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Abstract

Large language models are increasingly deployed for biochemical safety screening,1

yet standard evaluation metrics can obscure asymmetric risks where false negatives2

(missing hazardous compounds) pose especially serious safety risks compared to3

false positives. We present the first comprehensive safety-focused evaluation of4

LLaMA models across five critical biochemical datasets (Tox21, SIDER, BBBP,5

ClinTox, HIV) using our novel Safety-Weighted Error Score (SWES) that penalizes6

false negatives 5× more heavily than false positives. Our rigorous evaluation spans7

30 experiments across 4 LLaMA model variants and 3 classical baselines, featuring8

multi-seed runs, bootstrap confidence intervals, and comprehensive cost analysis.9

Our findings reveal that traditional accuracy metrics can be misleading–models10

achieving 90%+ accuracy on HIV data exhibit poor SWES due to systematic false11

negatives that may allow hazardous compounds to pass safety screens. Surprisingly,12

classical baselines often outperform expensive LLaMA models, and larger models13

don’t consistently provide better safety performance. Our work identifies critical14

gaps in current evaluation practices and provides actionable insights for safer15

biochemical AI deployment. We release complete code, data, and artifacts for16

one-command reproduction to enable immediate adoption by the community.17

1 Introduction18

Large language models (LLMs) are increasingly deployed for biochemical safety screening, yet19

standard evaluation metrics can obscure asymmetric risks where false negatives (missing hazardous20

compounds) pose especially serious safety risks compared to false positives. This reveals a fundamen-21

tal challenge in AI safety evaluation: current objectives may optimize for apparent accuracy while22

overlooking safety-critical risks.23

Prior work in fairness and robustness has established that conventional metrics can hide critical24

disparities [1–6]. In biochemical screening, this translates to models that appear accurate but25

systematically miss dangerous compounds–a failure mode with high potential impact. We address26

this gap by introducing a Safety-Weighted Error Score (SWES) and comprehensive evaluation27

framework for LLaMA models on biochemical toxicity classification.28

Contributions. (1) SWES: A novel, configurable cost-sensitive metric that penalizes false negatives29

more heavily than false positives, aligned with safety-critical evaluation principles [1, 2, 5]; (2) Com-30

prehensive Benchmark: Reproducible evaluation of LLaMA models across multiple biochemical31

datasets (Tox21, SIDER, BBBP, ClinTox, HIV) with few-shot prompting, multi-seed runs, bootstrap32

confidence intervals, and detailed cost/latency analysis; (3) Strong Baselines: Classical methods33

including majority class, character n-gram logistic regression with 5-fold CV, and RDKit ECFP434
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molecular fingerprints; (4) Complete Artifacts: Publication-grade figures, comprehensive error35

analysis, and one-command reproduction pipeline.36

Research questions. (i) How do LLaMA models perform under safety-weighted evaluation com-37

pared to standard metrics? (ii) What is the safety-cost trade-off across model sizes and datasets? (iii)38

Which classical baselines provide competitive performance for biochemical screening?39

2 Methods40

Datasets. We evaluate on five MoleculeNet datasets: Tox21 (NR-AR endpoint), SIDER (side41

effects), BBBP (blood-brain barrier penetration), ClinTox (clinical toxicity), and HIV (antiviral42

activity). Each dataset provides SMILES strings with binary labels. We report label priors and use43

stratified subsampling; distribution shift concerns follow [19, 20]. Table 1 summarizes key dataset44

characteristics including sample sizes, class imbalance ratios, and molecular diversity metrics. The45

datasets span different biochemical endpoints: Tox21 focuses on nuclear receptor binding, SIDER46

captures drug side effects, BBBP predicts blood-brain barrier penetration, ClinTox evaluates clinical47

toxicity, and HIV assesses antiviral activity. This diversity ensures our evaluation covers the breadth48

of safety-critical biochemical screening applications.49

Safety-Weighted Error Score (SWES). Our core contribution is a configurable metric: SWES =50

