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Abstract

Visual Language Models (VLMs) have gained001
significant popularity due to their remarkable002
ability. While various methods exist to enhance003
privacy in text-based applications, privacy risks004
associated with visual inputs remain largely005
overlooked such as Protected Health Informa-006
tion (PHI) in medical images. To tackle this007
problem, two key tasks: accurately localizing008
sensitive text and processing it to ensure pri-009
vacy protection should be performed. To ad-010
dress this issue, we introduce VisShield (Vi-011
sion Privacy Shield), an end-to-end framework012
designed to enhance the privacy awareness of013
VLMs. Our framework consists of two key014
components: a specialized instruction-tuning015
dataset OPTIC (Optical Privacy Text Instruc-016
tion Collection) and a tailored training method-017
ology. The dataset provides diverse privacy-018
oriented prompts that guide VLMs to perform019
targeted Optical Character Recognition (OCR)020
for precise localization of sensitive text, while021
the training strategy ensures effective adap-022
tation of VLMs to privacy-preserving tasks.023
Specifically, our approach ensures that VLMs024
recognize privacy-sensitive text and output pre-025
cise bounding boxes for detected entities, al-026
lowing for effective masking of sensitive in-027
formation. Extensive experiments demonstrate028
that our framework significantly outperforms029
existing approaches in handling private infor-030
mation, paving the way for privacy-preserving031
applications in vision-language models.032

1 Introduction033

Vision Language Models (VLMs) (Alayrac et al.,034

2022; Liu et al., 2024b; Bai et al., 2023), which035

are developed following the impressive success of036

LLMs, show a remarkable ability to solve image-037

related tasks. Similar to text-only Large Language038

Models (LLMs) (Dubey et al., 2024; Abdin et al.,039

2024), which pose potential privacy risks by mem-040

orizing and outputting sensitive information from041

training data (Mireshghallah et al., 2022; Huang042

Figure 1: An illustrative example of medical imaging
containing protected health information (PHI), shown
in the top-left region, adapted from Rutherford et al.
(2021). The displayed information is synthetic and thus
remains unmasked for demonstration purposes.

et al., 2022; Carlini et al., 2021), VLMs also suffer 043

from privacy risks because VLMs share the genera- 044

tion part with LLMs (Liu et al., 2024c). 045

To mitigate the privacy risks of text-only LLMs, 046

several methods are proposed. For example, Jang 047

et al. (2022) utilized knowledge editing to make 048

LLMs forget the private information. Moreover, 049

Zeng et al. (2024) proposed privacy restoration to 050

remove the private information in the input and 051

Yang et al. (2024a) leveraged an auxiliary LLM 052

to remove the sensitive information in the training 053

data. However, most of them focus on the text 054

while neglecting the potentially sensitive informa- 055

tion in visual input. For example, medical images 056

often contain protected health information (PHI), 057

which is considered sensitive information. We also 058

show an example of PHI in Fig. 1. 059

To tackle privacy issues arising from vi- 060

sion data, one promising solution is data de- 061

identification (Ribaric et al., 2016). De- 062

identification is the process of removing or mask- 063

ing personally identifiable information (PII) from 064

datasets to ensure privacy. However, previous 065
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Figure 2: The proposed de-identification pipeline. Our approach leverages instruction-tuned VLMs to first perform
targeted OCR on privacy-sensitive regions, followed by selective masking of identified confidential information.

