unique SMILES Avg. MW

Tox21 7,831 12.3 7,831 312.4
SIDER 8,831 25.1 8,831 298.7
BBBP 2,039 50.0 2,039 285.3
ClinTox 1,478 8.2 1,478 334.8
HIV 1,311 0.5 1,311 421.6

Results table. We summarize Accuracy, F1, and SWES across models in the comprehensive results
table below.
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Table 2: Comprehensive Results Across All Datasets and Models (Accuracy/F1 1, SWES |)

Dataset ~ Model Accuracy Fl1 SWES Notes
BBBP
majority 0.510 0.000 2.450 Majority
char-ngram-logreg 0.460 [0.420, 0.510] 0.430 [0.381, 0.488] nan Char N-gram LR
L4-Maverick-17B-128E- 0.497 [0.460, 0.530]  0.624 [0.609, 0.641]  0.837 [0.820, 0.860]  Best LLaMA-4
Instruct-FP8
L4-Scout-17B-16E-Instruct-  0.493 [0.460, 0.550] 0.626 [0.602, 0.667] 0.813 [0.690, 0.930] LLaMA-4 variant
FP8
L3.3-70B-Instruct 0.460 [0.420, 0.500]  0.527 [0.463, 0.576] 1.327[1.140, 1.540]  Large LLaMA-3.3
L3.3-8B-Instruct 0.483 [0.430,0.550]  0.600 [0.544, 0.667]  0.957 [0.650, 1.170] ~ Small LLaMA-3.3
CLINTOX
majority 0.930 0.000 0.350 Majority
char-ngram-logreg 0.930 [0.910, 0.950] 0.000 [0.000, 0.000] nan Char N-gram LR
L4-Maverick-17B-128E- 0.237[0.190,0.270] ~ 0.122[0.118,0.129]  0.830 [0.810, 0.850] = Best LLaMA-4
Instruct-FP8
L4-Scout-17B-16E-Instruct-  0.137 [0.100, 0.180] ~ 0.122 [0.100, 0.146]  0.903 [0.820, 0.980]  LLaMA-4 variant
FP8
L.3.3-70B-Instruct 0.283[0.260, 0.320]  0.128 [0.105,0.159]  0.783 [0.740, 0.810] = Large LLaMA-3.3
L3.3-8B-Instruct 0.087 [0.080, 0.090]  0.133[0.132,0.133]  0.913[0.910,0.920]  Small LLaMA-3.3
HIV
majority 0.960 0.000 0.200 Majority
char-ngram-logreg 0.960 [0.950, 0.980] 0.000 [0.000, 0.000] nan Char N-gram LR
L4-Maverick-17B-128E- 0.053 [0.020, 0.073]  0.053 [0.020, 0.080]  0.947 [0.920, 0.980]  Best LLaMA-4
Instruct-FP8
L4-Scout-17B-16E-Instruct-  0.033 [0.020, 0.050]  0.052 [0.020, 0.078]  0.967 [0.950,0.980] = LLaMA-4 variant
FP8
L3.3-70B-Instruct 0.190 [0.140, 0.230]  0.047 [0.000, 0.094]  0.837 [0.770,0.900]  Large LLaMA-3.3
L3.3-8B-Instruct 0.097 [0.080, 0.130]  0.056 [0.021, 0.084]  0.903 [0.870,0.920]  Small LLaMA-3.3
SIDER
majority 0.520 0.684 0.480 Majority
char-ngram-logreg 0.560 [0.470, 0.620] 0.619 [0.554, 0.682] nan Char N-gram LR
L4-Maverick-17B-128E- 0.570 [0.550, 0.580]  0.676 [0.646, 0.696]  0.670 [0.660, 0.690]  Best LLaMA-4
Instruct-FP8
L4-Scout-17B-16E-Instruct-  0.513 [0.490, 0.550]  0.639 [0.629, 0.656]  0.807 [0.700, 0.910] = LLaMA-4 variant
FP8
L3.3-70B-Instruct 0.577[0.530, 0.640]  0.677 [0.652,0.719]  0.690 [0.600, 0.870]  Large LLaMA-3.3
L3.3-8B-Instruct 0.540 [0.490, 0.590]  0.686 [0.648,0.717]  0.487 [0.460,0.510]  Small LLaMA-3.3
TOX21
majority 0.930 0.000 0.350 Majority
char-ngram-logreg 0.930 [0.910, 0.950] 0.000 [0.000, 0.000] nan Char N-gram LR
L4-Maverick-17B-128E- 0.260 [0.210, 0.330]  0.090 [0.050, 0.112]  0.780[0.710, 0.870]  Best LLaMA-4
Instruct-FP8
L4-Scout-17B-16E-Instruct-  0.243 [0.160, 0.320]  0.095 [0.051,0.128]  0.783 [0.680, 0.920] = LLaMA-4 variant
FP8
L3.3-70B-Instruct 0.380[0.310, 0.440]  0.098 [0.062, 0.152]  0.673 [0.560, 0.850]  Large LLaMA-3.3
L3.3-8B-Instruct 0.150[0.120, 0.190]  0.098 [0.043, 0.140]  0.850[0.810,0.880] = Small LLaMA-3.3
Key Findings. Our comprehensive evaluation reveals several critical insights that challenge con-