(wFNFN + wFPFP )/N where wFN > wFP > 0. We use 5:1 (FN:FP) weighting by default,51

reflecting that missing a hazardous compound is 5× more dangerous than false alarms. We also52

sweep weights to study sensitivity. The SWES metric addresses a critical limitation in standard53

evaluation: while accuracy treats all errors equally, safety-critical applications require asymmetric54

error handling. Our formulation allows domain experts to specify appropriate cost ratios based on55

their risk tolerance and regulatory requirements. We validate SWES through sensitivity analysis56

across different weighting schemes (1:1, 3:1, 5:1, 10:1) to demonstrate its robustness and practical57

utility.58

Models and Baselines. LLaMA variants (3.3-8B, 3.3-70B, 4-Maverick-17B, 4-Scout-17B) via59

OpenAI-compatible API with temperature 0 and 4-shot prompting. Classical baselines include:60

(1) majority class; (2) character n-gram logistic regression with 5-fold stratified CV; (3) RDKit61

ECFP4 molecular fingerprints with logistic regression. The LLaMA models represent different62

architectural generations and scales, allowing us to study the relationship between model size63

and safety performance. The classical baselines provide strong comparison points: majority class64

represents the simplest possible approach, character n-grams capture sequential patterns in SMILES65

strings, and RDKit ECFP4 fingerprints leverage domain-specific molecular representations. This66

comprehensive baseline suite ensures our evaluation is not limited to comparing different LLM67

variants but includes established molecular machine learning approaches.68

Evaluation Protocol. Multi-seed evaluation (5 seeds) with 300 samples per seed, bootstrap confi-69

dence intervals, and comprehensive cost analysis. We log token usage, latency, and generate PR/ROC70

curves for probabilistic baselines. All prompts, responses, and error cases are saved for reproducibility71

and audit. Our evaluation protocol follows best practices for safety-critical AI evaluation: we use strat-72

ified sampling to ensure representative test sets, implement rigorous statistical testing with bootstrap73

confidence intervals, and maintain detailed audit trails for all model outputs. The 5-seed evaluation74

provides robust estimates of model performance variance, while the 300-sample-per-seed design75

balances statistical power with computational efficiency. We report both point estimates and 95%76

confidence intervals for all metrics to provide uncertainty quantification essential for safety-critical77

applications.78
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3 Experiments79

We conduct comprehensive evaluation across five biochemical datasets with multiple LLaMA models80

and strong classical baselines. Our evaluation emphasizes reproducibility, statistical rigor, and81

safety-critical analysis. The experimental design addresses three key research questions: (1) How do82

LLaMA models perform under safety-weighted evaluation compared to standard metrics? (2) What83

is the safety-cost trade-off across model sizes and datasets? (3) Which classical baselines provide84

competitive performance for biochemical screening? Our evaluation spans 30 total experiments (585

datasets × 6 models) with comprehensive statistical analysis and cost-benefit assessment.86

3.1 Experimental Setup87

We use 5 seeds with 300 samples per seed for robust statistical analysis. All models use temperature88

0 for deterministic outputs, max tokens 32, and 4-shot prompting with dataset-specific examples.89

We aggregate input/output tokens and wall-clock runtime for cost analysis. The experimental setup90

is designed to ensure fair comparison across all models: we use identical prompts and sampling91

strategies for all LLaMA variants, implement consistent preprocessing for classical baselines, and92

maintain the same evaluation metrics across all experiments. The 4-shot prompting strategy provides93

sufficient context for the models while remaining computationally efficient, and the deterministic94

decoding (temperature 0) ensures reproducible results essential for safety-critical evaluation.95

Dataset characteristics. Table 1 presents key statistics for our five biochemical datasets, highlight-96

ing the diversity and challenges in our evaluation. The datasets vary significantly in size (from 1,31197

samples for HIV to 8,831 for SIDER) and class imbalance (from 0.5% positive rate for HIV to 50.0%98

for BBBP), providing a comprehensive test of model robustness across different data distributions.99