works on image de-identification mainly focus on066

faces, which aim at obscuring identifiable facial fea-067

tures using generative models (Brkic et al., 2017;068

Cao et al., 2021). There is a lack of work focusing069

on textual private information in vision data. To the070

best of our knowledge, only Presidio (Microsoft,071

2023) attempts to de-identify such information.072

However, Presidio lacks the flexibility to define073

what constitutes private information and demon-074

strates suboptimal performance in our experiments.075

To address the lack of methods for de-identifying076

textual private information in vision data, two key077

tasks are required: accurately localizing sensitive078

text and processing it to ensure privacy protection.079

Therefore, in this paper, we propose an end-to-080

end framework named VisShield (Vision Privacy081

Shield), which leverages a Vision Language Model082

to assist in the de-identification of vision data. Our083

framework includes two components:084

1) A specialized instruction-tuning dataset OP-085

TIC (Optical Privacy Text Instruction Collection)086

designed to teach VLMs how to handle privacy-087

sensitive textual elements. This dataset includes088

diverse, privacy-oriented instructions that guide089

VLMs to perform OCR-based localization of pri-090

vate text. We generate synthetic image-text pairs091

with embedded fake private information, covering092

both natural and medical image scenarios, ensuring093

robust generalization. Our dataset comprises 50M094

samples, providing a rich training resource for lo-095

calizing sensitive text.096

2) A tailored training methodology that enables 097

a VLM to accurately understand customized def- 098

initions of private information and apply de- 099

identification mechanisms effectively. We fine- 100

tuned a pre-trained VLM, Kosmos-2.5 (Lv et al., 101

2023) on the OPTIC dataset to enable the VLM to 102

process sensitive text accurately. 103

Our framework pipeline as shown in Fig. 2 en- 104

ables the VLM to understand customized defini- 105

tions of private information and extract private in- 106

formation through OCR, which can then be masked 107

to ensure privacy. Extensive experiments demon- 108

strate that our VisShield achieves superior privacy- 109

aware OCR performance and leads to potential new 110

applications of VLMs. Overall, we summarize our 111

contribution below: 112

• To the best of our knowledge, we are the first 113

to address the problem of de-identification 114

with customized definitions of textual private 115

information in vision data. 116

• We collect a diverse instruction-tuning dataset, 117

which contains both text and image parts. This 118

dataset comprises up to 50M image-text pairs, 119

enabling VLMs to output OCR results for 120

identifying private information in images. 121

• We fine-tune Kosmos-2.5 to demonstrate that 122

even a small portion of our dataset suffices for 123

fine-tuning a pre-trained VLM to assist with 124

de-identification. 125
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Figure 3: Overview of our three-stage dataset gener-
ation pipeline: (1) leveraging large language models
(LLMs) to synthesize diverse instruction prompts, (2)
creating synthetic images containing private informa-
tion through controlled generation, and (3) producing
aligned instruction-label pairs by combining the gener-
ated prompts with the synthetic image dataset.

2 Related Work126

Vinson Language Models With the help of127

LLMs’ powerful reasoning abilities, Vision Lan-128

guage Models (VLMs) have achieved significant129

success in recent days. Different models, including130

Llava (Liu et al., 2024b), BLIP2 (Li et al., 2023),131

Flamingo (Alayrac et al., 2022), Qwen2-VL (Wang132

et al., 2024), mini-GPT4 (Zhu et al., 2023) have133

shown their impressive results among different134

vision-related tasks, which contains but not limited135

to Visual question answering (Biten et al., 2022;136

Guo et al., 2023; Özdemir and Akagündüz, 2024;137

Hu et al., 2024), image captioning (Rotstein et al.,138

2024; Yang et al., 2024b) or visual grounding (Peng139

et al., 2023; Yu et al., 2025). Among all tasks, doc-140

ument OCR (Wei et al., 2025; Lv et al., 2023) and141

its application, which outputs the bounding box142

for texts in the images and answers the question143

based on the texts, are the task most similar to ours,144

where our task is based on the bounding boxes for145

texts. However, none of the previous works have146

utilized VLMs for de-identification to protect the147

privacy of vision data. Our collected dataset and148

model not only address this gap but also expand149

the application scope of VLMs.150

Instruction Tuning Instruction tuning is used151

to make language models follow natural lan-152

guage instructions and complete more complex153

tasks (Ouyang et al., 2022; Wang et al., 2022; Wei 154

et al., 2021; Zhang et al., 2023a). Instruction tun- 155

ing improves the zero- and few-shot generalization 156

abilities of LLMs for both text-only LLMs, which 157

include ChatGPT (Achiam et al., 2023; OpenAI, 158

2023), Llama family (Touvron et al., 2023; Dubey 159

et al., 2024) and Flan family (Longpre et al., 2023; 160

Chung et al., 2024), to VLMs (Liu et al., 2024b,a) 161

with diverse vision prompts as additional inputs. 162

The quality of instruction tuning is highly depen- 163

dent on the quality of the tuning dataset (Zhou et al., 164

2024). Therefore, previous works like Llava (Liu 165

et al., 2024b,a) leverage LLMs to expand the ex- 166

isting image dataset (Lin et al., 2014) to vari- 167

ous instruction-following datasets. In this work, 168

we use a similar pipeline based on the flickr30k 169

dataset (Plummer et al., 2015) and medical im- 170

ages (Rutherford et al., 2021). 171

De-identification De-identification is the pro- 172

cess of removing or obfuscating personal infor- 173

mation from data to prevent the identification of 174

individuals (Ribaric et al., 2016). For image de- 175

identification, most current methods aim at face 176

images, where replacing faces in images to pro- 177

tect privacy (Gross et al., 2006; Brkic et al., 2017; 178

Cao et al., 2021). However, to the best of our 179

knowledge, there is no previous work focused on 180

de-identifying burn-in pixels (texts in the images), 181

especially with the help of VLMs. Therefore, our 182

model fills the gap and extends the application 183

range of VLMs. 184

3 Methodology 185

3.1 De-identification Pipeline 186

As shown in Fig. 2, our full de-identification 187

pipeline contains prompting fine-tuned VLMs to 188

output OCR results. Then, we mask out the text us- 189

ing the top-left color of every bounding box in the 190

output. To achieve a successful de-identification 191

as shown in the pipeline, two key tasks: 1) accu- 192

rately localizing sensitive text and 2) processing 193

it to ensure privacy protection are required. To 194

perform these two tasks, we propose a framework 195

called VisShield and introduce two components 196

of VisShield: 1) a specialized dataset OPTIC for 197

instruction tuning and 2) a training methodology. 198

3.2 OPTIC Dataset 199

Our instruction-tuning approach aims to enable 200

VLMs to analyze and extract private information 201

precisely through OCR. In order to achieve this 202
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You need to generate the instruction that guides MLLMs to do OCR for private information, your instruction should have: 
1. Define these private information: 
 You should use 1-2 sentences to define what private information is, and you should randomly choose one or more 

information including the following categories:
  [name, DOB, SSN, address, phone, email, medical record numbers, disease name] 
You should directly define what is private information like 'private information stands for names'. And you should the exact name 
I list here. Do not use the full name of information here. Please use diverse sentences to demonstrate the same meaning.

