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Abstract

Machine learning interatomic potentials (MLIPs) can predict energy, force, and stress of ma-
terials and enable a wide range of downstream discovery tasks. A key design choice in MLIPs
involves the trade-off between invariant and equivariant architectures. Invariant models offer
computational efficiency but may not perform as well, especially when predicting high-order
outputs. In contrast, equivariant models can capture high-order symmetries, but are com-
putationally expensive. In this work, we propose HIENet, a hybrid invariant-equivariant
materials interatomic potential model that integrates both invariant and equivariant message
passing layers. Furthermore, we show that HIENet provably satisfies key physical constraints.
HIENet achieves superior performance with considerable computational speedups over prior
models. Experimental results on both common benchmarks and downstream materials
discovery tasks demonstrate the efficiency and effectiveness of HIENet. Finally, additional ab-
lations further demonstrate that our hybrid invariant-equivariant approach scales well across
model sizes and works with different equivariant model architectures, providing powerful
insights into future MLIP designs.

1 Introduction

The discovery of materials with desired properties underpins a wide range of technological advance-
ments (de Pablo et al., 2019; Stach et al., 2021; Shafian et al., 2025; Lv et al., 2022; Zheng et al., 2021; Miracle
& Thoma, 2024). However, traditional materials discovery relies heavily on costly trial-and-error experimental
methods. Computational approaches, particularly those leveraging advanced quantum mechanical methods
such as density functional theory (DFT), have accelerated this process (Zhang et al., 2023), but despite their
benefits, simulating systems with a large number of atoms remains extremely expensive.

Recent progress in machine learning interatomic potentials (MLIPs) offers a promising path forward by
enabling the prediction of energies, forces, and stresses of materials while achieving significant speedups
compared to traditional DFT methods. However, existing MLIP models still face a fundamental trade-off:
invariant models are computationally efficient but struggle with high-order property predictions, while
equivariant models can better capture high-order interactions but are computationally expensive.

An additional design choice is whether to enforce model predictions to adhere to key physical constraints
detailed in Sec. 3.1. Recent works have tried to learn these physical constraints, such as EquiformerV2 (Liao
et al., 2024), which enforces global symmetry operations but not the other physical laws, and ORB (Neumann
et al., 2024), which doesn’t impose any constraints on model predictions. While it is more computationally
expensive to enforce these physical constraints, it is also necessary for MLIPs to perform well, especially on
downstream discovery tasks beyond energy, force, and stress prediction.

In this work, we propose HIENet, a materials MLIP that satisfies key physical constraints for energy,
force, and stress predictions while integrating both invariant and equivariant designs to achieve strong
performance with considerable computational speedups compared to existing models. An overview of
HIENet is provided in Figure 1. Unlike prior approaches that rely exclusively on either invariant or
equivariant layers, HIENet balances these strategies to leverage the scalability of invariant layers while
utilizing equivariant layers to effectively capture high-order interactions. Moreover, in contrast to existing
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Figure 1: HIENet overview. The model converts material structures into graph representations and
processes them through a hybrid architecture combining invariant and equivariant message passing networks
to predict physical properties. The model supports accurate dynamic simulations (bottom) and enables
diverse materials science applications (right).

models like EquiformerV2 (Liao et al., 2024) and Orb (Neumann et al., 2024), HIENet rigorously satisfies
physical constraints, including O(3) equivariance for force and stress, and adheres to physical conservation
laws through physics-informed derivative-based methods. Experimental results on common benchmarks
including Materials Project Trajectory, Matbench Discovery, and downstream materials discovery tasks
including evaluations on phonons, bulk moduli, ab initio molecular dynamics, and alloys as detailed in
Sec. 5.1, 5.2, 5.3 and Appendix B,C demonstrate the efficiency and effectiveness of HIENet. Additional
ablations in Sec. 5.5 further demonstrate the generality of our hybrid invariant-equivariant approach across
different model capacities and equivariant layer designs.

2 Preliminaries

Problem definition. The core task in developing MLIPs is to learn a mapping from materials atomic
structures to quantum mechanical properties. Specifically, given a crystal structure, we aim to predict three
quantities; the total energy E, the forces acting on each atom F = {Fi ∈ R3, 1 ≤ i ≤ n}, where n denotes
number of atoms in a cell, and the stress tensor σ ∈ R3×3, which governs cell deformation. While these
properties are directly useful for many applications such as structural relaxation and predicting thermodynamic
stability, from these we can derive many other important material properties such as phonon band structures
and bulk moduli as shown in Sec. 5.3. We also provide preliminaries about molecular dynamics simulation of
materials in Appendix A.

Crystal structures. Unlike regular molecules, crystals are periodic in nature and are characterized as
three-dimensional lattices with infinitely repeating unit cells. Adopting the notation of Yan et al. (2024), a
crystal structure can be described as a triple M = (Z,P,L), which represents both atomic and geometric
information. The atomic composition is denoted by Z = [z1, z2, · · · , zn] ∈ Rn, where zi represents the atomic
number of i-th atom in the unit cell. The arrangement of these atoms in Euclidean space is given by 3D
coordinates P = [p1,p2, · · · ,pn] ∈ R3×n. The periodicity of the unit cell is specified by the lattice matrix
L = [ℓ1, ℓ2, ℓ3] ∈ R3×3, whose columns are the three lattice vectors.

3 Hybrid Invariant-Equivariant Networks

We propose Hybrid Invariant-Equivariant Network (HIENet), a materials interatomic potential model that
integrates both invariant and equivariant message passing layers. HIENet is carefully designed to satisfy
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important physical constraints detailed in Sec. 3.1, consisting of physics-informed geometric crystal graphs
detailed in Sec. 3.2, a hybrid invariant-equivariant network design detailed in Sec. 3.3, and physics-informed
property predictions detailed in Sec. 3.4. All together, HIENet achieves improved performance on common
benchmarks and downstream materials discovery tasks while significantly improving computational efficiency
compared to prior models. Additionally, HIENet satisfies all desirable physical constraints with mathematical
proofs in Sec. 3.5.

3.1 Physical Constraints for MLIPs

As detailed in Sec. 2, MLIPs are developed to predict energy, forces, and stress of materials atomic systems.
While some MLIPs such as EqV2 and ORB can achieve moderate performance on some tasks without
satisfying key physical constraints, such models under-perform on many important materials discovery tasks
such as phonon frequency calculations, bulk moduli prediction, and molecular dynamics simulations. As such,
in order for MLIPs to generalize well and have robust performance across downstream tasks, it is essential
that model predictions satisfy key physical constraints.