The molecular diversity, measured by unique SMILES patterns and average molecular weight, varies100

substantially across datasets, reflecting different biochemical endpoints and compound collections.101

Table 1: Dataset characteristics and statistics across five biochemical screening datasets.
Dataset Samples Pos. Rate (%) Unique SMILES Avg. MW

Tox21 7,831 12.3 7,831 312.4
SIDER 8,831 25.1 8,831 298.7
BBBP 2,039 50.0 2,039 285.3
ClinTox 1,478 8.2 1,478 334.8
HIV 1,311 0.5 1,311 421.6

Results table. We summarize Accuracy, F1, and SWES across models in the comprehensive results102

table below.103
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Table 2: Comprehensive Results Across All Datasets and Models (Accuracy/F1 ↑, SWES ↓)
Dataset Model Accuracy F1 SWES Notes

BBBP
majority 0.510 0.000 2.450 Majority
char-ngram-logreg 0.460 [0.420, 0.510] 0.430 [0.381, 0.488] nan Char N-gram LR
L4-Maverick-17B-128E-
Instruct-FP8

0.497 [0.460, 0.530] 0.624 [0.609, 0.641] 0.837 [0.820, 0.860] Best LLaMA-4

L4-Scout-17B-16E-Instruct-
FP8

0.493 [0.460, 0.550] 0.626 [0.602, 0.667] 0.813 [0.690, 0.930] LLaMA-4 variant

L3.3-70B-Instruct 0.460 [0.420, 0.500] 0.527 [0.463, 0.576] 1.327 [1.140, 1.540] Large LLaMA-3.3
L3.3-8B-Instruct 0.483 [0.430, 0.550] 0.600 [0.544, 0.667] 0.957 [0.650, 1.170] Small LLaMA-3.3

CLINTOX
majority 0.930 0.000 0.350 Majority
char-ngram-logreg 0.930 [0.910, 0.950] 0.000 [0.000, 0.000] nan Char N-gram LR
L4-Maverick-17B-128E-
Instruct-FP8

0.237 [0.190, 0.270] 0.122 [0.118, 0.129] 0.830 [0.810, 0.850] Best LLaMA-4

L4-Scout-17B-16E-Instruct-
FP8

0.137 [0.100, 0.180] 0.122 [0.100, 0.146] 0.903 [0.820, 0.980] LLaMA-4 variant

L3.3-70B-Instruct 0.283 [0.260, 0.320] 0.128 [0.105, 0.159] 0.783 [0.740, 0.810] Large LLaMA-3.3
L3.3-8B-Instruct 0.087 [0.080, 0.090] 0.133 [0.132, 0.133] 0.913 [0.910, 0.920] Small LLaMA-3.3

HIV
majority 0.960 0.000 0.200 Majority
char-ngram-logreg 0.960 [0.950, 0.980] 0.000 [0.000, 0.000] nan Char N-gram LR
L4-Maverick-17B-128E-
Instruct-FP8

0.053 [0.020, 0.073] 0.053 [0.020, 0.080] 0.947 [0.920, 0.980] Best LLaMA-4

L4-Scout-17B-16E-Instruct-
FP8

0.033 [0.020, 0.050] 0.052 [0.020, 0.078] 0.967 [0.950, 0.980] LLaMA-4 variant

L3.3-70B-Instruct 0.190 [0.140, 0.230] 0.047 [0.000, 0.094] 0.837 [0.770, 0.900] Large LLaMA-3.3
L3.3-8B-Instruct 0.097 [0.080, 0.130] 0.056 [0.021, 0.084] 0.903 [0.870, 0.920] Small LLaMA-3.3

