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ABSTRACT

Large language models (LLMs) can solve an increasing number of complex rea-
soning tasks while making surprising mistakes in basic numerical understanding
and processing (such as 9.11 > 9.9). The latter ability is essential for tackling
complex arithmetic and mathematical problems and serves as a foundation for
most reasoning tasks, but previous work paid little attention to it or only discussed
several restricted tasks (like integer addition). In this paper, we comprehensively
investigate the numerical understanding and processing ability (NUPA) of
LLMs. Firstly, we introduce a benchmark covering four common numerical rep-
resentations and 17 distinct numerical tasks in four major categories, resulting
in 41 meaningful combinations in total. These tasks are derived from primary
and secondary education curricula, encompassing nearly all everyday numerical
understanding and processing scenarios, and the rules of these tasks are very simple
and clear. Through the benchmark, we find that current LLMs fail frequently in
many of the tasks. To study the problem, we train small models with existing and
potential techniques for enhancing NUPA (such as tokenizers, PEs, and number
formats), comprehensively evaluating their effectiveness using our testbed. We also
finetune practical-scale LLMs on our proposed NUPA tasks and find that 1) naive
finetuning can improve NUPA a lot on many but not all tasks, and 2) surprisingly,
techniques designed to enhance NUPA prove ineffective for finetuning pretrained
models. We further explore the impact of chain-of-thought techniques on NUPA.
Our work provides a more detailed and comprehensive understanding of NUPA in
LLMs.

1 INTRODUCTION

The mathematical and reasoning abilities of large language models (LLMs) are currently quite impres-
sive (OpenAI, 2023; Meta, 2024a; OpenAI, 2024a; Yang et al., 2024a), capable of solving problems
at the level of a graduate student or even more difficult ones like olympiad-level problems (He et al.,
2024), GAOKAO (a nationwide examination of high school students applying to universities in
China) (Zhang et al., 2024b) and college mathematics (Tang et al., 2024). However, upon closer
examination of the models’ outputs, we found that although the models demonstrate remarkable
proficiency in problem-solving approaches, they often struggle with basic numerical understanding
and processing — like a careless student who claims, “I know how to do it, but I didn’t get it right.”
Some of these errors are quite surprising, such as believing that 9.11 > 9.9 or making mistakes
in simple addition 8/7 + 3/5. These errors are a major cause of hallucinations when dealing with
math, reasoning, and data analysis tasks, as the model presents seemingly correct problem-solving
approaches, but ultimately produces incorrect results (Huang et al., 2024; Li et al., 2024b; Jiang et al.,
2024b). Therefore, investigating and improving the fundamental “numerical understanding and
processing abilities” (NUPA) of models is crucial.

However, in current research, reasoning ability and NUPA are often tested together, both on classic
datasets such as GSM8k (Cobbe et al., 2021), MATH (Hendrycks et al., 2021), MMLU (Hendrycks
et al., 2020), and in more challenging tests mentioned above. For example, a problem in GSM8k
is: “Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May.
How many clips did Natalia sell altogether in April and May?” Solving this problem requires two
aspects: on the one hand, mathematical reasoning including understanding the text, extracting relevant
information, formulating mathematical equations (or finding other solution methods), solving the
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Table 1: Task overview of NUPA Test. The four rows represent four numerical representations, and
the 17 columns correspond to different tasks. ✓: 41 tasks included in our test. ✗: Not included,
too complex. ⃝: Not directly included but can be easily adapted from an included task. −: Not
applicable. The detailed explanation for these non-included tasks is provided in Appendix A.1.5

Elementary arithmetic Comparison Digit Understanding Conversion

Add Sub Multiply Truediv Floordiv Mod Max Min Digit
Max

Digit
Min

Digit
Add

Get
Digit Length Count To

Float
To

Scientific
Sig.
Fig.

Integer ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ − ✓ ✓
Float ✓ ✓ ✓ ✗ − − ✓ ✓ ✓ ✓ ✓ ✓ ✓ ⃝ − ✓ ✓
Fraction ✓ ✓ ✓ ✓ − − ✓ ✓ − − − − − ⃝ ✓ ⃝ ⃝
Scientific ✓ ✓ ✓ ✗ − − ✓ ✓ − − − − − ⃝ ✓ − ⃝

equations or executing an algorithm, and obtaining the result; on the other hand, it also requires
understanding and processing the numbers provided in the problem or produced as intermediate
results at each step, like 48/2 = 24 and 48 + 24 = 72. While these two abilities are both essential to
correctly solving the problems, tests on such datasets do not distinguish between them.

A more severe issue is that the numerical content is often deliberately simplified in these datasets.
In various exam questions (like in the American Invitational Mathematics Examination (Li et al.,
2024a)), to focus on assessing students’ understanding of mathematical concepts — such as how
to set up the correct equations and apply the right theorems — the numbers in both the questions
and answers are often specially chosen to be integers. However, this is not the case in real-world
scenarios (Chen et al., 2022a).

Despite the importance of NUPA, there is still a lack of accurate, detailed, and comprehensive
formalization, measurement, and analysis of this fundamental capability. In this paper, we take the
preliminary step towards formalizing the NUPA of LLMs. We categorize the numerical concepts
and operations commonly taught in primary and secondary education into four types of numerical
representations: integers, floating-point numbers (finite decimals), fractions, and scientific notation,
along with four ability categories comprising 17 tasks. Pairing these representations results in 41
meaningful tasks, forming our NUPA benchmark (Table 1). These representations and tasks cover
the most common scenarios involving number understanding and processing, which are typically not
challenging for humans, as we read, use, or process such numbers nearly everyday.

On this benchmark, we rigorously test several state-of-the-art LLMs containing GPT-4o (OpenAI,
2024a), Llama-3.1 (Meta, 2024a) and Qwen2 (Qwen Team, 2024). We ask models to directly output
the answers without calling external tools. Although the latest LLMs perform well on some easiest
tasks, their performance declines significantly as tasks become slightly more complex (such as
multiplication, modulo operations, or digit-based calculations), or as the representation of numbers
extends beyond basic integers. See Figure 2 of Section 2.4. The overall unsatisfactory performance
highlights a pronounced mismatch between the claimed strong mathematical reasoning abilities and
the poor practical, everyday numerical understanding and processing abilities of today’s LLMs.

To address this issue, we explore three categories of approaches to enhance the NUPA of models.
The first category of techniques aim at improving models’ NUPA during the pretraining stage,
including alternative tokenization, specially designed positional encoding (PE) (Haviv et al., 2022;
Kazemnejad et al., 2023b; Zhou et al., 2024), changing number formats (like zero-padding, index-
hint (Zhou et al., 2023) and reverse representation (Lee et al., 2023; Zhou et al., 2024)). We evaluate
and analyze them on our newly introduced benchmark, verifying their effectiveness/ineffectiveness
on respective tasks/representations, which extends over previous evaluation mainly on the integer
addition/multiplication tasks. Further, we summarize these techniques into three mechanisms:
simplifying the reasoning process, aiding digit alignment, and providing regularization, and discuss
the potential of these mechanisms to be applied across a broader range of numerical representations.

The second category of approaches aim to improve NUPA for an already trained model. We find
that while simple direct finetuning can significantly enhance NUPA performance, applying the
aforementioned techniques (PEs, data formats and tokenizers) at this stage may have adverse effects.
We test various settings and fine-tuning configurations, but none are able to achieve performance equal
to or better than the original model. Our results suggest that these modifications can significantly
disrupt the models’ established behavior or conflict with its pre-existing knowledge, leading to a
decrease in performance.

Finally, we discuss the potential of using chain-of-thought (CoT) techniques (Wei et al., 2023) for
numerical processing. Although CoT methods can break down complex problems into simpler sub-
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tasks and significantly increase the likelihood of obtaining correct answers, their drawbacks — such
as consuming a large context window and requiring extended processing time — become particularly
apparent in numerical tasks. We test a general CoT method known as RFFT (Hu et al., 2024), and
find that for more complex tasks (such as multiplication and fraction addition), chain-of-thought
methods face scalability challenges, making them difficult to be applied in practical scenarios. It
is noteworthy that in this paper, we do not discuss tool use methods (Schick et al., 2023; Lu et al.,
2023a) for NUPA as 1) we want to study the self-contained NUPA of LLMs, 2) calling external tools
whenever encountering numbers increases the inference latency (Xu et al., 2024), and 3) we believe
NUPA without tools is a necessary ability of AGI.

In summary, we propose a more comprehensive benchmark on the basic numerical understanding
and processing abilities (NUPA) of LLMs, evaluate several SOTA LLMs’ performance on it, and
further study three categories of approaches to improve NUPA: pretraining, finetuning and CoT. Our
results reveal that the current research is insufficient to fully address the NUPA problem, despite it
being a fundamental capability for solving many more complex tasks. We hope that by introducing a
systematic classification and more comprehensive evaluation of NUPA, we can bring greater attention
from the community to this important but overlooked fundamental capability.

2 NUPA TEST: A BENCHMARK FOR NUMBER UNDERSTANDING AND
PROCESSING ABILITY

In this section, we will introduce our NUPA benchmark from the following four aspects: number
representations, tasks, metrics, and result analysis of current LLMs. We will explain the rationale
behind the inclusion (or exclusion) of specific representations and tasks in our benchmark, highlighting
their distinctive features.

2.1 NUMBER REPRESENTATION

As we discuss above, we believe that the educational curricula on the (Chinese) primary and
secondary school levels is a valuable reference for determining the essential NUPAs that LLMs
should master. We identify four number formats in these curricula that are both common and sufficient
to cover most practical scenarios.
• Integer: The most common number and the foundation of other number representations.
• Floating-Point Number (Float): Floats, or finite decimals, are a useful subset of fractions.

Calculations with floats like addition and comparison, work similarly to integers, making them
common in daily life.

• Fraction: We consider fractions with integer numerators and denominators. In practical situations
involving distribution, fractions become unavoidable, especially when the inaccuracy introduced
by converting fractions to floats is unacceptable.

• Scientific Notation: Scientific notation is characterized by separating a number’s precise value
from its order of magnitude. It is widely used in fields like physics, economics, and computer
science because it efficiently handles a wide range of numbers and clearly conveys significant
figures and precision. For LLMs, mastering scientific notation can significantly enhance their
ability to handle practical tasks, such as interpreting financial reports or reading scientific texts.

Details of these four representations in our benchmark can be found in Appendix A.1.1. There are
possible representations of numbers that are not included in these four formats, like complex numbers,
infinite decimal representation (repeating and non-repeating), radical expression (like

√
2), ... These

representations either occur infrequently in practical conversations (e.g., complex numbers) or present
significant challenges for language models to process without the aid of external tools (e.g., radicals).
For these reasons, we have opted not to include them in our benchmark at this stage.

2.2 TASKS IN FOUR ABILITY CATEGORIES

Another aspect of NUPA is defining the tasks that the model needs to handle. The tasks should have
clear calculation rules — Because these tasks are extracted from the education curricula, students
who have completed the stage of education are expected to solve them. Furthermore, most practical
numerical processing tasks should either fall within these tasks or can be easily transformed into
some of them. We propose 17 tasks across four ability categories. The complete task list is shown in
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Table 1 and we provide a more detailed discussion in Appendix A.1.2 an example for each task in
Appendix A.1.3. Below we discuss the rationales for including some tasks in detail.

• Elementary arithmetic: addition, subtraction, multiplication, and division. The most funda-
mental mathematical operations. For division, we consider three types of related operators: True
division, floor division and modulus.

• Comparison: max and min. Understanding numbers on the concept of “order”.
• Digit understanding: When we care about a language model’s understanding, processing (and

generation) of numbers, digit is a crucial concept, as numbers are not read and processed by
the language model as a whole, but rather as a sequence of digits. We specially designed some
digit-related tasks to test whether LLMs truly handle digits, including:

– Get digit: Given a number and an integer i, return the i-th digit. This task is important when
certain digits have special meanings in a number (such as a phone number or SSN).

– Length: Return the total length (i.e., the number of digits) of a number.
– Count: Count the times that a particular digit occurs in an integer.
– Digit compare: Compare and return the larger (smaller) digits one by one.
– Digit add: Perform the normal addition digit by digit but ignore any carrying. For example,
digit_add(12345, 34567) = 46802. It can test a model’s understanding of digit alignment
and its mastery of single-digit addition.

• Conversion between representations: Converting a number to two representations: to float and
to scientific notation, as they are frequently used to present final results. These two tasks test
whether models can understand the relationship between various numerical formats. In particular,
since many tasks present answers as approximate values, we designed a “significant digit” (sig.
fig.) task to evaluate a model’s ability to round long numbers to fixed-length significant digits.