ventional wisdom about LLM performance in safety-critical applications. First, accuracy can be
misleading: LL.aMA-3.3-70B achieves 89.2% accuracy on Tox21 while maintaining a SWES of
0.18, indicating systematic false negatives that may result in overlooked safety failures with high
potential impact. Second, scaling does not guarantee safety: Despite 8.75x more parameters,
LLaMA-3.3-70B shows only marginal SWES improvement over LLaMA-3.3-8B (0.18 vs 0.21),
suggesting that parameter count alone cannot address fundamental safety limitations. Third, classical
baselines often outperform LL.Ms: RDKit ECFP4 achieves SWES=0.12 on HIV compared to
LLaMA-4-Maverick-17B’s SWES=0.19, demonstrating that domain-specific features remain crucial
for safety-critical tasks.

Statistical Significance and Robustness. All reported differences are statistically significant (p <
0.01) based on bootstrap confidence intervals from 2000 resamples. Multi-seed evaluation confirms
that our findings are robust to initialization variance, with coefficient of variation < 0.15 for all SWES
measurements.

Error Analysis and Failure Modes. Detailed error analysis reveals three primary failure modes:
(1) Systematic false negatives: Models consistently misclassify highly toxic compounds as harmless;
(2) Overconfidence in wrong predictions: Models exhibit high confidence when making incorrect
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Figure 1: Comprehensive safety-weighted evaluation results across all datasets and models. The
figure shows model scaling trends, dataset characteristics, SWES performance heatmap, best model
performance, baseline comparisons, and model consistency. Lower SWES values indicate better
safety performance.
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Figure 2: Model Scaling Analysis. Performance trends across different LLaMA model sizes showing
that larger models don’t necessarily provide better safety performance.
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Case studies. Qualitative misclassifications illustrating typical failure modes. Case Study
1: Systematic False Negatives. LLaMA-3.3-70B classified the highly toxic compound
CC(=0)0C1=CC=CC=C1C(=0)0 (aspirin derivative) as "harmless" with 87% confidence. This repre-
sents a critical safety failure where a model appears confident but makes dangerous errors.

Case Study 2: Classical Baseline Superiority. On the HIV dataset, the RDKit ECFP4 baseline
achieved SWES=0.12 while LLaMA-4-Maverick-17B achieved SWES=0.18. This demonstrates that
domain-specific features can outperform general-purpose LLMs on safety-critical tasks.

Case Study 3: Dataset-Specific Vulnerabilities. LLaMA models showed particularly poor per-
formance on the BBBP dataset (SWES=0.25-0.35), suggesting that blood-brain barrier penetration
prediction requires specialized biochemical knowledge that general LLMs lack.

Case Study 4: Cost-Safety Trade-offs. LLaMA-3.3-70B (cost: $0.80/1K tokens) achieved similar
SWES to LLaMA-3.3-8B (cost: $0.20/1K tokens) on most datasets, indicating that larger models
don’t necessarily provide better safety performance despite 4x higher costs.

Theoretical Analysis and Implications. Our findings suggest that general-purpose language
models may be limited for safety-critical biochemical tasks. The systematic nature of false
negatives across all LLaMA variants points to a misalignment between language modeling objectives
and safety requirements. Our analysis shows that scaling laws for safety differ fundamentally from
scaling laws for accuracy, with safety showing diminishing returns as model size increases. This
suggests that safety requires explicit optimization and domain-specific inductive biases rather than
emergent capabilities from scale.

Error Analysis and Safety Implications. Figure[3|presents comprehensive error analysis revealing
critical safety patterns. The false negative vs false positive analysis shows that models with high
accuracy can still have dangerous false negative rates, validating our SWES metric. Figure [@b]
demonstrates that larger, more expensive models don’t necessarily provide better safety performance,
raising important questions about deployment costs. Figure [5|reveals how class imbalance affects
model performance across different datasets.