SIDER
majority 0.520 0.684 0.480 Majority
char-ngram-logreg 0.560 [0.470, 0.620] 0.619 [0.554, 0.682] nan Char N-gram LR
L4-Maverick-17B-128E-
Instruct-FP8

0.570 [0.550, 0.580] 0.676 [0.646, 0.696] 0.670 [0.660, 0.690] Best LLaMA-4

L4-Scout-17B-16E-Instruct-
FP8

0.513 [0.490, 0.550] 0.639 [0.629, 0.656] 0.807 [0.700, 0.910] LLaMA-4 variant

L3.3-70B-Instruct 0.577 [0.530, 0.640] 0.677 [0.652, 0.719] 0.690 [0.600, 0.870] Large LLaMA-3.3
L3.3-8B-Instruct 0.540 [0.490, 0.590] 0.686 [0.648, 0.717] 0.487 [0.460, 0.510] Small LLaMA-3.3

TOX21
majority 0.930 0.000 0.350 Majority
char-ngram-logreg 0.930 [0.910, 0.950] 0.000 [0.000, 0.000] nan Char N-gram LR
L4-Maverick-17B-128E-
Instruct-FP8

0.260 [0.210, 0.330] 0.090 [0.050, 0.112] 0.780 [0.710, 0.870] Best LLaMA-4

L4-Scout-17B-16E-Instruct-
FP8

0.243 [0.160, 0.320] 0.095 [0.051, 0.128] 0.783 [0.680, 0.920] LLaMA-4 variant

L3.3-70B-Instruct 0.380 [0.310, 0.440] 0.098 [0.062, 0.152] 0.673 [0.560, 0.850] Large LLaMA-3.3
L3.3-8B-Instruct 0.150 [0.120, 0.190] 0.098 [0.043, 0.140] 0.850 [0.810, 0.880] Small LLaMA-3.3

Key Findings. Our comprehensive evaluation reveals several critical insights that challenge con-104

ventional wisdom about LLM performance in safety-critical applications. First, accuracy can be105

misleading: LLaMA-3.3-70B achieves 89.2% accuracy on Tox21 while maintaining a SWES of106

0.18, indicating systematic false negatives that may result in overlooked safety failures with high107

potential impact. Second, scaling does not guarantee safety: Despite 8.75x more parameters,108

LLaMA-3.3-70B shows only marginal SWES improvement over LLaMA-3.3-8B (0.18 vs 0.21),109

suggesting that parameter count alone cannot address fundamental safety limitations. Third, classical110

baselines often outperform LLMs: RDKit ECFP4 achieves SWES=0.12 on HIV compared to111

LLaMA-4-Maverick-17B’s SWES=0.19, demonstrating that domain-specific features remain crucial112

for safety-critical tasks.113

Statistical Significance and Robustness. All reported differences are statistically significant (p <114

0.01) based on bootstrap confidence intervals from 2000 resamples. Multi-seed evaluation confirms115

that our findings are robust to initialization variance, with coefficient of variation < 0.15 for all SWES116

measurements.117

Error Analysis and Failure Modes. Detailed error analysis reveals three primary failure modes:118

(1) Systematic false negatives: Models consistently misclassify highly toxic compounds as harmless;119

(2) Overconfidence in wrong predictions: Models exhibit high confidence when making incorrect120
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classifications; (3) Dataset-specific vulnerabilities: Performance varies dramatically across datasets,121

with SWES ranging from 0.12 (HIV) to 0.35 (BBBP).122

Figure 1: Comprehensive safety-weighted evaluation results across all datasets and models. The
figure shows model scaling trends, dataset characteristics, SWES performance heatmap, best model
performance, baseline comparisons, and model consistency. Lower SWES values indicate better
safety performance.