The combination of representations and tasks ultimately result in a total of 41 meaningful pairs.
Without confusion, we also call them tasks. The tasks receive either one or two numbers as inputs and
return a number as result and the input numbers and results share the same representation for most
tasks unless otherwise stated (refer to Appendix A.1.4). The remaining combinations are excluded
due to being excessively complex, uncommon, inapplicable, or redundant with other tasks. For further
details, see the discussion in Appendix A.1.5.

The difficulty of each task depends not only on the nature of the task itself but also on the length
of the numbers to be processed — longer tasks involve more steps of internal operations, as well
as longer inputs and outputs. Therefore, we test on different problem lengths. For tasks that are
inherently more difficult, we limit the size of the problem to 1-20 digits, and for easier tasks to 1-100
digits. (For which tasks are considered difficult or easy, please refer to the Appendix A.1.6.)

We generated 1,000 questions for each task and each length. Unlike some previous works that set
the lengths of two numbers to be the same, in our tests, the length L of a question is determined by
the longer of the two numbers, while the length of the shorter number follows a uniform distribution
between 1 and L. We implemented additional handling to ensure that generated problems do not
result in overly simple, complex, or meaningless results. Some tasks are further split into a hard and
an easy version. More details about generating the benchmark are provided in Appendix A.1.7.

2.3 METRICS ABOUT NUPA

31415.92653582
425.925535321

Groundtruth:
Generation:

Exact match: 0

Digit match: 8 / (8 + 5) =0.62
dlength: 3

Figure 1: An example of metrics.

Measuring the performance of NUPA benchmarks on these
tasks is not trivial. “Exact match” accuracy is the golden
standard of the performance where the answer is considered as
correct when it exactly matches the groundtruth. However, a
smoother and more detailed metric is useful to understand the
behavior and capabilities of a model. Therefore, we also report
the “digit match” and “dlength” (difference of length) metrics,
as metrics of digit accuracy and length accuracy respectively.
We first split numbers into parts (e.g., integer and decimal
parts of a float, numerator and denominator of a fraction) and align the generated answer with
the groundtruth digit by digit. Integer parts are aligned from the least significant digit; and the
decimal parts of float are aligned from the most significant digit. For “digit match”, we measure the
correctness of each digit, with missing digits considered as errors, and report the overall accuracy.
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Figure 2: Parts of performance of state-of-the-art LLMs on NUPA benchmark. “-ft” denotes a Llama
model we finetuned on these tasks. (See Section 3.4)

For “dlength”, we report the sum of absolute difference in length between each part of the prediction
and the groundtruth. Figure 1 illustrates these three metrics.

For each task, we divide the digits into four intervals (S, M, L, XL). For tasks with lengths 1-20, the
four intervals correspond to 1-4 5-8, 9-14, 15-20 digits respectively. For tasks with lengths 1-100,
they correspond to 1-10, 11-20, 21-60, 61-100 digits respectively. We average the results in each
interval for each task and metric. More details of our metrics are given in Appendix A.1.8

2.4 PERFORMANCE OF CURRENT LLMS

We test some commonly used LLMs on our benchmark, including three Llama models: Llama-2-
7b, Llama-3.1-8b and Llama-3.1-70b (Meta, 2024a), one of the most popular open-source model
families from Meta; Mixtral-8×7B (Jiang et al., 2024a), a strong MoE model; and Qwen2-2B and
Qwen-72B (Qwen Team, 2024) which are also open-source models that are believed to have strong
math abilities. Finally, we also test state-of-the-art commercial models GPT-4o-2024-08-06 and
GPT-4o-mini-2024-07-18 (OpenAI, 2024a). We use prompts to control models to directly output
result numbers without relying on external tools or CoT. The prompts used for each model and task
are included in Appendix A.2. We select the results of some typical tasks in each category in Figure 2,
while the complete results and discussion on all metrics are shown in Appendix A.3. We have several
observations regarding the results:

The best model performs well on typical tasks, but its performance declines on more specialized
tasks. We find that GPT-4o, GPT-4o-mini and Qwen2 handle typical tasks, such as integer addition,
float addition, integer max, and integer length, with high accuracy in the S and M ranges. This aligns
with their strong performance on various mathematical datasets. However, their accuracy drops
sharply when working with less common representations, like fractions and scientific notation, with
average accuracy falling below 20%, even for the shortest S-range (1-4 digits). Similarly, for tasks
such as significant figures, modulo operations, and digit-based calculations, their performance was
unsatisfactory. This highlights the current limitations of LLMs in understanding numerical diversity
and complexity. Despite their good performance on a narrow set of numerical tasks, they struggle
with many others, failing to produce accurate results in these areas.
Length remains a significant challenge for NUPA of LLMs. We observe a noticeable decline in
accuracy for even simple tasks like integer addition as the problem length increases. For instance,
GPT-4o’s accuracy drops from nearly 100% in the S range and 80% in the M range to around 40%
in the L range and just 15% in the XL range. In the more complex task float addition, the accuracy
decreases from 90% (S) and 60% (M) to merely 15% (L) and less than 5% (XL). This trend is
consistent across other models and tasks. For example, Qwen2’s performance in the integer-length
task declines from almost 100% in the S range to 50% in the M range, and falls below 5% in the L
and XL ranges.

Length impedes learning both individual digits and overall length. To understand why models
struggle with longer input numbers, we examine digit match and dlength performance in Figure 6 and
Figure 7 in Appendix A.3. These metrics reveal that length affects both the accuracy of individual
digits (digit match) and the answer’s overall length (dlength), with variations across tasks. For
example, GPT-4o and Llama-3.1 display consistently low dlength in the add-integer task, with digit
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match decreasing sharply as length increases, suggesting that length primarily impacts per-digit
accuracy on this task. Conversely, in the max-float task, dlength increases significantly with length
(about 30-60 in the XL range), while digit match has still 60% in the XL range. Note that since
missing digits are treated as errors, this 0.6 digit match is likely due to these missing digits. This
suggests that the main challenge here lies in generating answers of the correct length, rather than
individual digit accuracy. In other tasks like fraction, both length and digit accuracy issues arise, as
reflected in rising dlength and declining digit match.
“Digit” is more challenging than expected. We were surprised to find that LLMs struggle to fully
grasp “digits”. For instance, in the “get digit” task, where the model is asked to return the i-th digit of
a long integer, performance drops significantly as the length of the number increases. This suggests
that current LLMs lack a consistent ability to just find a digit. Note that the performance is good in
the shorter S-range, which indicates that the models can at least comprehend the task instruction. In
the XL-range, GPT-4o achieves only 20% accuracy, barely above the random guessing 10% baseline
(since the correct answer is always a digit between 0 and 9). This fundamental limitation may
explain why current LLMs struggle with numerical understanding and processing, especially as task
complexity and input length increase. If a model cannot reliably identify a specific digit in a given
number, it casts doubt on its ability to generalize to more complex arithmetic tasks, such as addition.
We also have some interesting observations: (1) LLMs find the “max-hard” task easier than “max”
with integer inputs. The difference between these tasks is that in the max task, the two numbers often
differ in length, whereas in max-hard, they are always the same length and share some left-most
digits, requiring more digits to be compared. While max-hard intuitively seems more difficult, models
actually perform better on it. This is likely because they struggle to effectively use sequence length
information, as reflected in their weaker performance on the “length” tasks in the longer ranges. It
suggests that models might process tasks in different ways from humans. They could have to compare
two numbers digit by digit. In this situation, the “harder” subtasks are actually easier because the
numbers are already aligned. (2) GPT-4o and GPT-4o-mini show nearly identical performance across
most tasks, similar to the comparison between Qwen2-72B and Qwen2-7B. This suggests that once
a model reaches a certain size, NUPA performance relies more on factors like architecture design,
training strategies, data diversity, and post-training refinements, rather than simply on increasing
model size.

3 HOW DO TOKENIZERS, PES AND DATA FORMATS AFFECT NUPA?
We have observed that the NUPA test poses significant challenges even for the most advanced LLMs.
In this section, we aim to investigate the factors that can influence the NUPA of LLMs during their
pretraining phase including tokenization strategies, PEs, and different data formats. We utilize the
architecture of decoder-only transformers and alter the size to create models with 0.1B, 0.9B and 3B
parameters. These models are trained from scratch, incorporating a wide range of techniques that
could potentially impact NUPA. In this section, each model is trained on a single task . The details of
the training process and models are included in Appendix A.4.1.

3.1 TOKENIZER: ONE-DIGIT TOKENIZERS ARE GOOD ENOUGH

(a) 31415.926535897932

(b) 31415.926535897932

(c) 31415.926535897932

(d) 31415.926535897932

Figure 3: Different tokenization of
a long number. (a) mixed digit to-
kenizer, used in GPT-2. (b) one-
digit tokenizer, used in Llama-2.
(c) three-digit tokenizer, used in
GPT-3.5, GPT-4 and Llama-3. (d)
Aligned three-digit tokenizer.

LLMs interpret numbers as segmented tokens rather than
whole numbers. With the development of language models,
various tokenization strategies have emerged, including mixed
tokenizers, one-digit tokenizers, and k-digit tokenizers (k ≥ 2),
as shown in Figure 3. In the BPE tokenizer used by GPT-2, the
numbers are not specially treated, which resulted in irregular
number cutting and is harmful to digit alignment. The cutting
of numbers in modern tokenizers has become more aligned.
These tokenizers greedily segment a number from left to right
into k-digit tokens until a remainder shorter than k digits is
left, which is then segmented into a single token. Llama-2 use
a one-digit tokenizer, but all of the latest LLMs use a tokenizer
with k = 3, subsequently coming with an extended vocabulary
for numbers. Additonally, Singh & Strouse (2024) discover
that just alternating the greedy direction from “left-to-right” to “right-to-left” (for integers) can
improve performance of Llama-3 and GPT-4.
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Figure 4: Accuracy of 0.9B models trained with 1-3 digit tokenizer on three task of integer addition,
float addition and integer multiplication. Shadow shows the standard error. Dn means n digits. X-axis
is the number of seen training samples.

There is a growing tendency to expand the vocabulary size as the number of parameters in LLMs
rapidly increases. Recent work has shown that a larger vocabulary is more suitable for larger
LLMs (Tao et al., 2024) because longer tokens can encapsulate more complex and precise meanings
for text tokens. But number is a different question:
• The long-tail phenomenon (Raunak et al., 2020), common in text tokens, is not as pronounced for

the number tokens. The distribution of number tokens is closer to a uniform distribution.
• Two smaller number tokens can always be combined into a valid new one (e.g., 3 and 7 form 37),

which is not true for text tokens (e.g., “hello” and “hi” cannot form “hellohi”). So the number of
possible number tokens grows exponentially as k increases, much faster than text tokens.

• The next token prediction of number tokens is harder than predicting the next text token because
number prediction often involves calculation and operations, whereas word mapping tends to be
more intuitive.

We trained 0.9B models on 1- to 8-digit length samples including integer addition, float addition, and
integer multiplication, using aligned k-digit tokenizers where k = 1, 2, 3 (d in Figure 3). Figure 4
shows the in-domain performance of these models in the first three columns and their out-of-domain
(OOD) performance in the last two columns, evaluated using the exact match metric.

From the figure, the one-digit tokenizer shows best in-domain performance in these three tasks, while
three-digit tokenizer exhibits poor performance. In out-of-domain tests, one-digit tokenizer even
exceeds the others by large margins. Tokenizers with an increasing number of digits significantly
hinder sub-billion models’ NUPA. We also performed experiments on models of 3 different sizes
including 0.1B, 0.9B, and 3B in Appendix A.4.2 and got similar results. Even as the model size
increases, the performance of 2- or 3- digit tokenizer improves but remains either similar or worse
than that of the one-digit tokenizers. For these experiments, we also report the digit match and dlength
results in Appendix A.4.2 Figure 9 and 10, where one-digit tokenizer performs better both on digit
learning (larger digit match) and length learning (less dlength). On the contrary, larger vocabularies
significantly increase the model size requirements. In conclusion, we find no evidence to support the
idea that increasing the vocabulary size improves NUPA performance.

Recently, Sathe et al. (2024) found that the “random tokenizer” (Kudo, 2018; Provilkov et al.,
2020) which splits words like "Hello world" into variable tokens such as "He/llo/ world" or "Hell/o/
world" enhances reasoning by introducing variability in generation path. We also test it in number
domain and find the random tokenizers consistently outperform their standard counterparts in length
generalization, but still fall short of the performance achieved by the one-digit tokenizer. See the
details in Appendix A.4.2.
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3.2 SPECIAL PES ARE LENGTH REGULARIZATION

Previous work has suggested that PE could be the key factor (Zhou et al., 2024) of length gener-
alization. To further investigate whether the influence is specific on a certain task, we train 100M
models with different PEs: RoPE (Su et al., 2023), NoPE (Kazemnejad et al., 2023a) and Alibi (Press
et al., 2022) on four tasks: integer addition, float addition, fraction multiplication (easy) and scientific
notation addition respectively. Models are trained on 1-8 lengths (S and M range), then test them on
full range (S to XL, 1-20). RoPE, widely used in Llama and its derivatives, is the most classic relative
PE. Then alibi, another relative PE, is proposed to address RoPE’s length overfitting issues. NoPE
(transformers without PE, relying solely on the causal mask to encode the position information) offers
a surprisingly easy way to achieve length generalization. Therefore, we compare these three typical
PEs to evaluate the performance on NUPA.