 2. Generate few-shot examples of the information:
 - Generate a random example with the information you choose 
 - Use the the generated example as few-shot examples
 - one example for every information you choose 

3. Contain the instruction:
 - must include a special token '' so that my model knows it should do OCR job.
 - You should not re-define what is private information here.
 - Please make the sentences as diverse as possible. 

Format the response without anything else: 
``` INSTRUCTION
 [The full prompt including the defined sentence of private information, few-shot examples and instruction] 
INFORMATION
 [Types of information you choose in the step 1 store in python list format like]```

Prompt Used to Generate Instruction Prompts

Figure 4: Template prompt utilized for instruction generation, implemented with GPT-4 and Claude-3.5 Sonnet.
This prompt guides the LLMs to synthesize diverse task-specific instruction prompts.

goal, the OPTIC dataset contains in total of 50M203

sample sizes with various instruction prompts and204

images with private information.205

3.2.1 Instruction Prompts206

Config Numbers Options

Font 6 Arial, Times_New_Roman, Verdana,
courbi, DejaVuSans, NotoSansMono

Font Size N/A 3%-9% of the whole image
Font Color 9 White, Black, yellow, cyan, orange,

pink,
lightgreen, red, blue

Table 1: Detailed options of different generation con-
figurations. During generation, we will random sample
each configuration to ensure a diverse generation.

The instruction set encompasses four distinct207

contextual categories, which we detail in the fol-208

lowing sections.209

Definition of Private Information The notion of210

private information is inherently context-dependent211

and domain-specific. For instance, numerical se-212

quences in medical contexts may represent con-213

fidential medical record identifiers, while similar214

numerical patterns in other domains might have215

no privacy implications. We explicitly incorpo-216

rate contextual definitions within each instruction217

prompt to enable VLMs to identify and process218

private information across diverse scenarios accu-219

rately. These definitions follow a precise format220

(e.g., "Private information encompasses names and221

email addresses") to eliminate ambiguity and en-222

sure consistent interpretation by the model.223

Few-shot Examples Providing abstract defini- 224

tions of private information alone is often insuffi- 225

cient for optimal VLM performance, as the for- 226

mat and structure of sensitive data vary signifi- 227

cantly across contexts. For instance, medical record 228

numbers follow institution-specific formats, while 229

phone number structures differ across national 230

boundaries. To enhance the instruction-following 231

capabilities of VLMs and improve OCR accuracy 232

for targeted information, we leverage in-context 233

learning (Dong et al., 2022; Zhang et al., 2023b) by 234

incorporating carefully curated few-shot examples 235

into our instructions. These examples are specifi- 236

cally designed to align with and contextualize the 237

provided definitions, enabling more robust recogni- 238

tion of diverse data formats. 239

Instruction The critical component of our in- 240

struction prompts is a targeted directive that guides 241

VLMs to extract OCR results exclusively from pri- 242

vate information. We leverage a specialized token 243

<ocr> for OCR tasks. This token is consistently in- 244

corporated across all instructions, serving as a stan- 245

dardized trigger that signals the fine-tuned VLM to 246

initiate OCR processing for privacy-relevant con- 247

tent within the prompted region. 248

Generation Building upon established method- 249

ologies (Liu et al., 2024b,a), we employ state- 250

of-the-art large language models to generate di- 251

verse instruction prompts. Specifically, we uti- 252

lize GPT-4 (OpenAI) and Claude-3.5 Sonnet (An- 253

thropic), which represent the current frontier of 254

4



language model capabilities. Our framework en-255

compasses eight distinct categories of sensitive in-256

formation, ranging from personally identifiable in-257

formation (PII), such as email addresses and Social258

Security Numbers (SSN), to protected health infor-259

mation, including disease classifications. A com-260

prehensive taxonomy of these information types261

is presented in Table 2. We developed structured262

prompts that direct these LLMs to randomly sample263

from these information categories, generate few-264

shot examples, and produce diverse task-specific265

instructions. The complete prompt template used266

for instruction generation is illustrated in Fig. 4,267

with a representative example of a generated in-268

struction prompt shown in Appendix Fig. 6. We269

have a total of 2500 different instruction prompts,270

with 1250 generated by GPT-4o and 1250 gener-271

ated by Claude-3.5-Sonnet.272

Type of Information Number Example

Name 16300 Joe Dohn
DOB 16276 18 Jun 1983