Rototranslational Symmetries. Crystal structures exhibit inherent symmetry under global rotations,
translations, and reflections. To respect these symmetries, the predicted energy must be E(3) invariant, while
forces and stress must be O(3) equivariant. We formalize these requirements as follows:

Definition 3.1 (O(3) Equivariance). A MLIP produces O(3) equivariant predictions if, for a crystal structure
M = (Z,P,L), its predicted energy Ê, forces F̂ = (F̂1, . . . , F̂n), and stress tensor σ̂ transform under any
rotation R ∈ R3×3, |R| = ±1 and translation b ∈ R3 as follows:

Ê(Z,P,L) = Ê(Z,RP + b,RL)
F̂i(Z,P,L) = R⊤F̂i(Z,RP + b,RL),
σ̂(Z,P,L) = R⊤σ̂(Z,RP + b,RL)R.

Importantly, there is a distinction between invariant/equivariant layers and invariant/equivariant predictions.
For example, CHGNet (Deng et al., 2023b) exclusively uses E(3) invariant message passing layers, yet CHGNet
force and stress predictions are O(3) equivariant because they use gradient-based force and stress calculations.
When we refer to a model being O(3) equivariant, we are referring to the outputs, not the individual layers,
unless otherwise specified.

Physical Plausibility. Beyond symmetry considerations, MLIPs must satisfy several key physical laws to
be reliable for downstream applications. These include force conservation, force equilibrium, and stress tensor
symmetry. We define these constraints formally as follows:

Definition 3.2 (Force Conservation and Equilibrium). Forces must form a conservative vector field derived
from the potential energy surface, and in the absence of external influences, the sum of forces on all atoms is
zero:

F = −∇PE,

n∑
i=1

Fi = 0, (1)

Definition 3.3 (Stress Tensor Symmetry). The predicted stress tensor must be symmetric:

σij = σji ∀i, j ∈ 1, 2, 3 (2)

In addition to these physical laws, the potential energy surface must be continuously differentiable to enable
accurate downstream property calculations requiring higher-order derivatives.

Our HIENet model rigorously enforces all the outlined symmetry and physical constraints through the carefully
designed geometric crystal graphs, model architecture, and gradient-based force and stress computation, with
details provided in Sec. 3.2, 3.3, 3.4, and 3.5.
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Figure 2: HIENet Model Architecture. We construct O(3) equivariant crystal graphs. We then apply an
invariant message passing layer followed by several equivariant message passing layers before predicting the
total energy, Ê and using physical laws to compute F̂ , σ̂.

3.2 Geometric Graph Representations Satisfying Physical Constraints

For a crystal structure, M = (Z,P,L) we construct an O(3) equivariant crystal graph G = (V,E) that
preserves physical symmetries inherent in crystal structures. Specifically, for a crystal structure M = (Z,P,L),
each atom i in the unit cell and all its periodic duplicates are represented by a single node i ∈ V with node
features hi = Wembzi, where Wemb ∈ Rd×nz is a learnable embedding matrix and zi is the one-hot encoding
of atomic number zi. An edge will be built from node j to i when the Euclidean distance between a periodic
duplicate j′ of j and i satisfies

||rj′i||2 = ∥pj + k1ℓ1 + k2ℓ2 + k3ℓ3 − pi∥2 ≤ Rcut, k1, k2, k3 ∈ Z, (3)

where Rcut is a fixed cutoff radius.

Edge features hji are then embedded using radial Bessel basis functions with a polynomial envelope (Gasteiger
et al., 2021) function fpoly:

hji =
2 sin

(
nπ

Rcut
∥rji∥2

)
Rcut∥rji∥2

fpoly (∥rji∥2, Rcut) . (4)

Importance of using envelope function. It is worth noting that the smooth envelope is crucial for
energy conservation and computing physically meaningful force predictions. It ensures that the energy and
its derivatives smoothly decay to zero at the cutoff boundary.

Importance of constructing O(3) equivariant crystal graphs. Unlike previous work (Yan et al., 2022;
2024), our constructed crystal graphs are O(3) equivariant due to the use of a fixed cutoff radius and edge
vectors rji that are O(3) equivariant by definition. It is important to note that O(3) equivariance of the input
crystal graphs is a necessary condition for achieving O(3) equivariant predictions in MLIPs. As shown in our
experiments in Appendix E, violating this equivariance in the graph construction leads to a measurable drop
in MLIP performance.

3.3 Hybrid Invariant-Equivariant Design

Our HIENet model consists of several invariant and equivariant message passing layers which iteratively
update node features for each atom.

E(3) Invariant Layer. In the invariant message passing layers, we update node features hi using a graph
transformer mechanism. Specifically, we compute key kji, query qji, and value vji vectors as:

kji = WK (hi||hj ||hij) , qji = WQ (hi||hj ||hij) , vji = Φ (hi||hj ||hji) , (5)
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where Φ is an MLP with SiLU nonlinearities (Elfwing et al., 2018) and || denotes vector concatenation. We
then compute attention scores and aggregate the values over neighboring nodes to update the node features:

h′
i = φ(hi) + (1 − φ(hi))

∑
j∈Ni

vji ⊙ σ

(
qji ⊙ kji√

d

)
, (6)

where ⊙ represents element-wise multiplication, σ is the sigmoid activation function, and φ is an MLP with a
sigmoid activation in the final layer that acts as a learnable gating mechanism.

O(3) Equivariant Layer. The HIENet equivariant layers build node features fi,ℓ for each rotation order
ℓ ≤ Lmax. In practice we use Lmax = 3. In the first equivariant message passing layer, we initialize fi,0 = hi,
the output of the previous invariant layer. In each equivariant layer, we embed edge vectors rji using spherical
harmonics Y l( rji

||rji|| ) and update the equivariant features as:

f ′
i,ℓ = 1

|Ni|

Lmax∑
l=0

∑
j∈Ni

TPℓ

(
Wfi, Y

l

(
rji

||rji||

))
(7)

where TPℓ is the standard tensor product operation yielding outputs with rotation order ℓ. We further add
a skip connection and gate mechanism to output updated node features:

f ′
i = ψ (Wskipfi + WEf ′

i) (8)

where ψ is an equivariant gate activation function defined as:

ψ(fi) = ϕ(fi,0) ⊕

 ⊕
0<l≤Lmax

ϕ(fi,0)fi,l

 (9)

where ϕ is the SiLU activation function and ⊕ is the direct sum operation.

Hybrid MLIPs. Our HIENet model consists of one or more invariant message passing layers followed by
several equivariant layers. The final equivariant layer outputs are aggregated across the graph and the energy
is predicted as E =

∑
i Wefi,0. In practice, we find that one invariant message passing layer achieves a good

balance between performance and efficiency. We provide additional details and ablations on the model design
in Appendix E and F.