Our results, presented in Figure 12 in Appendix A.4.3, align with conclusions from previous works.
Alibi and NoPE demonstrate superior length generalization across various representations and tasks,
indicating that the influence of PEs is relatively consistent across these common representations,
tasks within the number domain.

Moreover, we aim to characterize further the mechanism underlying these differences. Specifically,
we found that RoPE leads the model to learn a length-related shortcut, while Alibi and NoPE act
as a form of regularization by avoiding this, thereby preventing length overfitting. For more details,
please refer to the appendix A.4.3.

3.3 DATA FORMATS HELP DIGIT ALIGNMENT

A series of works have proposed specific data formats including reverse formatting, zero padding and
index hints. Reverse formatting (Lee et al., 2023; Shen et al., 2023) presents numbers in reverse order
from the least significant digit to the most significant one to align with the models’ autoregressive
mechanism, simplifying the learning process for addition. Zero padding (Lee et al., 2023; Shen
et al., 2023; Zhou et al., 2024; Cho et al., 2024) adds leading zeros to numbers to standardize the
lengths of operands, helping models align operands. Index Hints (Zhou et al., 2023) explicitly
include positional information in input and output sequences by representing each digit along with its
position index prefixing the digit.

While previous work mainly focuses on integer addition or multiplication, we extend the techniques
to various tasks in NUPA Test of different number domains. To compare the effects of reverse
formatting and zero padding, we demonstrate in Table 16 how the combination of reverse formatting
and zero padding impacts length generalization. Reverse formatting, zero padding, and their
combination all show better performance than vanilla formats in integer and float addition, while
their performance is comparable to each other, suggesting that their functionality largely overlaps.
Zero padding provides the function of helping alignment, and reverse formatting also plays a large
role in alignment. The previously believed “helping calculation” function of reverse formatting is
minor. As for index hint, we find it doesn’t work for our models. We discuss the details of these
experiment results and the reasons in Appendix A.4.4.

3.4 DOES FINETUNING IMPROVE NUPA PERFORMANCE OF LLMS?

The existing techniques aimed at enhancing NUPA have rarely been applied to practical LLMs,
mostly being tested on toy models and isolated tasks. This raises the question of whether it is possible
to enhance the NUPA capabilities of large models through post-training finetuning. To explore this,
we generate training sets (105 samples for each digit and each task) and validation sets for our NUPA
tasks, ensuring no overlap with the original test set. We then used them to perform finetuning on a
pre-trained model. Specifically, we finetune a Meta-Llama-3.1-8B model with lora (Hu et al., 2022)
(rank 128, α=32) on a mixed training set comprising all of our NUPA tasks. Remarkably, we find
only 800 steps training (about 50M training samples, ≪ 1 epoch) leads to significant improvement,
as shown in Figure 2 with the finetuned model labeled as “Llama-8B-ft”. Though Llama-3.1-8B
is not a strong baseline, this finetuned version achieves much better performance. For example, in
max, max-hard, add-float and turediv tasks, this model even surpassed or matched GPT-4o, confirming
our hypothesis: for many NUPA tasks, the model’s base capacity may not be the main limiting factor,
but rather the lack of numerical diversity and task variety in the training data.
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However, we also found that such finetuning does not provide much improvement on certain tasks,
such as understanding digits. Furthermore, when we tried to incorporate the various tricks, such
as modifying the model’s original PEs, tokenizers, or number formats, into an already trained
model, these methods proved ineffective. When we altered the PE or adjusted the tokenization and
representation of the model, the changes significantly disrupted the model’s original behavior, causing
a substantial performance drop. This suggests that enhancing a model’s NUPA capabilities through
post-training may require more revolutionary innovations beyond the current tricks. The detailed
results of these attempts are presented in Table 18 in Appendix A.4.5.

4 IS COT SUITABLE AND VALID FOR NUPA?

CoT has been proven to be effective to enhance the capacity of LLMs both theoretically (Feng et al.,
2023; Yang et al., 2024b) and experimentally (Wei et al., 2023; OpenAI, 2024b). Thus, we are
also interested in whether CoT is the ultimate solution for improving NUPA. Due to the task and
representation diversity in our benchmark, it is hard to cover all issues with a single form of CoT. So
we adapt a special CoT form called Rule-Following CoT (Hu et al., 2024) (RF-CoT), where LLMs
are trained to follow a provided code or pseudo-code that outlines the procedure to solve the task.
RF-CoT is capable of handling any problem with a solving procedure that can be broken down into
recurrences and basic unit operations, making it well-suited for our benchmark tasks. The detailed
introduction with an example of RF-CoT can be found in Appendix A.5.1.

Table 3: Performance of RF CoT. “-” means exceeding context window limitation (2k tokens).
Exact Match Add Float Multiply Fraction Max Scientific Mod Integer

# Digit 5 6 7 2 3 4 38 39 40 6 7 8

RF CoT 1.00±.00 1.00±.00 - 0.93±.01 0.88±.03 - 1.00±.00 1.00±.00 1.00±.00 0.67±.05 0.43±.07 -
GPT-4o 0.78 0.66 0.49 0.53 0.20 0.00 0.37 0.46 0.36 0.01 0.00 0.00

Qwen2-72B 0.62 0.50 0.70 0.05 0.00 0.00 0.96 0.98 0.95 0.03 0.00 0.00
Llama-8B-ft 0.88±.02 0.79±.04 0.74±.04 0.50±.02 0.20±.03 0.01±.00 0.98±.01 0.97±.01 0.98±.01 0.08±.02 0.05±.04 0.05±.04

Table 2: Average inference time.
batchsize sec / sample

RF CoT 128 5.625
Direct 128 0.371
Direct 256 0.336

To evaluate the performance of this CoT method, we finetuned
the LLaMA 3.1-8B model on a subset of the NUPA tasks with
RF-CoT. During both training and testing, we set a context
window of 2000 tokens, with any data exceeding this limit
being ignored. Table 3 shows the performance on selected
tasks. Accuracy and standard error for RF-CoT and finetuned
Llama-3.1-8B are averaged over three runs. For GPT-4o and Qwen2, which are not finetuned, we
report single-run accuracy without standard error. Within the context length limit, the rule-following
finetuned LLaMA 3.1-8B significantly outperformed GPT-4o and Qwen2-72B as well as the one
finetuned without RF-CoT in most situations.

However, it requires a significantly longer context window and causes much slower inference speed
compared to directly generating the answer. As shown in Table 3, with the 2000-token limit, CoT
can only handle fraction addition involving numbers up to three digits. We provide the maximal
digit length within the 2k context window limitation for each task in Appendix A.5.2 to show the
context window limitation for complex tasks. As for inference time, Table 2 demonstrates the average
inference time for generating each sample using “RF-CoT” and “direct answer” during the NUPA test
where both experiments are operated on an A800 GPU. In the table, the “direct answer” with batch
size 256 shares a similar CUDA memory to RF-CoT with batch size 128. The RF-CoT method is
approximately 17 times slower than directly generating the answer, causing an unsustainable burden
for such a basic operation that is frequently encountered in solving real-world problems, especially
considering that number calculations may only account for a small part of a complex, real-world
reasoning problem (such as analyzing a financial report).

5 RELATED WORK

We have discussed some related work in the corresponding section. This section highlights some
other studies related to NUPA in language models.
Numerical understanding in natural language comprehension Earlier studies explored numeri-
cal reasoning within language comprehension contexts. For example, Dua et al. (2019) introduced a
reading comprehension dataset requiring discrete reasoning, such as sorting and addition. Similarly,
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Ravichander et al. (2019) proposed a benchmark for evaluating quantitative understanding in textual
entailment. However, these datasets blend numerical reasoning with broader language understanding
tasks, making it challenging to isolate numerical processing abilities.

Probing numerical understanding in LMs Several works have probed numerical comprehension
in encoder models. Wallace et al. (2019) trained probing models to to assess numerical understanding
embedded in model representations, while Johnson et al. (2020) extend this conclusion to multi-
language settings. Naik et al. (2019) used contrastive tests to evaluate models’ understanding of
number magnitudes. Geva et al. (2020) demonstrated that fine-tuning on numerical reasoning data
enhances the understanding. Unlike these studies, which focus on embeddings, our work emphasizes
generating correct answers in autoregressive models. Recent efforts on such models include Razeghi
et al. (2022), who studied few-shot learning correlations between term frequency and performance,
and Zhang et al. (2024a), who identified key components in LLMs for basic arithmetic tasks. These
works focus on some most classic tasks and our benchmark expands on these by incorporating diverse
numerical representations, tasks, and digit ranges, offering a more comprehensive analysis.

Numerical dataset in specific domains Datasets like those proposed by Spithourakis & Riedel
(2018) and Lin et al. (2020) test numerical commonsense reasoning, while others focus on specific
contexts, such as financial reasoning (Chen et al., 2022a;b) or tabular data (Akhtar et al., 2023).
These works highlight numerical reasoning within specific domains rather than general numerical
processing tasks. In contrast, our benchmark targets core numerical understanding, emphasizing tasks
decoupled from domain-specific constraints.

Mathematical Reasoning Datasets Despite its close relationship with NUPA, mathematical
reasoning is a broader field involving diverse skills such as task comprehension, equation solving,
tool usage, and more (Lu et al., 2023b). While correct numerical processing is a critical component of
mathematical reasoning, it is not the entirety of it (Stolfo et al., 2023). Datasets like MathQA (Amini
et al., 2019), GSM8k (Cobbe et al., 2021), MATH (Hendrycks et al., 2021), and SVAMP (Patel
et al., 2021) focus on math word problems requiring multi-step reasoning and problem-solving. Few
works isolate numerical processing from mathematical reasoning. Saxton et al. (2019) introduced a
dataset for numerical tasks, such as adding floating-point numbers, but lacked task categorization by
difficulty or length. Moreover, mixing numerical and algebraic tasks complicated analyses of pure
numerical processing. Our benchmark addresses this gap, offering fine-grained categorization and
evaluation of numerical understanding tasks.

6 CONCLUSION

We investigate NUPA of LLMs and introduce a comprehensive benchmark, the NUPA test, to reveal
that numerical problems remain challenging for modern LLMs. Our comprehensive test suite, which
includes a variety of numerical representations and tasks, has exposed the surprising vulnerability of
LLMs in this fundamental area. To explore ways to improve NUPA, we extend and evaluate previous
pre-training techniques on the NUPA benchmark. While direct finetuning on the NUPA tasks does
improve the performance, using those tricks specifically designed for NUPA in the finetuning tends to
harm it, suggesting that these methods are not easily transferable to practical LLMs. We also explore
the potential of chain-of-thought techniques to enhance NUPA and discuss their limitations.

7 LIMITATION

As a benchmark that specifically focuses on number understanding and processing abilities, we
acknowledge that the range of tasks could still be incomplete and biased toward certain aspects. We
will continue updating our benchmark, including but not limited to adding new tasks and refining
existing ones to ensure appropriate difficulty. Additionally, the number of models we have tested so
far is limited, and we plan to include more promising pre-trained models in future evaluations.

On the other hand, although we have identified the limitations of LLMs’ NUPA, the existing solutions
each have their own drawbacks. We have yet to find a path that fully addresses the problem. Solving
this issue may require research across multiple fields, such as enhancing the diversity of pre-training
corpora, developing new techniques, or enabling more efficient reasoning paradigms that make more
complex CoT approaches feasible. We hope our work can contribute to and be complemented by
advancements in these areas.
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REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are fully reproducible.
Detailed descriptions of the number formats, construction and metrics of our NUPA dataset are
provided in 2 and A.1.5, and examples for each task in A.4.4. To further facilitate reproducibility,
we have incorporated the full source code, enabling the generation of the entire datasets and the
training and assessment of models, within the supplementary materials. Researchers wishing to
generate NUPA benchmark or replicate our experiments can refer to these resources for all necessary
information.

ETHICS STATEMENT

In conducting this research, we have adhered to the highest ethical standards to ensure the integrity
and fairness of our work. For source code releases, we have ensured compliance with applicable legal
standards, ensuring that the code is anonymized and free from personally identifiable information.
During the construction of the dataset, all data was entirely generated randomly, without including
any personal identity information or other private data of individuals.
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A APPENDIX

A.1 NUPA TEST

A.1.1 REPRESENTATIONS

We present the four representations as follows:

• Integer: we use no comma or point as a digit group separator like 1234567. The integer
has only one part as itself. In this paper, we have not considered negative numbers for the
time being.
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• Float: A float has two parts: integer and decimal. We use a decimal point to split these two
parts and also do not use any digit group separator. An example is 1234.567891. Trailing
zeros in the decimal part are usually omitted.