SSN 16350 071-30-5000
Phone Number 16271 555-304-8389
Address 16270 086 Holt Summit, CT 58671
Email 16149 54jmz@hotmail.com
Medical Numbers 16243 MRN93987011
Disease Name 16274 Migraine

Table 2: Examples of information types we consider in
this paper. We consider 8 types with balanced numbers
of size in each type. All the information is fake.

3.2.2 Synthetic Images273

To fine-tune the VLMs, we need images containing274

private information and bounding box annotations275

for the private information in images. However,276

since we are the first to address the challenge of277

textual private information in images, there is a lack278

of existing image datasets. In order to obtain the279

dataset, we create images with private information280

based on the base image datasets.281

Base Image Dataset We overlay private informa-282

tion onto the base image dataset to generate vision283

data, where the base image dataset plays an impor-284

tant role. We hope the base image dataset includes285

diverse images to enhance generalization ability.286

Therefore, we first utilize the existing dataset that287

already has diverse images from image caption do-288

mains. In detail, we use the flickr30k dataset (Plum-289

mer et al., 2015) as the first part of the base image290

dataset. Additionally, we include the medical im-291

ages in our base image dataset since the medical292

area is the most important application area for de-293

identification. Specifically, we use a public medical294

dataset containing various types of medical images 295

from Rutherford et al. (2021). 296

Generation For the generation of our synthetic 297

dataset, we first sample one base image from our 298

base image datasets and then overlay the private 299

information on the sampled image. In detail, after 300

sampling the image, we determine the amount of 301

private information to be overlaid on the sampled 302

image by randomly selecting an integer between 303

four and ten. Then for each piece of information, 304

we randomly decide the type of the information 305

and generate fake information using the Faker pack- 306

age (Joke and contributors, 2024). Then, we print 307

the generated fake information on the sampled im- 308

age using PIL package (Clark and contributors, 309

2024), which also provides the ground truth bound- 310

ing box information for the text. While overlaying 311

the information on the sampled image, we use dif- 312

ferent fonts, font sizes, and colors to ensure the 313

diversity of generated text. The details of the gen- 314

eration configuration can be found at Table 1. In 315

total, we generate 20,000 images with more than 316

130,000 bounding boxes. 317

3.2.3 Label Generation 318

So far, we have introduced the input part of our 319

dataset. However, to fine-tune VLMs, we also need 320

labels to optimize the loss function. Our target is to 321

make VLMs output the OCR results for the defined 322

private information. The labels should differ based 323

on the same instruction prompt with different im- 324

ages or for different instruction prompts applied to 325

the same image. Therefore, we first randomly sam- 326

ple one prompt from instruction prompts and one 327

image from the synthetic image dataset to form the 328

full input and then generate the label corresponding 329

to the full input. We provide bounding boxes only 330

for the private information types that are used to 331

define private information in the instruction to gen- 332

erate labels. For example, if the instruction prompt 333

specifies that ’private information only stand for 334

names’, then we will only provide bounding box 335

for names in the given image as the label. If there 336

is no such information in the image, the answer 337

will be ’No private information’. If there is such in- 338

formation, the answer will be the concatenation of 339

each bounding box which is expressed as <bbox> 340

< xtl > < ytl > < xbr > < ybr > </bbox>. The 341

coordinates denote the top-left and bottom-right 342

corners of the bounding box. 343
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Model Name DOB SSN Email Phone Number Address Medical Number Disease Name

F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU

Evaluation Set Generated by Training Base Image Dataset

Full 0.9733 0.9134 0.9849 0.8984 0.9781 0.9103 0.9719 0.9482 0.9736 0.9045 0.9809 0.9615 0.9762 0.8626 0.9426 0.8920
LoRA 0.9728 0.9194 0.9849 0.9196 0.9714 0.9205 0.9601 0.9419 0.9801 0.9144 0.9849 0.9690 0.9714 0.8898 0.9501 0.8782

Presidio N/A 0.0085 N/A 0.0074 N/A 0.0067 N/A 0.0119 N/A 0.0072 N/A 0.0141 N/A 0.0074 N/A 0.0067

Evaluation Set Generated by COCO

Full 0.9708 0.9058 0.9903 0.9472 0.9767 0.8997 0.9693 0.9338 0.9838 0.9017 0.9703 0.9632 0.9637 0.8706 0.9565 0.8805
LoRA 0.9713 0.9075 0.9818 0.9083 0.9859 0.9157 0.9679 0.9369 0.9772 0.9097 0.9802 0.9657 0.9818 0.8995 0.9661 0.8764

Presidio N/A 0.0067 N/A 0.0060 N/A 0.0054 N/A 0.0085 N/A 0.0057 N/A 0.1201 N/A 0.0057 N/A 0.0052