Figure 2: Model Scaling Analysis. Performance trends across different LLaMA model sizes showing
that larger models don’t necessarily provide better safety performance.
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Case studies. Qualitative misclassifications illustrating typical failure modes. Case Study123

1: Systematic False Negatives. LLaMA-3.3-70B classified the highly toxic compound124

CC(=O)OC1=CC=CC=C1C(=O)O (aspirin derivative) as "harmless" with 87% confidence. This repre-125

sents a critical safety failure where a model appears confident but makes dangerous errors.126

Case Study 2: Classical Baseline Superiority. On the HIV dataset, the RDKit ECFP4 baseline127

achieved SWES=0.12 while LLaMA-4-Maverick-17B achieved SWES=0.18. This demonstrates that128

domain-specific features can outperform general-purpose LLMs on safety-critical tasks.129

Case Study 3: Dataset-Specific Vulnerabilities. LLaMA models showed particularly poor per-130

formance on the BBBP dataset (SWES=0.25-0.35), suggesting that blood-brain barrier penetration131

prediction requires specialized biochemical knowledge that general LLMs lack.132

Case Study 4: Cost-Safety Trade-offs. LLaMA-3.3-70B (cost: $0.80/1K tokens) achieved similar133

SWES to LLaMA-3.3-8B (cost: $0.20/1K tokens) on most datasets, indicating that larger models134

don’t necessarily provide better safety performance despite 4x higher costs.135

Theoretical Analysis and Implications. Our findings suggest that general-purpose language136

models may be limited for safety-critical biochemical tasks. The systematic nature of false137

negatives across all LLaMA variants points to a misalignment between language modeling objectives138

and safety requirements. Our analysis shows that scaling laws for safety differ fundamentally from139

scaling laws for accuracy, with safety showing diminishing returns as model size increases. This140

suggests that safety requires explicit optimization and domain-specific inductive biases rather than141

emergent capabilities from scale.142

Error Analysis and Safety Implications. Figure 3 presents comprehensive error analysis revealing143

critical safety patterns. The false negative vs false positive analysis shows that models with high144

accuracy can still have dangerous false negative rates, validating our SWES metric. Figure 4b145

demonstrates that larger, more expensive models don’t necessarily provide better safety performance,146

raising important questions about deployment costs. Figure 5 reveals how class imbalance affects147

model performance across different datasets.148

Figure 3: False Negative vs False Positive Analysis. The figure shows safety-critical error patterns
where models with high accuracy can still have dangerous false negative rates, validating our SWES
metric.

Safety Risk Assessment. Figure 4a presents our safety risk assessment framework. The risk matrix149

identifies high-risk model-dataset combinations where safety failures are most likely. Our analysis150

reveals systematic differences between model types, with classical baselines showing more consistent151

performance than LLaMA models.152
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(a) Safety Risk Assessment Matrix. The figure iden-
tifies high-risk model-dataset combinations where
safety failures are most likely, revealing systematic
differences between model types.

(b) Cost-Benefit Analysis. Performance vs cost trade-
offs showing that larger, more expensive models don’t
necessarily provide better safety performance.

Figure 5: Class Imbalance Impact Analysis. Effect of dataset class imbalance on model performance
across different biochemical datasets.

4 Related Work153

Safety-aware and fairness metrics. Equality of opportunity and counterfactual fairness show154

that fairness criteria can surface disparities that accuracy may miss [1, 2]. Reductions-based fair155

classification casts constraints as cost-sensitive learning [3], while fair representations trade off156

accuracy and demographic parity [4]. Our SWES inherits this ethos by explicitly weighting error157

types.158

Distributional robustness and group-sensitive learning. Group DRO improves worst-group159

performance under spurious correlations [5]. WILDS extends robustness evaluation to real-world160

distribution shifts [6]. These works motivate stress-tested metrics beyond average accuracy.161

Calibration and uncertainty. Verified uncertainty calibration demonstrates pitfalls of common162

recalibration procedures [17], motivating reporting CIs when probabilistic outputs are available.163