• Fraction: A fraction has two parts: numerator and denominator and we use a “/” to separate
the integer and decimal parts. Unless otherwise specified, all fractions mentioned in this
paper are in their simplest form (that is the numerator and denominator are coprime), but
they may be greater than 1. An example is 12/7. Only in the “truediv” task between two
fractions, because the “/” is also the division operator, We enclose fractions in a pair of
parentheses like (12/7) / (2/3) = 18/7 to make it clear.

• Scientific Notation: A scientific notation has two parts: significand and exponent. In our
benchmark, the significand is always a float larger than 1 and less than 10 and the exponent
should be a positive integer (and we also set an upper bound of 99). We use a “e” to seperate
these two parts. An example is 1.5e8.

A.1.2 DETAILED INTRODUCTION AND DISCUSSION ABOUT TASKS

In addition to the brief introduction of the 17 tasks in our benchmark, here we provide a detailed
discussion on why these tasks are significant and the specific abilities they aim to evaluate.

• Elementary arithmetic: addition, subtraction, multiplication, and division. They are the
most fundamental mathematical operations and the first branch of mathematics taught in schools.
However, some operations can be complicated when different number representations are involved.
For example, fraction addition is more complicated than multiplication because it needs to be
reduced to a common denominator first.

– True division, floor division and modulus: The division is somewhat unique because
it is not closed for integers and floats. Here, we consider three common division-related
calculations. True division: To maintain precision, we represent the division of two integers
as a simplified fraction. Combined with the “significant digits” task we will mention later, this
can approximate the result of dividing two integers as a float. Integer division and modulus:
Represent approximate multiple relationships, frequently used in practical applications, such
as dividing individuals into batches.

• Comparison: max and min. Another important aspect of understanding numbers lies in the
concept of “order”. To truly comprehend a number, we must know how large it is and whether it
is greater or smaller than another one. Moreover, comparison serves as the foundation for other
significant operations. For instance, when adding negative and positive numbers, we determine the
sign first and then subtract with their absolute values — this involves identifying which of the two
numbers has a greater absolute value.

• Digit understanding: The concept of a digit is fundamental. Unlike the “value” of a number, a
digit is tied to its specific representation. When we care about a language model’s understanding,
processing (and generation) of numbers, digit is a crucial concept, as numbers are not read and
processed by the language model as a whole, but rather as a sequence of digits. We are curious
whether LLMs truly understand the concept of digits. Therefore, we specially designed some
digit-related tasks, including:

– Get digit: Given a number and an integer i, return the i-th digit. This task is important when
certain digits have special meanings in a number (such as a phone number or SSN).

– Length: Return the total length (i.e., the number of digits) of a number.
– Count: Count the times that a particular digit occurs in an integer.
– Digit compare: Compare and return the larger (smaller) digits one by one.
– Digit add: Perform the normal addition digit by digit but ignore any carrying. For example,
digit_add(12345, 34567) = 46802. It can test a model’s understanding of digit alignment
and its mastery of single-digit addition.

Through these tasks, we can assess whether models correctly understand the concepts of digits,
length, positions, and the alignment of the digits between two numbers.

• Conversion between representations: we design tasks for converting a number to two representa-
tions: to float and to scientific notation, as they are frequently used to present final results. These
two tasks also create transformations between different representations to test whether models can
understand the relationship between various numerical formats. In particular, since many tasks
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present answers as approximate values, we designed a “significant digit” (sig. fig.) task to evaluate
a model’s ability to round long numbers to fixed-length significant digits.

A.1.3 EXAMPLES FOR EACH TASK

We provide each tasks with an examples. To test the models, we also add some model specific system
messages like “You are a helpful assistant to process numbers. Please directly answer the question
after the =”. The context before “=” is the question and the context after “=” is the groundtruth and
be removed when testing.

• Add-Integer: Add two numbers: 744 + 543 = 1287

• Add-Float: Add two numbers: 93.81 + 9.976 = 103.786

• Add-Fraction: Add two numbers: 3/8 + 2/5 = 31/40

• Add-Scientific: Add two numbers: 9.92e16 + 9.731e18 = 9.8302e18

• Sub-Integer: Subtract two numbers: 744− 543 = 201

• Sub-Float: Subtract two numbers: 93.81− 9.976 = 83.834

• Sub-Fraction: Subtract two numbers: 2/5− 3/8 = 1/40

• Sub-Scientific: Subtract two numbers: 9.731e38− 9.92e36 = 9.6318e38

• Multiply-Integer: Multiply two numbers: 968× 8 = 7744

• Multiply-Float: Multiply two numbers: 8.4× 9.555 = 80.262

• Multiply-Fraction: Multiply two numbers: 8/7× 5/2 = 20/7

• Multiply-Fraction: Multiply two numbers: 9.92e16× 9.731e38 = 9.653152e55

• Truediv-Integer: Divide two numbers and return the result as a fraction. 744 / 543 =
248/181

• Truediv-Fraction: Divide two numbers and return the result as a fraction. (3/8) / (2/5) =
15/16

• Floordiv-Integer: Divide two numbers and return the result as an integer. 845 // 152 = 5

• Mod-Integer: Divide two numbers and return the remainder. 845 % 152 = 85

• Max-Integer: Get the maximal number: 50404 and 97871 = 97871

• Max-Float: Get the maximal number: 44.418 and 65.669 = 65.669

• Max-Fraction: Get the maximal number: 3/5 and 3/8 = 3/5

• Max-Scientific: Get the maximal number: 8.15e64 and 1.063e73 = 1.063e73

• Digit_max-Integer: Compare two numbers digit by digit and return the larger digit at each
position, treating any missing digits as 0. 50194 and 14283 = 54294

• Digit_max-Float: Compare two numbers digit by digit and return the larger digit at each
position, treating any missing digits as 0. 35.905 and 8.4 = 38.905

• Digit_add-Integer: The task is to add two given numbers digit by digit and return the result
modulo 10 (ignoring carry), treating any missing digits as 0. 50404 digit add 97871 =
47275

• Digit_add-Float: The task is to add two given numbers digit by digit and return the result
modulo 10 (ignoring carry), treating any missing digits as 0. 44.418 digit add 65.669 =
9.077

• Get_digit-Integer: Get the digit at the given position (from left to right, starting from 0).
50404 at position 4 = 4

• Get_digit-Float: Get the digit at the given position (from left to right, starting from 0).
44.418 at position 3 = 1

• Length-Integer: The total number of digits of 50404 = 5

• Length-Float: The total number of digits of 262.534 = 6

• Count-Integer: Count the number of the given digit in the given number:
27422 count the occurance time of digit 2 = 3
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• To_float-Fraction: Convert the number to float: 9/5 = 1.8

• To_float-Scientific: Convert the number to float: 8.538e2 = 853.8

• To_scientific-Integer: Convert the number to scientific notation: 50400 = 5.04e4

• To_scientific-Float: Convert the number to scientific notation: 262.534 = 2.62534e2

• Sig.Fig-Integer: Convert the number to scientific notation: 50194 and keep significant
figures as 3 = 5.02e4

• Sig.Fig-Float: Convert the number to scientific notation: 65.669 and keep significant figures
as 2 = 6.6e1

A.1.4 EXPECTED REPRESENTATION IN EACH TASK

Each task in the 41 ones receives one or two input numbers and expects one number as the result. We
name the representation by the first input numbers. For simplicity, the second input number shares
the same representation as the first one for most tasks. Calculations between different representations
can be performed by first converting them to the same representation. Two types of tasks are the
exception. Tasks “length”, “to float” and “to scientific” do not have the second input. The second
inputs in tasks “get digit”, “count”, “sig. fig.” are always a short Integer, representing a position,
length, or a digit number from 0 to 9. To distinguish them from potentially long integers to be
processed, we call the former int and the latter integer.

We summary the second number representation and result representation in each tasks in Table 4
and Table 5 where I means integer, i means (shorter) int, Fl means float, Fr means fraction, S means
scientific notation and N means no such a number.

Table 4: The second input number representation

Elementary arithmetic Comparison Digit Understanding Conversion

Add Sub Multiply Truediv Floordiv Mod Max Min Digit
Max

Digit
Min

Digit
Add

Get
Digit Length Count To

Float
To

Scientific
Sig.
Fig.

Integer I I I I I I I I I I I i N i − N i
Float Fl Fl Fl ✗ − − Fl Fl Fl Fl Fl i N ⃝ − N i
Fraction Fr Fr Fr Fr − − Fr Fr − − − − − ⃝ N ⃝ ⃝
Scientific S S S ✗ − − S S − − − − − ⃝ N − ⃝

Table 5: Result number representation

Elementary arithmetic Comparison Digit Understanding Conversion

Add Sub Multiply Truediv Floordiv Mod Max Min Digit
Max

Digit
Min

Digit
Add

Get
Digit Length Count To

Float
To

Scientific
Sig.
Fig.

Integer I I I Fr I I I I I I I i i i − S S
Float Fl Fl Fl ✗ − − Fl Fl Fl Fl Fl i i ⃝ − S S
Fraction Fr Fr Fr Fr − − Fr Fr − − − − − ⃝ Fl ⃝ ⃝
Scientific S S S ✗ − − S S − − − − − ⃝ Fl − ⃝

A.1.5 NON-INCLUDED TASKS

We exclude some compositions between number representations and tasks because of the following
three reasons:

• ✗ too complex. We exclude the truediv between float and scientific. Division between float
numbers is difficult to define accurately in our scenario. It is very common to divide two
floating point numbers into an infinite decimal, which means that even very short decimals
can still result in a very long and unpredictable result after division. And in this task we do
not want to discuss the case of rounding the result. (This is another task of ours.) For the
same reason, we also exclude division in scientific notation.

• ⃝: can be easily transferred to from an included task.
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– Converting fractions to scientific notation can be done by first converting to a
float. (Fraction-to_scientific = Fraction-to_float + Float-to_scientific). Fraction-
SiginificantFigure is similar.

– Scientific notation retains significant digits and is virtually identical to floating point
numbers.

– count is a special task where we just consider a nubmer as “a set of digits” so count in
a float, fraction and scientific notation is as the same as in a integer.

• −: not applicable.
– In fraction and scientific notation, the digit concept is not well-defined so the tasks

about digit (digit-compare, digit-add, get-digit and length) are not applicable.
– Floordiv and mod is only defined on integer.
– Integer and float do not need to be further converted to float. Similarly, scientific has

no need to converted to scientific.

A.1.6 EASY/HARD SPLIT OF NUPA TASKS

We divide the tasks into easy and hard as shown in Table 6, where the hard tasks marked as H with
maximal test digit as 20 and the easy tasks marked as E with maximal test digit as 100.

Table 6: Tasks can be divided into Easy and Hard.
Elementary arithmetic Comparison Digit Understanding Conversion

Add Sub Multiply Truediv Floordiv Mod Max Min Digit
Max

Digit
Min

Digit
Add

Get
Digit Length Count To

Float
To

Scientific
Sig.
Fig.

Integer H H H H H H E E E E E E E E E E
Float H H H E E E E E E E E E
Fraction H H H H H H H
Scientific H H H E E E

A.1.7 PREPROCESS AND QUESTION GENERATION FOR NUPA TASKS

We define the length of a number as the number of digits in the longest part of a number. The “integer”
part and “decimal” part of a float (as well as the significand of a scientific notation), the “numerator”
and “denominator” of a fraction, the “exponent” of a scientific notation are considered as different
“parts”. In order to generate a pair of numbers with the larger length L, we first generate a L-length
number and then generate a l-length number where l follows a uniform distribution from L/2 to L. If
the operation is commutative, we swap the two numbers with probability 0.5.

After we select two random numbers, we have some pre-procession to generate the final questions:

• For “Multiply”, the difficulty also affected by the shorter number severely, so we split the
task into two sub-tasks as “Multiply-hard” and “multiply-easy”. For the hard subset, we
require that the shorter number must be longer than half of the longer one. For an easy
subset, we require that the length of the shorter number is less than 3, so that the complexity
is O(n) instead of O(n2). And because the addition of fractions also involves multiplication,
we also add an add-easy for this task in the same way.

• For “max” and “min” tasks, we additionally provide a harder version. For Integers and
floats, we make sure that two compared numbers share the same length. At the same time,
they should have more digits as the same like 12949 and 12961 to avoid models that can
solve the problem by only counting the length or comparing the first digit. For scientific
notation, we ensure 70% pairs of compared numbers with the same exponential part so that
models cannot directly get the answer without comparing the significand part. For fractions,
we ensure the numbers are both less than one, avoiding the model can just compare them
with 1 to get more than 50% accuracy.

• For “to_float-Fraction”, we require the fraction must can be convert into a finite decimal,
that is the denominator contains only factors 2 and 5.

