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Abstract— In many realistic settings, a robot is tasked with
grasping an object without knowing its exact pose and needs to
rely instead on a probabilistic estimation of the pose in order to
decide how to attempt the grasp. We support settings in which it
is possible to provide the robot with an observation of the object
before a grasp is attempted. However, since this possibility is
limited, there is a need to predict the expected benefit of possible
sensing actions before choosing which one to perform. For this,
we offer new ways to compute Value of Assistance (VOA) for
grasping to predict the expected effect a sensing action will
have on the probability of a successful grasp. Our empirical
evaluation shows how our suggested VOA measure can be used
to identify helpful sensing actions.

I. INTRODUCTION

Task-driven agents often need to decide how to act based
on partial and noisy state estimations, which may greatly
compromise performance. We consider settings in which
an agent is tasked with grasping an object based on a
probabilistic estimation of its pose. Before attempting the
grasp, it may be possible to provide the agent with an
additional observation. We offer value of assistance (VOA)
for grasping as a principled framework for assessing the
expected benefit of performing a sensing action and suggest
ways to compute it for two different sensors.

VOA is relevant to settings in which sensing and commu-
nication may be costly or limited and there is a need to select
a sensing action to perform. Notably, we do not offer a new
approach to searching for the best action. Instead, we offer a
measure that can guide any off-the-shelf heuristic search in
finding the best sensing action to apply. It can also guide an
anytime search in which it is unknown a-priori how much
time there is for searching for the best intervention before
the actor reattempts the grasp. In both cases, there is a need
to iteratively select the next sensing action to perform and
therefore a need to efficiently estimate the expected benefit
of each action.

To demonstrate, consider the simplified automated man-
ufacturing setting depicted in Figure 1. The acting agent
marked as the actor, is a robotic arm with a parallel-
jaw gripper that is tasked with grasping an object (here,
an adversarial object from the Dex-Net Dataset1). After a
successful grasp, the object drops unexpectedly. Since the
actor does not have the means to sense the state of the
dropped object on its own, it can attempt to grasp the object
based only on its estimation of the current position of the
object. Alternatively, it can attempt the grasp after receiving
an observation from another agent that is equipped with a
sensor (here, an OnRobot 2.5D Vision System). The question
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Fig. 1: Collaborative grasping example.

we pose is what is the best position from which to acquire
a sensor reading to maximize the actor’s probability of
successfully grasping the object. Naturally, the same question
arises in single-agent settings in which the actor needs to
decide whether to perform a costly sensing action by itself.

Beyond this illustrative example, grasping is an essential
task in a wide range of robotic applications, including
industrial automation, household robotics, agriculture, and
more [1], [2]. Accordingly, research on effective grasping has
resulted in many solution approaches that can be generally
divided into two main categories [3], [2]. In analytical
approaches, a representation of the physical and dynamical
models of the agent and the object are used when choosing a
configuration from which to attemp a grasp [4], [5], [6], [7].
In contrast, data-driven approaches rank labeled samples to
come up with grasping policies. The ranking is usually based
on a heuristic or on experiences collected from simulated or
real robots [8], [9], [10], [11], [12].

We assume the actor is associated with a procedure
for choosing a grasp given its belief which represents its
knowledge about the position of the object. To support the
decision of which observation would be most beneficial, we
formulate VOA for grasping and offer ways to compute it.
This involves accounting for how the actor’s estimation will
change based on the acquired observation and assessing how
this change will affect the actor’s decision of how to attempt
the grasp.

As a measure for assessing the informative value of an
observation, VOA is closely related to the well-established
notions of value of information (VOI) and information gain
(IG) [13], [14], [15], [16], [17], which are widely used across
multiple AI frameworks to assess the impact information
will have on agents’ decisions and expected utility. We
adapt these ideas to robotic settings. While the notion of
VOA was previously used for assessing the effect localization
information would have on a navigating robot’s expected cost
[18], we adapt it to a grasping task.

Our work lies within the well established fields of active
perception and sensor planning [19], [20], [21], [22], [23],
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Fig. 2: Example stable poses.

(a) (b) (c)

Fig. 3: Example grasp configurations from which the ac-
tor can attempt to grasp the object - each configuration is
associated with a score, i.e., probability of success.