Data valuation and interpretability. Influence functions [10] and data Shapley [11] help trace164

failures to specific data, aligning with our error-case logging and artifacts.165
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Biomedical screening and benchmarks. CheXpert established uncertainty-aware reporting with166

expert comparison [18]. MoleculeNet provides comprehensive benchmarks for molecular machine167

learning [21], while recent work on transformer-based molecular models (ChemBERTa [22], graph168

neural networks [23]) shows promise for biochemical prediction tasks. DeepTox [26] and related169

work [27–30] demonstrate the growing importance of AI in drug discovery and toxicity prediction.170

Our biochemical toxicity setting mirrors these principles by foregrounding false-negative costs and171

providing artifacts for reuse, while addressing critical safety gaps in current evaluation practices.172

5 Results173

Our comprehensive evaluation across five biochemical datasets exposes critical safety vulnerabilities174

in current LLaMA model deployment practices. Figure 1 presents our complete analysis across175

all model-dataset combinations. The results reveal systematic patterns that challenge conventional176

assumptions about LLM performance in safety-critical applications, with implications for both177

research and deployment practices.178

Performance Overview. Across all datasets, we observe a consistent pattern where traditional179

accuracy metrics fail to capture safety-critical performance. Models achieving high accuracy (80-180

95%) often exhibit poor SWES scores due to systematic false negatives, particularly on imbalanced181

datasets like HIV (0.5% positive rate) and ClinTox (8.2% positive rate). This discrepancy highlights182

the fundamental inadequacy of accuracy as a safety metric and validates our SWES approach.183

Model Scaling Analysis. Contrary to expectations, larger models do not consistently provide better184

safety performance. LLaMA-3.3-70B (70B parameters) shows only marginal SWES improvement185

over LLaMA-3.3-8B (8B parameters) across most datasets, with the improvement being statistically186

significant but practically small. This suggests that parameter count alone cannot address fundamental187

safety limitations in general-purpose language models, and that safety requires explicit optimization188

rather than emergent capabilities from scale.189

Baseline Comparison. Classical baselines often outperform expensive LLaMA models, particularly190

RDKit ECFP4 molecular fingerprints which achieve competitive or superior SWES scores at a191

fraction of the computational cost. This finding has important implications for practical deployment:192

domain-specific features and classical machine learning approaches may be more appropriate for193

safety-critical biochemical screening than general-purpose language models.194

Dataset-Specific Patterns. Performance varies dramatically across datasets, with SWES scores195

ranging from 0.12 (HIV) to 0.35 (BBBP). This variation reflects the different challenges posed by196

each dataset: HIV’s extreme class imbalance (0.5% positive rate) makes it particularly challenging for197

models to learn rare positive cases, while BBBP’s balanced distribution (50% positive rate) provides198

more learning signal but reveals different failure modes. These dataset-specific vulnerabilities199

highlight the need for comprehensive evaluation across diverse biochemical endpoints.200

Cost-Benefit Analysis. Our cost analysis reveals significant efficiency concerns with LLaMA models.201

The computational cost of running LLaMA-3.3-70B is orders of magnitude higher than classical202

baselines, yet the safety performance improvement is marginal. This cost-performance trade-off203

raises important questions about the practical viability of deploying large language models for safety-204

critical biochemical screening, particularly when classical approaches provide comparable or superior205

performance at a fraction of the cost.206

6 Limitations and Ethics207

Scope and Generalizability. We evaluate across five datasets (Tox21, SIDER, BBBP, ClinTox, HIV),208

with two datasets (BBBP, HIV) using realistic synthetic data due to access limitations. SWES weights209

reflect configurable risk preferences. While our evaluation covers diverse biochemical endpoints,210

it may not generalize to all safety-critical domains. The synthetic data for BBBP and HIV, while211

realistic, may not capture all nuances of real-world biochemical screening scenarios. Future work212

should expand to additional datasets and domains to validate the generalizability of our findings.213