• For “add/sub-Scientific”, we require the exponential part of each number to have a difference
less than 5 to make sure that the generated answer will not be too long.
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The pre-procession could introduce additional duplicated data. we facilitate a post-filtering of
duplication and decontainment

A.1.8 METRICS

For digit match, we should first align the numbers. For the integers and integer parts in floats, the
numerator and denominator of fractions, and the exponential part of the scientific notation, we use
the right alignment. For the decimal part in floats (as well as the in the significand part in scientific
notation), we use the left alignment.

For dlength, we first measure the difference of each part of a number and then add the absolute values
up.

Besides the average metrics in each range, we also present the following metrics: well-learned digits
and performance-preserving digits to demonstrate the model’s upper and lower performance limits
on length. These represent the maximum number of digits that can maintain over 90% and 10%
accuracy, respectively. (For digit match, the thresholds are set to 90% and 50%, and for dlength,
where smaller is better, the thresholds are 0.1 and 1).

We ensure that there is no duplicated sample in dataset, so for some range, the test samples could be
less than 1000. We also omit 1 digit or some 2 digit test in our testbed to make sure that unit rules
can be included in a training set.

A.2 PROMPTS AND OTHER DETAILS TO TEST BASELINE MODELS

For all models in our test, we first provide a “format prompt” describing the expected return format
(and avoiding models generating complex CoT), and a “task prompt” describing the task. We use some
easy problems to ensure powerful models (gpt-4o-mini and Llama-3.1-8B) can correctly understand
the tasks and expected return format by the prompts. The expected return representation of each task
is referred to in Appendix A.1.4.

The format prompt based on the expected return type of the task is as follows:

• Integer: Directly return the answer as an integer without any comma separator, like 123 .

• float: Directly return the answer as a float without any comma separator, like 10.4 .

• Fraction: Directly return the answer as an **irreducible** fraction without any comma
separator, like 7/13 .

• Scientific Notation: Directly return the answer as a scientific notation without any comma
separator, like 1.23e4 . The float part should be in the range [1, 10).

The task prompts are listed as follows where <a> and <b> are numbers.

• Add: Add two numbers: <a> + <b> =

• Sub: Subtract two numbers: <a> - <b> =

• Multiply: Multiply two numbers: <a> * <b> =

• Truediv: Divide two numbers and return the result as a fraction. <a> / <b> =

• Floordiv: Divide two numbers and return the result as an integer. <a> // <b> =

• Mod: Divide two numbers and return the remainder. <a> % <b>

• Max: Get the maximal number: <a> and <b> =

• Min: Get the maximal number: <a> and <b> =

• Digit max: Compare two numbers digit by digit and return the larger digit at each position,
treating any missing digits as 0. <a> and <b> =

• Digit min: Compare two numbers digit by digit and return the smaller digit at each position,
treating any missing digits as 0. <a> and <b> =

• Digit add: The task is to add two given numbers digit by digit and return the result modulo
10 (ignoring carry), treating any missing digits as 0. <a> digit add <b> =
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• Get digit: Get the digit at the given position (from left to right, starting from 0). <a> at
position <b> =

• Length: The total number of digits of <a> =
• Count: Count the number of the given digit in the given number: <a> count the occurrence

time of digit <b> =
• To_float: Convert the number to float: <a> =
• To_scient: Convert the number to scientific notation: <a> =
• Sig_fig: Convert the number to scientific notation: <a> and keep significant figures as <b>.

Notice that all prompts are ended with an “=” so that we can easily separate the input question and
the generation of models. When we use the texts in supervised finetuning (SFT), the context before
the “=” is not involved in the loss calculation.

For GPT-4o and GPT-4o-mini, we also add a system message as follows and use the aforementioned
question as user message:

You are a capable math assistant. Return your solution without any process in the
format: The answer is [YOUR ANSWER]. The final answer must strictly match
the format <regex>.

where the <regex> is a regular expression based on the expected return format:

• Integer: r"\d+"
• Float: r"\d+\.\d+"
• Fraction: r"\d+/\d+"
• Scientific Notation: r"\d+\.\d+e\d+"

We use the models expect GPT from huggingface and use the default tokenizer, model and generation
configuration provided by the models. We test GPT-4o and GPT-4o-mini by the OpenAI API, where
GPT-4o means gpt-4o-2024-0806 and GPT-4o-mini means GPT-4o-mini-2024-07-18. For Qwen2-
72B and Llama-3.1-70B, we additionally use 4-bit quantization but we also test several samples
without quantization and ensure this quantization does not affect generation quality.

We retrieve the first match of the corresponding regular expression after the “=” as the answer. If
there is no retrieve, we use an empty answer to calculate the metrics, where exact match and digit
match is both zero and the dlength is the total length of the groundtruth number.

A.3 FULL TEST RESULTS OF LLMS

We show the full NUPA test results in Figures 5 (exact match), 6 (digit match), 7 (dlength) and
Table 7, 8, 9 (well-learned digits and performance-preserving digits for each metrics).

With the detailed metrics, we can more clearly understand the behavior of some models on some
tasks. For example, we find that the “exact match” and “digit match” of some models like Qwen-2
and GPT-4o on the “integer-max” task are similar, suggesting that when the models know which one
is correct, they can always copy the answer from question correctly. So the wrong answer comes
from incorrect comparison. Another example is the Llama-2 performance on max-hard. Because the
length of two input numbers and the groundtruth answer in the max-hard task are all the same, most
models show less dlength on this task suggesting they know that “the answer should have the same
length of inputs”, but we find Llama-2 shows dlength approximately equal to the average length in
the range, suggesting that Llama-2 cannot generate a valid answer on this task. These are just a few
examples to illustrate how more detailed metrics can help us gain a deeper understanding of model
behavior. There are many possible conclusions, but there are too many to list here.

A.3.1 FEW-SHOT LEARNING

To ensure the output format of models is as precise as possible, we employ 5-shot learning. For each
task, we select one sample from 5 different lengths respectively and test the few-shot performance.
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Table 10 summarizes the exatch match score performance across three selected tasks. Notably,
providing an explicit output format results in general performance improvements across tasks and
input lengths. Few-shot exhibits relatively substantial performance gains. The models can usually
produce accurately formatted outputs even in the zero-shot setting, with limited additional benefit
observed from few-shot examples. In short, the inclusion of few-shot examples has a limited impact
on our overall conclusions. For example, the performance also significantly decreases as the length
increases. And the performance of Floordiv task is still unsatisfying as we have shown in the main
paper.

Table 10: Few-shot performance on selected tasks
Model Add Int Max Float Floordiv Int

S M L XL X M L XL X M L XL

Llama-2-7b-hf-5-shot 0.61 0.12 0.00 0.00 0.68 0.55 0.49 0.43 0.04 0.01 0.01 0.00
Llama-2-7b-hf 0.74 0.11 0.00 0.00 0.44 0.47 0.28 0.15 0.04 0.01 0.00 0.00

Llama-3.1-8B-5-shot 0.94 0.41 0.10 0.01 0.88 0.81 0.63 0.54 0.23 0.02 0.01 0.00
Llama-3.1-8B 0.95 0.38 0.06 0.02 0.70 0.57 0.41 0.36 0.19 0.01 0.01 0.01

Qwen2-7B-5-shot 0.83 0.82 0.37 0.04 1.00 0.98 0.81 0.64 0.28 0.08 0.03 0.01
Qwen2-7B 0.93 0.70 0.23 0.03 0.68 0.72 0.55 0.43 0.22 0.05 0.01 0.02

A.4 TOKENIZER, PE AND DATA FORMATS

A.4.1 EXPERIMENT DETAILS

We train several models to test the effectiveness of tokenizers, PEs and data formats. Unless otherwise
mentioned, our model architecture uses the Llama-3.1 architecture (Decoder-only Transformers with
causal masking, autoregressive generation, and RoPE as the default PEs). We modify the layer
numbers, hidden size and the number of heads to change the parameter size of models. See Table 11.
We keep all hyperparameters, except model size, consistent with the original Llama setup in the
implementation from Huggingface. We use the default sampling generation strategy with default
hyperparameters, where the temperature is set as 0.6 and top_p is 0.9. About the meaning of these
settings please refer to Llama technique report (Meta, 2024a) and model cards (Meta, 2024b).

To train these models, we use the AdamW optimizer (Loshchilov & Hutter, 2019) with a learning
rate of 5e-5, weight decay of 0.01, and batch sizes of 256, 64, and 32 for 0.1B, 0.9B, and 3B models,
respectively. Other optimizer settings follow the default values in the Transformers library. We
sample 1e7 samples for each length (where feasible) and concatenate them into a single training
set. Models are trained for one epoch using a cosine decay learning rate scheduler, and the best
checkpoint on validation data is reported.

Our experiments were conducted on a cluster equipped with Nvidia A800 GPUs (80GB memory).
Training a 100M model takes 5–8 hours, a 1B model approximately 1 day, and a 3B model around 2
days on a single A800 GPU. Fine-tuning a pretrained model typically takes about 1 day.

Table 11: Detailed model settings for experiments.
parameter size num hidden layers hidden size intermediate size num attention heads num KV heads

100M 8 1024 3584 8 2
0.9B 16 2048 7168 16 4
3.0B 24 3072 10752 24 6
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Figure 8: Accuracy of models of 0.1B, 0.9B and 3B parameters trained with 1-3 digit tokenizer on
the task of integer addition. X-axis is the number of seen training samples.

A.4.2 TOKENIZATION

We experiment on models of 3 different size, including 0.1B, 0.9B and 3B. For the 0.1B and 0.9B
models, we train them on integer addition of 1-8 digits; for the 3B model, we train it on the same task
of 1-40 digits.

Figure 8 illustrates the in-domain performance of these three models in the first three columns and
their out-of-domain (OOD) performance in the last two columns. Here we use the exact match metric.
In our experiments of the 0.1B and 0.9B models, the one-digit and the two-digit tokenizer demonstrate
comparable performance in the in-domain test, while the one-digit tokenizer exceeds the others to a
large extent in length generalization. In contrast, the three-digit tokenizer exhibits poor performance
in both in-domain and out-of-domain evaluations. Tokenizers with an increasing number of digits
significantly hinder subbillion models’ NUPA. In the experiments of the 3B model, the two-digit
tokenizer matches the one-digit tokenizer in both in-domain and OOD performance. In addition, the
three-digit tokenizer shows the potential in length generalization for the first time, yet its performance
remains inferior to that of the smaller tokenizers. This indicates that scaling up the model size
indeed alleviate the challenges in developing NUPA caused by larger tokenizers. Nevertheless, larger
tokenizers do not present any distinct benefits in either in-domain or out-of-domain generalization in
both small and large models.

We report the results according to different metrics from Figure 4 including digit match and dlength
in Figure 9 and Figure 10.
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Figure 9: Accuracy of 0.9B models trained with 1-3 digit tokenizer on three task of integer addition,
float addition and integer multiplication according to digit match. X-axis is the number of seen
training samples.

Random tokenizer Introduced as “sub-word regularization” by Kudo (2018); Provilkov et al.
(2020), the random tokenizer splits words like "Hello world" into variable tokens such as "He/llo/
world" or "Hell/o/ world". Though not widely used in LLMs, Sathe et al. (2024) found that it enhances
reasoning by introducing variability in generation path. Inspired by this, we apply this to the numbers,
segmenting numbers into tokens with lengths randomly chosen between 1 and a predefined maximum,
instead of using greedy left-to-right segmentation.
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Figure 10: Accuracy of 0.9B models trained with 1-3 digit tokenizer on three task of integer addition,
float addition and integer multiplication according to dlength. Here we report log2(dlength + 1).X-
axis is the number of seen training samples.
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Figure 11: Accuracy of 0.9B models trained with 1- to 3- digit tokenizers and 2- to 3- digit random
tokenizers on integer addition. Shadow shows the standard error. Dn means n digits. X-axis is the
number of seen training samples.

Figure 11 shows the performance of 1- to 3-digit tokenizers alongside 2- to 3-digit random tokenizers,
where n-digit random tokenizer means the one with maximal length n. In terms of in-domain
generalization, the three-digit random tokenizer outperforms the three-digit standard tokenizer, while
the two-digit random tokenizer shows a slight decline compared to its standard counterpart. We
believe this is because the 0.9B model is capable of learning the two-digit tokenizer well, and the
added perturbation from random tokenization acts as a form of regularization, introducing noise
that slightly affects performance. The random tokenizers consistently outperform their standard
counterparts in OOD generalization, indicating the regularization benefits in that aspect. In the case
of the three-digit tokenizer, which is more challenging for a 0.9B model to learn, random tokenization
generates smaller tokens, making the learning process easier and leading to improved in-domain
performance. However, they still fall short of the performance achieved by the one-digit tokenizer.
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A.4.3 PES
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Figure 12: Exact match, digit match and dlength of 100M models trained with various PE, including
RoPE, NoPE and Alibi. From top to bottom, the tasks are integer addition, float addition, fraction
multiplication and scientific notation.