[24], [25], [26], [27] which refer to the integration of sensing
and decision-making processes within a robotic system.
These involve actively acquiring and utilizing information
from the environment and selecting viewpoints or trajectories
likely to reveal relevant information or reduce uncertainty
[28], [29]. While these include work on active perception in
manipulation tasks, they mostly focus on assessing the effect
various perspectives will have on the ability to correctly
locate and classify objects [19], [30]. We adopt a task-
driven approach and offer a general formulation of VOA for
grasping and use it for estimating the effect an observation
will have on the probability of accomplishing a grasp.

Since our focus is on settings in which information acqui-
sition actions are limited and may be performed by another
agent, our work is also highly related to decision-theoretic
communication, where agents communicate over a limited-
bandwidth channel and messages are chosen to maximize
the utility or effectiveness of the communication [31], [26],
[25], [32], [33]. We offer measures that account for the
manipulation and sensing capabilities of robotic agents when
assessing the value of communicating an observation.

Our key contributions include the formulation of Value
of Assistance (VOA) for grasping and its instantiation for
grasping settings with a robotic arm equipped with a gripper
and another agent equipped with either a lidar or a depth
camera. We empirically demonstrate in both simulated and
real-world robotic settings how VOA predicts the effect an
observation will have on performance and how it can be used
to identify the best among a set of possible assistive actions.

II. PRELIMINARIES

To support a grasping task, where the object is assumed
to be in a stable static pose, we use a function that assigns
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Fig. 4: Example sensor configurations and corresponding
observations for a given stable pose. Each column represents
the RGB image [top] lidar reading [middle] and depth image
[bottom] for a sensor configuration-object pose pair.

Fig. 5: Grasps for HOLDER: best grasp g∗, initial chosen
grasp gi and grasp chosen after the intervention gx.

a score to a grasping configuration - object pose pair.
Definition 1 (Grasp Score): Given a set of object poses P

and a set of grasp configurations G, a grasp score function γ :
G×P 7→ [0, 1] specifies the probability that an actor applying
grasp configuration g ∈ G will successfully grasp an object
at pose p ∈ P , i.e. γ (p, g) = P (s|p, g), where s is the event
of a successful grasp.

The grasp score function may be evaluated analytically,
by considering diverse factors such as contact area, closure
force, object shape, and friction coefficient [34], [2] or
empirically, by using data-driven approaches where a deep
learning model is trained to predict the quality of grasps
based on depth images of the objects [35].

The actor’s choice of a grasp configuration relies on a pose
belief describing the perceived likelihood of each object pose
within the set of possible stable poses P . We let B denote
the set of pose beliefs and define a pose belief as follows.

Definition 2 (Pose Belief): A pose belief β : P 7→ [0, 1]
is a probability distribution over P .

The pose belief is affected by different factors, including



the model of the object and its dynamics and the collected
sensory information. We formulate the initial belief after the
object is dropped (Figure 1) using a joint probability model
that captures the prior probability of stable poses, a von
Mises PDF for the angle [36], and a multivariate normal
distribution for the position on the plane (see the online
appendix for the complete formulation1).

Definition 3 (Expected Grasp Score): For grasp configu-
ration g and pose belief β, the expected grasp score
γ̄(g, β) = Ep∼β [γ (g, p)] is the weighted aggregated grasp
score over the set of possible poses. A maximal grasp of β,
denoted gmax(β), maximizes the expected grasp score, i.e.,
gmax(β) = argmaxg∈G γ̄ (g, β).

The actor receives an observation which corresponds to
a reading from a specific sensor configuration x ∈ X and
object pose p ∈ P . Our formulation of the observation space
O is general and represents the set of readings that can be
made by the sensor that is available in the considered setting.
In our evaluations, we used a planar lidar sensor for which a
reading is an array of non-negative distances per angle R360

and a depth camera which emits a 2D array Rw×h, where
w × h are the image dimensions.

As is common in the literature, we consider obtaining an
observation as a stochastic process [37], [38].

Definition 4 (Sensor Function): Given object pose p ∈ P
and sensor configuration x ∈ X , sensor function O : P ×
X 7→ O is a random function, such that if o = O(p, x) then
P (o|p, x) provides the conditional probability of obtaining
the observation o when the sensor configuration is x and the
object pose is p.