3.4 Physics Informed Property Predictions

In order to ensure that our force and stress predictions obey the aforementioned physical constraints, we
use gradient-based methods to compute force and stress. Specifically, our model directly predicts the total
energy, Ê and we compute the force acting on atom i as F̂i = −∇pi

Ê, where ∇pi
represents the gradient

with respect to the position vector pi. This approach automatically guarantees that:
Proposition 3.4. HIENet predictions F̂i form a conservative vector field.
Proposition 3.5. HIENet predictions satisfy force equilibrium

∑N
i=1 F̂i = 0 when no external influences are

applied.

Similarly, we compute the stress tensor through strain derivatives σ̂ij = 1
V

∂Ê
∂ϵij

, where ϵ is the lattice strain
tensor and V is the volume of the unit cell. We ensure that σ̂ will be symmetric by first symmetrizing the
strain matrix ϵsym = 1

2 (ϵ + ϵ⊤). All together, our approach guarantees that:
Proposition 3.6. HIENet predictions are O(3) equivariant as defined in Sec. 3.1.

3.5 Proofs of Satisfying Physical Constraints

While previous works (Schütt et al., 2017; 2021; Chen & Ong, 2022; Deng et al., 2023b; Park et al., 2024b)
used gradient-based calculations, none of these works prove that their proposed methods satisfy desired
physical laws. In this section, we rigorously prove each of the previously stated propositions and show that
HIENet satisfies all desirable physical constraints.
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Proof of Proposition 3.4. By definition, a vector field v : R → Rn is conservative if there exists a continuously
differentiable scalar field φ such that v = ∇φ.

We compute forces as F̂ = −∇PÊ, so HIENet predictions form a conservative force-field as long as the energy
E is continuously differentiable with respect to the atom positions, pi. Clearly, each of the operations in
HIENet, linear transforms, SiLU (Elfwing et al., 2018) activations, spherical harmonics Y l( rji

||rji|| ), and edge
embedding functions, are continuously differentiable within the domain of possible interatomic distances, i.e.
for ||rji|| ≠ 0. Importantly, fpoly is specifically chosen so that it is continuously differentiable and decays to 0
at Rcut (Gasteiger et al., 2021). Because each operation in HIENet is continuously differentiable, the force
predictions therefore form a conservative vector field, as desired.

Proof of Proposition 3.5. We define edge force as F̂ji = − ∂Ê
∂rji

.

Forces acting on each atom can be decomposed as:

F̂i = − ∂Ê

∂pi
= −

∑
j∈Ni

(
∂Ê

∂rji

∂rji

∂pi
+ ∂Ê

∂rij

∂rij

∂pi

)
(10)

= −
∑

j∈Ni

(
∂Ê

∂rji
− ∂Ê

∂rij

)
=
∑

j∈Ni

(
F̂ji − F̂ij

)
(11)

Because the graph construction is symmetric, i.e. rji = rij :

n∑
i=1

F̂i =
n∑

i=1

∑
j∈Ni

(
F̂ji − F̂ij

)
=

∑
(i,j)∈E

(
F̂ji − F̂ij

)
= 0 (12)

Therefore, the forces acting on each atom sum to 0 as desired.

Proof of Proposition 3.6. We provide a sketch of the proof idea with additional details in Appendix G.

HIENet energy predictions are E(3) invariant: the invariant layers are E(3) invariant by construction, and
for the equivariant layers, we only extract the final l = 0 features, which are invariant. Because the energy
predictions are invariant and because we use gradient-based property predictions described in Sec. 3.4, the
force, and stress predictions will be O(3) equivariant as desired.

One important point missing from the existing literature is that the graph-construction method can prevent
the model from satisfying key physical constraints. For example, previous works such as Yan et al. (2022);
Liao et al. (2024) use nearest-neighbor graph construction, which is not continuously differentiable. In Yan
et al. (2024) additional edge vectors are added which will violate the condition that F̂ji = F̂ij in the proof of
Proposition 3.5, causing the forces to not sum to 0.

4 Related Work

In this section, we focus on materials MLIPs and provide related works on conventional computation methods
in Appendix A.2. Recent advances in materials property prediction models (Xie & Grossman, 2018; Choudhary
& DeCost, 2021; Yan et al., 2022; Lin et al., 2023; Choudhary et al., 2024; Yan et al., 2024) and the availability
of high-quality materials dynamics datasets (Chen & Ong, 2022; Deng et al., 2023a; Barroso-Luque et al., 2024)
generated using DFT-based algorithms have facilitated the development of powerful materials MLIPs. Among
these MLIPs, models with only invariant layers, such as M3GNet (Chen & Ong, 2022), CHGNet (Deng et al.,
2023a), Orb (Neumann et al., 2024), and EScAIP (Qu & Krishnapriyan, 2024), are computationally efficient
but struggle to produce physically meaningful and robust predictions, especially on downstream tasks. In
contrast, models with purely equivariant layers, including MACE (Batatia et al., 2023), SevenNet (Park et al.,
2024a), and EquiformerV2 (Barroso-Luque et al., 2024), are more powerful, but also more computationally
expensive. Their extensive use of tensor product operations limits their scalability. Moreover, even some
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equivariant models, such as EquiformerV2, violate force conservation, undermining its utility in realistic
materials tasks as seen in Sec. 5.

Different from these existing MLIPs, our proposed HIENet satisfies all key physical constraints and combines
the scalability and efficiency of invariant designs with the robustness and symmetry-capturing capabilities of
equivariant designs. This novel integration offers a promising direction for the next generation of MLIPs
design.

5 Experimental Evaluations

In this section, we evaluate HIENet’s overall modeling capacity as a MLIP. We assess its performance on the
widely used Matbench Discovery benchmark (Riebesell et al., 2023) and Materials Project Trajectory (MPtrj)
dataset (Deng et al., 2023a) in Sec. 5.1 and 5.2. We then provide evaluations on important downstream
materials discovery tasks in Sec. 5.3, where we find that models which do not satisfy physical constraints
perform poorly. In Sec. 5.4 we evaluate computational efficiency and demonstrate that HIENet is able to
achieve superior performance across all tasks while still providing considerable computational speedups.
Finally, in Sec. 5.5 we provide ablations studies to demonstrate the robustness and generality of our hybrid
invariant-equivariant network design. We provide additional downstream materials discovery evaluations on
ab initio molecule dynamics simulations and phase diagram prediction for alloy design in Appendix B and
Appendix C.