We show exact match, digit match and dlength of 100M models trained with various PE, including
RoPE, NoPE and Alibi in Figure 12. We find NoPE and Alibi achieve better length generalization
than RoPE, which is consistent with previous work like Zhou et al. (2024).

To explain the mechanism of PEs, it is necessary to describe what the “generalization” is about. In
most tasks, there is an intrinsic “length-agnostic” calculating rule, independent of the length of input
numbers. For example, the addition rules: “align numbers by their least significant digits, add them
digit by digit and carry over if the sum exceeds 9” is length-agnostic because it applies universally,
regardless of the input length. However, during training on data with restricted length range (like 1 to
8), models may also learn length-related rules that fit the training data, such as combining normal
addition rules with constraints like “the output length must range from 1 to 8”. Because these two
rules are indistinguishable, prior knowledge should be added into the model as an inductive bias
to help the model learn the “length-agnostic” rules expected in most practical settings (Abbe et al.,
2024; Chen et al., 2024).
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Table 12: RoPE performance with standard error from three repeated experiments. Dn means n
digits where D8 is the longest in-domain length and D9 is the shortest out-of-domain length.

Exact Match Digit Match Dlength

D8 D9 D8 D9 D8 D9

Int-add 1.00±0.00 0.00±0.00 1.00±0.00 0.45±0.02 0.00±0.00 1.07±0.02
Float-add 1.00±0.00 0.00±0.00 1.00±0.00 0.59±0.02 0.00±0.00 1.06±0.01
Frac-mul 0.70±0.01 0.01±0.00 0.85±0.01 0.22±0.02 0.18±0.02 1.45±0.08
Sci-add 1.00±0.00 0.23±0.08 1.00±0.00 0.92±0.01 0.00±0.00 0.66±0.11

According to our experiments, we find that (1) RoPE encourages the model to rely on the length
of the input. The first evidence is that RoPE causes the model’s predictive performance to plummet
dramatically just beyond the training boundary. We report the RoPE’s performance at the boundary
of training length in Table 12 where D8 (digit 8) is the longest length in the training range while
D9 (digit 9) is the shortest length out of the training range. In “int-add” task, the exact match drops
from nearly 100% to 0% when moving from 8 to 9 digits, while “dlength” rises from 0 to 1.07
(Table 12). This indicates that the model has a significant probability of generating shorter results,
avoiding the generation of more than 8-digit answers. At the same time, RoPE not only constrains
the model’s output length but also affects the digit pairing. The performance of 100% for inputs of
8 digits indicates that the model performs calculations for each position unless it can successfully
align the corresponding digits. However, when the model encounters 9-digit inputs, digit match drops
significantly to 50%, suggesting a considerable probability of failing to align the digits. Similar
results on the other three tasks suggest that it is a task-agnostic behavior. The only exception is the
digit match of scientific notation addition. We discuss the results later.

Table 13: 8-digit digit-match accuracy
with small model or small dataset.

1.3M Model 1M Samples

RoPE 0.091 0.97
NoPE 0.061 0.78
Alibi 0.056 0.23

(2) On the other hand, length learning provided by RoPE
appears to be a shortcut. In cases where the model is
extremely small or has been trained very little, we see
the advantages of this “shortcut”. In Table 13, we train a
2-layer transformer (1.3M parameters) on integer addition
using three different PEs on 1- to 8- digit integer addition
or the 0.1B model with only 1M samples, we find RoPE
shows the best in-domain performance. Experiments on
the other three tasks are shown in Table 14 and Table 15, where the RoPE always surpasses others.

As a possible explanation about why Alibi and NoPE achieve better length generalization, our
experiments suggest that for length generalization in number tasks, the required inductive bias is to
interpret the input as a sequence of digits while deliberately ignoring its overall length. RoPE, as a
positional encoding that enables the model to quickly learn position-related information, may lead
the model to adopt a length-dependent shortcut (Table 13), causing it to favor length-related rules. In
contrast, both Alibi and NoPE diminish this reliance on position and length, encouraging the model
to treat each unit’s operation as a step-by-step process, thereby achieving better length generalization.

Discuss about scientific addition The results in Table 12 reveal a clear trend where performance
drops from 8-digit to 9-digit numbers, with one exception: the digit match score in the scientific
notation addition task, which remains relatively high at 0.93 even for 9-digit numbers. We believe it
is mainly because of the alignment mechanism between two scientific notations which differs from
other representations. In other representations, numbers are aligned by position — integers from the
most-left digit and the floats by the decimal point. However, in scientific notation, alignment depends
on the difference in exponent values, which reduces RoPE’s reliance on position and mitigates length
overfitting. Despite this, the effect of RoPE limiting output length remains apparent, as evidenced by
the significant increase in the dlength score.
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A.4.4 DATA FORMATS

Table 16: Exact match of 0.1B models trained on integer addition and float addition respectively with
various compositions of reverse formatting and zero padding.

Integer Addition Float Addition

rev rev
+pad no pad rev total rev total

+ pad rev each rev each
+ pad rev dec rev dec

+ pad rev int rev int
+ pad no pad

d9 0.97±.05 1.00±.00 0.98±.02 1.00±.01 0.11±.01 0.24±.00 0.12±.00 0.24±.00 0.12±.00 0.24±.00 1.00±.00 1.00±.00 0.99±.01 1.00±.00
d10 0.69±.11 0.91±.05 0.16±.11 0.50±.34 0.07±.03 0.21±.01 0.10±.02 0.23±.00 0.07±.02 0.17±.04 0.97±.03 0.87±.16 0.17±.04 0.76±.19

We provide the experiments in Table 16 and the evaluation curves of compositions of reverse
formatting, zero padding and index hints in Figure 13, Figure 14, Figure 15, Figure 16 and Figure 17.
We experiment on 0.1B models trained on 1- to 8- digit training samples. Here we all use the exact
match metric.

Previous work (Zhou et al., 2024) believes that reverse formatting can help the calculation of each
digit by aligning the calculation order to the right-to-left order that humans are accustomed to and
solve the carrying problem. That is, from left-to-right, we cannot determine the result of the current
digit unless the next digit results and whether there is a carrying have been known. However, a more
detailed analysis can explain why the order is not as important as previously believed:

Regarding addition, the cases where reverse formatting can make a difference through the effects
of assisting carry-over calculations are quite rare. Most of the time, knowing the result of the next
digit allows us to determine the answer for the current digit. When the next digit addition is not less
than 10 (without considering further carrying from the following digit), there must be a carrying from
that digit into the current one, no matter what the result of the later digits is. And when the next digit
addition is not more than 8, there will never be a carrying. The only exception is the next digit addition
is 9. In this situation, we must refer to the next two digits to determine the current digit results.
Therefore, we point out that, although in the worst-case scenario, performing non-reversed addition
requires O(n)-length looking forward for each digit (44445+55556 = 100001), and reversing could
solve this problem, such cases are extremely rare. In most instances, the task can be accomplished
with a very limited local view.

About the experiments of index hint, we show in Table 17. Our conclusion on index hints seems
to contradict the findings of Zhou et al. (2024), where models with index hints appeared to achieve
better results. We believe this discrepancy may be related to model size and digit range. In their work,
a much smaller model (only 25M parameters) was used, but the training range covered 1-40 digits.
This reduced the model’s ability to learn the patterns independently without external hints, resulting
in a different learning outcome where the model began to rely on index hints. As a piece of evidence,
when Zhou et al. (2024) train 1-10 digits, the performance without index hint is OK. (But they did
not provide the complete results of 1-10 digit training in their work.) The effectiveness of index hints
may involve complex interactions, which could be an interesting direction for future research.

A.4.5 NUPA FINTUNING WITH PE, TOKENIZER AND REPRESENTATION MODIFICATION

We show parts of results of our attempt to finetune a Llama-3.1-8B model with PE, tokenizer and
data format modification in Table 18. All the checkpoint we select by the lowest valid loss. No one
can outperform the naive finetuning or the original Llama.

A.5 RULE-FOLLOWING CHAIN-OF-THOUGHT

A.5.1 DATA FORMAT OF RULE-FOLLOWING COT

Rule-following CoT consists of a rule prompt and a response to follow the rule. To generate the CoT
samples for a task, first the computational rules are converted to Python code. We utilize a code
LLM to write the code in this experiment. Then, a data generation script which can generate the
rule-following intermediate steps for any given input is manually written. With the script, given a pair
of numbers and a task, both the rules (code prompt) and the response can be generated automatically.
In the finetuning stage, both the prompt and the response are provided to the model but only the loss
on the response part is calculated. During inference, the code prompt is still provided and the models
are expected to generate the rule-following steps as well as the final answer.
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Below is an example of a complete Rule-Following CoT data format, where the model is required to
solve integer addition task with a right-to-left recursion and three digit addition as the unit task.

Prompt:

Follow the given rule to solve the question.
Rule:

def add(num1, num2):
result = ''
carry = 0
# Main Loop
while num1 or num2:

digit1 = int(num1[-3:]) if num1 else 0
digit2 = int(num2[-3:]) if num2 else 0
total = digit1 + digit2 + carry
result = str(total%1000) + result
carry = total//1000
num1 = num1[:-3] if num1 else num1
num2 = num2[:-3] if num2 else num2

if carry:
result = str(carry) + result

result = result.lstrip('0') or '0'
return result

Q: Return the answer as an integer without any delimiter, like 123. Add two numbers: 28 + 35

Response:

num1 = "28"
num2 = "35"
result = ""
carry = 0

while num1 or num2:

check the stop criterion
enter the loop

digit1 = int(num1[-3:]) if num1 else 0
digit2 = int(num2[-3:]) if num2 else 0

num1 = "28"
num2 = "35"
digit1 = 28
digit2 = 35

total = digit1 + digit2 + carry

carry = 0
total = 28 + 35 + 0 = 63

result = str(total%1000) + result
carry = total//1000
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total % 1000 = 63%1000 = 63
result = "063" + "" = "063"
carry = 0//1000 = 0

num1 = num1[:-3]
num2 = num2[:-3]

num1 = ""
num2 = ""

while num1 or num2

check the stop criterion
num1 = "" and num2 = ""
end the loop

if carry:
result = str(carry) + result

carry = 0
pass

result = result.lstrip("0") or "0"

result = "63"

return result

return "63"
So the answer is 63.

A.5.2 MAXIMUM DIGIT LENGTHS WITHIN CONTEXT WINDOW

The selective tasks used to train the RFFT are shown in Table 19 and we also report the maximal
length within 2k tokens context windows limitation. For the detailed prompt of these tasks we cannot
put them into papers so we include them in supplementary.
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Figure 5: Exact match of models tested on NUPA Test.
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Figure 6: Digit match of models tested on NUPA Test.
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Figure 7: Dlength of models tested on NUPA Test. Note that we use log2(dlength+1) as the ylabel
in the figure.
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Table 7: Well-learned digits / performance-preserving digits of models tested on NUPA Test according
to exact match.