Notably, an agent may not be aware of the actual distri-
bution of sensor functions or observations, and may instead
only have a predicted sensor function Ô and a predicted
observation probability P̂ , based on distributions which may
be incorrect or inaccurate. For example, a predicted sensor
function based on a deterministic model would assign a cell
in a lidar reading based on the predicted distance between the
lidar and the object surface at a specific angle. A stochastic
sensor model would sample from a Gaussian distribution
with this value as the mean and the specified error margins as
the standard deviation. If P̂ is unknown, a similarity score,
ω : O × O 7→ [0, 1], may be used to compare the predicted
and received observations and to compose a valid distribution
function for P̂ :

P̂ (o|p, x) = ω(Ô(p, x), o)∫
p′∈P ω(Ô(p′, x), o)dp′

(1)

The literature is rich of various definitions for ω, which
may vary between applications and sensor types. Our ap-
pendix describes several approaches including using MSE
for assessing the similarity between lidar sensor readings and
an SSIM-based measure [39] for depth images.

When receiving an observation o, the actor updates its
belief using its belief update function which defines the effect
an observation has on the pose belief.

1Online appendix: https://github.com/CLAIR-LAB-TECHNION/VOAGrasp

Definition 5 (Belief Update): A belief update function
τ : B ×O × X 7→ B maps belief β ∈ B, observation o ∈ O
and sensor configuration x ∈ X to an updated belief βo,x.

There are many approaches for belief update [37], [16],
[22], [40]. We use a Bayesian filter such that for any
observation o ∈ O taken from sensor configuration x ∈ X ,
the updated pose belief βo,x (p) for pose p ∈ P is given as

βo,x (p) =
P̂ (o|p, x)β (p)∫

p′∈P P̂ (o|p′, x)β (p′) dp′
(2)

where β (p) is the estimated probability that p is the object
pose prior to considering the new observation o.

III. VALUE OF ASSISTANCE (VOA) FOR GRASPING

We offer a way to assess Value of Assistance (VOA) for
grasping as the expected benefit an observation collected
from a sensor configuration will have on the probability
of a successful grasp. For this, we seek a way to estimate
beforehand the effect an expected observation will have on
the actor’s belief and thus on its choice of configuration from
which to attempt the grasp.

Whereas the object’s exact pose is unknown, its shape is
given and it is assumed to be in a stable pose p (Figure
2). The actor chooses a feasible grasp configuration g ∈
G from which to attempt a grasp (Figure 3) based on the
grasp score function γ (Definition 1) and its pose belief β
(Definition 2). Before attempting the grasp, it is possible to
acquire an observation from a sensor configuration x ∈ X
but there is a need to choose among a set of configurations,
each offering a different point of view of the object (Figure
4). Each observation may have a different effect on the pose
belief and on the decision of which grasp to attempt. Figure
5 depicts the relationship between the grasp chosen by the
agent based on its initial belief and the objective of using a
sensing action to induce the selection of a pose with a higher
probability of success.

Our perspective is that of the agent that needs to decide
which sensing action to perform. This can be the actor itself
or another agent in the environment. If the observation is
provided by another agent, its belief may be different. We
denote the beliefs of the actor and helping agent as βa and
βh, respectively.

A key element in VOA computation is the expected
difference between the utility of the actor with and without
the intervention.

Definition 6 (Value of Assistance (VOA) for Grasping):
Given the actor’s belief βa ∈ B, the belief of the helping
agent βh ∈ B, the predicated observation probability P̂ ,
sensor configuration x ∈ X , and the actor’s belief update
function τa,

UV OA
x (βh, βa)

def
== (3)

Ep∼βh

[
Eo∼P̂ (o|p,x) [γ(g

max(βo,x
a ), p)]− γ(gmax(βa), p))

]
.

In the definition above, the expected agent utility is based
on the grasp score γ of the configuration gmax chosen by the
actor based on its beliefs βo,x

a and βa with and without the
intervention, respectively. We note that the pose p is sampled



from βh, since VOA is computed from the perspective of the
helping agent and based on its belief.

Next, we consider a special case in which there is only
one belief β, either because a single agent is performing
both the sensing and grasping or because the two agents
share a common belief. In addition, for simplicity, we assume
the predicted observation ô = Ô(p, x) is generated using
a deterministic sensor function. This allows us to use a
simplified VOA formulation which considers the difference
between the expected grasp score of the actor’s choice with
and without collecting an observation from x.

UV OA
x (β)

def
== Ep∼β

[
γ(gmax(βô,x), p)− γ(gmax(β), p)

]
(4)

(a) P1 (b) P2 (c) P3 (d) P4 (e) P5 (f) P6

Fig. 6: Processed observations (using masking) for a given
sensor configuration for different poses of HOLDER.