Experimental setup. We train our HIENet on the MPtrj dataset (Deng et al., 2023b), which contains 1.58M
crystal structures. We split the dataset and use 95% for training and 5% for validation following Batatia et al.
(2023). For fair comparison, we compare with models trained on this dataset and without any auxiliary data
or training objectives. Specifically, we compare against state-of-the-art methods including EquiformerV2 (Liao
et al., 2024), ORB (Neumann et al., 2024), SevenNet (Park et al., 2024b), MACE (Batatia et al., 2023), and
CHGNet (Deng et al., 2023b). Of these baselines, all but ORB have equivariant force and stress predictions,
and all but EquiformerV2 and ORB satisfy the physical constraints listed in Sec. 3.1. More detailed model
settings and training details can be found in Appendix F. In all tables, we mark best performing model in
bold and second best in underlined.

5.1 Evaluation on Matbench Discovery

Matbench Discovery benchmark (Riebesell et al., 2023) is a comprehensive testbed for crystalline materials
structure optimizations and stability predictions. Notably, the Matbench Discovery benchmark structures
come from a different distribution from the MPtrj training dataset, thus posing an out-of-distribution (OOD)
generalization problem. As shown in Table 1, HIENet performs best on all seven metrics and has a significant
performance gain on the Discovery Acceleration Factor (DAF). Additionally, we observe that while ORB
performs well on all of the energy-related metrics, it has the worst performance of all models on RMSD,
a metric that measures the models ability to accurately relax structures to stability. This aligns with out
intuitions that downstream tasks such as structural optimization require models to obey physical symmetries.

5.2 Materials Project Trajectory Dataset

We then evaluate HIENet’s ability to accurately predict energy, force, and stress on a held-out MPtrj validation
set following Deng et al. (2023a); Batatia et al. (2023). SevenNet does not hold-out any validation split
and trains their model on the entire 1.58M structures. To compare with SevenNet, we also report HIENet
performance on the training split. As seen in Table 2, HIENet outperforms all baseline methods across train
and validation splits. Notably, HIENet reduces the energy mean absolute error (MAE) by nearly 50% and
the force MAE by 23% compared to the next best method, EquiformerV2.

5.3 Evaluations on Phonons and Bulk Modulus Prediction

Phonon frequency evaluation. Phonons are collective excitations of atomic vibrations in crystal structures
with translational symmetry, playing a crucial role in determining the dynamical stability and thermal
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Table 1: Model performance on the Unique Prototype split of the Matbench Discovery benchmark. DAF is
the Discovery Acceleration Factor from Riebesell et al. (2023) which measures model performance to classify
thermodynamic stability. MAE and RMSE are in meV/atom. RMSD is the root mean squared displacement
between predicted and reference structures after relaxation. Missing results from corresponding model marked
by -.

Model HIENet EquiformerV2 ORB SevenNet-l3i5 MACE CHGNet

DAF ↑ 4.93 4.64 4.70 4.63 3.78 3.361
MAE ↓ 41 42 45 48 57 63
RMSE ↓ 84 87 91 87 101 103
R2 ↑ 0.793 0.778 0.756 0.776 0.697 0.689
F1 ↑ 0.777 0.77 0.765 0.76 0.669 0.613
Accuracy ↑ 0.93 0.93 0.92 0.92 0.88 0.85
Precision ↑ 0.754 0.709 0.719 0.708 0.577 0.514
RMSD ↓ 0.080 - 0.101 0.085 0.091 0.095

Table 3: Error in phonon frequency prediction on structures from Riebesell & Naik (2024). MAE and MSE
computed against each q-point, and RMSE taken as the root of MSE over all q-points and bands. Band
structures shown in Appendix.

Model HIENet EquiformerV2 ORB SevenNet-l3i5 MACE CHGNet

MAE (THz) 0.316 1.359 1.601 0.325 0.529 1.359
MSE (THz2) 0.332 4.65 5.441 0.358 0.837 4.21
RMSE (THz) 0.446 1.657 1.973 0.455 0.699 1.604

conductivity of materials. The calculation of phonon band structure relies on the atomic forces upon
displacement of atoms in different phonon modes along high-symmetry paths in the first Brillouin zone.
Because of this, it is critical for model predictions to obey physical symmetries and for the forces to be
conservative. We perform a phonon band structure calculation workflow using Phonopy (Togo et al., 2023;
Togo, 2023) on the set of structures from Riebesell & Naik (2024). Additional results and details of our
workflow are provided in Appendix D.1.

Table 2: MAE on train and validation splits. Inv. and Eqv.
denote whether the model uses invariant or equivariant message
passing layers. ORB (Neumann et al., 2024) does not report
results on MPtrj and MACE does not report stress performance.

Model Inv. Eqv. Energy ↓ Forces ↓ Stress ↓
(meV/atom) (meV/Å) (kBar)

Train
SevenNet-0 ✗ ✓ 11.5 41 2.78
SevenNet-l3i5 ✗ ✓ 8.3 29 2.33
HIENet ✓ ✓ 5.91 20.76 1.95
Validation
CHGNet ✓ ✗ 33 79 3.51
MACE ✗ ✓ 20 45 -
EquiformerV2 ✗ ✓ 12.4 32.22 2.48
HIENet ✓ ✓ 6.77 24.82 2.31

As shown in Table 3, HIENet outperforms
all baseline models across all metrics for
phonon frequency calculations. Addition-
ally, while EquiformerV2 and ORB have
good performance on MPtrj and Mat-
bench Discovery, they have the worst per-
formance among all models on this task.
As previously mentioned, this may be be-
cause this task requires models predictions
to obey physical constraints and be phys-
ically meaningful in order for the phonon
calculations to be accurate.

Evaluation on bulk modulus. Model
efficacy on zero-shot prediction of mate-
rial properties was further evaluated on
calculations of the fourth-order elastic ten-
sor and the corresponding VRH average bulk modulus KV RH (Hill, 1952). A test set was generated by
querying the Materials Project Database (Jain et al., 2013) for entries with between 1 and 6 sites that also
had reported elasticity values. Following Batatia et al. (2023), we remove entries with highly unphysical bulk
modulus reference values less than -50 GPa or greater than 600 GPa as well as those resulting in a calculated
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Table 4: Error in bulk modulus KV RH prediction across 1,763 crystal structures sampled from Material
Project.

Model HIENet EquiformerV2 ORB SevenNet-l3i5 MACE CHGNet

MAE (GPa) ↓ 10.52 24.76 34.7 11.5 28.84 21.67
R2 ↑ 0.93 0.64 -21.9 0.9 -54.1 0.7

singular matrix, resulting in a final evaluation set of 1,763 crystal systems. Elastic tensors and bulk moduli
were computed using the MatCalc’s Elasticity module (Liu et al., 2024). Additional details on our workflow
and dataset are provided in Appendix D.2.

As shown in Table 4, HIENet outperforms all models on MAE and R2. In fact, HIENet and SevenNet are
the only models capable of achieving reasonable accuracy, demonstrating both the difficulty of this task and
the robustness of our model. We provide parity plots for all models in Appendix D.2.