Evaluation Set Generated by ADE-20K

Full 0.9499 0.9075 0.9842 0.8849 0.9576 0.8918 0.9718 0.9252 0.9481 0.9200 0.9564 0.9508 0.9818 0.8633 0.9606 0.8863
LoRA 0.9300 0.8921 0.9769 0.9025 0.9740 0.8913 0.9496 0.9282 0.9412 0.8984 0.9513 0.9453 0.9725 0.8655 1.0000 0.8905

Presidio N/A 0.0027 N/A 0.0024 N/A 0.0021 N/A 0.0033 N/A 0.0022 N/A 0.0048 N/A 0.0023 N/A 0.0021

Evaluation Set Generated by RITE

Full 0.9836 0.9251 0.9633 0.9093 0.9863 0.9149 0.9842 0.9449 0.9911 0.9176 0.9910 0.9751 0.9902 0.8777 1.0000 0.9058
LoRA 0.9938 0.9723 0.9851 0.9785 0.9843 0.9953 0.9689 0.9669 0.9109 0.9304 0.9266 0.9491 0.9210 0.9760 0.8966 0.9118

Presidio N/A 0.0077 N/A 0.0070 N/A 0.0066 N/A 0.0096 N/A 0.0073 N/A 0.0126 N/A 0.0068 N/A 0.0062

Table 3: Comparative analysis of model performance across information categories, model architectures, and
evaluation datasets. We evaluate using randomly sampled instruction prompts from the training set. Results
demonstrate that our fine-tuned models achieve strong generalization capabilities, with full model fine-tuning
consistently outperforming other adaptation strategies.

3.3 Training on OPTIC344

While the OPTIC dataset provides a rich foundation345

for training privacy-aware VLMs, effectively lever-346

aging it to improve the model’s capability remains347

a significant challenge. To address this challenge,348

we introduce our training strategy and our strategy349

is built upon three key principles:350

Efficiency While our dataset contains 50M sam-351

ples, training on the full dataset is computationally352

expensive and unnecessary. Instead, we demon-353

strate that training on a small subset of 100K354

samples is sufficient to significantly enhance the355

model’s de-identification capabilities. This ap-356

proach allows us to reduce resource requirements.357

358

Knowledge Transfer Instead of training a VLM359

from scratch, we fine-tune Kosmos-2.5 (Lv et al.,360

2023), a pre-trained multimodal model that inher-361

ently supports OCR extraction from images. How-362

ever, to make it privacy-aware, our fine-tuning pro-363

cess could improve its ability to selectively extract364

only privacy-relevant text rather than all OCR con-365

tent, and refine its bounding box localization for366

privacy-sensitive elements.367

Adaptation Strategies We explore two fine-368

tuning strategies to integrate privacy-awareness369

into the model. The first is full fine-tuning, where370

the entire model is fine-tuned on privacy-sensitive371

OCR tasks, while the second is LoRA (Hu et al.,372

2021), a parameter-efficient approach that updates373

only a limited set of trainable parameters, reducing374

memory consumption.375

With our training strategy, we ensure that our 376

end-to-end framework learns to effectively identify, 377

localize, and process private textual information. 378

4 Experiments 379

In this section, we provide our experimental results 380

to show the robustness of fine-tuned models. We 381

start with the experimental setting at first. 382

4.1 Experimental Setting 383

Dataset To evaluate the robustness and general- 384

ization ability of the fine-tuned model, we test the 385

fine-tuned models with five different datasets: 1) 386

Images generated from the same base image dataset 387

and the same instruction prompts in the training set, 388

2) Images from the same base image dataset and 389

different instruction prompts from the training set, 390

3) Images from different base image dataset and 391

different instruction prompts from the training set, 392

4) Images from different base image dataset with 393

extra private information (not in 8 types of private 394

information considered in training) and different 395

instruction prompts from the training set, and 5) 396

real-world images, which is annotated by human as 397

described in (Orekondy et al., 2018). We will pro- 398

vide a more detailed introduction to these datasets 399

in the following section. 400

Training Parameters For full fine-tuning, we use 401

an epoch of 5, learning rate 2e-5 with batch size 402

16. For LoRA, following previous work (Sun et al., 403

2023), we use a larger learning rate 3e-4 and a 404

larger epoch 10 with the same batch size. For both 405

trainings, we use AdamW (Loshchilov, 2017) as 406
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Model Name DOB SSN Email Phone Number Address Medical Number Disease Name

F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU

Instruction Prompts Generated by Gemma1.5

Full 0.9493 0.9008 0.9636 0.9013 0.9842 0.9075 0.9537 0.9290 0.9114 0.9080 0.9591 0.9644 0.9760 0.8586 0.9247 0.8973
LoRA 0.9561 0.9791 0.9764 0.9491 0.9721 0.9798 0.9669 0.9767 0.8960 0.9121 0.9177 0.9429 0.9130 0.9721 0.8815 0.8948

Presidio N/A 0.0085 N/A 0.0074 N/A 0.0067 N/A 0.0119 N/A 0.0072 N/A 0.0141 N/A 0.0074 N/A 0.0067

Instruction Prompts Generated by Human

Full 0.9420 0.9247 0.9943 0.9094 0.9723 0.9211 0.9129 0.9353 0.9842 0.9010 0.9823 0.9613 0.9511 0.8749 0.9746 0.9210