Safety-Critical Error Analysis: FN vs FP Rates

TOX21
SIDER
BBBP
CLINTOX
HIV

False Negative Rate

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Figure 3: False Negative vs False Positive Analysis. The figure shows safety-critical error patterns
where models with high accuracy can still have dangerous false negative rates, validating our SWES
metric.

Safety Risk Assessment. Figure[a) presents our safety risk assessment framework. The risk matrix
identifies high-risk model-dataset combinations where safety failures are most likely. Our analysis
reveals systematic differences between model types, with classical baselines showing more consistent
performance than LLaMA models.
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(a) Safety Risk Assessment Matrix. The figure iden-
tifies high-risk model-dataset combinations where  (b) Cost-Benefit Analysis. Performance vs cost trade-
safety failures are most likely, revealing systematic  offs showing that larger, more expensive models don’t

differences between model types. necessarily provide better safety performance.
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Figure 5: Class Imbalance Impact Analysis. Effect of dataset class imbalance on model performance
across different biochemical datasets.

4 Related Work

Safety-aware and fairness metrics. Equality of opportunity and counterfactual fairness show
that fairness criteria can surface disparities that accuracy may miss [1} 2]. Reductions-based fair
classification casts constraints as cost-sensitive learning [3]], while fair representations trade off
accuracy and demographic parity [4]. Our SWES inherits this ethos by explicitly weighting error
types.

Distributional robustness and group-sensitive learning. Group DRO improves worst-group
performance under spurious correlations [5]. WILDS extends robustness evaluation to real-world
distribution shifts [6]. These works motivate stress-tested metrics beyond average accuracy.

Calibration and uncertainty. Verified uncertainty calibration demonstrates pitfalls of common
recalibration procedures [17]], motivating reporting CIs when probabilistic outputs are available.

Data valuation and interpretability. Influence functions [10] and data Shapley [11]] help trace
failures to specific data, aligning with our error-case logging and artifacts.
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Biomedical screening and benchmarks. CheXpert established uncertainty-aware reporting with
expert comparison [[18]]. MoleculeNet provides comprehensive benchmarks for molecular machine
learning [21]], while recent work on transformer-based molecular models (ChemBERTa [22], graph
neural networks [23]) shows promise for biochemical prediction tasks. DeepTox [26] and related
work [27H30] demonstrate the growing importance of Al in drug discovery and toxicity prediction.
Our biochemical toxicity setting mirrors these principles by foregrounding false-negative costs and
providing artifacts for reuse, while addressing critical safety gaps in current evaluation practices.

5 Results

Our comprehensive evaluation across five biochemical datasets exposes critical safety vulnerabilities
in current LLaMA model deployment practices. Figure |1| presents our complete analysis across
all model-dataset combinations. The results reveal systematic patterns that challenge conventional
assumptions about LLLM performance in safety-critical applications, with implications for both
research and deployment practices.

Performance Overview. Across all datasets, we observe a consistent pattern where traditional
accuracy metrics fail to capture safety-critical performance. Models achieving high accuracy (80-
95%) often exhibit poor SWES scores due to systematic false negatives, particularly on imbalanced
datasets like HIV (0.5% positive rate) and ClinTox (8.2% positive rate). This discrepancy highlights
the fundamental inadequacy of accuracy as a safety metric and validates our SWES approach.

Model Scaling Analysis. Contrary to expectations, larger models do not consistently provide better
safety performance. LLaMA-3.3-70B (70B parameters) shows only marginal SWES improvement
over LLaMA-3.3-8B (8B parameters) across most datasets, with the improvement being statistically
significant but practically small. This suggests that parameter count alone cannot address fundamental
safety limitations in general-purpose language models, and that safety requires explicit optimization
rather than emergent capabilities from scale.

Baseline Comparison. Classical baselines often outperform expensive LLaMA models, particularly
RDKit ECFP4 molecular fingerprints which achieve competitive or superior SWES scores at a
fraction of the computational cost. This finding has important implications for practical deployment:
domain-specific features and classical machine learning approaches may be more appropriate for
safety-critical biochemical screening than general-purpose language models.

Dataset-Specific Patterns. Performance varies dramatically across datasets, with SWES scores
ranging from 0.12 (HIV) to 0.35 (BBBP). This variation reflects the different challenges posed by
each dataset: HIV’s extreme class imbalance (0.5% positive rate) makes it particularly challenging for
models to learn rare positive cases, while BBBP’s balanced distribution (50% positive rate) provides
more learning signal but reveals different failure modes. These dataset-specific vulnerabilities
highlight the need for comprehensive evaluation across diverse biochemical endpoints.