5.4 HIENet efficiency

Table 5: Number of parameters and inference through-
put of HIENet compared with top performing equiv-
ariant models. Throughput evaluated using random
samples from the MPtrj dataset on a single Nvidia
A100 GPU with batch size 1.

Model Num. of Param. Throughput ↑
(Samples / sec.)

SevenNet-l3i5 1,171,327 11.9
EquiformerV2 31,207,434 9.4
HIENet 7,860,155 22.6

In addition to demonstrating improved performance
across all benchmarks and downstream tasks, we
show that HIENet is more computationally efficient
than competing equivariant models. This is highly
important for downstream materials discovery ap-
plications such as structural relaxation and random
structure search, which require thousands of forward
passes of the model. As seen in Table 5, HIENet is
90% faster than SevenNet-l3i5 and over 140% faster
than EquiformerV2, all while having better perfor-
mance than both models. Both EquiformerV2 and
SevenNet exclusively use equivariant message pass-
ing layers, which limits the throughput and scalability of these models. At the same time, models without
O(3) equivariant force and stress predictions, such as ORB, may be faster, but will perform poorly on realistic
materials discovery tasks, as shown in Sec. 5.1 and 5.3.

5.5 Generality and Robustness of Hybrid Network Design

Hybrid architecture ablation. We provide an ablation study to demonstrate that our hybrid invariant-
equivariant architecture outperforms invariant-only and equivariant-only models. In Figure 3 we see that
HIENet outperforms EqvNet (only equivariant layers) and InvNet (only invariant layers) across a range of
model sizes. Additionally, we see that InvNet consistently performs poorly, which aligns with our intuitions
that equivariant message passing layers are important to capture high-order atomic interactions and accurately
predict force and stress.

Hybrid architecture generality. To show that our idea of combining invariant and equivariant layers
works well across different model designs, we add our invariant layer to SevenNet to form a hybrid model
based on their equivariant designs. As shown in Figure 4, this InvSevNet consistently outperforms the base
SevenNet even when controlling for model speed. Additionally, we observe that HIENet still outperforms the
InvSevNet model across all tested model sizes. Because our hybrid invariant-equivariant works well with
different models, we believe this approach provides a general new direction to design powerful and efficient
MLIP models.

6 Conclusion, Limitations, and Societal Impacts

We propose HIENet, a machine learning interatomic potential for materials that demonstrates the importance
of (1) integrating invariant and equivariant message-passing layers and (2) satisfying physical constraints for
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Figure 3: Hybrid Architecture Ablation. Model
throughput measured on an Nvidia H100 GPU with
a batch size of 128. EqvNet uses only equivariant
message passing layers and InvNet uses only invari-
ant layers. Validation loss measured on the MPtrj
validation set. Hybrid invariant-equivariant models
(HIENet) consistently outperform equivariant-only
and invariant-only models across all model sizes.
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Figure 4: Hybrid Architecture Generality.
Model throughput measured on an Nvidia H100
GPU with a batch size of 128. InvSevNet represents
the SevenNet model (Park et al., 2024b) with an ad-
ditional invariant message passing layer. InvSevNet
outperforms SevenNet across all tested model sizes,
but still performs worse than HIENet.

powerful, efficient MLIPs. HIENet outperforms all evaluated baseline methods across a range of benchmarks
and applications, while being significantly faster than existing equivariant models. We provide ablation
studies to further demonstrate generality and robustness of our hybrid design. Current limitations include
(1) focusing primarily on materials discovery, while extensions to other science domains are underexplored,
and (2) computational constraints preventing training on hundred-million-scale datasets where HIENet’s full
potential could be realized. Future work will explore these directions. The societal impacts of novel materials
discovery may apply to this work.

7 Broader Impact Statement

The potential benefits and risks associated with AI-powered novel materials discovery may apply to this work.

8 Reproducibility Statement

The code for HIENet is included in the supplemental materials to support the reproducibility of the proposed
method.
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A Molecular Dynamics Simulation

A.1 Molecular Dynamics Simulations and Structural Optimization of Materials

Molecular dynamics simulation. Molecular dynamics (MD) simulation (Alder & Wainwright, 1959) is an
important computational method to compute structural, chemical, and thermodynamic properties, which
allows for in-depth mechanistic understanding and materials discovery. MD simulation essentially solves
Newton’s equations of motion for both atomic positions and cell parameters of a material system under a
specific thermodynamic ensemble. Specifically, the simulation workflow relies on iterative computation of the
total system energy E, atomic forces Fi, and stress tensor σ. For a given starting structure configuration,
E, Fi, and σ can be calculated using classical methods or machine learning interatomic potentials. The
acceleration, velocity, and position of atoms can be subsequently determined over a time step through
numerical integration methods such as the Velocity-Verlet algorithm under a thermodynamic ensemble. The
atomic forces of the new structure will then be updated for the next time step. By iterative numerical
integration, the system will evolve under the thermodynamic ensemble and interatomic interactions determined
by the force field. Stress also plays a crucial role in MD simulations when controlling pressure, such as in
an NPT ensemble (i.e. under the constant number of particle, constant pressure, and constant temperature
condition). In order to obtain statistically averaged physical quantities, such calculation needs to be performed
iteratively for many time steps, hence computational efficiency becomes critical.

Structural optimization. Different from molecular dynamics, structural optimization usually aims to
relax the structure and/or cell parameters to their ground state or metastable state. It also involves
the calculation of energy, force and stress, which are subsequently used by optimization algorithms or
optimizers to update the structure, such as Conjugate Gradient algorithm (CG) (Hestenes et al., 1952) and
Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS) (Fletcher, 2000). This process is repeated until the
final convergence criteria is reached,