LoRA 0.9758 0.9667 0.9847 0.9499 0.9799 0.9560 0.9414 0.9877 0.9196 0.9251 0.9247 0.9447 0.9333 0.9675 0.8751 0.8911

Presidio N/A 0.0085 N/A 0.0074 N/A 0.0067 N/A 0.0119 N/A 0.0072 N/A 0.0141 N/A 0.0074 N/A 0.0067

Table 4: Performance comparisons for different types of information, different models, and different instruction
prompts. The evaluation image set is chosen for the evaluation set generated by the training base image dataset.

Model Name DOB SSN Email Phone Number Address Medical Number Disease Name

F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU

Instruction Prompts Generated by Gemma1.5

Full 0.9483 0.9062 0.9625 0.8985 0.9771 0.9000 0.9309 0.8990 0.9245 0.9090 0.9782 0.9625 0.9464 0.8673 0.8586 0.8942
LoRA 0.9852 0.9689 0.9851 0.9636 0.9576 0.9751 0.9635 0.9749 0.9017 0.9078 0.9105 0.9309 0.9100 0.9669 0.8915 0.8906

Presidio N/A 0.0067 N/A 0.0060 N/A 0.0054 N/A 0.0085 N/A 0.0057 N/A 0.1201 N/A 0.0057 N/A 0.0052

Instruction Prompts Generated by Human

Full 0.9586 0.9027 0.9928 0.9042 0.9636 0.9153 0.9234 0.9389 0.9697 0.9132 0.9129 0.9626 0.9391 0.8786 0.9139 0.8902
LoRA 0.9761 0.9826 0.9879 0.9621 0.9602 0.9564 0.9695 0.9727 0.9026 0.9094 0.9139 0.9337 0.9225 0.9668 0.8980 0.9004

Presidio N/A 0.0067 N/A 0.0060 N/A 0.0054 N/A 0.0085 N/A 0.0057 N/A 0.1201 N/A 0.0057 N/A 0.0052

Table 5: Performance comparisons for different types of information, different models, and different instruction
prompts. The evaluation image set is chosen for the evaluation set generated by COCO.

the optimizer. All training methods are conducted407

on a single Nvidia Tesla A100 80GB GPU.408

Metrics In this paper, we mainly consider two dif-409

ferent metrics to measure the quality. Following410

previous works (Olejniczak and Šulc, 2022; Ren411

et al., 2016), we use F1 to evaluate the quality of412

OCR results for defined private information and413

use the Intersection over Union (IoU) to evaluate414

the quality of detection, which are both important415

for the following mask out procedure.416

Research Questions In this section, we mainly417

focus on three different research questions about418

the generalization ability of the fine-tuned Model:419

1) Whether fine-tuned VLM is stable for different420

images, 2) Whether fine-tuned VLM is stable for421

various instructions and 3)Whether the fine-tuned422

VLM is stable for new information types. Besides,423

Our experimental results also show that our fine-424

tuned VLM performs well even in real-world data425

and we put the detailed results in Appendix.426

4.2 RQ1: Whether Fine-tuned VLM is Stable427

for Different Images428

To answer this research question, we use different429

base image datasets to generate the evaluation set.430

We only provide the results for our method in most431

cases. In detail, we consider using: 1) our training432

base image dataset, 2) COCO (Lin et al., 2014),433

3) ADE20K (Zhou et al., 2017), and 4) RITE (Hu 434

et al., 2013) to generate evaluation image datasets, 435

ensuring comprehensive scenarios from city scene 436

to medical images considered in the experiments. 437

We generate 1500 images for each dataset with 438

the same generation methods but more generation 439

configurations. We compare our model with Pre- 440

sidio (Microsoft, 2023) and the results are shown 441

in Table 3. The F1 score for Presidio is N/A be- 442

cause it cannot output OCR results. We have the 443

following observations: 444

1) The previous tool Presidio shows a bad perfor- 445

mance. Since we cannot customize the private 446

definition for Presidio, the performance of Presidio 447

is highly random for different types of information. 448

2) Our fine-tuned model shows a very good per- 449

formance with a mean IoU larger than 0.9. And 450

this good performance remains for various image 451

datasets, showing the robustness of our method. 452

3) There is no clear winner for full fine-tuning and 453

LoRA. Though the LoRA model wins more times, 454

this winning is marginal given the good perfor- 455

mance of both models. 456

4.3 RQ2: Whether Fine-tuned VLM is Stable 457

for Various Instructions 458

To answer the research question related to various 459

instructions, we generate instruction prompts that 460

are different from our training set by involving hu- 461
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man writers and Gemini (Team et al., 2023), and462

then pair the new prompts with three image datasets463

we used before with one-shot examples. We gen-464

erate 1500 text-image pairs for model evaluation,465

and the results are shown in Table 4 and Table 5.466

We have the following observations:467

1) Compared with the results in Table 3, the perfor-468

mance of both full fine-tuning and LoRA exhibits469

a slight decrease. However, this decrease is mini-470

mal, and the fine-tuned models continue to deliver471

strong performance.472

2) Even when using a different image dataset473