Figure 6 demonstrates the role of VOA. Here, there are
6 possible stable poses, with a uniform prior probability,
and the predicated observation from a given sensor con-
figuration for each pose. This sensor configuration has a
high VOA value since it clearly distinguishes between poses
P1-P4 for which a single grasp has a high probability of
success and P5-P6 for which a different grasp will have a
high probability.

Our proposed VOA measure can be used within any algo-
rithm that searches for an optimal intervention to perform
and in which a heuristic is used to assess the effect of
an intervention. While developing such an algorithm is out
of scope for this work, we provide an example of a state
space search that uses VOA to support the decision of which
sensing action to perform in our online appendix.

IV. EMPIRICAL EVALUATION

The objective of our evaluation is to examine the ability
of our VOA measures to predict the effect sensing actions
will have on the probability of a successful grasp. After
presenting the empirical setup both in simulation and at
the lab, we measure the accuracy of our predicted sensor
functions and show how these are used to compute VOA.

A. Experimental Setting

We performed our evaluation in a two-agent robotic set-
ting. In our lab setup, depicted in Figure 1, the actor is
a UR5e robotic arm2 with an OnRobot 2FG7 parallel jaw
gripper3. We examined two different sensors: a LDS-01
lidar4 that could be moved on the x-y plane and a 2.5D
Onrobot vision system5 mounted on an adjacent UR5e arm.
For simulation, we used a MuJoCo6 environment (depicted in
Figure 3) [41]. We simulated a lidar sensor using the MuJoCo
depth camera, taking only one row of the camera’s readings.
The simulated gripper was a Robotiq 2F-85 parallel jaw7.

(a) (b) (c) (d)

Fig. 7: Four grasp configurations for FLASK at the lab

Fig. 8: Evaluation objects

We used five objects for the simulation and lab experiments
(Figure 8). Object meshes are based on the Dex-Net dataset.

For each object, we sampled a set P̃ ⊆ P of six stable
poses and considered four possible grasps (see Figure 7). We
empirically evaluated the grasp score by recording the grasp
success rate for the set of pose-grasp pairs for each object in
both simulated and lab settings. The full details and results
can be found in the appendix (complete results as well as
our implementation, are in our online appendix).

a) Evaluating the Predicted Sensor Function Ô: For
both sensors, synthetic images were rendered using the
pyrender library [42] which involved projecting the 3D
model of an object (transformed into a specific pose), onto
a 2D plane using the sensor’s intrinsic and extrinsic parame-
ters. The rendered images were computed by considering for
each pixel the closest intersection between the simulated ray
and the object meshes for the relevant field of view (FoV).
For the lidar, Ô included only one row, while for the depth

(a)

(b) (c)

Fig. 9: Comparing the predicted (blue) and the lab-recorded
image (red) for HOLDER. (a) actual scene (b) depth camera
(c) 2D representation of the lidar reading.



camera, we considered the complete rendered image.
For each object pose p ∈ P̃ , we recorded the actual

observation o and the predicted observation ô. For the lidar,
we used four sensor configurations corresponding to the
four cardinal directions. Notebaly, while in the lab the
lidar was able to capture all objects, in simulation MOUSE
and MARKER, could not be captured.

For the depth camera, the set X̃ of sensor configurations
was generated by randomly sampling 10K robot configura-
tions q ∈ (−π, π]6 and translating them into camera poses
using forward kinematics i.e. x = FK(q). Each sensor
configuration x ∈ X̃ was filtered using a heuristic:

H(x) =

(
1− D(x)

Dmax

)
+ V (x) (5)

where D(x) is the Euclidean distance between the camera’s
center and the point of interest (PoI), representing the mean
landing position after the object is dropped, Dmax is a max-
imum acceptable distance used for normalization, and V (x)
is a visibility score, which assesses how centered the PoI is
within the camera’s FoV and is computed as the distance
between the projection of the PoI onto the image plane
and the center of the image divided by Rref , a reference
radius within the image plane that represents the boundary
of acceptability. The set of six sensor configurations we
examined was selected from the filtered set.

To measure the accuracy of Ô for the lidar, for each
sensor configuration-object pose pair, we recorded the mean
error of the difference between the measured and predicted
readings. Evaluation of Ô for the depth camera, compared
the predicted and actual images using the Intersection Over
Union (IoU) measure: we pre-processed the RBG images
to extract the object masks and computed IoU between the
actual and synthetic images (see Figure 9).
Results: Table I presents results per sensor for HOLDER
(results for all objects are in our online appendix). For each
sensor configuration I− IV of the lidar, the table shows the
average, minimal and maximal error (Avg. Err., Min. Err.
and Max. Err., respectively) in mm over object poses P̃ .
Similarly, for the depth camera, we computed the average,
maximal, and minimal IoU values for configurations I−V I .