A.2 Conventional Computation Methods

Several kinds of simulation techniques are widely used in computational materials science at various scales, such
as Density Functional Theory (DFT) (Hohenberg & Kohn, 1964; Kohn & Sham, 1965), MD simulations (Alder
& Wainwright, 1959), and Monte Carlo (MC) simulations (Metropolis et al., 1953). DFT is a quantum
mechanical method that can be used to simulate material systems at the electronic level. Its key principle is
that the ground-state energy of a system can be expressed as a functional of electron density, which reduces
3Ne-dimensional interacting many-body system down to a fictitious 3-dimensional non-interacting system.
However, DFT is computationally expensive and is limited to small systems. MD simulation method has
already been elaborated in Appendix A.1 where a force field is required for calculating energy, force, and
stress. There are two types of MD simulations depending on the underlying force field: ab initio MD (AIMD)
simulations where atomic forces are calculated by quantum mechanical method such as DFT, and classical
MD simulations where empirical force fields are used to calculate atomic forces. AIMDs are relatively more
accurate but computationally expensive, limiting its application to small systems. Classical MD simulations
are computationally efficient and can handle large systems, but very often they either lack the accuracy
required for highly precise simulations, or cannot be transferred to different simulation conditions. MC
simulations are based on statistical mechanics which rely on iterative energy calculations and configuration
sampling and updates. Another key challenge is that both classical MD and MC simulations depend on the
availability of empirical force fields for the system of interest. Therefore, it is highly desirable to develop
machine learning interatomic potentials that can provide accurate and efficient calculations of energy, force,
and stress of arbitrary materials system, which will significantly advance materials science, physics and
chemistry and allow for studying fundamental mechanism and discovering new materials.
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Figure 5: Evaluation of energy, force, and stress predictions for 64-atom Si system calculated by foundation
models: a) HIENet, b) SevenNet-l3i5, c) MACE-MP-0, d) CHGNet, and e) eqV2_31M_mp with respect to
the DFT results.

16



Under review as submission to TMLR

Table 6: MLIP !!!!prediction accuracy across 4,000 configurations of Si systems. Energy MAE is in meV/atom,
Force MAE is in meV/Å, and Stress MAE is in kBar. Best performing model for each metric in bold and
second best underlined.

HIENet EquiformerV2 ORB SevenNet-l3i5 MACE CHGNet

Energy MAE 2 19 48 10 55 79
R2 0.995 0.794 -0.344 0.932 -0.762 -2.617

Force MAE 62 29 65 98 208 267
R2 0.989 0.998 0.988 0.974 0.885 0.805

Stress MAE 0.995 2.065 2.693 2.171 2.918 4.224
R2 0.938 0.706 0.507 0.652 0.466 -0.102

B Evaluations on Ab Initio Molecular Dynamics

As mentioned in Appendix A.1, Ab initio molecular dynamics (AIMD) simulation is an incredibly important
application of machine learning interatomic potentials (MLIPs). Here we evaluate HIENet and baseline
MLIPs on AIMD simulations.

To evaluate MLIPs performance, we generate a testing dataset consisting of silicon (Si) systems containing 64
atoms in a 2 × 2 × 2 supercell. A Γ-centered Monkhorst–Pack k-point sampling grid of 2 × 2 × 2 (Monkhorst
& Pack, 1976) was used. AIMD simulations were performed in the NVT ensemble with a Nosé-Hoover
thermostat at four temperatures of 300, 500, 700, and 900 K with time step of 1 fs for 1,000 steps at each
temperature. In total, 4,000 configurations were generated for model evaluation. Since configurations are
sampled from a variety of temperatures, this task represents an out-of-distribution generalization problem
compared to the MPtrj training dataset. We select Si systems because it is a representative material of great
interest and importance to the semiconductor industry.

AIMD simulations were conducted using DFT as implemented in VASP with the PBE exchange-correlation
energy functional. A plane-wave basis set with a cutoff energy of 520 eV was used to ensure numerical
accuracy in the simulations. To ensure consistency between training and evaluation, all input settings were
generated using the MPRelaxSet class.

For each system configuration, we compute MLIP energy, forces, and stress and compare with DFT reference
data. As shown in Table 6, HIENet achieves vastly better accuracy on energy and stress performance
compared to baseline models, though EquiformerV2 has better accuracy on force predictions. Parity plots for
each model are shown in Fig. 5, where we observe that HIENet consistently performs well across all system
configurations.

C Evaluations on Alloys

We also evaluate MLIP performance on phase diagram calculations using the Alloy Theoretic Automated
Toolkit (ATAT) (Van De Walle et al., 2002) framework following the approach outlined in Zhu et al. (2025).
Phase diagrams are graphical representations of the state of materials under arbitrary conditions and accurately
predicting them is a necessary condition for the further development of complex materials (Arróyave, 2022).

Starting with the simple Au-Pt binary systems, we first generate Special Quasirandom Structures
(SQS) (Zunger et al., 1990) of FCC Au-Pt with different compositions using ATAT, with 32 atoms in
a 2 × 2 × 2 supercell—the SQS structures are designed to mimic disordered alloys within a certain precision.
Then, the relaxation and free energy calculations are carried out using ab initio calculations and MLIPs.
For all ab initio calculations, VASP (Kresse & Hafner, 1993; 1994; Kresse & Furthmüller, 1996a;b) is used
with the PBE exchange-correlation functional and PAW pseudopotentials at the level of GGA (Blöchl, 1994;
Perdew et al., 1996). The k-point density is set to 8,000 k-points per reciprocal atom for all calculations.
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Figure 6: Formation energies per atom of the Au-Pt binary FCC system calculated with models trained on
the MPtrj dataset. eqV2 refers to EquiformerV2 and SevenNet is the SevenNet-l3i5 model.

Table 7: Ordering of Au-Pt formation energies calculated with different potentials (1 for the lowest formation
energy and 3 for the highest). Ideally, MLIP predictions should match the VASP ordering of formation
energies.

Model Ordering of Formation Energies
∆G (xAu = 0.25) ∆G (xAu = 0.5) ∆G (xAu = 0.75)

CHGNet 1 2 3
MACE 1 3 2
ORB 1 2 3
SevenNet-l3i5 2 3 1
GRACE 1 3 2
EquiformerV2 1 3 2
HIENet 2 3 1
VASP 2 3 1

In Figure 6, we plot the formation energies of the Au-Pt FCC binary systems calculated by HIENet and
baseline MLIPs. We see that HIENet shows strong agreement with first-principles DFT results as our model
predictions closely match the true formation energy across all Au concentrations.

In addition, although all the models successfully give a positive formation energy for the SQS’s, predicting
the miscibility gap in the phase diagram, most of the models including CHGNet, MACE, ORB, GRACE
and EquiformerV2 fail to reproduce the correct ordering of the formation energies: ∆G (xAu = 0.5) >
∆G (xAu = 0.25) > ∆G (xAu = 0.75), as shown in Table 7. Such ordering of formation energies is highly
important in thermodynamics and materials science, as it governs the stability of the phases.

Finally, we demonstrate how HIENet can be used for multi-element systems. In Figure 7, we present a ternary
phase diagram for the Cr-Mo-V system at 1,000 K calculated with ATAT and HIENet. The ternary phase
diagram calculation correctly identifies the BCC phase miscibility gap in the Cr-Mo region.
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Figure 7: Cr-Mo-V ternary phase diagram at 1,000 K calculated with ATAT and HIENet. Only the BCC
phase is included in the calculation. The phase diagram is plotted with the Pandat (Chen et al., 2002)
software package.