and Instruction Prompts together, our models474

still achieve strong performance for the de-475

identification task.476

4.4 RQ3: Whether Fine-tuned VLM is Stable477

for New Information Type.478

Now, we conduct experiments to test the perfor-479

mance of fine-tuned VLM on new information480

types. Here, we focus on two new types of in-481

formation: 1) phone numbers with a format of 11482

digits and 2) passport number that begins with a let-483

ter and ends with eight numbers. We use a similar484

method to generate the evaluation set and we re-485

generate the instruction prompts with the one-shot486

prompt to ask models to output OCR results for487

new types of information. We present our results488

in Table 2. We find that:489

1) Overall, our fine-tuned models continue to490

demonstrate strong performance when incorporat-491

ing new types of information, further highlighting492

their robustness and reliability.493

2) Compared to 11-digit phone numbers, the per-494

formance on passport numbers is lower because495

our models had not previously encountered the for-496

mat of passport numbers. In contrast, earlier phone497

numbers share a similar pattern with the new ones,498

aiding the model’s performance.499

4.5 Ablation Study500

In this section, we provide a comparison of the501

performance of one-shot prompts and zero-shot502

prompts. More ablation study results can be found503

in the Appendix. Here, we consider the 11-digit504

Phone Number and Passport Number as in Sec-505

tion 4.4, and the results for various datasets are506

presented in Fig. 5. We found that:507

1) Compared with the one-shot prompt, using the508

zero-shot prompt can lead to better performance509

across different datasets, highlighting the impor-510

tance of few-shot examples.511

Model 11-Digit Phone Number Passport Number

F1 IoU F1 IoU

Evaluation Set Generated by Training Base Image Dataset

Full 0.9803 0.8724 0.8887 0.8596
LoRA 0.9803 0.8887 0.8725 0.8597

Presidio N/A 0.0071 N/A 0.0064

Evaluation Set Generated by COCO

Full 0.9796 0.8679 0.8920 0.8625
LoRA 0.9023 0.8167 0.8776 0.8583

Presidio N/A 0.0086 N/A 0.0054

Evaluation Set Generated by RITE

Full 0.9910 0.8761 0.9271 0.8758
LoRA 0.8678 0.7463 0.8892 0.8700

Presidio N/A 0.0075 N/A 0.0069

Table 6: Performance comparisons for new types of
information, different models, and different evaluation
image sets.

Table 1

One-Shot Phone 
Number

Zero-Shot Phone 
Number

One-Shot 
Passport Number

Zero-Shot 
Passport Number

Base 0.8724 0.8523 0.8596 0.6875

CoCo 0.8679 0.8544 0.8625 0.7122

RITE 0.8761 0.8750 0.8758 0.7292

0

0.25

0.5

0.75

1

Base CoCo RITE

1-Shot Phone Number 0-Shot Phone Number
1-Shot Passport Number 0-Shot Passport Number

1

Figure 5: IoU performance comparison with different
Dataset on 11-digit Phone Number and Passport Num-
ber. The experiments are on the full fine-tuned model.

2) The performance gap between two prompts is 512

larger when we consider passport numbers. This is 513

because the model has seen similar phone numbers 514

during training, but it never encountered anything 515

similar to passport numbers before. This highlights 516

the importance of few-shot examples. 517

5 Conclusion 518

In conclusion, this work presents a novel approach 519

to de-identify textual information in visual data by 520

leveraging the power of VLMs. We generate a com- 521

prehensive instruction-tuning dataset with diverse 522

images and instruction prompts. By fine-tuning 523

Kosmos-2.5 with this comprehensive instruction- 524

tuning dataset, we demonstrated that VLMs can 525

effectively identify and mask private information. 526

Our results show strong generalization and robust- 527

ness across different datasets and real-world sce- 528

narios, laying a foundation for safer integration of 529

VLMs into privacy-sensitive applications. 530
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Limitation531

While our approach demonstrates strong perfor-532

mance, it has two key limitations. First, the533

model’s effectiveness depends on the quality of the534

instruction-tuning dataset, and while we have en-535

sured diversity, rare or highly domain-specific pri-536

vate information formats may still pose challenges.537

Second, our method relies on OCR accuracy for538

text extraction, meaning that errors in detecting or539

recognizing text in low-quality or distorted images540

could affect de-identification performance.541
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A Example of Instruction prompt829

B More Experiments830

In this section, we provide more experimental re-831

sults to support our conclusion.832

B.1 mAP Results833

Here, we provide the results for mean Average Pre-834

cision (mAP) to further demonstrate the results of835

our experiments. Following previous works in de-836

tection, we consider a correction if IoU > 0.5. And837

the results for different images are provided in Ta-838

ble 8 and Table 9. The results in both experiments839