Results for the lidar show that the prediction errors (in
mm) are negligible given the dimensions of the objects
examined. In contrast, for the depth camera, errors (in [0, 1])
are more substantial with a maximal average of 0.6. At
the same time, results show varying performance across
different configurations, depending on the object and its pose.
For example, configuration I gives high accuracy for some
objects, while configuration IV excels for others.

Inconsistencies between the observations are the result
of several factors including the noise of the sensor itself,
inconsistent scaling of the meshes with regard to the real
objects, mismatches between objects and the meshes used
for estimation, and inaccuracies in the placement of the
objects in the lab (while the observation prediction is based
on perfect object positioning). In addition, as the distance
between the sensor and the object increases, the object

Lidar [mm] Depth Camera [ratio]
x Avg. Min. Max. x Avg. Max Min.

Err. Err. Err IoU IoU IoU
I 1.6 0.7 3.2 I 0.6 0.8 0.4
II 3.9 0.7 4.8 II 0.5 0.7 0.4
III 0.8 0.5 1.0 III 0.6 0.7 0.5
IV 3.0 0.6 4.7 IV 0.6 0.7 0.6

- - - - V 0.4 0.6 0.3
- - - - V I 0.3 0.5 0.1

TABLE I: Sensor prediction for the lab setting of HOLDER.
For the lidar, lower values are better while for the depth
camera higher values are better.

δ̂ q̂ A

HOLDER

τ1 0.19 0.23 0.23
τ2 0.15 0.23 0.29
τ3 0.2 0.26 0.28
τ4 0.03 0.15 0.13
τ5 0.0 0.0 0.0
τ6 0.0 0.0 0.0

EXPO

τ1 0.29 0.31 0.29
τ2 0.29 0.31 0.29
τ3 0.29 0.31 0.29
τ4 0.04 0.37 0.29
τ5 0.00 0.00 0.00
τ6 0.00 0.29 0.29

MOUSE

τ1 0.00 0.06 0.04
τ2 0.00 0.05 0.04
τ3 0.00 0.07 0.00
τ4 0.04 0.44 0.53
τ5 0.00 0.00 0.00
τ6 0.00 0.00 0.00

CUP

τ1 0.30 0.33 0.30
τ2 0.30 0.33 0.41
τ3 0.37 0.63 0.37
τ4 0.24 0.38 0.27
τ5 0.00 0.00 0.00
τ6 0.00 0.00 0.00

FLASK

τ1 0.25 0.25 0.25
τ2 0.25 0.25 0.25
τ3 0.25 0.25 0.25
τ4 0.02 0.25 0.25
τ5 0.00 0.00 0.00
τ6 0.00 0.00 0.00

AVG

τ1 0.19 0.23 0.23
τ2 0.19 0.23 0.29
τ3 0.20 0.26 0.28
τ4 0.08 0.22 0.34
τ5 0.00 0.00 0.00
τ6 0.00 0.00 0.00

TABLE II: Results per belief update function (best results
per criteria are highlighted)

occupies less of the sensor’s FoV and the readings include
fewer and less informative data points. We also note that
bright light reflections on shiny surfaces distort object shapes
as perceived by the depth camera.

Figure 9 demonstrates inconsistencies between the pre-
dicted and actual observation of HOLDER at the lab. Here,
this is due to the misplacement of the object. As we
show next, the estimated observations are still useful for
VOA computation despite these inconsistencies.

B. Assessing VOA

In our experiments, both agents share the pose belief. We
compare 3 different belief update functions to compute VOA.
Each update function uses a different similarity metric τi to
compare the predicted observations that would be collected



for the different object poses. For the lidar, τ1 deterministi-
cally considers two observations oi, oj as equivalent if for all
angles, the values are within a margin of 8 mm. τ2 uses the
similarity metric ω(oi, oj) = e−∥oi−oj∥ to update the belief
based on Equation 1. τ3 uses a multidimensional Gaussian
where one observation defines the expectation vector, the
covariance matrix is the identity matrix, and the similarity
is the value of the PDF at the point corresponding to the
second observation. For the depth camera, τ4 is based on the
structure element of SSIM [39], τ5 is based on IoU between
the two observations, and τ6 employs the cv2 library [43] for
contour matching such that similarity between two masks is
computed by detecting their primary contours and comparing
their shapes through a shape-matching algorithm.