D Evaluations on Phonon and Bulk Modulus

D.1 Phonon Frequency Evaluation

As the calculations of the Material Project phonon dataset were performed using the PBEsol exchange-
correlation energy functional, it would be inconsistent to compare them with the models trained on the
data using the Perdew-Burke-Ernzerhof (PBE) (Perdew et al., 1996) exchange-correlation energy functional.
PhononDB, a database of phonon calculations including band structure, DOS, and thermal properties for
over 10,000 materials evaluated using the PBE functional, provides a more effective reference for comparison,
hence was used as the reference for the evaluation as detailed below. Phonon frequencies and corresponding
band structures were computed using the Phonopy package via the finite displacement method (Togo et al.,
2023; Togo, 2023) where MLIPs were employed to compute the dynamical matrices and corresponding
phonon band structures of each crystal structure. To ensure direct comparison between PhononDB and
calculated data, the Phonopy objects were initialized with the same unit cell and supercell matrices as used in
PhononDB calculations. Additionally, the primitive cell matrix was included if defined. Displaced supercells
were generated using a default displacement of 0.01 Å and the corresponding forces were evaluated with our
model. High-symmetry k-path in the Brillouin zone was computed using SeeK-Path (Hinuma et al., 2017;
Atsushi Togo & Tanaka, 2024). Using this workflow, the high-symmetry k-paths and the sampling grids were
identical between the reference phonon band structure from PhononDB and the predicted band structure
from our model.

In addition to the frequency evaluation in Table 3, we provide several phonon band structure diagrams
calculated using HIENet in Figure 8 for Si, CdTe, Cs2KInF6, and GaAgS2 systems. We observe that the
HIENet-predicted phonon band structures of Si exhibits reasonable accuracy, and the phonon band structures
for CdTe, Cs2KInF6, and GaAgS2 are in very good agreement with the PhononDB DFT results across the
entire frequency range and high-symmetry k-paths. Furthermore, the phonon band structure of Cs2KInF6
contains negative phonon frequencies, indicating the dynamical instability of the crystal structure despite its
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a) b)

c) d)

Figure 8: Phonon band structures for a) Si, b) CdTe, c) Cs2KInF6, and d) GaAgS2 calculated using HIENet
compared with reference data in the PhononDB database.

local stability. Impressively, the HIENet predictions agree with the DFT data extremely well even in this
negative frequency regime across all high-symmetry pathways. As such, HIENet can be a powerful MLIP for
predicting a materials thermal conductivity and structural stability.

D.2 Bulk Modulus Evaluation

To compute bulk modulus, we need to calculate the elastic tensor for each crystal. The latter is calculated by
first relaxing the input structure to the default force tolerance of 0.1 eV/Å using each MLIP. The relaxed
structure is then deformed with strains of (±0.005, ±0.01) applied to normal modes and strains of (±0.06,
±0.03) applied to shear modes for a total of 4 strain magnitudes for each of the 6 strain modes. The
resulting stress-strain values are fit linearly to compute the elastic tensor. The reference elastic constants
in the Materials Project were calculated using DFT with the PBE functional in the generalized gradient
approximation (GGA) (Langreth & Mehl, 1983) as implemented the Vienna Ab-initio Simulation Package
(VASP) (Kresse & Furthmüller, 1996b). For metallic entries, a plane wave cutoff energy of 700 eV with k-point
density of 7,000 per reciprocal atom was used. For non-metallic entries such as insulators or semiconductors,
a plane wave cutoff energy of 700 eV was once again used with a k-point density of 10,000 per reciprocal
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 f)


Figure 9: Comparison of bulk modulus KV RH calculated by a) HIENet, b) SevenNet-l3i5, c) ORB, d) MACE,
e) EquiformerV2, and f) CHGNet with the reference data in the Materials Project database.

atom (De Jong et al., 2015). In addition to the main results reported in Table 4, we provide parity plots for
each model in Fig. 9.
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Table 8: Mean absolute errors on MPtrj validation set for HIENet with O(3) and SO(3) equivariant crystal
graphs. Models trained for 20 epochs on the MPtrj dataset. Best performing model in bold.

Equivariance Energy ↓ Force ↓ Stress ↓
(meV/atom) (meV/Å) (kBar)

SO(3) 19.13 56.12 3.98
O(3) 16.26 49.29 3.48

E Additional Ablation Results

To empirically justify why we use O(3) equivariant crystal graph representations instead of the geometrically
complete but SO(3) equivariant crystal graphs from Yan et al. (2024), we provide an additional ablation
study in Table 8 where we include the additional periodic encoding from Yan et al. (2024). We observe that
SO(3) equivariant HIENet performs slightly worse, which aligns with our intuitions as the underlying DFT
algorithm is O(3) equivariant.

Table 9: Mean absolute errors on MPtrj validation set for HIENet with different orders of message passing
layers. Models trained for 20 epochs on the MPtrj dataset. Best performing model in bold.

MP Layer Energy ↓ Force ↓ Stress ↓
Ordering (meV/atom) (meV/Å) (kBar)
Mixed 50.35 94.62 6.41
Equiv. First 32.26 77.22 4.94
Inv. First 16.26 49.29 3.48

Additionally. we investigate different arrangements of message passing layers in Table 9. ’Inv. First’ represents
our baseline HIENet architecture of applying one invariant layer followed by several equivariant layers, ’Equiv.
First’ applies several equivariant layers followed by one invariant layer, and ’Mixed’ applies alternating
invariant and equivariant layers. The invariant-first ordering consistently outperforms other configurations,
validating our architectural design choice. We hypothesize that applying invariant layers before equivariant
layers builds more informative node representations that enable the equivariant layers to be more effective
than in equivariant-only models.

Table 10: Hyperparameter sensitivity analysis on MPtrj validation set. Models trained for 10 epochs. Best
performing model in bold and second best underlined.