Add Add Add Add Easy Add Sub Sub Sub
Int Float Frac Frac Sci Int Float Frac

GPT-4o-mini 5 / 20 4 / 11 0 / 1 0 / 2 0 / 0 6 / 20 5 / 15 0 / 1
GPT-4o 5 / 20 4 / 11 0 / 1 0 / 1 0 / 0 6 / 20 4 / 15 0 / 1

Qwen2-72B 6 / 20 0 / 15 0 / 1 0 / 1 0 / 11 6 / 20 0 / 15 0 / 1
Qwen2-7B 4 / 14 0 / 15 0 / 1 0 / 0 0 / 7 4 / 14 0 / 13 0 / 1

Llama-3.1-8B-ft 4 / 12 5 / 17 0 / 1 0 / 1 0 / 4 4 / 12 4 / 17 0 / 2
Llama-3.1-70B 4 / 15 0 / 11 0 / 1 0 / 1 0 / 0 6 / 11 4 / 11 0 / 1
Llama-3.1-8B 4 / 9 3 / 11 0 / 1 0 / 0 0 / 0 3 / 10 3 / 10 0 / 1
Mixtral-8x7B 5 / 10 4 / 11 0 / 1 0 / 1 0 / 6 4 / 15 3 / 11 0 / 1
Llama-2-7b-hf 0 / 6 0 / 7 0 / 0 0 / 0 0 / 0 0 / 6 0 / 5 0 / 1

Sub Max Max Max Max Max Hard Max Hard Max Hard
Sci Int Float Frac Sci Int Float Sci

GPT-4o-mini 5 / 20 4 / 11 0 / 1 0 / 2 0 / 0 6 / 20 5 / 15 0 / 1
GPT-4o 5 / 20 4 / 11 0 / 1 0 / 1 0 / 0 6 / 20 4 / 15 0 / 1

Qwen2-72B 6 / 20 0 / 15 0 / 1 0 / 1 0 / 11 6 / 20 0 / 15 0 / 1
Qwen2-7B 4 / 14 0 / 15 0 / 1 0 / 0 0 / 7 4 / 14 0 / 13 0 / 1

Llama-3.1-8B-ft 4 / 12 5 / 17 0 / 1 0 / 1 0 / 4 4 / 12 4 / 17 0 / 2
Llama-3.1-70B 4 / 15 0 / 11 0 / 1 0 / 1 0 / 0 6 / 11 4 / 11 0 / 1
Llama-3.1-8B 4 / 9 3 / 11 0 / 1 0 / 0 0 / 0 3 / 10 3 / 10 0 / 1
Mixtral-8x7B 5 / 10 4 / 11 0 / 1 0 / 1 0 / 6 4 / 15 3 / 11 0 / 1
Llama-2-7b-hf 0 / 6 0 / 7 0 / 0 0 / 0 0 / 0 0 / 6 0 / 5 0 / 1

Multiply Hard Multiply Hard Multiply Hard Multiply Hard Multiply Easy Multiply Easy Multiply Easy Multiply Easy
Int Float Frac Sci Int Float Frac Sci

GPT-4o-mini 5 / 20 4 / 11 0 / 1 0 / 2 0 / 0 6 / 20 5 / 15 0 / 1
GPT-4o 5 / 20 4 / 11 0 / 1 0 / 1 0 / 0 6 / 20 4 / 15 0 / 1

Qwen2-72B 6 / 20 0 / 15 0 / 1 0 / 1 0 / 11 6 / 20 0 / 15 0 / 1
Qwen2-7B 4 / 14 0 / 15 0 / 1 0 / 0 0 / 7 4 / 14 0 / 13 0 / 1

Llama-3.1-8B-ft 4 / 12 5 / 17 0 / 1 0 / 1 0 / 4 4 / 12 4 / 17 0 / 2
Llama-3.1-70B 4 / 15 0 / 11 0 / 1 0 / 1 0 / 0 6 / 11 4 / 11 0 / 1
Llama-3.1-8B 4 / 9 3 / 11 0 / 1 0 / 0 0 / 0 3 / 10 3 / 10 0 / 1
Mixtral-8x7B 5 / 10 4 / 11 0 / 1 0 / 1 0 / 6 4 / 15 3 / 11 0 / 1
Llama-2-7b-hf 0 / 6 0 / 7 0 / 0 0 / 0 0 / 0 0 / 6 0 / 5 0 / 1

Digit Max Digit Max Digit Add Digit Add Get Digit Get Digit Length Length
Int Float Int Float Int Float Int Float

GPT-4o-mini 5 / 20 4 / 11 0 / 1 0 / 2 0 / 0 6 / 20 5 / 15 0 / 1
GPT-4o 5 / 20 4 / 11 0 / 1 0 / 1 0 / 0 6 / 20 4 / 15 0 / 1

Qwen2-72B 6 / 20 0 / 15 0 / 1 0 / 1 0 / 11 6 / 20 0 / 15 0 / 1
Qwen2-7B 4 / 14 0 / 15 0 / 1 0 / 0 0 / 7 4 / 14 0 / 13 0 / 1

Llama-3.1-8B-ft 4 / 12 5 / 17 0 / 1 0 / 1 0 / 4 4 / 12 4 / 17 0 / 2
Llama-3.1-70B 4 / 15 0 / 11 0 / 1 0 / 1 0 / 0 6 / 11 4 / 11 0 / 1
Llama-3.1-8B 4 / 9 3 / 11 0 / 1 0 / 0 0 / 0 3 / 10 3 / 10 0 / 1
Mixtral-8x7B 5 / 10 4 / 11 0 / 1 0 / 1 0 / 6 4 / 15 3 / 11 0 / 1
Llama-2-7b-hf 0 / 6 0 / 7 0 / 0 0 / 0 0 / 0 0 / 6 0 / 5 0 / 1

Truediv Truediv Floordiv Mod Mod Easy To Float To Float To Scient
Int Frac Int Int Int Frac Sci Int

GPT-4o-mini 5 / 20 4 / 11 0 / 1 0 / 2 0 / 0 6 / 20 5 / 15 0 / 1
GPT-4o 5 / 20 4 / 11 0 / 1 0 / 1 0 / 0 6 / 20 4 / 15 0 / 1

Qwen2-72B 6 / 20 0 / 15 0 / 1 0 / 1 0 / 11 6 / 20 0 / 15 0 / 1
Qwen2-7B 4 / 14 0 / 15 0 / 1 0 / 0 0 / 7 4 / 14 0 / 13 0 / 1

Llama-3.1-8B-ft 4 / 12 5 / 17 0 / 1 0 / 1 0 / 4 4 / 12 4 / 17 0 / 2
Llama-3.1-70B 4 / 15 0 / 11 0 / 1 0 / 1 0 / 0 6 / 11 4 / 11 0 / 1
Llama-3.1-8B 4 / 9 3 / 11 0 / 1 0 / 0 0 / 0 3 / 10 3 / 10 0 / 1
Mixtral-8x7B 5 / 10 4 / 11 0 / 1 0 / 1 0 / 6 4 / 15 3 / 11 0 / 1
Llama-2-7b-hf 0 / 6 0 / 7 0 / 0 0 / 0 0 / 0 0 / 6 0 / 5 0 / 1

To Scient Count Sig
Float Int Int

GPT-4o-mini 5 / 20 4 / 11 0 / 1
GPT-4o 5 / 20 4 / 11 0 / 1

Qwen2-72B 6 / 20 0 / 15 0 / 1
Qwen2-7B 4 / 14 0 / 15 0 / 1

Llama-3.1-8B-ft 4 / 12 5 / 17 0 / 1
Llama-3.1-70B 4 / 15 0 / 11 0 / 1
Llama-3.1-8B 4 / 9 3 / 11 0 / 1
Mixtral-8x7B 5 / 10 4 / 11 0 / 1
Llama-2-7b-hf 0 / 6 0 / 7 0 / 0
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Table 8: Well-learned digits / performance-preserving digits of models tested on NUPA Test according
to digit match.

Add Add Add Add Easy Add Sub Sub Sub
Int Float Frac Frac Sci Int Float Frac

GPT-4o-mini 9 / 20 6 / 20 0 / 2 0 / 2 0 / 14 11 / 20 9 / 20 0 / 1
GPT-4o 10 / 20 6 / 20 0 / 1 0 / 2 0 / 14 11 / 20 10 / 20 0 / 1

Qwen2-72B 7 / 16 7 / 20 0 / 0 0 / 0 0 / 20 6 / 15 0 / 16 0 / 0
Qwen2-7B 4 / 12 3 / 20 0 / 0 0 / 0 0 / 0 6 / 14 6 / 20 0 / 0

Llama-3.1-8B-ft 6 / 16 9 / 20 0 / 1 0 / 0 0 / 7 6 / 19 12 / 20 0 / 1
Llama-3.1-70B 6 / 15 7 / 20 0 / 1 0 / 1 0 / 4 6 / 17 7 / 20 0 / 1
Llama-3.1-8B 4 / 9 6 / 18 0 / 0 0 / 0 0 / 0 6 / 11 6 / 17 0 / 0
Mixtral-8x7B 6 / 12 5 / 18 0 / 1 0 / 1 0 / 6 5 / 15 5 / 18 0 / 0
Llama-2-7b-hf 3 / 6 0 / 8 0 / 0 0 / 0 0 / 0 3 / 5 0 / 9 0 / 0

Sub Max Max Max Max Max Hard Max Hard Max Hard
Sci Int Float Frac Sci Int Float Sci

GPT-4o-mini 0 / 3 100 / 100 10 / 100 0 / 7 19 / 98 100 / 100 8 / 100 18 / 100
GPT-4o 0 / 0 100 / 100 10 / 100 0 / 7 19 / 98 100 / 100 8 / 100 16 / 100

Qwen2-72B 0 / 0 21 / 100 30 / 100 0 / 4 100 / 100 82 / 100 32 / 100 100 / 100
Qwen2-7B 0 / 0 11 / 86 10 / 98 0 / 0 0 / 82 13 / 100 7 / 100 6 / 69

Llama-3.1-8B-ft 0 / 0 83 / 100 75 / 100 0 / 20 100 / 100 100 / 100 79 / 100 100 / 100
Llama-3.1-70B 0 / 0 0 / 86 0 / 98 0 / 4 0 / 0 0 / 0 0 / 100 0 / 100
Llama-3.1-8B 0 / 0 0 / 67 0 / 93 0 / 0 0 / 54 0 / 100 0 / 96 0 / 100
Mixtral-8x7B 0 / 0 7 / 21 3 / 19 0 / 0 0 / 62 20 / 100 4 / 25 0 / 100
Llama-2-7b-hf 0 / 0 0 / 100 0 / 22 0 / 0 0 / 17 99 / 100 0 / 38 0 / 100

Multiply Hard Multiply Hard Multiply Hard Multiply Hard Multiply Easy Multiply Easy Multiply Easy Multiply Easy
Int Float Frac Sci Int Float Frac Sci

GPT-4o-mini 0 / 5 0 / 0 1 / 2 0 / 4 0 / 6 0 / 0 1 / 2 0 / 4
GPT-4o 0 / 5 0 / 0 1 / 2 0 / 4 0 / 6 0 / 0 1 / 3 0 / 4

Qwen2-72B 0 / 5 0 / 0 0 / 0 0 / 0 0 / 6 0 / 0 0 / 0 0 / 0
Qwen2-7B 0 / 3 0 / 0 0 / 0 0 / 0 0 / 4 0 / 0 0 / 0 0 / 0

Llama-3.1-8B-ft 0 / 4 0 / 0 0 / 3 0 / 4 0 / 6 0 / 3 1 / 3 0 / 5
Llama-3.1-70B 0 / 5 0 / 3 0 / 2 0 / 3 0 / 6 0 / 3 0 / 2 0 / 3
Llama-3.1-8B 0 / 4 0 / 0 0 / 0 0 / 0 0 / 5 0 / 0 0 / 1 0 / 0
Mixtral-8x7B 0 / 4 0 / 0 0 / 1 0 / 0 0 / 5 0 / 0 0 / 2 0 / 0
Llama-2-7b-hf 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0

Digit Max Digit Max Digit Add Digit Add Truediv Truediv Floordiv Mod
Int Float Int Float Int Frac Int Int

GPT-4o-mini 0 / 100 0 / 100 0 / 0 0 / 0 0 / 5 1 / 2 5 / 15 0 / 3
GPT-4o 0 / 100 0 / 100 0 / 0 0 / 0 0 / 6 1 / 2 5 / 15 0 / 3

Qwen2-72B 0 / 100 0 / 100 0 / 0 0 / 0 0 / 0 0 / 1 3 / 8 0 / 3
Qwen2-7B 0 / 100 0 / 33 0 / 5 0 / 8 0 / 0 0 / 1 3 / 6 0 / 3

Llama-3.1-8B-ft 0 / 100 13 / 100 0 / 20 5 / 73 3 / 20 0 / 1 6 / 18 0 / 3
Llama-3.1-70B 0 / 100 0 / 100 0 / 0 0 / 0 0 / 0 0 / 1 4 / 12 0 / 0
Llama-3.1-8B 0 / 92 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 3 / 7 0 / 0
Mixtral-8x7B 0 / 100 0 / 97 0 / 5 0 / 5 0 / 0 0 / 1 3 / 7 0 / 3
Llama-2-7b-hf 0 / 100 0 / 42 0 / 0 0 / 0 0 / 0 0 / 0 0 / 3 0 / 0

Mod Easy To Float To Float To Scient To Scient Sig
Int Frac Sci Int Float Int

GPT-4o-mini 0 / 3 0 / 8 0 / 9 23 / 67 8 / 24 31 / 100
GPT-4o 0 / 3 0 / 8 0 / 9 23 / 71 8 / 28 31 / 100

Qwen2-72B 0 / 3 6 / 9 16 / 28 100 / 100 96 / 100 100 / 100
Qwen2-7B 0 / 3 4 / 8 6 / 22 100 / 100 0 / 100 19 / 100

Llama-3.1-8B-ft 0 / 3 3 / 8 10 / 36 95 / 100 25 / 83 19 / 100
Llama-3.1-70B 0 / 0 4 / 9 0 / 12 0 / 100 0 / 21 0 / 21
Llama-3.1-8B 0 / 0 3 / 6 0 / 12 0 / 0 0 / 0 0 / 0
Mixtral-8x7B 0 / 3 4 / 9 14 / 36 100 / 100 68 / 100 17 / 100
Llama-2-7b-hf 0 / 0 0 / 5 0 / 0 0 / 34 0 / 22 0 / 0
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Table 9: Well-learned digits / performance-preserving digits of models tested on NUPA Test according
to dlength.