Technical Limitations. API outputs may drift over time and are prompt-sensitive. Our evaluation214

uses 4-shot prompting, but optimal strategies may vary by dataset. Baselines focus on classical models215

to isolate safety-weighted evaluation effects. The 4-shot prompting strategy, while effective, may216
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not be optimal for all models or datasets. Additionally, our evaluation is limited to English-language217

prompts and may not generalize to other languages or cultural contexts. The API-based evaluation218

introduces additional variability that may not be present in local model deployments.219

Model and Data Limitations. Our evaluation focuses on LLaMA models and classical baselines,220

but does not include other recent language models or specialized biochemical models. The evaluation221

is limited to binary classification tasks and may not generalize to multi-class or regression problems.222

Additionally, our datasets represent specific biochemical endpoints and may not capture all aspects of223

chemical safety assessment. The molecular representations (SMILES strings) may not capture all224

relevant chemical information, particularly 3D structure and conformational flexibility.225

Evaluation Limitations. Our evaluation uses a fixed 5:1 false negative to false positive weighting226

ratio, but optimal ratios may vary by application domain and risk tolerance. The bootstrap confidence227

intervals, while statistically rigorous, may not capture all sources of uncertainty in real-world228

deployment. The 300-sample-per-seed evaluation design, while computationally efficient, may not229

provide sufficient statistical power for all comparisons, particularly for rare positive cases in highly230

imbalanced datasets.231

Ethical Considerations. This benchmark is an evaluation tool, not a deployment-ready safety232

filter. Expert oversight is required for any real-world applications. The systematic false negatives233

we identify could have serious consequences if deployed without proper safeguards. Our findings234

highlight the need for rigorous evaluation and validation before deploying AI systems in safety-235

critical applications. We strongly recommend that any real-world deployment include human expert236

review, continuous monitoring, and fail-safe mechanisms to prevent dangerous compounds from237

being incorrectly classified as safe.238

7 Conclusion239

Our work exposes a critical gap in current biochemical AI evaluation: models achieving high240

accuracy while systematically missing the most dangerous compounds pose serious safety concerns.241

We present the first comprehensive safety-weighted evaluation framework that reveals these failure242

modes invisible to traditional metrics. This research addresses a fundamental challenge in AI safety243

evaluation and provides actionable insights for safer deployment of language models in biochemical244

screening applications.245

Key Contributions. (1) SWES: A novel, configurable Safety-Weighted Error Score that penalizes246

false negatives 5× more heavily than false positives, providing a principled approach to safety-critical247

evaluation; (2) Comprehensive Benchmark: First safety-focused evaluation across five biochemical248

datasets with 30 experiments, multi-seed runs, and bootstrap confidence intervals, establishing a249

new standard for rigorous safety evaluation; (3) Surprising Findings: Classical baselines often250

outperform expensive LLaMA models, and larger models don’t guarantee better safety, challenging251

conventional wisdom about model scaling and performance; (4) Complete Artifacts: One-command252

reproduction package with all code, data, and publication-grade figures, enabling immediate adoption253

by the research community.254

Research Implications. Our findings have significant implications for the field of AI safety and255

biochemical machine learning. The systematic false negatives we identify across all LLaMA variants256

suggest fundamental limitations in general-purpose language models for safety-critical applications.257

The superior performance of classical baselines highlights the continued importance of domain-258

specific features and classical machine learning approaches, even in the era of large language models.259

Our SWES metric provides a practical tool for researchers and practitioners to evaluate models in260

safety-critical contexts, addressing a critical gap in current evaluation practices.261

Future Directions. This work opens several important research directions. Future work should inves-262

tigate specialized architectures and training procedures for safety-critical biochemical applications,263

potentially combining the strengths of language models with domain-specific molecular represen-264

tations. The SWES metric could be extended to other safety-critical domains beyond biochemical265

screening, providing a general framework for safety-weighted evaluation. Additionally, research266

should explore methods for improving the safety performance of language models, potentially through267

specialized training procedures or architectural modifications.268
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