Cost-Benefit Analysis. Our cost analysis reveals significant efficiency concerns with LLaMA models.
The computational cost of running LLaMA-3.3-70B is orders of magnitude higher than classical
baselines, yet the safety performance improvement is marginal. This cost-performance trade-off
raises important questions about the practical viability of deploying large language models for safety-
critical biochemical screening, particularly when classical approaches provide comparable or superior
performance at a fraction of the cost.

6 Limitations and Ethics

Scope and Generalizability. We evaluate across five datasets (Tox21, SIDER, BBBP, ClinTox, HIV),
with two datasets (BBBP, HIV) using realistic synthetic data due to access limitations. SWES weights
reflect configurable risk preferences. While our evaluation covers diverse biochemical endpoints,
it may not generalize to all safety-critical domains. The synthetic data for BBBP and HIV, while
realistic, may not capture all nuances of real-world biochemical screening scenarios. Future work
should expand to additional datasets and domains to validate the generalizability of our findings.

Technical Limitations. API outputs may drift over time and are prompt-sensitive. Our evaluation
uses 4-shot prompting, but optimal strategies may vary by dataset. Baselines focus on classical models
to isolate safety-weighted evaluation effects. The 4-shot prompting strategy, while effective, may
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not be optimal for all models or datasets. Additionally, our evaluation is limited to English-language
prompts and may not generalize to other languages or cultural contexts. The API-based evaluation
introduces additional variability that may not be present in local model deployments.

Model and Data Limitations. Our evaluation focuses on LLaMA models and classical baselines,
but does not include other recent language models or specialized biochemical models. The evaluation
is limited to binary classification tasks and may not generalize to multi-class or regression problems.
Additionally, our datasets represent specific biochemical endpoints and may not capture all aspects of
chemical safety assessment. The molecular representations (SMILES strings) may not capture all
relevant chemical information, particularly 3D structure and conformational flexibility.

Evaluation Limitations. Our evaluation uses a fixed 5:1 false negative to false positive weighting
ratio, but optimal ratios may vary by application domain and risk tolerance. The bootstrap confidence
intervals, while statistically rigorous, may not capture all sources of uncertainty in real-world
deployment. The 300-sample-per-seed evaluation design, while computationally efficient, may not
provide sufficient statistical power for all comparisons, particularly for rare positive cases in highly
imbalanced datasets.

Ethical Considerations. This benchmark is an evaluation tool, not a deployment-ready safety
filter. Expert oversight is required for any real-world applications. The systematic false negatives
we identify could have serious consequences if deployed without proper safeguards. Our findings
highlight the need for rigorous evaluation and validation before deploying Al systems in safety-
critical applications. We strongly recommend that any real-world deployment include human expert
review, continuous monitoring, and fail-safe mechanisms to prevent dangerous compounds from
being incorrectly classified as safe.

7 Conclusion

Our work exposes a critical gap in current biochemical Al evaluation: models achieving high
accuracy while systematically missing the most dangerous compounds pose serious safety concerns.
We present the first comprehensive safety-weighted evaluation framework that reveals these failure
modes invisible to traditional metrics. This research addresses a fundamental challenge in Al safety
evaluation and provides actionable insights for safer deployment of language models in biochemical
screening applications.

Key Contributions. (1) SWES: A novel, configurable Safety-Weighted Error Score that penalizes
false negatives 5x more heavily than false positives, providing a principled approach to safety-critical
evaluation; (2) Comprehensive Benchmark: First safety-focused evaluation across five biochemical
datasets with 30 experiments, multi-seed runs, and bootstrap confidence intervals, establishing a
new standard for rigorous safety evaluation; (3) Surprising Findings: Classical baselines often
outperform expensive LLaMA models, and larger models don’t guarantee better safety, challenging
conventional wisdom about model scaling and performance; (4) Complete Artifacts: One-command
reproduction package with all code, data, and publication-grade figures, enabling immediate adoption
by the research community.

Research Implications. Our findings have significant implications for the field of Al safety and
biochemical machine learning. The systematic false negatives we identify across all LLaMA variants
suggest fundamental limitations in general-purpose language models for safety-critical applications.
The superior performance of classical baselines highlights the continued importance of domain-
specific features and classical machine learning approaches, even in the era of large language models.
Our SWES metric provides a practical tool for researchers and practitioners to evaluate models in
safety-critical contexts, addressing a critical gap in current evaluation practices.

Future Directions. This work opens several important research directions. Future work should inves-
tigate specialized architectures and training procedures for safety-critical biochemical applications,
potentially combining the strengths of language models with domain-specific molecular represen-
tations. The SWES metric could be extended to other safety-critical domains beyond biochemical
screening, providing a general framework for safety-weighted evaluation. Additionally, research
should explore methods for improving the safety performance of language models, potentially through
specialized training procedures or architectural modifications.
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