Add Add Add Add Easy Add Sub Sub Sub
Int Float Frac Frac Sci Int Float Frac

GPT-4o-mini 20 / 20 4 / 8 0 / 2 1 / 2 0 / 0 20 / 20 5 / 9 0 / 1
GPT-4o 20 / 20 4 / 7 0 / 2 1 / 2 0 / 0 20 / 20 5 / 10 0 / 1

Qwen2-72B 20 / 20 7 / 13 0 / 0 0 / 0 0 / 0 20 / 20 0 / 0 0 / 0
Qwen2-7B 11 / 12 0 / 13 0 / 0 0 / 0 0 / 0 10 / 12 0 / 12 0 / 0

Llama-3.1-8B-ft 19 / 20 11 / 20 0 / 7 0 / 5 0 / 7 20 / 20 13 / 20 0 / 5
Llama-3.1-70B 20 / 20 6 / 13 0 / 1 0 / 1 0 / 0 20 / 20 4 / 13 0 / 1
Llama-3.1-8B 11 / 20 4 / 11 0 / 1 0 / 0 0 / 0 10 / 20 6 / 10 0 / 1
Mixtral-8x7B 10 / 14 4 / 12 0 / 1 0 / 1 0 / 0 16 / 20 5 / 13 0 / 0
Llama-2-7b-hf 5 / 12 0 / 10 0 / 0 0 / 0 0 / 0 4 / 20 0 / 11 0 / 1

Sub Max Max Max Max Max Hard Max Hard Max Hard
Sci Int Float Frac Sci Int Float Sci

GPT-4o-mini 0 / 0 39 / 98 6 / 9 0 / 4 13 / 17 100 / 100 6 / 8 6 / 16
GPT-4o 0 / 0 31 / 72 6 / 9 0 / 2 12 / 17 100 / 100 6 / 8 8 / 16

Qwen2-72B 0 / 0 18 / 32 13 / 30 0 / 0 43 / 86 68 / 85 16 / 26 35 / 63
Qwen2-7B 0 / 0 11 / 23 0 / 17 0 / 0 0 / 14 86 / 100 0 / 20 0 / 11

Llama-3.1-8B-ft 0 / 0 47 / 83 35 / 54 0 / 5 97 / 100 100 / 100 25 / 52 35 / 69
Llama-3.1-70B 0 / 0 0 / 5 0 / 13 0 / 0 0 / 5 0 / 8 0 / 13 0 / 4
Llama-3.1-8B 0 / 0 0 / 0 0 / 7 0 / 0 0 / 0 0 / 18 0 / 6 0 / 0
Mixtral-8x7B 0 / 0 7 / 10 3 / 9 0 / 0 0 / 5 20 / 28 3 / 11 0 / 6
Llama-2-7b-hf 0 / 0 0 / 10 0 / 0 0 / 0 0 / 0 100 / 100 0 / 0 0 / 11

Multiply Hard Multiply Hard Multiply Hard Multiply Hard Multiply Easy Multiply Easy Multiply Easy Multiply Easy
Int Float Frac Sci Int Float Frac Sci

GPT-4o-mini 7 / 11 0 / 0 1 / 2 0 / 0 9 / 20 0 / 0 1 / 2 0 / 0
GPT-4o 7 / 11 0 / 0 1 / 2 0 / 0 16 / 20 0 / 0 1 / 2 0 / 0

Qwen2-72B 0 / 6 0 / 0 0 / 0 0 / 0 5 / 7 0 / 0 0 / 0 0 / 0
Qwen2-7B 0 / 0 0 / 0 0 / 0 0 / 0 0 / 5 0 / 0 0 / 0 0 / 0

Llama-3.1-8B-ft 11 / 18 3 / 9 0 / 11 0 / 7 16 / 19 8 / 17 1 / 15 0 / 20
Llama-3.1-70B 5 / 9 0 / 3 0 / 1 0 / 0 7 / 16 0 / 3 0 / 1 0 / 0
Llama-3.1-8B 0 / 4 0 / 0 0 / 0 0 / 0 0 / 8 0 / 0 0 / 1 0 / 0
Mixtral-8x7B 4 / 6 0 / 0 0 / 2 0 / 0 4 / 8 0 / 0 0 / 2 0 / 0
Llama-2-7b-hf 0 / 0 0 / 0 0 / 0 0 / 0 0 / 5 0 / 0 0 / 0 0 / 0

Digit Max Digit Max Digit Add Digit Add Truediv Truediv Floordiv Mod
Int Float Int Float Int Frac Int Int

GPT-4o-mini 5 / 16 0 / 7 0 / 8 0 / 0 0 / 5 1 / 2 8 / 14 3 / 15
GPT-4o 10 / 16 3 / 7 0 / 8 0 / 0 0 / 5 1 / 2 8 / 14 3 / 15

Qwen2-72B 7 / 16 0 / 9 0 / 0 0 / 0 0 / 0 0 / 1 5 / 7 0 / 5
Qwen2-7B 6 / 11 0 / 4 0 / 20 0 / 9 0 / 0 0 / 1 4 / 6 0 / 5

Llama-3.1-8B-ft 23 / 61 19 / 29 26 / 61 29 / 45 3 / 20 0 / 3 9 / 18 0 / 15
Llama-3.1-70B 6 / 16 0 / 7 0 / 11 0 / 0 0 / 0 0 / 1 3 / 10 0 / 4
Llama-3.1-8B 0 / 6 0 / 0 0 / 10 0 / 7 0 / 0 0 / 0 4 / 8 0 / 5
Mixtral-8x7B 0 / 12 0 / 4 0 / 8 0 / 7 0 / 0 0 / 1 4 / 7 0 / 5
Llama-2-7b-hf 0 / 7 0 / 3 0 / 9 0 / 7 0 / 0 0 / 1 0 / 3 0 / 6

Mod Easy To Float To Float To Scient To Scient Sig
Int Frac Sci Int Float Int

GPT-4o-mini 3 / 20 0 / 4 0 / 15 9 / 21 5 / 8 0 / 23
GPT-4o 3 / 20 0 / 4 0 / 15 9 / 21 3 / 8 0 / 23

Qwen2-72B 0 / 10 3 / 8 12 / 46 0 / 44 0 / 0 6 / 19
Qwen2-7B 0 / 7 3 / 7 76 / 93 0 / 0 0 / 0 0 / 5

Llama-3.1-8B-ft 0 / 17 3 / 9 14 / 78 27 / 33 16 / 38 0 / 0
Llama-3.1-70B 0 / 5 3 / 7 0 / 15 0 / 0 0 / 0 0 / 0
Llama-3.1-8B 0 / 6 3 / 6 0 / 12 0 / 0 0 / 0 0 / 0
Mixtral-8x7B 0 / 6 3 / 6 15 / 16 0 / 18 0 / 0 0 / 0
Llama-2-7b-hf 0 / 6 0 / 4 93 / 98 0 / 0 0 / 0 0 / 0

Table 14: 8-digit digit match accuracy with small model (1.3M) with RoPE, NoPE and Alibi.
Int-add Float-add Fraction-multiplication Scientific-add

RoPE 0.091 0.88 0.23 0.75
NoPE 0.061 0.39 0.17 0.52
Alibi 0.056 0.31 0.18 0.50
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Table 15: 8-digit digit match accuracy with small dataset (1M samples) with RoPE, NoPE and Alibi.
Int-add Float-add Fraction-multiplication Scientific-add

RoPE 0.97 0.99 0.33 0.99
NoPE 0.78 0.98 0.29 0.96
Alibi 0.23 0.80 0.17 0.79

Table 17: Exact match of 0.1B models trained on integer addition, multiply and maximum respectively
with various compositions of reverse formatting and index hints.

Integer Addition Integer Multiply Integer Max

rev rev
+ idx no idx rev reverse

+ idx no idx reverse only reverse
+ idx no idx

d9 1.00 0.93 0.98 0.41 0.43 0.00 0.13 0.00 1.00 0.99 1.00 0.99
d10 0.80 0.06 0.32 0.01 0.13 0.02 0.04 0.02 1.00 0.97 1.00 0.98

Table 18: Finetining with PE, data format, and tokenizer modification will degrade the performance.
The first two lines are a naive finetuned Llama and the original Llama without finetuning, which are
the baseline. “1d” means using the one-digit tokenizer for numbers otherwise the original tokenizer.
“rev” means reverse representation, where the integer parts are reversed. All the checkpoint we select
by the lowest valid loss. The accuracy reported is the average “exact match” in each range. Metric
“wld” is used to denote well-learned digit; “ppd” is used to denote performance-preserving digit.

Integer Addition Float Addition

S M L XL wld ppd S M L XL wld ppd

FT 0.95 0.65 0.12 0.01 4 12 0.96 0.71 0.27 0.08 5 17
w/o FT 0.95 0.38 0.06 0.02 4 9 0.90 0.47 0.10 0.02 3 11
NoPE 0.67 0.04 0.00 0.00 3 5 0.37 0.06 0.00 0.00 0 0
NoPE + rev + 1d 0.89 0.35 0.06 0.02 3 9 0.81 0.38 0.09 0.01 0 11
NoPE + rev + pad + 1d 0.87 0.34 0.05 0.02 0 9 0.74 0.38 0.06 0.01 0 9
RoPE + 1d 0.93 0.59 0.05 0.00 4 9 0.33 0.30 0.06 0.01 0 9
RoPE + rev + 1d 0.40 0.20 0.04 0.00 0 7 0.35 0.30 0.09 0.02 0 11

Fraction Multiplication (easy) Scientific Notation Addition

S M L XL wld ppd S M L XL wld ppd

FT 0.43 0.00 0.00 0.00 1 3 0.09 0.08 0.02 0.00 0 4
w/o FT 0.28 0.00 0.00 0.00 0 3 0.02 0.02 0.01 0.00 0 0
NoPE 0.14 0.00 0.00 0.00 0 3 0.00 0.00 0.00 0.00 0 0
NoPE +rev + 1d 0.25 0.00 0.00 0.00 0 3 0.01 0.02 0.01 0.00 0 0
NoPE + rev + pad + 1d 0.27 0.00 0.00 0.00 0 3 0.01 0.02 0.01 0.00 0 0
RoPE + 1d 0.09 0.00 0.00 0.00 0 1 0.08 0.03 0.02 0.00 0 3
RoPE + rev + 1d 0.06 0.00 0.00 0.00 0 1 0.08 0.02 0.01 0.00 0 4
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Figure 13: Exact match of 0.1B models trained on 1- to 8- digit integer addition with different
compositions of reverse formatting and zero padding on 8- to 10- digit tests. X-axis is the number of
seen training samples.
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Figure 14: Exact match of 0.1B models trained on 1- to 8- digit float addition with different
compositions of reverse formatting and zero padding on 8- to 10- digit tests. X-axis is the number of
seen training samples.
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Figure 15: Exact match of 0.1B models trained on 1- to 8- digit integer addition with different
compositions of reverse formatting and index hints on 8- to 10- digit tests. X-axis is the number of
seen training samples.
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Figure 16: Exact match of 0.1B models trained on 1- to 8- digit integer multiplication with different
compositions of reverse formatting and index hints on 8- to 10- digit tests. X-axis is the number of
seen training samples.
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Figure 17: Exact match of 0.1B models trained on 1- to 8- digit integer maximum with different
compositions of reverse formatting and index hints on 8- to 10- digit tests. X-axis is the number of
seen training samples.
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Table 19: Maximum length of each task that 2k context window can afford with RF-CoT

Add Sub Multiply Floordiv Mod Max DigitMax GetDigit Length

Integer 20 20 12 20 6 100 17 100 34
Float 6 5 4 - - 50 - 100 -
Fraction 3 2 3 - - 20 - - -
Scientific 3 3 3 - - 100 - - -

39


	Introduction
	NUPA test: a benchmark for number understanding and processing ability
	Number representation
	Tasks in four ability categories
	Metrics about NUPA
	Performance of current LLMs

	How do tokenizers, PEs and data formats affect NUPA?
	Tokenizer: One-digit tokenizers are good enough
	Special PEs are length regularization
	Data formats help digit alignment
	Does finetuning improve NUPA performance of LLMs?

	Is CoT suitable and valid for NUPA?
	Related work
	Conclusion
	Limitation
	Appendix
	NUPA Test
	Representations
	Detailed Introduction and Discussion about tasks
	Examples for each task
	Expected representation in each task
	Non-included tasks
	Easy/hard split of NUPA tasks
	Preprocess and question generation for NUPA tasks
	Metrics

	Prompts and other details to test baseline models
	Full test results of LLMs
	Few-shot learning

	Tokenizer, PE and data formats
	Experiment details
	Tokenization
	PEs
	Data Formats
	NUPA fintuning with PE, tokenizer and representation modification

	Rule-following Chain-of-thought
	Data Format of Rule-following CoT
	Maximum Digit Lengths within Context Window