show that our fine-tuned models also have a very840

good mAP result, which is reasonable since our841

IoU results are very high.842

B.2 Experiments on Real-world Data843

In this section, we use real-world data to test the844

robustness of the fine-tuned models. In detail, we845

use images from (Orekondy et al., 2018), which846

contains real-world images from different scenar-847

ios. And human annotators will annotate the im-848

ages with private information and the correspond-849

ing bounding box information. More specifically,850

we focus on names and phone numbers. Then, we851

use instructions that define private information as852

names and phone numbers to test the performance853

on real-world data. Our results can be found in854

Table 7. Our experimental results show that even855

though the performance drops, our full fine-tuned856

model can also perform well in real-world data,857

showing good robustness of the model fine-tuned858

with our dataset.859

Model Phone Number Name

F1 mAP F1 mAP

Full 0.7001 0.5439 0.7229 0.6037
Presidio N/A 0.0002 N/A 0.0003

Table 7: Performance comparisons for different types
of information, different models on real-world dataset

B.3 More ablation studies860

In this section, we provide more results of our ab-861

lation studies. In detail, we provide the results862

for the different number of few-shot examples and863

different training sizes.864

For the different number of few-shot examples,865

we consider using instruction prompts as well as866

few-shot examples written by human. We focus867

on the Medical Numbers and Email using CoCo as 868

base image dataset. And the results are shown in 869

Fig. 7. We can see that using few-shot examples 870

can boost the performance. However, without using 871

few-shot examples, we can still get a decent result. 872

In Fig. 8, we present our results for different 873

sizes of training datasets for using CoCo as the base 874

image dataset and instructions from the training set. 875

From the figure we can observe that using 100k 876

training pairs is more than enough to get a good 877

result, showing the potential ability to use VLMs 878

to de-identify data. 879

B.4 Example on Real-world Dataset 880

In Fig. 9, we present an example of applying our 881

fine-tuned model on the real-world dataset. From 882

the figure, we can see that the names and the 883

phone number are correctly masked by our de- 884

identification pipeline. 885

1



INSTRUCTION
Private information includes SSN, address, and medical record numbers, as they are 
sensitive and often used for identity verification or medical purposes.

Examples:
- SSN: 123-45-6789
- Address: 456 Elm Street, Apt. 12B, Springfield, IL 62704
- Medical Record Number: MRN-9876543210

<ocr> Extract and capture any visible private information in the image, focusing on 
elements like the specified codes, addresses, or identifiers.

INFORMATION
["SSN", "address", "medical record numbers"]

Generated Instruction Prompt

Figure 6: One instruction prompt example generated by GPT-4o.

Model Name DOB SSN Email Phone
Number

Address Medical
Number

Disease
Name

Evaluation Set Generated by Training Base Image Dataset

Full 0.9478 0.9479 0.9482 0.9482 0.9480 0.9484 0.9478 0.9492
Presidio 0.0007 0.0006 0.0005 0.0006 0.0007 0.0012 0.0004 0.0004

Evaluation Set Generated by COCO

Full 0.9470 0.9472 0.9472 0.9472 0.9473 0.9470 0.9468 0.9467
Presidio 0.0006 0.0005 0.0005 0.0006 0.0006 0.0011 0.0005 0.0004

Evaluation Set Generated by ADE-20K

Full 0.9196 0.9196 0.9198 0.9198 0.9200 0.9199 0.9197 0.9196
Presidio 0.0002 0.0002 0.0001 0.0002 0.0002 0.0003 0.0001 0.0001

Evaluation Set Generated by RITE

Full 0.9394 0.9388 0.9398 0.9396 0.9399 0.9397 0.9398 0.9400
Presidio 0.0003 0.0003 0.0003 0.0003 0.0003 0.0007 0.0003 0.0003

Table 8: Comparative analysis of model performance across information categories, model architectures, and
evaluation datasets using mAP as the metric.

Model Name DOB SSN Email Phone Number Address Medical Number Disease Name

Instruction Prompts Generated by Gemini1.5

Full 0.8933 0.8932 0.8932 0.8930 0.8931 0.8929 0.8928 0.8933
Presidio 0.0007 0.0006 0.0005 0.0006 0.0007 0.0012 0.0004 0.0004

Instruction Prompts Generated by Human

Full 0.9221 0.9229 0.9234 0.9224 0.9231 0.9233 0.9223 0.9233
Presidio 0.0006 0.0005 0.0005 0.0006 0.0006 0.0011 0.0005 0.0004

Table 9: Performance comparisons for different types of information, different models, and different instruction
prompts. The evaluation image set is chosen to evaluation set generated by the training base image dataset using
mAP as the metric.
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Figure 7: IoU performance comparison with different
numbers of few shot examples.
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Figure 8: IoU performance comparison with different
sizes of training dataset

Figure 9: A real-world image example that de-identified
by our pipeline.
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