The computation of VOA uses the similarity metric to
compare the predicted observations of each examined pair of
poses. In principle, lower similarity values indicate a greater
ability to distinguish between the poses, and thus an ability to
select a better grasp. However, as we demonstrate in Figure
6, even if the distance between the predicted images for
different stable poses is small, VOA may still be high if
these poses share a grasp configuration with a high score.

Fig. 10: Similarity score between actual observation (rows)
for each pose and predicted observations (columns) for τ4
(see the poses in Figure 6). The matrix shows a clear
distinction between the standing positions P5 and P6 and
the laying positions P1-P4, but the distinction within these
two groups is ambiguous.

Results: For each experiment we consider 3 grasps as shown
in Figure 5: an optimal grasp g∗, the initially chosen grasp
gi, and the grasp gx chosen after collecting an observation
from sensor configuration x, and compute the following:

• δ(x) = Ep∼β [γ(gx, p)− γ(gi, p)] is the weighted dif-
ference between the score of gx and gi.

• δ̂ = δ(argmaxx∈X̃ UV OA
x (β)) is the δ value of the

sensor configuration with the highest VOA.
• δ∗ = Ep∼β [γ(g

∗, p)− γ(gi, p)] is the weighted differ-
ence between the grasp score of g∗ and gi.

• q(x) =
δ(x)

δ∗
is the ratio between δ(x) and δ∗.

• q̂ = q(argmaxx∼X̃ UV OA
x (β)) is the ratio for the

sensor configuration with the highest VOA in X̃ .
• A = q̂ − Ex∼X̃ [q(x)] is the advantage of choosing the

maximal VOA configuration defined as the difference
between q̂ and the weighted average over all sensor
configurations X̃ . This represents the difference be-
tween choosing a sensor configuration using VOA and
choosing randomly.

Table II presents for each object and for each belief
update function the average values of δ̂, q̂, and A. Results
show that selecting the sensor configuration with the highest
VOA value yields better outcomes compared to choosing a
random sensor configuration for all but τ5 and τ6, and in all
cases is not worse. In other words, using VOA for decision-
making when selecting a sensor configuration from which
to provide an observation leads to better grasp choices. The
smallest benefit is for MOUSE for which the initial grasp is
optimal for all poses except one for which the optimal grasp
has only a slight advantage. This subtlety is captured only
by τ4.

Notably, belief update functions τ5 and τ6 of the depth
camera which rely on IoU and contour matching, respec-
tively, did not perform well on average for any of the objects.
We associate this with the fact that the examined objects
are small relative to their distance from the sensor, which is
something these update functions are sensitive to. In contrast,
τ4 of the depth camera, yielded the best overall performance.

Figure 10 presents for τ4 the similarity scores between
the actual (rows) and predicted (columns) observations. Al-
though it is hard to differentiate between object poses that
occupy the same area, there are grasps that can succeed with
high probability for all poses within the two distinguishable
groups, as depicted in Figure 6.

In contrast, for τ5 and τ6 the groups of poses that have
similar successful grasps are not sufficiently distinguishable,
thus the distances metrics are not effective for the considered
setting, which is captured by the VOA values. The reason
for these results is the high sensitivity of τ5 to noise in the
actual image, where even slight translation can dramatically
impact prediction quality. A similar trend was observed for
τ6 where noise dramatically distorts contours. See the online
appendix for the complete analysis of the results achieved
for all measures.

V. CONCLUSION

We introduced Value of Assistance (VOA) for grasping
and showed in both simulation and real-world experiments
how our VOA measures predict the effect an observation will
have on performance and how it can be used to support the
decision of which observation to perform in order to enhance
the probability of success in the context of grasping tasks.

Future work will include optimization considerations of
the agent performing the sensing and for integrating VOA in
long-term and complex tasks. Another extension will con-
sider multi-agent settings in which VOA can be used not
only for choosing which assistive action to perform but also
for choosing which agent to assist.



NOTES
1 https://berkeleyautomation.github.io/dex-net
2https://www.universal-robots.com/products/ur5-robot/
3 https://onrobot.com/en/products/2fg7
4www.robotis.us/360-laser-distance-sensor- lds-01-lidar
5https://onrobot.com/en/products/onrobot-eyes
6https://mujoco.org/
7https://robotiq.com/products/2f85-140-adaptive-robot-gripper
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