Cutoff (Å) Lmax
Speed ↑ Energy ↓ Forces ↓ Stress ↓

(samples/sec) (meV/atom) (meV/Å) (kBar)
4 3 17.10 16.27 45.51 3.31
5 2 18.75 14.16 44.12 3.21
5 3 15.58 13.92 42.83 3.19
5 4 10.64 12.55 40.19 3.06
6 3 12.52 12.95 40.86 3.12

Furthermore, We evaluate the sensitivity of HIENet to key architectural hyperparameters. As shown in
Table 10, increasing the cutoff radius and maximum spherical harmonics order Lmax consistently improves
model accuracy but reduces inference speed. The chosen combination for the final model of 5Å cutoff
radius and Lmax = 3 provides a good balance between accuracy and computational efficiency. All tested
configurations demonstrate stable training convergence.
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F Model Settings and Experimental Details

F.1 HIENet Settings

HIENet consists of 1 invariant and 3 equivariant message passing layers. For the invariant message passing
layers, we use a hidden dimension of 512 for node features and a single attention head. The equivariant
layers use a representation that consists of 512 scalar channels with l = 0, 128 vector channels with l = 1,
64 higher-order tensor channels with l = 2, and 32 higher-order tensor channels with l = 3. We use 8
radial Bessel basis functions for distance encoding and a polynomial envelope (Gasteiger et al., 2020) with
p = 6. We use SiLU and sigmoid activation functions (Elfwing et al., 2018) throughout the network to ensure
smooth and continuously differentiable gradients. To prevent overfitting, we regularize the model by applying
dropout to the MLPs that operate on scalar features in both invariant and equivariant message passing layers.
Specifically, we employ a dropout rate of pattn = 0.1 for MLPs involved in attention calculations, while using
a lower rate of p = 0.06 for all other MLPs in the network. Additionally, we scale the input energies by the
root mean square (RMS) of forces from the training dataset and shift by element-wise reference energies from
the same dataset.

Following Batatia et al. (2023), we split the Materials Project Trajectory (MPtrj) Dataset (Deng et al., 2023a)
into training (95%) and validation (5%) sets. We train the model for 250 epochs on a platform with 2 AMD
EPYC 7J13 64-Core Processors (240 cores total), 1.7 TiB DDR4 memory, and 8 NVIDIA A100-SXM4-80GB
GPU accelerators. We use a total batch size of 384 (48 per GPU), which results in the model taking 118
minutes per training epoch and 6 minutes per validation epoch.

We provide the code used for training in the supplementary materials.

F.2 Optimization

We optimize HIENet using the AdamW optimizer (Loshchilov & Hutter, 2019) with weight decay of 0.001.
The learning rate follows a cosine annealing schedule (Loshchilov & Hutter, 2022) with an initial warm-up
phase to stabilize early training.

The loss function combines energy, force, and stress predictions with different weighting factors as:

L = λELE + λF LF + λσLσ (13)

where LE , LF , and Lσ represent the Huber losses for energy, force, and stress predictions, respectively, with
δ = 0.01. We set the weighting coefficients λE = 1.0, λF = 1.0, and λσ = 0.01.

To improve model generalization and training stability, we additionally maintain an exponential moving
average (EMA) of model parameters with a decay rate of 0.999.

The hyperparameters for both the model architecture and optimization are summarized in Table 11.

F.3 Envelope Function

As mentioned in Sec. 3.2, we use the polynomial envelope function (Gasteiger et al., 2021):

fpoly(r) = 1 − (p+ 1)(p+ 2)
2 dp + p(p+ 2)dp+1 − p(p+ 1)

2 dp+2 (14)

where p ∈ Z, 0 < p. In practice, we select p = 6. It is critical to have such an envelope function in order to
ensure that the MLIP energy predictions are continuously differentiable with respect to atom positions. The
polynomial envelope was selected because the first and second derivatives of hji will then go to 0 at the
cutoff radius Rmax.

G Detailed Equivariance Proof

Here we provide a more rigorous and detailed proof of the Proposition 3.6] that pertains to the O(3)
equivariance of HIENet’s predictions.
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Table 11: Hyperparameters used for model training.

Hyperparameter Value
Optimizer AdamW
Learning rate scheduler Cosine Annealing
Maximum learning rate 0.01
Minimum learning rate 0.000005
Warmup epochs 0.1
Warmup factor 0.2
Number of epochs 250
Batch size 48
Weight decay 0.001
Dropout rate, p 0.06
Attention dropout rate, pattn 0.1
Energy loss weight, λE 1.0
Force loss weight, λF 1.0
Stress loss weight, λσ 0.01
Model EMA Decay 0.999

Proof of Proposition 3.6. First, the radius-based graph construction ϑgraph described in Sec. 3.2 is O(3)
equivariant:

ϑgraph(Z,RP + b,RL) = Rϑgraph(Z,P,L)
This is because the radius-based graph construction only depends on the relative positions between atoms
and the resulting displacement vectors rji will rotate accordingly.

Second, the proposed HIENet message passing layers ϑHIENet are E(3) invariant for the final energy prediction.
The invariant message passing layers are E(3) invariant by construction because they only operate on the
magnitude ||rji|| and for the equivariant message passing layers, we only extract the final l = 0 features,
which are invariant by the definition of the Clebsch-Gordan tensor product. Because of this:

Ê(Z,RP + b,RL) = ϑHIENet(ϑgraph(Z,RP + b,RL)) = ϑHIENet(Rϑgraph(Z,P,L)) (15)
= ϑHIENet(ϑgraph(Z,P,L)) = Ê(Z,P,L), (16)

Therefore, HIENet energy predictions are E(3) invariant. Based on the physics informed property predictions
described in Sec. 3.4, we then have:

F̂i(Z,RP + b,RL) = −∇RpiÊ(Z,P,L) = −R∇piÊ(Z,P,L) = RF̂i(Z,P,L), (17)

σ̂(Z,RP + b,RL) = 1
V

∇RϵijRT Ê = 1
V

R∇ϵij
ÊRT = Rσ̂(Z,P,L)RT , (18)

therefore energy, force, and stress each transform appropriately under rototranslation and HIENet predictions
are O(3) equivariant.

H LLM Usage

We have used LLMs to polish our paper writing. Specifically, we have used LLMs to refine wording and
grammar throughout the paper. The research contributions, experimental design, analysis, and conclusions
are our own work.

I Licenses for Existing Assets

We have used datasets including the Materials Project Trajectory (MPtrj) dataset (Deng et al., 2023a) with
MIT License and Materials Project Database (Jain et al., 2013) with the Creative Commons Attribution
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4.0 International License. For evaluations, we have used the Matbench Discovery benchmark (Riebesell
et al., 2023) with MIT License, Phonopy and Togo PhononDB Database (Togo et al., 2023; Togo, 2023)
with the BSD 3-Clause License, Alloy Theoretic Automated Toolkit (ATAT) (Van De Walle et al., 2002)
with the Creative Commons Attribution-NoDerivatives 4.0 International License, and MatCalc’s Elasticity
module (Liu et al., 2024) with the BSD 3-Clause License. For model comparisons, we included EquiformerV2
(Liao et al., 2024) with the MIT License, ORB (Neumann et al., 2024) with the Apache License Version 2.0,
SevenNet (Park et al., 2024b) with the GNU General Public License Version 3.0, GRACE (Bochkarev et al.,
2024) with the Academic Software Licence, MACE (Batatia et al., 2023) with the MIT License, and CHGNet
(Deng et al., 2023b) with the BSD 3-Clause License.
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